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Nonlinear model predictive control of the strip temperature in an annealing furnace

M. Niederer∗, S. Strommer, A. Steinboeck, A. Kugi

Automation and Control Institute, Vienna University of Technology, Gußhausstraße 27–29, 1040 Vienna, Austria

Abstract

A nonlinear model predictive controller is designed for thestrip temperature in a combined direct- and indirect-fired strip annealing
furnace. Based on a tailored first-principles dynamical model and the estimated current system state, the receding horizon controller
selects optimal trajectories for both the fuel supply and the strip velocity so that the strip temperature is controlledto its desired
target temperature. The controller additionally maximizes the throughput and minimizes the energy consumption. In the control
algorithm, the dynamic optimization problem with equalityconstraints is numerically solved by using the Gauss-Newton method.
The gradient and the approximated Hessian matrix of the objective function are analytically computed using an adjoint-based
method. The capabilities of the proposed controller are demonstrated for a validated high-fidelity simulation model ofan industrial
annealing furnace.

Key words: steel industry, annealing furnace, direct- and indirect-fired sections, nonlinear model predictive control, receding
horizon control, vector-valued Lagrangian, adjoint-based method, Gauss-Newton method

1. Introduction

1.1. Control problem

In the steel industry, strip annealing furnaces are used forthe
heat treatment of steel strips in order to achieve the desired met-
allurgical and surface properties for subsequent process steps.
The annealing furnace considered in this paper, cf. Fig. 1, is part
of a strip processing line of voestalpine Stahl GmbH in Linz,
Austria and contains 235 m steel strip. The key parameters of
the furnace are tabulated in Tab. 1. To ensure a continuous op-
eration of the processing line, the strips are welded together to
form an endless strip.

Throughput of steel 45.7 t/h
Nominal heating power 15 MW
Strip dimensions

Thickness 0.35− 1.2 mm
Width 800− 1 640 mm

Strip velocities max. 180 m/min
Number of gas burners 48
Number of radiant tubes 62
Number of heating zones 7

Table 1: Nominal parameters of the strip annealing furnace.

To meet the high demands on the quality of the final product,
the temperature evolution of the strip is of importance. While
the strip moves through the furnace, it has to be heated to a
predefined target temperature. This strip temperature control
task is a challenge mainly for the following reason: An ongo-
ing diversification of the product portfolio essentially prevents

∗Corresponding author.Tel.: +43 1 58801 376292,Fax: +43 1 58801
9376264.
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steady-state furnace operation. The furnace can be considered
as a cascade thermal system, where the strip is part of the last
cascade. Since the thermal inertia of the strip is significantly
lower than that of the furnace, it is difficult to consistently real-
ize the desired target temperature in transient operational situa-
tions.

In addition to the product quality, there are further demands
on the furnace operation like optimized energy consumption,
material throughput, andCO2 emissions. A furnace tempera-
ture controller that meets all these requirements is still an open
research issue. This paper, therefore, explores the suitability of
advanced nonlinear control and optimization methods for the
considered control problem.

1.2. Existing solutions

In the literature, different concepts for strip temperature con-
trol of annealing furnaces can be found. The following sum-
mary should therefore only serve as a starting point for an in-
depth exploration.

Over decades, simple PID control concepts were used for
strip temperature control. PID control does not require a mathe-
matical model and provides acceptable results for a steady-state
furnace operation. However, if the furnace is not operated at
steady state, this concept is no longer suitable because of the
large thermal inertia of the furnace.

Occasionally, rule-based expert systems and fuzzy logic con-
trol concepts are used, see, e.g., [1, 2, 3, 4, 5]. Generally,
these semi-empirical concepts use a wide range of measure-
ments from the plant in order to characterize the operation con-
ditions and adjust the inputs to obtain the desired temperature.
Basically, they mimic the human operator but they perform the
control task with greater consistency and accuracy and smaller
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Figure 1: Combined direct- and indirect-fired strip annealing furnace.

response times than humans. Due to the complexity and wide
variety of operation situations of an annealing furnace, these
control concepts are, however, expensive to install, commis-
sion, and tune.

A hierarchical control concept is presented in [6]. In the top-
most layer, set-point values for the line speed and the zone tem-
peratures needed to achieve the target strip temperature are de-
termined. In the intermediate layer, the switching times ofthe
individual set-point values are determined using a simple model
of the strip temperature and optimization based methods. Inthe
inner-most layer, simple line speed and temperature controllers
control the strip temperature and ensure that it is within defined
bounds.

A hierarchically structured model-based control concept is
also presented in [7]. The underlying semi-analytic furnace
model is based on physical principles and measured system dy-
namics. In the higher control layer, reference trajectories for
both the strip velocity and the strip temperature are generated.
In the lower control layer, unknown parameters of the model are
recursively estimated and the mass flows of fuel are determined
using generalized predictive control [8, 9].

A control concept without a hierarchical structure is pre-
sented in [10]. Based on a linear model of the strip temper-
ature, a model predictive controller for the heating power of
the furnace is developed. It also takes into account input con-
straints. The constrained optimization problem is solved by us-
ing quadratic programming [11].

The controller presented in [12] is similar to that presented
in [10] but is based on a simple nonlinear furnace model. For
the utilization in a linear model predictive control concept, the

furnace model is linearized. In addition to the heating power
of the furnace, the controller optimizes the throughput, i.e., the
line speed.

1.3. Motivation, objectives, and contributions of this work
Nonlinear model predictive control is an appropriate con-

cept for strip temperature control of the considered annealing
furnace. It is a versatile optimization-based and anticipative
control method that is suitable for complex nonlinear multiple-
input multiple output systems. Moreover, it allows the incorpo-
ration of various control objectives and the systematic consid-
eration of input constraints, state constraints, and knowndistur-
bances, e.g., strip changes.

Most developed model predictive controllers for strip tem-
perature control of annealing furnaces are based on linear sys-
tem models. Though a linear model simplifies the control law,
it may limit the capability and the accuracy of the obtained
controller. Moreover, existing strip temperature controllers are
mainly developed for indirect-fired annealing furnaces. How-
ever, the annealing furnace considered in this paper features
also a direct-fired section. Since the direct- and the indirect-
fired furnace sections are physically coupled by the moving
steel strip, an integrated controller design for both furnace sec-
tions is recommendable. For this reason, existing control strate-
gies cannot be directly transferred to the annealing furnace con-
sidered here. This motivates the tailored design of a nonlinear
model predictive controller for non-steady-state furnaceopera-
tion. It should realize the following control objectives:
• Accurate strip temperature control
• Maximization of the throughput of the steel strip
• Minimization of the fuel consumption

2
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The controller has to respect several constraints:
• Bounds on the strip temperature
• Bounds on the control inputs

To satisfy these requirements, the following control inputs are
available:
• Mass flows of fuel to the heating zones
• Strip velocity

However, the controller design presented in this paper can also
be used when the strip velocity is prescribed by subsequent pro-
cess steps and is therefore not available as a control input.

The contributions of this paper can be summarized as fol-
lows:
• Nonlinear first-principles model of the plant
• Tailored real-time capable model predictive controller for

a strip annealing furnace based on the Gauss-Newton
method in combination with the analytical calculation of
the gradient and the approximated Hessian matrix using
an adjoint-based method

• Systematic optimization of the material throughput
• The feasibility of the proposed approach is demonstrated

by simulation studies for a validated high-fidelity mathe-
matical model of an industrial annealing furnace compris-
ing a direct- and an indirect-fired strip annealing furnace
section

1.4. Contents

The paper is organized as follows: Section 2 gives an
overview of the mathematical furnace model that is used as a
basis for the model predictive controller design. In Section 3,
the furnace temperature control system is described. A formal
description of the control objectives is given in Section 4.In
Section 5, the optimal control problem is first specified and then
a numerical solution algorithm is proposed. An industrial ap-
plication example in Section 6 demonstrates the capabilityof
the developed controller. Finally, Section 7 gives some conclu-
sions.

2. Mathematical furnace model

As shown in Fig. 1, the considered annealing furnace consists
of a direct- and an indirect-fired section, which are physically
coupled by the moving strip. In the direct-fired furnace sec-
tion (DFF), there are four heating zones, each equipped with
a set of burners for natural gas. To prevent the strip from ox-
idation, the combustion in these zones is controlled to be fuel
rich. Thus, the flue gas contains unburnt products which are ox-
idized in a post combustion chamber by adding fresh air. The
heat released in this post combustion is used to preheat the strip
in the preheater. The indirect-fired furnace section features an
inert gas atmosphere to prevent the strip from oxidation andis
divided into a radiant tube heating section (RTH) and a radiant
tube soaking section (RTS). Both sections are equipped withW-
shaped gas-fired radiant tubes that are grouped into three heat-
ing zones. The strip temperature in the indirect-fired furnace
section is therefore mainly controlled by the surface tempera-
ture of the radiant tubes.

A detailed first-principles model of the considered annealing
furnace can be found in [13, 14, 15]. This model includes dif-
ferent submodels for the flue gas, the radiant tubes, the wall,
the strip, and the rolls. However, the furnace model used in this
paper is a reduced model in terms of complexity, dimension,
and computational effort. In the following, the main differences
between the furnace models are briefly outlined:
• In the reduced furnace model, a coarser spatial discretiza-

tion is used throughout the furnace. This leads to a reduc-
tion of the model order.

• The modeling of the combustion process of fuel inside
the heating zones of the direct-fired furnace is simplified.
Hence, the complexity of the model is reduced.

• The reduced model of a radiant tube inside the indirect-
fired furnace features only one temperature state. This also
leads to a reduction of the model order.

• The reduced furnace model includes only temperature
states of representative (reduced) radiant tubes. The tem-
peratures of the remaining radiant tubes are determined
from these representative values based on identified map-
pings. This leads to a further reduction of the model order.

In the following, the most fundamental equations of the reduced
furnace model are summarized.

2.1. Flue gas
In the heating zones of the direct-fired furnace, natural gas

(CH4) is burnt in a fuel rich combustion process, i.e., the excess
air coefficientλ satisfiesλ < 1. The corresponding stationary-
reaction equation reads as

CH4 + 2λ (O2 + 3.76N2) −→
χc

COCO+ χc
H2

H2 + χ
c
CO2

CO2 + χ
c
H2OH2O+ χc

N2
N2.

Here,χc
ν with ν ∈ Sν = {CO,CO2,H2O,H2,N2} is the corre-

sponding number of moles. Taking into account the water-gas-
shift reaction [16, 17]

CO+ H2O ⇋ CO2 + H2,

which reaches a chemical equilibrium if (Tc in Kelvin)

K(Tc) = exp

(
4.33− 4577.8

Tc

)
=
χc

COχ
c
H2O

χc
CO2

χc
H2

is satisfied, the unknownsχc
ν can be determined from simple

mol balances.Tc denotes the adiabatic flame temperature. Let
Mν denote the molar mass of a componentν ∈ Sν∪Sκ withSκ =
{CH4,O2,N2}. The mass flows of the combustion products ˙mc

ν

with ν ∈ Sν read therefore as

ṁc
ν = ṁb

CH4

χc
νMν

MCH4

. (1)

Moreover, the mass flows of fuel ˙mb
CH4

and the combustion air
ṁb

O2
+ ṁb

N2
are coupled in the form

ṁb
κ = ṁb

CH4

χb
κMκ

MCH4

(2)
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with κ ∈ Sκ and (κ, χb
κ) = {(CH4, 1), (O2, 2λ), (N2, 7.52λ)}.

In the direct-fired furnace, the strip is heated by the hot flue
gas that is mainly characterized by its mass and temperature.
For modeling the flue gas, the furnace is discretized intoNg

volume zones, where each zone is assumed to be a well-stirred
reactor. The volume zones are numbered in ascending order in
flow direction of the flue gas. Neglecting the flue gas dynamics
[13], the mass balance for each combustion productν ∈ Sν and
the enthalpy balance of an individual volume zonei reads as

0 =ṁν,i−1 + ṁc
ν,i − ṁν,i (3)

0 =
∑

ν∈Sν
ṁν,i−1hν(Tg,i−1) −

∑

ν∈Sν
ṁν,ihν(Tg,i)

+
∑

κ∈Sκ
ṁb
κ,ihκ(Tκ,i) + Q̇g,i . (4)

Here,ṁν,i−1 andṁν,i denote the mass flow of a componentν ∈
Sν that enters or leaves the volume zonei. For calculated values
χc
ν, the unknown mass flows ˙mν,i with ν ∈ Sν that are required in

(4) can be easily determined by solving a linear set of equations
that consists of (1), (2), and (3).

In (4), hν(T) is the specific enthalpy of a componentν ∈
Sν ∪ Sκ at the temperatureT. The first two terms in (4) denote
the enthalpy flows associated with the incoming and the out-
going bulk flow in the respective volume zone. The enthalpy
flow of the fuel and combustion air is described by the third
term. Moreover, the net heat floẇQg,i into the respective zone
includes all thermal interactions of the flue gas with its envi-
ronment. By solving the nonlinear set of equations (4), the flue
gas temperaturesTg,i of all volume zonesi ∈ {1, . . . ,Ng} can be
determined.

2.2. W-shaped radiant tube

Inside the indirect-fired furnace section,Nr W-shaped radiant
tubes are grouped into several heating zones. All radiant tubes
of a single heating zone are supplied with the same amount of
fuel ṁCH4 that can be continuously adjusted between a mini-
mum and a maximum value. As shown in [14], the heatQ̇c,i

released by the combustion process inside a single radiant tube
i and transferred into the tube wall can be described by the static
mappingQ̇c,i = ψi(ṁCH4). This relation can be obtained by an
energy balance model of the radiant tube and measurement data
from the real plant.

Let giQ̇c,i, with the weighting factorgi > 0, be the heat input
that is allocated to the first straight pipe of the radiant tube, cf.
[14]. The pipe has the surface areaSr and the wall thicknessdr .
Its material properties are the specific heat capacitycr and the
mass densityρr . Using a simple heat balance, the differential
equation of the temperature stateTr,i of the pipe reads as

d
dt

Tr,i =
1

ρrcr (Tr,i)dr

(
q̇c,i + q̇r,i

)
(5)

with the (local) heat flux ˙qc,i = giQ̇c,i/Sr at the inner pipe sur-
face and the radiative heat flux ˙qr,i from the furnace interior to
the outer pipe surface. For the calculation of the radiativeheat

transfer inside the furnace, the temperature states of the remain-
ing pipesj = 2, 3, 4 of the radiant tube are approximated by

T j
r,i = a j

i Tr,i .

i.e., it is assumed that the temperature ratios of the individual
radiant tube pipes are constant. The coefficientsa j

i ∈ [0, 1]
were obtained in simulation studies.

2.3. Wall

The furnace wall consists ofJ different layers and is dis-
cretized intoNw wall segments along the furnace. To model the
heat transfer through the wall, the Galerkin weighted residual
method is employed to solve the one-dimensional heat conduc-
tion equation with a Dirichlet boundary condition at the outer
surface and a Neumann boundary condition at the inner sur-
face. If the stationary solution of a multi-layered furnacewall
is used as trial function, the lumped-parameter model of the(in-
ner) surface temperatureTw,i of a wall segmenti reads as [14]

d
dt

Tw,i =
1
K1

q̇w,i − K2

K1

(
Tw,i − To

)
, (6a)

with the abbreviations

K1 =


J∑

j=1

dw, j

kw, j



−2 J∑

j=1

ρw, jcw, jkw, j

3




J∑

l= j

dw,l

kw,l



3

−


J∑

l= j+1

dw,l

kw,l



3
(6b)

K2 =


J∑

j=1

dw, j

kw, j


−1

. (6c)

Here,dw, j denotes the thickness and the material propertiescw, j,
kw, j, andρw, j denote the heat capacity, the heat conductivity, and
the mass density of the layerj ∈ {1, . . . , J}. Moreover,q̇w,i is
the heat flux into the inner wall surface due to thermal radiation
and convection.To is the temperature at the outer wall surface
which is assumed to be equal to the ambient temperature.

2.4. Strip and rolls

Assume that the strip enters the furnace with ambient temper-
atureTo and moves along the directionzwith a velocityvs > 0.
Here,z is the spatially fixed length coordinate, cf. Fig. 1. Inside
the furnace, the strip is heated to a desired target temperature.
Using the first law of thermodynamics, the evolution of the strip
temperatureTs(z, t) in an Eulerian framework reads as

∂Ts(z, t)
∂t

=
2q̇s(z, t)

ρscs(Ts(z, t))ds
− vs

∂Ts(z, t)
∂z

. (7)

Here, ds is the strip thickness,ρs the mass density,cs the
temperature-dependent specific heat capacity, and ˙qs the heat
flux into the strip surface due to conduction, radiation and con-
vection.

Let the strip be spatially discretized intoNs sections of uni-
form length∆z with Ns + 1 grid pointszi . Using the upwind

4
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scheme [18] for discretizing the transport term in (7), the strip
temperatureTs,i(t) = Ts(zi , t) at a grid pointzi reads as

d
dt

Ts,i =
2q̇s,i

ρscs(Ts,i)ds
− vs

Ts,i − Ts,i−1

∆z
(8)

with Ts,0 = To.
The strip is guided through the furnace by means ofNd rolls

that are designed as hollow cylinders with the surface areaSd

and the wall thicknessdd. The relevant material parameters are
the heat capacitycd and the mass densityρd. Using a simple
heat balance, the lumped-parameter model of the rolli with the
homogeneous temperatureTd,i reads as

d
dt

Td,i =
1

ρdcd(Td,i)dd

((
1−

Sc
d,i

Sd

)
q̇d,i +

Sc
d,i

Sd
q̇c

d,i

)
. (9)

Here,Sc
d denotes the contact area between the roll and the strip.

The heat fluxes ˙qd,i and q̇c
d,i capture radiation and convection

with the furnace interior and conduction with the strip, respec-
tively.

2.5. Heat transfer mechanisms

The individual submodels of the considered furnace, i.e., the
models of the flue gas, the radiant tubes, the wall, the strip,and
the rolls, are interconnected by the heat transfer mechanisms
radiation, convection, and conduction. Due to the high tem-
peratures inside the furnace, thermal radiation is the dominant
mode of heat transfer. As suggested in [13, 14], the zone and
the net-radiation method [19, 20, 21, 22] are used for analyzing
the heat exchange by radiation. Both methods use a spatial dis-
cretization of the furnace to obtain a linear relation between the
local radiative heat flows and the fourth powers of local surface
and gas temperatures. Convective heat transfer between theflue
gas and its surrounding surfaces is modeled by using Newton’s
law of cooling and dimensionless numbers from fluid dynam-
ics [23, 24]. Furthermore, the conductive heat exchange at the
roll-strip contact is described by means of thermal resistances.

2.6. Assembled dynamical system

2.6.1. Continuous-time system
For a compact notation of the assembled furnace model, the

surface temperatures of the radiant tubes, the wall, the strip,
and the rolls are summarized in the vectorTΣ ∈ RNΣ with
NΣ = Nr + Nw + Ns + Nd = 60 and the flue gas temperatures
are summarized in the vectorTg ∈ RNg with Ng = 13. The
mass flows of fuel into the heating zones are summarized in the
vectorṁ. The vectoru = [vs, ṁT]T ∈ RNu with Nu = 8 thus
contains all control inputs. In the following, the time transfor-
mation

dt =
L
vs

dτ (10)

with an arbitrary lengthL, the strip velocityvs, and the normal-
ized timeτ is used. In the normalized time domain, the assem-
bled continuous-time state-space model of the furnace reads as

d
dτ

TΣ = f1(τ,TΣ,Tg, u) (11a)

0 = f2(τ,TΣ,Tg, u) (11b)

with the initial conditionsTΣ(τ0) = TΣ,0 and Tg(τ0) = Tg,0.
Equation (11a) includes the ordinary differential equations (5),
(6), (8), and (9) for the radiant tubes, the wall, the strip, and
the rolls, respectively. Equation (11b) represents a set ofnon-
linear equations for determining the flue gas temperatures,cf.
(4). In (11), TΣ are system states andTg are algebraic vari-
ables. The main benefits of using the time transformation (10)
are addressed in more detail in Section 2.6.2 and Section 5.1.

2.6.2. Discrete-time system

The implementation of the furnace model on a computer sys-
tem requires the discretization of the time domain. Letτk with
k ∈ N0 be the sampling points along the (normalized) time do-
main. The corresponding sampling period is∆τk = τk+1 − τk.
The discrete-time representation of the semi-explicit differen-
tial algebraic system (11) can, for instance, be obtained byap-
plying a 1-stage half-explicit Runge-Kutta method [25]. Thus,
the discrete-time system reads as

TΣ,k+1 =TΣ,k + ∆τkf1,k(TΣ,k,Tg,k, uk) (12a)

0 =f2,k+1(TΣ,k+1,Tg,k+1, uk+1). (12b)

For numerical stability of (12), the necessary condition

L
∆τk

∆z
= vs

L∆τk
vs

∆z
≤ 1 (13)

has to be satisfied. Condition (13) is theCourant-Friedrichs-
Lewy(CFL) condition [18] becauseL∆τk/vs is the time step in
the original time domain, cf. (10). The CFL condition gener-
ally describes the nexus between the spatial and temporal dis-
cretization of the advection equation (7) and the strip veloc-
ity. However, (13) includes no strip velocity due to the used
time transformation (10). For a computational efficient furnace
model, the realized time steps should always be as large as pos-
sible, i.e., the equality sign in (13) should hold if possible. Note
that a given normalized time grid which satisfies the equality of
(13) does not need to be adapted if the strip velocity changes.
In view of model predictive control, where the numerical effort
should be minimized, this is a benefit of using a normalized
time domain, especially because the strip velocity is an opti-
mization variable.

Introducing the vectorTk =
[
TT
Σ,k,T

T
g,k

]T
, (12) can be rewrit-

ten in the form

0 =Fk(Tk+1,Tk, uk+1, uk) (14a)

with

Fk =

[
TΣ,k+1 − TΣ,k − ∆τkf1,k(TΣ,k,Tg,k, uk)

f2,k+1(TΣ,k+1,Tg,k+1, uk+1)

]
(14b)
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Figure 2: Strip temperatures at the pyrometer positionszd ff , zrth, andzrts.

and the initial conditionT0 = [TT
Σ,0,T

T
g,0]T.

The most important process quantity is the strip temperature
which can be monitored by means of three radiation pyrome-
ters, cf. Fig. 1, at the strip positionsz= zi with i ∈ {df f, rth, rts}.
The output function

hs(Tk) (15)

provides the simulated strip temperature at these positions.
Equations (14) and (15) serve as the basis for the controller
design in the following sections.

2.7. Validation of the reduced furnace model

Since the most important model output is the strip temper-
ature at the pyrometer positions, the reduced furnace model
is mainly validated by means of measurement data of these
temperatures. The measurement data used for this validation
stem from a measurement campaign conducted at the real plant.
Most of the physical parameters used in the furnace model areat
least roughly known from material handbooks or design draw-
ings. For the unknown strip emissivity, the estimated value
from [14] is used.

Fig. 2 shows the simulated and measured strip temperatures
at the positionszd ff , zrth, andzrts. The simulated temperature

evolution of the strip matches well the measurement data. It
can be inferred from Fig. 2 that the furnace model presented in
[13, 14, 15] is more accurate compared to the reduced model.
However, the reduced model still captures the most important
nonlinear effects and requires only 1.8 s CPU-time on a stan-
dard desktop PC (4 GHz, 16 GB RAM) for the simulation of
1 h furnace operation. This is 40 times faster than the model
presented in [15]. Hence, the reduced furnace model is suitable
for repeated evaluation in an optimization algorithm.

3. Furnace temperature control system

The main objective of the considered temperature control
system is to ensure that the steel strips are heated to prede-
fined target temperatures in order to achieve the desired ma-
terial properties of the final product. As outlined in Fig. 3,the
temperature control system consists of three hierarchicallayers.

Process
control
system

Model
predictive

control

Velocity
and fuel
control

Furnace

State
estimator

T̂k

ũ u

Process data

hs(T)

Figure 3: Hierarchical furnace temperature control system.

The topmost layer is the process control system that coor-
dinates all tasks of the considered strip processing line. For
example, it schedules the production sequence depending on
priority and economic value of the individual strips. Moreover,
it provides the data sets characterizing the strips (process data).
These data set include target strip temperatures, maximum strip
temperature limits, geometric dimensions, i.e., width, thick-
ness, length, and material parameters like mass density andheat
capacity of each strip.

In the intermediate control-layer, a model predictive con-
troller selects reference trajectoriesũ for the system inputsu
so that the strip temperature is controlled to its desired target
temperature. The design of the model predictive controlleris
the main objective of this paper and is described in detail inthe
following sections.

Most system states that are required as initial condition, i.e.,
feedback, for model predictive control are not measured. There-
fore, Tk has to be estimated by means of a state estimator that
is based on the furnace model (11). In addition to the system
inputs, the estimator uses measurement data from the radiation
pyrometers to improve the current state estimationT̂k.

The lowermost layer includes decentralized control loops for
realizing the desired control inputs, i.e., the strip velocity and
the mass flows of fuel. In the current furnace configuration,
this task is accomplished mainly by means of PI controllers.It
is stressed that accurate fuel control is critical for safety rea-
sons as well as for the product quality. Since the model pre-
dictive controller provides trajectories of future systeminputs,
efficient two-degrees-of-freedom control concepts may be used
for fuel control, cf. [26, 27]. With such control concepts, the
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furnace might be operated closer at its limits. For the follow-
ing, it is assumed thatu = ũ holds, i.e., the inner control loops
are considered ideal.

4. Control task

Starting with the strip temperature, a formal description of
the control objectives and constraints is given. For the desired
final product quality, the strip must be heated to its target tem-
peratureTd

s̃ before reaching the end of the RTH section (py-
rometer positionzrth). This temperature level should then be
maintained up to the end of the RTS section (pyrometer posi-
tion zrts). The strip temperature at the end of the direct-fired
furnace (pyrometer positionzdf f ) is of minor importance and,
therefore, a target temperature does not exist.

As indicated in Fig. 4, the target temperatureTd
s̃ and the

boundsT±s̃ on the strip temperature may vary from strip to strip
and are defined using Lagrangian coordinates. The (local) La-
grangian coordinate ˜z is fixed for a given material point whereas
the Eulerian coordinatez is spatially fixed. The mapping be-
tween Lagrangian and Eulerian coordinates is given by

z= z̃+
∫ t

t0

vs(ξ)dξ. (16)

Utilizing the time transformation (10), (16) results in thelinear
mapping

z= z̃+ L (τ − τ0) , (17)

which impliesz = z̃ for τ = τ0. The target temperatureTd
s,k

at a grid pointτk described in Eulerian coordinates can thus be
easily determined by using (17).

Strip j − 1 Strip j Strip j + 1

T+s̃, j−1

Td
s̃, j−1

T−s̃, j−1

T+s̃, j

Td
s̃, j

T−s̃, j

T+s̃, j+1

Td
s̃, j+1

T−s̃, j+1

Ts̃

z̃

Figure 4: Target temperaturesTd
s̃ and temperature limitsT±s̃ for different strips.

In non-steady-state furnace operation, e.g., when a welded
joint that connects two strips with different target temperatures
moves through the furnace, the desired target temperaturesat
the pyrometer positionszrth andzrts generally can not be real-
ized simultaneously for both strips, at least not in the areaof
the welded joint. However, the temperatures of both strips must
remain within certain limits, see Fig. 4. Hence, the local strip
temperature should obey

T−s,k(zrth) ≤ Ts,k(zrth) ≤ T+s,k(zrth) ∀k (18)

T−s,k(zrts) ≤ Ts,k(zrts) ≤ T+s,k(zrts) ∀k. (19)

The valuesT±s,k at the positionszrth andzrts can be determined
by using (17). Moreover, the strip temperature at the pyrom-
eter positionzdf f , i.e., at the end of the direct-fired furnace, is
constrained by

T−s,k(zdf f ) ≤ Ts,k(zdf f ) ≤ T+s,k(zdf f ) ∀k (20)

in order to avoid strip damage, e.g., heat buckling, if the strip
temperature is raised too fast. The limitsT±s (zdf f ) are defined
similarly to the temperature limits shown in Fig. 4. For a sin-
gle strip section, a typical heat-up curve with the desired target
temperatureTd

s and corresponding temperature boundsT±s is
shown in Fig. 5. Introducing the vectorT±s = [T±s (zi)] i=df f,rth,rts,
the constraints (18), (19), and (20) can be summarized in the
form

T−s,k ≤ hs(Tk) ≤ T+s,k ∀k, (21)

with the output functionhs(Tk) from (15).

At this point it should be noted that further control objec-
tives can be defined at any position inside the furnace. This is
because the state estimator provides the full system state,in par-
ticular the strip temperature profile along the furnace. If prede-
fined heating trajectories are given for each strip, for example,
the deviation between the desired and the estimated temperature
profile can be taken into account in the control problem.

DFF RTH RTS

Ts(z)

z
0 zdf f zrth zrts

T−s (zdf f )

T+s (zdf f )

T+s (zrth)

T−s (zrth)

T+s (zrts)

T−s (zrts)

Td
s

Figure 5: Temperature trajectory of a strip section moving through the furnace
with target temperatureTd

s and corresponding temperature limitsT±s at the po-
sitionszdf f , zrth, andzrts.

In addition to the primary objective of accurate strip temper-
ature control, the maximization of throughput of steel strip and
the minimization of energy consumption are secondary control
objectives. Generally, the maximization of throughputρsdsbsvs

is tantamount to the maximization of the strip velocity. Further-
more, the minimization of the energy consumption requires to
minimize the fuel flow supplied to the heating zones of the an-
nealing furnace. Because these three control objectives can be
antagonistic, they are weighted in the optimal control problem
according to their importance.

The control inputs, i.e., the mass flows of fuel and the strip
velocity, are constrained in terms of both their absolute value
and their slope. Hence,

u−k ≤ uk ≤ u+k , ∀k (22)
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u̇−k ≤
vs,k

L
uk − uk−1

∆τk︸           ︷︷           ︸
hu,k(uk,uk−1)

≤ u̇+k , ∀k (23)

must be satisfied in the discrete-time domain. Here, the slope
is approximated by the difference quotient. The scaling factor
vs,k/L is due to the time transformation (10).

5. Model predictive control

In this section, a model predictive controller for the striptem-
perature is developed. The basic idea of model predictive con-
trol is to recurrently solve a dynamic optimization problemde-
fined on a finite time horizon. At the beginning of every time
horizon, the current system state estimated by the state estima-
tor is used as initial state of the optimization problem. This is
the essential source of feedback used in model predictive con-
trol.

The challenge in the implementation of a model predictive
controller is generally the computationally expensive solution
of the dynamic optimization problem in real-time. This is the
case especially for complex and high-dimensional nonlinear
systems like annealing furnaces. One option to overcome this
challenge is that the optimization problem is just approximately
solved in order to reduce the computation time. This approach
leads to a suboptimal solution of the optimization problem and
may jeopardize the control accuracy. However, it facilitates a
real-time implementation of the model predictive controller and
is therefore used in this paper.

5.1. Constrained optimization problem

For the finite time horizon (τk0, τk1] with τk1 − τk0 = 1, the
control objectives are implemented by the objective function

k1∑

k=k0+1

‖r1,k(hs(Tk), uk)‖W1,k + ‖r2,k(uk)‖W2,k (24a)

with

r1,k(hs(Tk), uk) =

√
L

vs,k

[
Td

s,k(zrth) − Ts,k(zrth)
Td

s,k(zrts) − Ts,k(zrts)

]
(24b)

r2,k(uk) =

√
L

vs,k



√
1

vs,k

ṁk

 (24c)

and the quadratic form‖r‖W = rTWr whereW is a (diagonal)
positive semi-definite weighting matrix. The factorL/vs,k in
each term of the objective function (24) is inherited from the
time transformation (10) applied to an original formulation of
the objective function in the real continuous-time domain.

The first term of the objective function (24) ensures strip tem-
perature tracking by penalizing the error between the striptem-
perature and its target temperature at the pyrometer positions
zrth andzrts, cf. Fig. 1. Moreover, the second term ensures high
material throughput and low energy consumption by penaliz-
ing low strip velocities and high fuel consumption. The relative

importance of the respective control objectives can be adjusted
for individual strip sections by the weighting matricesW1,k and
W2,k.

To highlight a major benefit of using the time transforma-
tion (10), consider for a moment that the optimization problem
is formulated without using this transformation. If the control
objectives were then prioritized differently for individual strips,
the weighting matricesW1,k andW2,k would depend on the strip
velocity (an optimization variable). This fact would complicate
the calculation of the gradient of the objective function. How-
ever, if the time transformation is used, each grid point of the
normalized time horizon corresponds to a strip section and the
weighting matrices are therefore independent of the strip ve-
locity. The strip length considered in the prediction horizon
(τk0, τk1] is equal to the valueL used in the time transformation
(10), i.e., the normalized control problem is not formulated in
terms of a fixed (real) time horizon but in terms of a fixed strip
length.

With the objective function (24), the discrete-time systemdy-
namics (14), and the constraints (21), (22) and (23), the furnace
control problem reads as

minimize
uk ∈ RNu

∀k ∈ K̄

∑

k∈K̄
‖r1,k(hs(Tk), uk)‖W1,k + ‖r2,k(uk)‖W2,k (25a)

subject to 0 = Fk−1(Tk,Tk−1, uk, uk−1), ∀k ∈ K̄, (25b)

Tk0 = T0, uk0 = u0, (25c)

T−s,k ≤ hs(Tk) ≤ T+s,k,∀k ∈ K̄, (25d)

u−k ≤ uk ≤ u+k ,∀k ∈ K̄ (25e)

u̇−k ≤ hu,k(uk, uk−1) ≤ u̇+k ,∀k ∈ K̄, (25f)

with the abbreviation̄K = {k0+ 1, . . . , k1} andNk = (k1− k0)Nu

optimization variables.
A challenge in solving the control problem (25) are the in-

equality constraints (25d). In literature, numerous approaches
for solving this kind of problem can be found, see, e.g., [11,28].
However, if the inequality constraints are implemented as they
are, i.e., as hard constraints, the constrained optimization prob-
lem might be infeasible and its solution is generally computa-
tionally expensive. This is mainly because in every iteration
of a numerical solution algorithm it has to be checked whether
the inequaltiy constraints are active or not. To circumventthis
issue, in particular in view of a real-time implementation,the
constrained control problem (25) is transformed into an alter-
native representation with equality constraints only by using
a nonlinear input transformation and additional penalty terms,
i.e., soft constraints, in the objective function.

5.2. Approximation of inequality constraints

Since it is important to keep the number of optimization vari-
ables at a moderate level, the number of optimization vari-
ables is reduced, i.e., the solution of the optimization prob-
lem is confined to a lower dimensional subspace ofRNk. Let
Ul ∈ RNu be the input vector at a grid point Tl of the coarse
time grid (Tl0,Tl0+1, . . . ,Tl1−1,Tl1) with Tl0 = τk0 and Tl1 = τk1.
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The number of optimization variables is thus reduced toNl =

(l1 − l0)Nu < Nk. The input vectoruk at the nodal pointτk of
the fine time grid can be computed by linear interpolation of the
grid valuesUl in the form

uk =

l1∑

l=l0

Φl(τk)Ul (26a)

with triangular functions

Φl(τk) =



τk−Tl−1
Tl−Tl−1

if τk ∈ [T l−1,Tl ]
Tl+1−τk
Tl+1−Tl

if τk ∈ (Tl ,Tl+1]
0 else.

(26b)

The reduced control performance due to this alternative input
parameterization is usually rewarded by less computational ef-
fort for solving the optimization problem.

The coarse time grid for the control inputs suggests that the
second term of the objective function (24) is evaluated at the
time instances Tl with the valuesUl , wherel = l0 + 1, . . . , l1.
Moreover, the constraints (25e) and (25f) are replaced by

U−l ≤ Ul ≤ U+l , l ∈ L̄ (27)

U̇−l ≤ hU,l(Ul ,Ul−1) ≤ U̇+l , l ∈ L̄ (28)

with the associated functionhU,l , the associated limitsU±l and
U̇±l , and the abbreviation̄L = {l0 + 1, . . . , l1}.

The constraints (27) are taken into account by the input trans-
formation

Ul = φl(Vl) = diag{U+l − U−l }ϕ(Vl) + U−l (29a)

with the nonlinear mapping

ϕ(Vl) =
1
2

(1 + tanh(2Vl)) (29b)

and the new unconstrained inputVl . Here, diag(U) denotes a di-
agonal matrix containing the elements ofU. The mathematical
operation tanh(·) is meant to be individually applied to the re-
spective vector element. Moreover,1 ∈ RNu represents a vector
with unity elements only. A scalar representation of the map-
ping (29b) is shown in Fig. 6. Note that the constraints (27)
are automatically satisfied ifUl is computed according to (29a).
Clearly,ϕ(Vl) ∈ [0, 1] from (29b) represents a normalized input
vector. The mapping (29b) requires the additional term

ε
∑l1

l=l0+1
VT

l Vl (30)

with an arbitrary valueε > 0 to be added to the objective func-
tion (24) in order to avoid singular arcs, cf. [29]. For a concise
notation, the function, cf. (26) and (29),

ψk(V) =
l1∑

l=l0

Φl(τk)φl(Vl)

is introduced, i.e.,uk = ψk(V).

Vl

0

1

ϕ(Vl ) r(ξk)

ξ−k ξ+k ξk

∆

Figure 6: Input transformationϕ(Vl ) and penalty term r(ξk) =∥∥∥max(0, ξ−k + ∆ − ξk, ξk − ξ+k + ∆)
∥∥∥

w (shown for scalar quantities only).

The remaining inequalities (25d) and (28) can be replaced,
for instance, by classical penalty- or barrier-methods [30, 11].
However, for the considered control problem, the additional
term

k1∑

k=k0+1

∥∥∥r3,k(hs(Tk))
∥∥∥

W3,k
+

l1∑

l=l0+1

∥∥∥r4,l(V)
∥∥∥

W4,k
, (31a)

with

r3,k(hs(Tk)) = max
(
0,T−s,k + ∆s − hs(Tk), hs(Tk) − T+s,k + ∆s

)

(31b)

r4,l(V) = max
(
0, U̇−l + ∆r − hU,l(φl−1(Vl−1),φl(Vl)),

hU,l(φl−1(Vl−1),φl(Vl)) − U̇+l + ∆r

)
,

(31c)

the assembled input vectorV = [Vl ] l=l0+1,...,l1, andφl0(Vl0) =
Ul0 = u0, is added to the objective function (24). An example
of the chosen approach is shown in Fig. 6 for a general quantity
ξk constrained to [ξ−k , ξ

+
k ]. How exactly the original constraints

are adhered to, can be controlled to a certain extent by the pa-
rameters∆i > 0 with i ∈ {s, r} and the weighting matricesWi

with i ∈ {3, 4}. Note that using this approach may cause minor
violations of the original restrictions (25d) and (28). However,
for the considered control problem, this approach is perfectly
acceptable.

The objective function finally includes the terms (24), (30),
and (31a). LetT = [Tk]k=k0+1,...,k1

be the assembled temperature
vector. Introducing

c1(T,V) =
[
c1,k(Tk,V)

]
k=k0+1,...,k1

=

[
r1,k(hs(Tk),ψk(V))

r3,k(hs(Tk))

]

k=k0+1,...,k1

c2(V) =


r2,l(Vl)
r4,l(V)

Vl


l=l0+1,...,l1

the final objective function reads as

C(V,T) = C1(V,T) +C2(V) = ‖c1(V,T)‖Wc1
+ ‖c2(V)‖Wc2

with diagonal weighting matricesWc1 and Wc2 that includes
the (diagonal) entries of the matricesWi , i = {1, 3}, andWi ,
i = {2, 4}, as well asε from (30), respectively.
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Based on (26), (29), and (31a), the optimization problem (25)
is transformed into the optimization problem

minimize
V∈RNl

C(V,T) (32a)

subject to 0 = F(T,V) (32b)

with F(T,V) =
[
Fk−1(Tk,Tk−1,ψk(V),ψk−1(V))

]
k=k0+1,...,k1

whereTk0 = T0. Compared to the original formulation (25),
the optimization problem (32) does not include inequality con-
straints and a solution always exists.

5.3. Numerical solution of the optimization problem

The exact solution of an optimization problem is typically
approximated by a sufficiently accurate numerical solution gen-
erated by a suitable optimization algorithm. For the optimiza-
tion problem (32), many standard numerical solution methods
can be found, e.g., the steepest descent method [31], the conju-
gate gradient method [32], the quasi-Newton method [33], the
Gauss-Newton method [11], or the Newton method [11]. Since
the solution of the optimization problem (32) is used in a model
predictive control concept, an efficient solution method in terms
of computational effort and convergence rate is essential. The
quasi-Newton method features a superlinear convergence rate
and is often used for problems like (32), cf. [34, 35]. This
method requires only the computation of the objective function
and its gradient with respect toV. Moreover, the Hessian ma-
trix can be estimated with little computational effort by apply-
ing, for instance, the BFGS formula [36]. However, a crucial
point for the convergence rate of the quasi-Newton method is
the initial choice of the estimated Hessian matrix.

The Gauss-Newton method does not have this problem be-
cause it uses a more accurate approximate calculation of the
Hessian matrix. For this reason, the Gauss-Newton method is
used in this paper. It provides also a superlinear convergence
rate and requires an objective function that is made up of a sum
of squared function values. Compared to the Quasi-Newton
method, the main difference is that the Hessian matrix is ap-
proximated by exploiting the special structure of the objective
function. Given that (32b) holds, the gradient vectorg and the
approximated Hessian matrixH read as

g =
(
dC
dV

)T

= 2

(
dc1

dV

)T

Wc1c1 +

(
dC2

dV

)T

H =2

(
dc1

dV

)T

Wc1

(
dc1

dV

)
+

(
d2C2

dV2

)T

.

Since C2(V) is independent ofT, the analytical computa-
tion of dC2(V)/dV and d2C2(V)/dV2 is fairly straightforward
and computationally undemanding. For the computation of
dc1(T,V)/dV, the vector-valued Lagrangian

L = c1(T,V) + ΛF(T,V)

with a lower-triangular block-structured matrixΛ of La-
grangian multipliers is introduced. Vector-valued Lagrangians
are commonly used in multi-objective optimization [37]. Inthis

paper, this formulation is borrowed for the analytical computa-
tion of dc1(T,V)/dV, which follows in the form

dc1(T,V)
dV

=
∂L
∂V
=
∂c1(T,V)

∂V
+ Λ

∂F(T,V)
∂V

(33a)

with

0 = F(T,V) (33b)

0 =
∂L
∂T
=
∂c1(T,V)

∂T
+ Λ

∂F(T,V)
∂T

. (33c)

In principle, dc1(T,V)/dV can be determined from (33a) by
means ofT andΛ that can be calculated in a straightforward
way from (33b) and (33c). However, this approach is com-
putationally expensive and memory-intensive. A numerically
efficient computation of dc1(T,V)/dV according to (33) pro-
ceeds as follows: First, the state trajectoryTk is solved for
the ascending time indicesk0 + 1, . . . , k1 (forward direction) by
using Fk−1(Tk,Tk−1,ψk(V),ψk−1(V)) = 0 with Tk0 = T0 and
ψk0(V) = u0, i.e., (33b) is solved. It is easy to see that the ma-
trix ∂c1/∂T has a block-diagonal structure. Similarly, the ma-
trix ∂F/∂T has a sparse block structure with non-zero matrices
only on the main diagonal and the subdiagonal, see Fig. 7. Note
that the entries of∂c1/∂T and∂F/∂T can be analytically eval-
uated. Because of the sparse structure of∂c1/∂T and∂F/∂T,
Λ has a lower-triangular block structure. Clearly, it is not rec-
ommendable to computeΛ by direct inversion of∂F/∂T, i.e.,
in the formΛ = −(∂c1/∂T)/(∂F/∂T)−1. Instead, the column
blocks ofΛ should be successively computed with descending
time indicesk1, . . . , k0+1 (backward direction) using the calcu-
lated state trajectoryTk. In the same loop, the column blocks of
dc1(T,V)/dV can be simultaneously computed. This is because
∂F/∂V has the same sparse block structure as∂F/∂T. Note that
this strategy features modest memory requirements becausethe
large matrixΛ does not need to be stored at any time. Instead,
only the currently considered column block is of interest.

The iterative numerical optimization algorithm can therefore
be summarized as follows:

Step 0: Provide an initial guessV

Step 1: Compute the search directiond = −H−1g

Step 2: Perform a line search, i.e., solve
minimize

α≥0
C(V + αd,T)

subject to 0 = F(T,V + αd)
and compute the updateV← V + αd.

Step 3: Check if any termination criterion (maximum
number of iterations, convergence) is fulfilled.
If yes, stop here.

Step 4: Start again at Step 1.

In step 2, a scalar optimization problem for the step sizeα is
solved by means of a local quadratic approximation

C(V + αd,T) ≈ q(α) = a0 + a1α + a2α
2

and an underlying interval adaption [38]. If the objective func-
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Figure 7: Detailed structure of (33c) for determining dc1(T,V)/dV.

tion is evaluated at three sample pointsα1 < α2 < α3 with
α2 = (α1+α3)/2, the polynomial coefficientsa0, a1, anda2 can
be determined by solving the set of equations

C(V + αid,T) = q(αi), i = 1, 2, 3.

If a2 > 0, the step size that minimizesq(α) takes the form

−1
2

a1

a2
.

If this step size is additionally in the interval [α1, α3], then
α = −a1/(2a2) is the approximate solution of the line search
problem. Otherwise,α is set to one of the interval boundsα1 or
α3. In this case, the interval bounds are shifted accordingly in
order to track the minimum of the line search problem over the
subsequent Gauss-Newton iterations [38].

In step 3, the numerical solution algorithm is terminated if
a fixed numberNc of iterations is achieved, i.e., a suboptimal
solution for the input trajectories is used. This termination cri-
terion ensures that a defined sampling rate of the controllercan
be realized. Note that the proposed numerical solution algo-
rithm always satisfies (32b), even if the algorithm is used ina
suboptimal way.

5.4. Convergence behavior of the numerical solution algorithm

A numerical solution algorithm is mainly characterized by its
rate of convergence, its numerical effort per iteration, and its nu-
merical stability. In the following, the convergence properties
of the Gauss-Newton formulation proposed in the previous sec-
tion is compared for a single prediction horizon with the conver-
gence properties of the quasi-Newton method. Here, the quasi-
Newton method is implemented with the BFGS formula and
the identity matrix as initial condition for the estimated Hes-
sian matrix. For comparison purposes, the line-search problem
is identically realized in both algorithms.

Because of the analytical calculation of the Hessian matrix,
the computation time, i.e., the computational effort, per itera-
tion of the Gauss-Newton method is 1.06 times higher than that
of the quasi-Newton method. Starting from an arbitrary initial
guessV and an initial valueC = 209 of the objective function,
Fig. 8 shows the valuesC for every iteration of both solution
algorithms. The Gauss-Newton method reaches the almost op-
timal valueC = 2.66 after just 5 iterations whereas the quasi-
Newton method requires many more iterations, i.e., the rates

100 101 102
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20

40

60

80
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C
(−

)

Gauss-Newton method Quasi-Newton method

Figure 8: Decrease of the objective functionC as a function of the iterations of
the solution algorithm.

of convergence differ significantly. Even if both algorithms
are used in a suboptimal way, the performance of the Gauss-
Newton method is significantly better. This result justifiesthe
choice of the Gauss-Newton method for the efficient solution of
the optimization problem (32), although it has a slightly higher
numerical effort per iteration than the quasi-Newton method.

6. Industrial application example

For the verification of the developed model predictive con-
troller, a simulation study is carried out. In this simulation
study, the real furnace (plant), cf. Fig. 3, is replaced by the
validated high-fidelity furnace model presented in [13, 14,15].
This furnace model has been extensively verified by means
of measurement data from the considered combined direct-
and indirect-fired strip annealing furnace of voestalpine Stahl
GmbH in Linz, Austria, and is therefore suitable for the em-
ulation of the real furnace operation. The system state that
is required for the initial condition for the controller, i.e., the
feedback, is provided by an ad-hoc state estimator [39]. Addi-
tionally, the estimator provides an estimation of the stripemis-
sivity. The state estimator is based on the furnace model (11)
and uses the system inputs and the noisy pyrometer measure-
menths(Ts)+ v with the measurement noisev ∈ R3 to improve
the estimation. The entries ofv are chosen to be uniformly dis-
tributed in the range [−5, 5] K.
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The scenario for the simulation study is taken from a real
production process at the considered annealing furnace. The
process data defining the scenario include geometric dimen-
sions, material properties, target temperatures, and correspond-
ing temperature constraints of 21 different strips with a total
length of 55 km. The widthbs and thicknessds of the strips
are shown in Fig. 9. They are in the rangebs ∈ [1.3, 1.5] m
andds ∈ [0.6, 0.8] mm, respectively. The absolute values and
the maximum slopes of the control inputs, i.e., the input con-
straints, are chosen in accordance with their real counterparts.
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Figure 9: Geometric dimensions of the considered strips.

For the simulation, the controller is implemented in Matlab
with a sampling timeδc = 2 s. On a standard desktop PC (4
GHz, 16 GB RAM), the time required for the solution of the
optimal control problem is in the range of 1.7 s. A new opti-
mal control input is thus provided at the time instantskδc with
k ∈ N. The (constant) strip length considered in each prediction
horizon [Tl0,Tl1] with T l1 − Tl0 is L = 1000 m, which is more
than 4 times the length of the strip inside the furnace. The opti-
mal control problem takes into accountNl = (l1 − l0)Nu = 592
optimization variables and the numerical solution algorithm ter-
minates afterNc = 1 iteration. In order to compensate the com-
putational delay [40], the numerical solution algorithm that is
started at the time instantkδc is initialized with an estimation
of the system state at the time instant (k + 1)δc, cf. [41]. This
future system state is predicted based on the estimated system
state provided by the state estimator at the time instantkδc and
by using the furnace model (12) and the open-loop inputs that
are applied to the plant in the time interval [kδc, (k+1)δc]. Thus,
at the time instant (k+1)δc, an optimal control input is provided
which systematically takes into account the computationalde-
lay. Moreover, the suboptimal solution of the previous opti-
mization problem is incorporated into the initial guess of the
current optimization problem. Because the previous and the
current prediction horizons overlap, it is intuitive to initialize
the corresponding optimization variables with the associated
solution of the previous optimization problem. The remain-
ing optimization variables at the end of the current prediction
horizon are initialized with their final value at the end of the
previous horizon.

In steady-state operation, the controller is tuned to satisfy
both the primary and the secondary control objectives. How-

ever, in non-steady-state operation, e.g., when a welded joint
that connects two strips with different target temperatures is
processed, the secondary control objectives are of minor im-
portance. To prioritize the primary control objective in non-
steady-state operation, the matrixWc2 is adapted by reducing
the entries as long as a welded joint appears in the prediction
horizon. This adaptation may vary for different strip transitions.
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Figure 10: Simulated strip temperature, corresponding target temperatures, and
the temperature constraints at the pyrometer positionszdf f , zrth, andzrts.

Because the main objective is accurate strip temperature con-
trol, the proposed controller is mainly verified by means of the
strip temperatures at the two pyrometer positions at the endof
the RTH and the RTS section, cf. Fig. 1. Figure 10 shows that
the noisy strip temperature at these two positions accurately fol-
lows the respective target temperature and is always withinthe
tolerance range. This also holds true in transient operational
situations, e.g., when a welded joint that connects two differ-
ent strips moves through the furnace. Figure 10 also shows that
the strip temperature at the pyrometer positionzdf f is within its
temperature limits.

The proposed model predictive controller takes into account
known future disturbances, e.g., strip transitions. This anticipa-
tive behavior is shown in Fig. 11 which is a detail of Fig. 10. In
order to meet all temperature limits, the strip temperaturerises
before the strip transition with the corresponding change in the
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Figure 11: Detail of simulated strip temperature, corresponding target temper-
atures, and the temperature constraints at the pyrometer positionszrth, andzrts,
cf. Fig. 10.

target temperature appears at the respective pyrometer measure-
ment. A control concept that is not anticipative would reactonly
after a change of the target temperature becomes visible in the
control error at the respective position. In this case, the risk of
violating the temperature limits would be much higher.

Examples of the associated control inputs, i.e., the mass flows
of fuel in a typical heating zone of both the direct-fired and the
indirect-fired furnace section and the strip velocity, are shown
in Fig. 12. These quantities are within their constraints. The
mass flows of fuel to the other heating zones look similar to
those of Fig. 12.

Figures 10 and 12 show that the controller ensures both
accurate strip temperature control and a maximization of the
throughput. This is because the heating zones are widely op-
erated at maximum capacity and a further increase of the strip
velocity would thus be at the expense of the strip temperature
accuracy.

In the considered annealing furnace, strip temperature con-
trol is currently realized by a standard PI control concept.In
order to assess whether the control accuracy for the considered
production scenario increases with the proposed model predic-
tive controller, the performance indicator

∆Ts =

√
1
tΣ

∫ tΣ

0
eTe dt (34a)

with

e =
[
Td

s (zrth, t) − Ts(zrth, t)
Td

s (zrts, t) − Ts(zrts, t)

]
(34b)

is used, wheretΣ is the total time that is needed for the heat
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Figure 12: Simulated system inputs, i.e., mass flow of fuel toa heating zone
of the direct- and the indirect-fired furnace and strip velocity, as well as corre-
sponding constraints.

treatment of the considered 21 strip products. With the PI
control concept, the heat treatment of the 21 strips required
tmeas
Σ
= 8.6 h. Using the corresponding measurement data, (34)

results in∆Tmeas
s = 20.13 K. As it can be inferred from Fig. 10,

the proposed temperature controller requires onlytsim
Σ
= 6.8 h

for processing the considered strip products. This means that
an optimized strip velocity would lead to a reduction of the
production time by more than 20%. Of course, this reduction
is equivalent to a maximization of the material throughput.If
the simulated strip temperaturesTs(zrth, t) and Ts(zrts, t) from
Fig. 10 are used, (34) results in∆Tsim

s = 9.15 K, which indi-
cates that the proposed controller would also significantlyin-
crease the control accuracy.

In addition to the control accuracy and the production time,
the energy consumption of the annealing furnace is another im-
portant control performance parameter. During the time pe-
riod tmeas

Σ
, the heat treatment of the considered strip products

by means of the PI control concept requires a total amount of
fuel of mmeas

CH4
= 8.95 t. In contrast,msim

CH4
= 8.92 t is needed in

the simulation study. This means that the fuel consumption per
ton strip product is slightly reduced. These obtained results in-
dicate the great potential of the proposed controller to increase
the control accuracy, to maximize the material throughput and
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to minimize the energy consumption at the real plant.

7. Conclusions

A nonlinear model predictive controller for the strip temper-
ature of a combined direct- and indirect-fired strip annealing
furnace was proposed. Here, both the mass flows of fuel to the
heating zones and the strip velocity are used as control inputs.
The controller additionally maximizes the throughput and min-
imizes the energy consumption.

The basis of the proposed controller is a tractable first-
principles model of the furnace, which is computationally in-
expensive and captures the most import nonlinear effects. The
model includes submodels of the flue gas, the radiant tubes, the
wall, the strip, and the rolls. These submodels are intercon-
nected by the heat transfer mechanisms radiation, convection,
and conduction.

For the model predictive controller, a tailored dynamic opti-
mization problem is solved by a numerical solution algorithm.
The time domain of the furnace model is first normalized using
a time transformation that depends on the strip velocity. This
ensures that the strip length considered in each predictionhori-
zon is constant. To meet the different control objectives, a suit-
able objective function that depends on the system inputs and
states is defined for a finite time horizon. Constraints of in-
puts and system states are taken into account by using sigmoid
functions and additional penalty terms in the objective function.
The discrete-time optimization problem that finally consists of
the objective function and the furnace model as an equality con-
straint is iteratively solved in a suboptimal way by means ofthe
Gauss-Newton method. The required gradient and the approx-
imate Hessian matrix of the objective function can be analyti-
cally computed using an adjoint-based method. The suboptimal
solution is used for the initial guess for the next optimization
problem.

The capability of the proposed controller was demonstrated
by a validated high-fidelity model of an industrial annealing fur-
nace with process data from the real production process. The
controller achieves accurate strip temperature control inboth
steady-state and non-steady-state furnace operation and ensures
compliance with all constraints. Furthermore, the controller is
currently implemented by voestalpine Stahl GmbH at the con-
sidered strip processing line.
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