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Christian Oftt, Alin Albu-Schaffer,

Abstract— In this work a novel type of impedance controllers
for flexible joint robots is proposed. As a target impedance a
desired stiffness and damping are considered without inera
shaping. For this problem two controllers of different compexity
are proposed. Both have a cascaded structure with an inner
torque feedback loop and an outer impedance controller. For
the torque feedback, a physical interpretation as a scalingf the
motor inertia is given, which allows to incorporate the torque
feedback into a passivity based analysis. The outer impedar
control law is then designed differently for the two controlers.
In the first approach the stiffness and damping terms and the
gravity compensation term are designed separately. This dar
control loop uses only the motor position and velocity, but o non-
collocated feedback of the joint torques or link side positns. In
combination with the physical interpretation of torque feedback,
this allows us to give a proof of the asymptotic stability of he
closed-loop system based on the passivity properties of tlsgstem.
The second control law is a refinement of this approach, in whth
the gravity compensation and the stiffness implementatiorare
designed in a combined way. Thereby, a desired static stiféss
relationship is obtained exactly. Additionally, some extasions of
the controller to visco-elastic joints and to Cartesian imgedance
control are given. Finally, some experiments with the DLR
lightweight robots verify the developed controllers and slow the
efficiency of the proposed control approach.

Index Terms— Impedance Control, Compliance Control, Flex-
ible Joint Robots, Passivity Based Control.

[. INTRODUCTION
Impedance control certainly is one of the core techniqu

growing field of service robotics. The basic control objeeti

Hogan [1] is the achievement of a desired dynamical relati
between external forces and robot movement.

robotic systems in which the joint elasticity is neglect€dn-
sequently, a straightforward application of these teahedéqgto

a flexible joint robot usually will not lead to a satisfactor)}g

On the Passivity Based Impedance Control of
Flexible Joint Robots

Andreas Kugi, and Getiitzinger

controller (formulated in the relevant coordinates). Q][
was proven that a motor position based PD-controller leads t
a stable closed-loop system also in case of a robot with flexib
joints. Furthermore, in [11] a stability analysis of a hybri
position/force controller for a flexible joint robot withbu
gravitational effects was presented. However, it has bee
shown that in practice often only quite limited performance
can be achieved with a restriction to purely motor position
(and velocity) based feedback controllers (without addéi
non-collocated feedback) for the case of a flexible jointotob
In some works a controller structure based on a feedbacleof th
joint torques as well as the link side positions was consider
and it was shown that this leads to an increase of performanc
(see, e.g., [12]). This has also already been verified exygeri
tally with the DLR lightweight robots [13]. From a theoretic
point of view this approach usually is justified (for sufficity
high joint stiffness values) by an approximate analysisstas
on the singular perturbation theory. The feedback of thetjoi
torques is therein considered as the control action of a fas
inner control loop which receives its setpoint values from a
outer impedance controller. Furthermore, an integral fokhi
approach for designing force and impedance controllers fo
flexible joint robots was presented in [14].

In [15], [16] a controller with a complete static state feadk
(position and torque as well as their first derivatives) was i
troduced, for which (analogously to [10]) asymptotic sligpi
fs shown based on the passivity properties of the controlle

in the design of modern robot systems, especially for ﬂ?ﬁ contrast to the classical PD-controller the motor irzeand

the joint stiffness are included in the same passive block a

of impedance control as formulated in the seminal work ‘N‘le state feedback controller such that an effective dagnpin
e joint oscillations could be achieved.

In the present paper a physical interpretation of the torqu

The classical approach to impedance control concentrates,Q, v~ i is given, which allows to include the inner loop

torque controller into a passivity based analysis of the -com
lete closed-loop system. It is important to notice that the
ontroller being presented is itself not passive due to thg

performancé In fact the importance of joint elasticity for thefeedback of the joint torque, but it will be shown that the

d_esign of P°Si“°“_ and tracking controllers has widely beet{bntrolled motor dynamics in combination with the torque
dlsc#ssed in the literature [2], [3], [4E’I[5]’ (61, [7], [BI9]. 1 feedback are passive. Together with the passive (link side
In this paper an impedance control law is proposed w '?Eid body dynamics the closed-loop system can therefore b

?S designed for flexible joint r,ObOtS' The desired impedan(]: presented as a feedback interconnection of passive subs)
is assumed to be a mass-spring-damper system. Furtherm

only the achievement of stiffness and damping is considerggrth'ermore in [10], [15]
heret;n, W.h'r:e .th.g !ngrtlal betr:awo.rf;s left un(cj:r:jangeq. Iﬂb‘ﬁ;fa on the desired configuration was used. In case of an impedan
aro O,tw't, ngl 10|nt§, such a sti Ness and damping V controller this is not appropriate due to the possibly large
could in principle be implemented quite easily with a PI:Bl'kdeviations from the desired configuration which may occui
here in case of a low desired stiffness. In this work a gravity
compensation term will be designed which is based on th

a gravity compensation term lohse

1in terms of damping out the oscillations due to the flexipiin the joint
as well as absolute positioning accuracy.
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measurement of the motor position and is better suited fantor inertiaB3 of the motof. The elasticity of the transmission
the use in connection with impedance control. The problebetween the rotor and the following lifkof the robot is
of gravity compensation for flexible joint robots in case ofmodeled in form of a linear spring with stiffnegs.
impedance control was also addressed in some recent paféms goal of the impedance controller is to achieve a desire
[17], [18]. However, in contrast to our approach the gravitgynamical behavior with respect to an external foicg.;
compensation term in [17], [18] led to additional lower bdan acting on the link side. In the following it is assumed that
on the admissible desired stiffness. this dynamical behavior is given by a differential equation
Since the controller uses an inner torque feedback loop,ofsecond order representing a mass-spring-damper syste
measurement of the joint torques is needed for the impl&ith massM, desired stiffnesdy, and desired dampingy.
mentation. This can be achieved either directly by a joifior a robot with rigid joints this behavior could be realized
torque sensor or indirectly by an additional measurement ko a simple PD-controller with proportional and derivative
the link side position. The DLR lightweight robots [19], [20 controller gains set td{. = Ky and D, = Dy, respectively.
(Fig. 1) are equipped with joint torque sensors in order #or a robot with elastic joints instead, no control law can
enable fine manipulation and to enhance the performance wlierce the (fourth order) closed-loop behavior exactly istch
the robot is in interaction with the environment. Therefora second order impedance, since for every joint four stat
they are ideally suited for the implementation of the présen variables (motor anglé, link side angleg, as well as their
controllers. first derivatives) are present. If one uses a motor positaset
This paper is organized as follows: In Section Il the desigPD-controller in case of a robot with elastic joints, as show
idea is described based on a simplified one-dimensionalinode Fig. 2 for the one-dimensional case, then the resulting
The generalization of the design idea to the complete modiinamics will clearly be influenced also by the joint elasfic
of a flexible joint robot is then presented in Section llland the motor inertia. Intuitively speaking, the deviatfoom
Some details on the gravity model are given in Section I\the desired behavior will be less significant when the rotol
In Section V an impedance controller based on a separatertia B becomes smaller and the joint stiffneEsbecomes
design of stiffness implementation and gravity compepsatilarger.
is presented. Based on the line of argumentation of thetyravit this point it should be mentioned that the joint stiffness
compensation design an improved controller, which reslizealues of atypical flexible joint robot are indeed quite large
the desired stiffness relation exactly, is presented ini@e¥I. but cannot be considered as infinite and thus elasticity is nc
For the sake of simplicity the complete controller desigd amegligible. By a negative feedback of the joint torquehe
analysis is treated in joint coordinates. The solution, éev, apparent inertia (of the rotor) can now be scaled down suc|
is constructed in such a way that the extension to the Cartesihat the closed-loop system reacts to external forees
impedance control problem is rather straightforward. iBact as if the rotor inertia were smaller. The desired dynamica
VIl is devoted to some further extensions of the controllebehavior can then be approximated the better, the smaber th
namely the case of visco-elastic joints and the gener@izéd apparent rotor inertia is. This approach will be put in ceter
Cartesian impedance control. Finally, Section VIIl andtieec terms in the following section for the model of a flexible
IX contain experimental results and conclusions. joint robot. Furthermore, a method for compensating thticsta
influence of the sprindg¢ will also be presented. Notice that

Il. DESIGNIDEA % B M
In this section the basic idea of the proposed controller W K I
design method is described. It is motivated by some simple . W |
considerations for a one-dimensional model. N AN
Consider at first the model of a single flexible joint as it DL & T
is sketched in Fig. 1 for the second joint of the DLR- c '
Lightweight-Robot-11l. The motor torque,, acts here on the 0
q

Fig. 2. Motor position based PD-control of a single joint.itds torque
feedback the effective motor inertia is scaled down (dadime).

the design approach presented in this paper thus does owt all
to implement a general second order impedance with arpitrar
inertia, but refers to impedance relations with unchangdd |
side inertia. Its robustness properties due to the pag$iased

- K

2The current controlled motors are modeled as ideal torqueces since
the dynamics of the electrical drives are negligible.
3In Fig. 1 represented in a simplified form with a constant tineh/.

] o 4For the lower joints of the DLR lightweight robots these \eluie in the
Fig. 1. Sketch of the model for a flexible joint robot. range10.000 — 15.000 Nm/rad.
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design make the controller suitable especially for automasn IV. PROPERTIES OF THEGRAVITY POTENTIAL

manipulation tasks in contact with unknown environments. o gravity termg(q) corresponds to the differential of
mowevizr_, tf_or ?ppllcatmr;] fleldsd Ill_kelz( te_zclieoper?_non or tr:a,pn the gravity potentiall (q), i.e. g(g) = (9V,(q)/dq)T. It is
e L?s riction fo an unchanged link side inertia may be Mo&,| ynown that the Hessia# (q) := 92V, (q)/0q? of the
troublesome of course. gravity potential has an upper bound if the robot has only
rotational joint§ [21]. In case that the manipulator instead has
I1l. THE EFFECTS OFTORQUE FEEDBACK ON THE . L L .
also prismatic joints, it is useful to consider a subgétof the
FLEXIBLE JOINT MODEL ) . n : . =
_ T configuration spac&®™ in which all the prismatic joints are
In this work the so-callededucedflexible joint robot model bounded by their respecti\/e Workspace boundéries this

is assumed as proposed by Spong [2]: subsetQ? the existence of an upper bound of the gravity
M@a+Cladatal@ = K6-a)tra . () Lo o e ined Sihce  clearly depends of
BO+KO-q) = Tm. @) P y dep

the chosen physical units for the translational and ratafio
Hereing € R™ represents the vector of thelink side joint coordinates. In order to overcome this problem particulal
angles and?® € R™ the vector of the corresponding motomatrix and vector norms are defined in the following by al
angles. The joint torques € R™ are determined by the linearscaling with the joint stiffness matrix.
relationshipr = K(0—gq), in which K € R"*" is adiagonal = Remark 1:The design of the gravity compensation in Sec-
matrix containing the individual joint stiffness valués; as tion V-B does not involve the complete dynamics of the
diagonal elements, i.eK = diag(K;). The diagonal matrix manipulator, but refers rather to the static case. Theegfor
B € R™™ consists of the rotor inertia®;. Furthermore, in this case the stiffness matrix is the appropriate choice f
M (q) € R"*"™ is the (link side) inertia matrix an@'(q,q)g defining a metric rather than the inertia matrix.
represents the centrifugal and Coriolis-terms of the madet Let R € R™*" be the square root of the joint stiffness matrix
vector of gravity torqueg(q) € R” is given by the differential K, i.e. K = R” R. Then a vector norni| - || : R* — R+
of a potential functionVy(q), i.e. g(g) = (6)Vg(q)/8q)T. for a vectorv € R™ can be defined via the Euclidean vector
The motor torques,,, € R are considered as the controhorm|| - ||; as
inputs. Finally, the external torques which act on the rabet 1/2
summarized in the vectar,,; € R". ol = ||Rollz = (v Kv) '~ .
At this point also two_ well knoyvn prpperties _qf the_ robotl.he matrix R, respectivelyk,
model_ shall _be mentioned which will be utilized in the[ion of the chosen physical units. Corresponding to thigarec
following sec.tlons:. . L . .. norm the matrix norm|| - ||x : R"*" — RT for a matrix
F_’r(_)p(.erty 1: The inertia matrix is symmetric and positive o € R™*" is defined in the following via the spectral ndtm
definite: | - [li2- In this section we are interested in the Hessian of thg
gravity potential. Consequently, it is reasonable to abersihe
quadratic formv” Av for a matrix A. For the vector norm

Property 2: The matrix M (q) — 2C(q, ¢) fulfills the con- || - ||x as defined above the following inequality holds

is used herein as a normaliza-

M(q) = M(q)" >0 VqeR".

dition:
o " Av| < ||RTTART!|ia v % -
T (M(q) —2C(q,4))g =0 Vq,qcR" . S _
¢ (M(g) (g.4)q T4 This motivates the choice

As already described intuitively in the last section, thpaent lAllx == [[R"TAR |2

motor inertia can be reduced frof8 to By by feeding back f
the jointtorquer = K (68—q). This is realized by the feedback
law

or the definition of the matrix nornj - || x.

Remark 2:Notice that the terrR~7 AR~ corresponds to

the coordinate transformation of a covariant tendoof rank

Tm = BBp'u+(I-BBy")r, (3) two whenR is the Jacobian of the coordinate transformation|
eA linear transformation (i.e. a mixed tensor), instead, Mou

Be transformed aRAR .

Applied to the joint stiffness matri¥ this norm clearly gives
M(q)g+C(q,q4)gd+g9(q) = K(0—q)+Te:, (4) | K|x =1. Based on this definition of the matrix norm, one

Bb+K@O-q) = u. (5) further assumption on the gravity potential is formulatestn

) ) ) ) _This assumption will be useful for the design of the gravity
These equations of motion will be the basis for the desigmpensation.
of two joint level impedance control laws. The design in
Section V treats the gravity compensation and the stiffnessin this case the gravity potential can be written as the sutrigffnometric
implementation separately, and is a consequent realizafio terms of the joint angles.

; f : ; : 8For a robot with rotational joints only one h&? = R™ instead.
the design idea described in Section II. But beforehand,esom7smceK is a diagonal matrix, the matri& is given by R — diag (/).

properties of the gravity potential are exposed in the NeXtrhe spectral norm is the matrix norm induced by the Euclideactor
section. norm, and thus in our case corresponds to the largest eigenva

wherewu serves as a new control input. The resulting syst
dynamics are given by
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Assumption 1:.The Hessiaf (q) := —5%"~ of the gravity A. Implementation of the Compliance Behavior

potentialV, (¢) satisfies the condition According to the design philosophy outlined in Section IlI

L _ the control inputu,,,,, is simply chosen as a joint space PD-
Y = \fggp 1H(q)llxc < |1Kle =L ©) controller for the m(ftor angles

Notice that this assumption is not restrictive at all. Ititaly .

speaking it states nothing else than the fact that the ma- Uimp = —Kc(0 — 04) — Dgb 9)

_nlpulat_or shou_ld be_d_eS|gne(_i properly, in the sense that PRere the controller gain matriX . and the virtual equilib-

Jomt_ _stlffn_ess is sufficiently high s_uch that, for a flx_ed ot m position on the motor sidé, are given by

position, it can prevent the manipulator from falling down

under the load of its own weight. K. = (K;'-K Y™, (10)

It should also be mentioned that the quantity is dimen- 0, = q,+K 'g(q,) - (11)

sionless, since it is defined via the noffm || x. Notice also

that the existence of this bourd, < 1 implies the following Equation (10) makes allowance for the fact that the comroll

property for the gravity potential which will be useful ineth gain matrix K. acts in series interconnection with the joint

stability analysis in Section V-E. spring K (see Fig. 2). The particular form ok, in (10)

Property 3: Let o, (as defined in (6)) be an upper boun@nsures that in the gravity-free steady stdé,q,) the
for the Hessian of the gravity potentitl},(¢) with respect to demanded stiffness relation... = Kq(q, — g,) is satisfied

2’ Vg‘(‘I)
a2

the K-norm. Then the inequality exactly.
For the analysis in Section V-D it is required that not only
Va(a1) = Vy(az) + 9(q)" (a2 — q1)] < K but also the controller gain matrik . is positive definite.

Therefore, the following assumption is made which implies
that the controller can implement no joint level stiffnessgler
than K.

Assumption 2:The desired stiffness matrik’y is assumed
to be symmetric and positive definite, and satisfies the eond
tion (K;' —K )™ > 0.

V. SEPARATE DESIGN OF COMPLIANCE AND GRAVITY So far, the controller (3), (9) leads to the following clodedp
COMPENSATION equations

In this section a joint level impedance controller for the .. .\ .
model (4)-(5) is proposed. Let the desired impedance at the M(qlq + C(Aq’q)q +9() =7+ Tear (12)
(constant) virtual equilibrium poinig, be specified by a Bof + Dgb + K(6 —04) + T =uy . (13)
symmetric and positive definite joint stiffness mathk, and
a positive definite joint damping matrib,. Therefore, the B. Gravity Compensation
target dynamics of the impedance controller can be writeen a
a mass-spring-damper system of the form

1
5‘%”‘12"11”%{

holds for allg,, g, € QP.
A proof of this statement can be found in [22].

In [10] it has been shown that for a motor position basec
PD-controller a feedforward term of the gravity torques in
M(q)i + (C(q,q) + Do)q + Ko(q —q;) = Tess , (7) the desired steady statg; can be used in order to achieve
asymptotic stability. This indeed leads for a position colter
in which the link side inertia of the robot is the same as in (Lysually to good performance because the deviations from th
Consequently, also the corresponding centrifugal andoieti desired position can be kept small. For an impedance cor
terms are present in the target dynamics. troller, however, this is not the case. Here a pure feedfaiwa
Remark 3:Note that the flexible joint robot model is aaction for the gravity compensation does not give satisfgct
4n-dimensional underactuated system in which every jaintriesults because large deviations from the virtual equuiibr
represented by four state variablék,;,¢:,d;),i = 1..n. position may occur in the case of a small desired stiffri€gs
Therefore, the desired target dynamics (7) of order 2n cdihe problem of constructing an online gravity compensatior
never be achieved exactly by any controller. term for a flexible joint robot based solely on the motor
Our design approach for approximating this impedance refesition was first treated in [17]. The solution in [17], howse
tion follows the ideas described in Section Il. The innerploostill leads to lower bounds oKy, limiting the generality of the
torque feedback reduces the effect of the motor inertia en ttmpedance controller. In contrast to this the solution enésd
closed-loop dynamics as described in Section Ill. In additi herein does not require such additional constraints [23]].[
we must eliminate the effects of gravity and implement thie the following a compensation for the static effects of
compliance according to the desired stiffness and dampitihg gravity termg(q) is constructed. This compensation is
matricesKy and Dy. solely based on the motor position and can compensate ft
The input variable is thus split up into one term,,,,,, which the link side gravity torques in guasi-stationaryfashion.
actually implements the stiffness and damping, and anottfeensider first the sef := {(q,0) | K(0 — q) = g(q)} of

term uy, which acts as a gravity compensation stationary points (forr.,; = 0) for which the torque due to
the joint elasticity counterbalances the link side gratatyjue.
U= Uimp + Ug - (8) The goal of the gravity compensation is now to construc
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a compensation terng(8) such that inQ2 the equilibrium While in general the inverse functidn;l(e) cannot be com-

condition puted directly in practice, it is thus possible to approxina
_ it with arbitrary accuracy by iteration. From a practicalinio
9(0)=g(q) V(q.0) € (4) " of view one or two iteration steps lead to quite satisfactory

holds. This means that the gravity compensation term cou@sults in this approximation. Notice also that by a firsteord

terbalances the link side gravity torque in all stationasinps. approximation withg, = g, one obtains the online gravity
The equation compensation term of [17].

In the following analysis it is therefore assumed that the
K(0—-q)=g(q), (15) inverse functiorh, ' (6) is known exactly, although it can only

which describes the sé€l, motivates the definition of a func- be aﬂprommatﬁd Ibn praﬁtlce. . hich P ition 1 hold
tion g(@) which can be understood as a quasi-static estimate/gfOther remark about the range in which Proposition 1 holds

the link side position. Notice, therefore, that (15) caniobsly IS important. The assumptio@® = R.n’ wh_ph holds for
be solved uniquely for the motor positiéh Let us denote this instance when the robot has only rotational joints, was eéed

. to ensure thafl',;(q) is a global contraction. If instea@? C
solution by , g " N

R™, then one must additionally ensure that the pod)tsf the

h,(q):=q+ K 'g(q) . (16) iteration (19) stay in an area in whi¢fH (q)||x < || K||x =

. . 1 holds. While this is not a critical issue from a practicalmioi
Furthermore, by the use of the contraction mapping theoref i it is difficult to be proven in general.

(see Proposition 1 below for more details on this) it can l@nceg(e)

] . . is the motor torque needed (statically) to prevent
shown that the inverse function fo,(q) exists. Then

the robot from falling down under the action of its own weight
a(0) :=h;' (), (17) one can see thag(f) must be connected with a potential
functionV; (@) which is related to the potential energy (gravity
which is the solution of (15) forg, can be used for the plus joint stiffness) of the robot. This potential functiouill
construction of a gravity compensation term of the form  pe of interest for the passivity and stability analysis ie th
next section. A detailed derivation df;(@) is given in the

ug = 9(6) = 9(a(9)) - (18) appendix. Therein it is shown tha,(6) can be written as
It is important to notice that, while (14) clearly holds only 1
in , the functiong(@) by construction fulfills the equation ~ V3(0) = V,(q(8)) + 59(51(9))TK_19(?1(9))
K (6 —q(0)) = g(g(0)) for any 6 and independently of. 1
Finally, the question about the existence of the funcijof) = Vy(a(0))+5(a(®) - 0)" K (q(6) - 0).

is answered by the following proposition.

Proposition 1:If (6) from Assumption 1 holds globally ~ ~gntroller Formulation
(i.e. for Qr = R™), the inverse functiorh, ' () = g(@) of
h,(q) = g+ K 'g(q) : R* — R" exists globally. Moreover,
the iteration

The complete control law with gravity compensation is
summarized as, cf. (3),(8),(9),(18)

R N m = BB,! I-BB;! 20
qn+1 = Tg(qn) (19) T o ut ( .g )T ’ ( )
) . ) u = —K.(0-04) —Dy0+g(0). (21)
with T';(q) := 0 — K~ "g(q) converges for every fixedl and _
for every starting poing, to g(0). This leads to the closed-loop system
Proof: The proposition can be proven by showing first .. .\ - .
that the mappindl’;(g) : R — R" is a globalcontraction M(.,q)q + C(q’q)q tglg) =7+ 7_—6” ’ (22)
(see [25]) for the vector norrf - ||x. Since the vector space By0 +Dyb + K.(6 —04) +7=g(0) . (23)
R™ together with the nornf| - || x is @ Banach space one must
only show that there exists @< 1, such thatT',(q) satisfies D. Passivity

the condition For the passivity analysis it is assumed that there exists

1T4(q2) = Ty(q1)llx < pllgz — @1l Vq1,9 €R™ . real § > 0, such that

As shown in [22] this is ensured by (6) from Assumption 1. V(@) < B VgeR" (24)
By the contraction mapping theoresalso calleddanach f'XEd. holds. This is for instance satisfied for all robots with timtaal

point theorer one can therefc_)re* conclude* that the mapplr‘}gims only (i.e. without prismatic joints). Then also theagity

.Tg(q.) has a unique fixed po'”? N Tg(q. ) and that the torque vectog(q) is globally bounded. Furthermore, (24) also

iteration of (19) converges to this fixed point: implies the boundedness &f;(0) and g(@). Notice that the
lim g, =q* . requirement of a bounded gravity potential is only needec
nreo for the passivity analysis, while the proof of the asymtoti

By comparingT’,(g) with hy(q) one can easily see that (forstability in Section V-E will also be valid for a general

each particular value @) this fixed pointq* corresponds to potential.

q(0). m According to [26], [27], a sufficient condition for a system
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(with input w and outputy) to be passive is given by theE. Stability Analysis
existence of a continuous storage functdwhich is bounded
from below and for which the derivative with respect tcgo
time along the solutions of the system satisfies the inetyuali
S < yTu.

In the following it will be shown that the system (

Next it will be shown that the closed-loop system is asymp-
tically stable for the case of free motion (i®.,: = 0).
1) Determination of the steady stat&or r.,; = 0, the

22)_(23)steady state conditions of the system (22)-(23) are given by
as outlined in Figure 3, consists of two passive subsystems

in feedback interconnection. Notice that in connectionhwit K(6o —q9) = 9}‘” ’ (28)
impedance control it is often assumed that also the environ- K (60— qq) + Kc(80 — 6a) = g(6o) - (29)
ment of the robot can be described by a passive mapgirg (

—Tert)- The passivity of (22), as a mappif@ + Te.t) — 4, From (14) it follows that

K.(00—-0s) = 0 (30)
q
Q" (22) —— must be satisfied in the steady state. Due to Assumption 2 th
matrix K. is positive definite and hence the steady state is
given by:
—T
0 ® - 0y = 04,
E —u q = hg_l(eo) =44,
(21) G = 0o=0.
(23)
2) Lyapunov-Function:Consider the sum of the storage
“Test | Eovironment functions of the subsystems as a Lyapunov function canelidal

V(g,4,0,0) = S,(q.q9)+ Se(q.0,0). (31)

Fig. 3. System representation as an interconnection ofvgasabsystems. First, it is shown that this function is positive definite. tite
_ ) that, due to (63) from the Appendi¥/(q,,0,00,0) = 0
is well known due to physical reasons and can be shown with|gs.

the storage function By extracting the kinetic part of (¢, q, 0, 9)

. 1.r . . 1 1.
$u(a0.9) = 34 M@+ Vo(9) 25) Viin(4,,0) = 54" M(a)a + 50" Bob

for which (due to Property 2) the derivative along the solusi

of (22) is given by one can see that(q, g, 6, 0) is positive definite with respect

to ¢ and @ because the inertia matrices are positive definite
S(@, @) = 47 (T + Tent) - (26) (Property 1). In order to show thaf(q, ¢, 0, 8) is positive
definite with respect to the complete state, it is then seffici

In a similar way the passivity of (23), as a mappipg> —, t0 show that the potential part

can be shown with the storage function . .
1 1 ‘/pot(q70) = V(q7q~070) - Vkln(q7qa9) (32)
. . T . T
56(2.0,6) = 56 By0 + 5(0 —9) K0 -q is positive definite with respect tg and 6.
Consider first only the part of the potential energy duekio
In order to simplify the notation, in the remaining part ofsth
section the functiog(0) is written asg.

%(9 —0)TK.(0—04)—V;(0) .

The derivative 0fSy(q, 0, 6) along the solutions of (23) is

then given b 1
ey Vi(@.0) = (0 -9 K(@O-q) (33)
. . T .
So(q,0,0) = -6 DO —q' T . 27 1 o o
°(2.6.6) v 7 = ;00-a+q-9"KO-q+q-q)
The passivity of the closed-loop system follows directlgnfr I N 1 _ T orr
(26) and (27) and the fact that the feedback interconnection = 59@) K g(@+5@-q9 K@-q
passive systems is again passive. It should also be medtione +(@—q)"9(q)

that these passivity properties are still valid if the PDvcoller

in (21) is replaced by any other passive (with resped te  Herein the relationshigk (6 — q) = g(g) was used which
—u) controller. This structure of a feedback interconnectidiollows directly from the definition ofg(€) in (17). In order
of passive subsystems, as depicted in Fig. 3, brings along veo simplify the notation, the deviation of the motor anglerfr

advantageous robustness properties for the closed-l@t@sy its steady state value will be denoted By= (60 —0y) in the
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following. The potential energy can then be written (witl3Y6 the controller approximates the desired impedance behavi(
from the Appendix) as follows from (7). Therefore, a small simulation of the seven-degiree
of-freedom DLR-Lightweight-Robot-II ([19], see also F&jin
Section VIII) will be shown. In this simulation the closeadlsp
response for a step-wise excitation using an external &odu
10 Nm at joint 2 is evaluated. The simulation was performeg
with different values forBy in order to demonstrate the role
of the torque feedback in the controller. The desired st
and damping matrices are set to diagonal matrices with a
overall stiffness oftl000 Nm/rad and the desired damping is

‘/pot (q7 6)

1.1 ~
Vi(q,0) + 59 K0+ V,(q) — V4(0)

l-7__ ~
Vi(q,0) + 59 K.0+V,(q)—Vy(q)

q
—59@ K g(a)

Due to Property 3 the following inequality holds

Vou(0,0) > ~(@—q) K@—aq)+-0"K.0 settoDy = diag{100, 100,100, 100, 1,1, 1} corresponding to
2 2 . the different effective inertia for the lower and upper jsin
—1Vy(a) — Vy(@) + (@ —a) 9(q)] In the following only the motion of joint 2, onto which the
1 _ lor . - external force is exerted, will be analyzed in detail. InuFiy
> —(1- —qll% +-6 K.0. SRS U .
- 2( a)lla — alli + 2 4 the link side joint angle of this axis is shown. First, thelta

The right hand side of the last inequality is nonnegative félotted line shows the step response of the desired impedan
all (q,0) € Qr, since by Assumption 1 the boung satisfies (7). Secondly, the dotted line shows the control action fier t
the inequality conditiony, < 1. Therefore, one can concludecontroller without any torque feedback, i.e. wiffiy set to
that the considered candidate Lyapunov function is pasitiB. One can see some higher frequency oscillations and also
definite in QP. rather huge overshoot. Next, the same step response is shoj

3) Derivative of the Lyapunov-FunctioriThe change of with By = B/3 (solid line) and withB, = B/10 (dashed
V(q,q,8,80) along the solutions of the system (22)-(23) (foline). The former corresponds to a moderate torque feedbac
Tz = 0) iS given by while the latter is in the range of the highest gains which
could be implemented for this robot in practice considering
the noise of the torque sensor. One can see that for high
torque feedback gains the desired dynamics is approximate
better. In order to have a closer look at the oscillation dagp
Berformance, Figure 5 shows the simulated joint torque. On
can see that the torque oscillations, observed for the chse
By = B (dotted line), are already damped out quite effectively
al?y the lower gainB, = B/3 (solid line) and cannot be
observed any more for the higher ga®y = B/10 (dashed
line).

V(q,q,0,0) = S,(q,q) + S¢(q,0,0) = -6 D0 .

Due to the fact that the matrib, is positive definite, it can
be concluded that the equilibrium point is stable. Furtremen
asymptotic stability can be shown by the use of the invagan
principle of LaSalle [25]. According to this theorem the teys
state will converge to the largest positively invariant &at
which @ = 0 holds. From the system equations it follows th
there does not exist any trajectory for whiéh= 0 holds for
all timest¢ > 0 except for the restriction to the equilibrium
point. Therefore, the following proposition can be coneldd

Proposition 2: Under the Assumptions 1 and 2 the system 0.012
(22)-(23) is asymptotically stable for the case of free moti e
(i.e. for T+ = 0). Moreover, if Assumption 1 holds globally 0.01 Zo
(|.§. for @7 = R™), then the system is even globally asymp- _0.008 g
totically stable. = e

=0.006" -

F. Controller Discussion @0.004 '

The passivity analysis in Section V-D shows that the closed- 0.002
loop system can be seen as a feedback interconnection of ’

passive subsystems. In many applications the environment
can also be treated as a passive system with respect to the 0.4
input ¢ and the output-r.,:. Therefore, one can conclude time [s]
very .a.Ldv.antagfaous robustness properties Of the Wh0|en$yStEig. 4. Simulated joint angle for a step wise excitation oifi® (dash-dotted
Stability is for instance also guaranteed &bitrary errors in  |jine: desired impedance, dotted linBy = B, solid line: By = B/3, dashed
the dynamical parameters of the inertia matrideq) and line: By = B/10).

B as long as these matrices remain positive definite Bnd

remains a diagonal matrix. The solution presented so far, however, has one disadwantag
Concerning the formulation of the gravity compensatiomterThe stiffness and damping term;,,,, and the gravity com-

it should be mentioned that, in contrast to any related pues/i pensation ternu, were designed separately. While the term
works, no lower bounds are imposed on the positive definitg,,, guarantees the correct stiffness relation (statically) fo
matrix K, for stability reasons, meaning that the desirethe gravity-free case, the term, was designed for the case
stiffness Ky can be chosen arbitrarily close to zero. of free motion, i.e. forr.,+ = 0. In the above analysis is was
At this point it is illustrative to evaluate up to which extenshown that these two terms can indeed be combined withol

.2
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functionl(q) plays now the same role as the gravity function
g(q) previously. Notice that the equation (37) can also be
written asK (6y — q,) = l(q,) and by defining the function

hi(q)==q+ K 'l(q) . (39)

the static motor side positiofl; can be expressed @& =
hi(q,)- At this point it is assumed that the inverse function
of h;(q) exists and it will be denoted by

a,(6) = h; '(8) . (40)
0 0.2 0.4 0.6 0.8
time [s] A sufficient condition for the existence of this inverse ftiog
as well as an iterative computation procedure will be giver
Fig. 5. Simulated joint torque for a step wise excitation ONIn (dotted |ater in Proposition 3. By means df,(#) a control law
line: By = B, solid line: By = B/3, dashed lineB, = B/10). combining the gravity compensation with a statically exact
stiffness design can be designed in the form

jeopardizing the passivity and stability of the system. But = 1(g,(8)) — Dyb (41)
is not guaranteed any more that the desired static relation _ ! 0 Ko (a.(0 Dob
Text = Ko(qy— q,) holds exactly for alkr.,; # 0. In fact, a = 9(@,(0) — Ko(q,(0) — q4) — Db .

small steady state error can also be observed for the siimmlat.l.he functionl(q), as defined in (38), is the differential of the

shown in Figure 4. : ;
. . . otential function
Therefore, a different impedance controller will be forated P

in the next section which removes this drawback. Via) = Vi (q) — %(q — ) Kola—q,) . (42)
i.e. l(q) = (0Vi(q)/0q)T. Instead of the Assumptions 1, 2
the following assumption is needed now.

In this section, the design idea for the gravity compensatio assumption 3:The HessiarH;(q) = 2Y2 of the poten-
from Section V-B is generalized by simultaneously taking, function Vi (q) satisfies the conditionaq
account of the desired stiffness. This will result in an ioyad
impedance control law which implements the desired static o= sup ||Hi(q)||x <||K|lx=1. (43)
stiffness relation exactly. vgeor

VI. COMBINED DESIGN OFCOMPLIANCE AND GRAVITY
COMPENSATION

Notice that this?assumption implicitly contains an uppeunad
) on the desired stiffnesky, similar to Assumption 2 for the
A. Controller Design previous controller. This is not surprising since, agatme t
Consider the case that a constant torque; acts on the controller basically implements a stiffness which is iniegr
robot (4)-(5). The equilibrium conditions for this case are interconnection to the joint stiffnes&. The stiffnessKy
therefore must besmaller than K. Assumption 3, however,
K(6o—q0) = 9(q0) — Teat ; (34 ensures the existence of the inverse functiop' (9) as
K(0o—q)) = wuo, (35) formulated in the following proposition which is analogous
to Proposition 1.
Proposition 3: If Assumption 3 holds globally (i.e. for
QP = R™) then the inverse functiok; *(8) := g,(8) of
Ko(go— qq) = Text (36) hi(q) = q+ K 'l(q) : R* — R" exists globally. Moreover,

. . . . the iteration
shall be achieved statically. By combining (36) with (34)eo ! I

gets the condition Ans1 = Tz(fll?n) (44)

K00 —40) = 9(a0) = Ko(d0 —aa) - G with T)(q) := 6 — K~ 'I(q) converges for every fixe and
This condition can be seen as a relationship between the stér every starting poing;, , to g,;(0).
motor side positiorf, and the static link side positiogy,. I Furthermore, by following the same derivation as in the
order to stress the similarity of the following derivatianthe Appendix (withl(q) instead ofg(q)), one can show that the
derivation of the gravity compensation term in Section V-Bontroller termi(g,;(#)) can be written as the differential of
the functionl(q) is defined as the potential function

wherewy is the static value of:. In the following the desired
stiffness relation

Ha) = gla) - Kola - aq) - GO vi0) = vi(a(0) + 5@ @) K U@y 0)) . (45)

The following procedure is then completely analogous to the 2
design of the gravity compensation term in Section V-B. Thee. I(g,(8)) = (0V;(8)/06)T.
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B. Stability Analysis A. Visco-Elastic Joints
The closed-loop system for the controller (41) togethehwit Since the analysis of the controller was based on a physicy
(3) is given by interpretation of the torque feedback it is also possible tg

include joint damping, i.e. gear damping, very easily. The
M(q)g+C(q,q)q+9(q) = KO —q) +Tewt , (46) considered model with joint damping is given by
Bob +K(6—q) =1@(0)) =Dob . (47 M(q)j+Cla.a)a+g(a) = KO- q)+
Following the same line of argumentation as in the previous D(6 - @)+ Tex ,

section, one can prove the asymptotic stability also fos thi B0+ K(0 —aq)+ D6 —q) = 7

system by using the Lyapunov function where the matrixD € R**™ is a diagonal and positive definite

o 1.7 . damping matrix. For this model the same type of controllef
Ve(q.4,6,0) = *q M (q)q + 59 Bod+ as in the last section can be used, when the control law (3) |
Vg<q> + Vi(q,8) ~ Vi(8) , replaced by

_ -1 _ —1 1.
with Vi(g.8) and V:(6) given in (33) and (45). This is ™~ BBe wt (I = BBy (r+DK"'5) . (48)

summarized in the following proposition. with 7 = K (0 — q). This leads to the closed-loop system
Proposition 4: Under the Assumption 3 the system (46)- . .

(47) is asymptotically stable for the case of free motioa. (i. M(q)q +Cla,0)q +9(q) =

for T.,; = 0). Moreover, if Assumption 3 holds globally (i.e. Teat + K (0 —q)+D(0 —q)

for QP = R"™), then the system is even globally asymptotically B0+ KO0 —-q)+DO—-q) =u

stable. Considering interaction with the environment, fiog

Test # 0, the closed-loop system represents a passive mappifgywhich the intermediate control input can be chosen in
Tewt = Q. the same way as in the previous sections. All the passivity an

stability statements given in this work also hold for a model
with visco-elastic joints.

C. Controller Discussion

Notice that also the control law presented in this sectidh Cartesian Impedance Control

does not exactly implement the desired impedance (7), cfln many applications the desired impedance behavior i
Remark 3. However, this yields a good approximation whiattefined with respect to the end-effector motion rather thai
is the better the higher the inner loop torque feedback is. joint coordinates. In this section it is shown that the
In the experimental part in Section VIII some comparisorgontroller from Section VI can easily be generalized to the
with a simulation of the desired impedance are presentéplementation of a desired Cartesian impedance contrile

which give an impression how well the desired impedaneke Cartesian case, however, the singularities of the Jmtob
is approximated. But in contrast to the previous soluti@mfr matrix clearly pose a limitation on the achievable region
Section V this controller fulfills now the required steadgitst of attraction. Also, for a Cartesian controller applied to a
condition exactly. This can be seen by computing the steagydundant robot, stability can only be achieved if the aebir

state for a constant external torqte,;, which leads to Cartesian behavior is augmented by some nullspace behavi
Despite these general differences between joint levelrabnt

K6o—qy) = g(a) — Teat and Cartesian control, the generalization of the impedang

K(6—-q,) = g(q,(00) — Ko(q,(00) —q,) - controller to the Cartesian case can follow the same line o

argumentation as in Section VI.
Since q,(6) (by construction) satisfies (37), it follows thatin the following it is assumed that the forward kinematics
q,(80) = g, must hold. This implies, as desiredy(q, — mMapping from the joint space coordinatgdo the Cartesian
q;) = Teut- coordinatest = f(q) € R® as well as the Jacobian matrix
At first glance it might be somehow surprising that thd(q) = %ﬁlq) € R%*" are known. The desired impedance
controller is formulated in the coordinatgg(@) but does not behavior is specified in terms of a Cartesian virtual eqriilin
require the Jacobian matridg, (0)/06 explicitly. Notice that positionz,, a symmetric and positive definite stiffness matrix
the reason for this is that the functidfyg,(8)) is already the K, € R®*% and a positive definite damping matri?, €
differential of the potential functio®7(0). R®*6. Based on this one can formulate a desired Cartesia

stiffness potential in the form

1
VIl. GENERALIZATIONS Vo= 5@ zg) K, (x —x4) . (49)

In the previous sections two joint level impedance corGonsider the case that a constant generalized externa fori
trollers were presented. Several extensions of theseaileny F'.,; acts on the robot. In steady state at a positign
are possible. Some of them are discussed in the following.the generalized external fordg,., is related to the external
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torques To,¢ Via Tepr = J(qO)TFm. The desired static singularities of the Jacobian nor the redundant case ate pro

equilibrium condition for this case is lematic since no inversion of the Jacobian is needed fo

oV T the controller computation. The potential function for the

Fop = Ko(zo — x4) = ( 5(“3)) , (50) controller is given by
Zr
Tr=x0 B B 1 B T 1
which can be equivalently expressed in joint coordinates as Ve(0) = Ve(q.(0)) + §C(qc(6)) K™ c(q.(0)), (58)
AV, (f(q)) T for which ¢(g.(0)) = (0Vz(6)/06)T holds. The control law
ext = <7dq > ) (51) again ensures passivity of the closed-loop system. Thidean

=% seen by using the positive semi-defififanction

as long as the Jacobian matrix remains non-singular. By

. 1 1.7 .
combining this desired steady state condition with (34) one  V¥(q,q,0,0) = §qTM(q)q+ 50 By +

gets (instead of (37)) now the equation V,(q) + Vi(q,8) — Va(0) (59)
g 9 bl Cc )
T
K(o—-q,) = g(q) — (W) . (52) as astorage fun_c_tlon. S
q a=q, For proving stability, however, one must distinguish betwe

The terms on the right hand side of this equation motivate tm:e _re_:dunda_m_t and the non-redundant case. While (59) becom
definition of the function positive definite for a non-redundant robot and can be used f¢

- proving (local®) asymptotic stability, an additional nullspace
) = glq)— (de(f(Q))> . (53) control is needed in the redundant case. -
dg Regarding singularities of the orientation representaiticthe
which replacesl(q) from Section VI. For completing the Cartes_ian coo_rdinateﬁ(q) it should be mentioned tha_t the
controller design one can then repeat the procedure frgtential funcu_on (49)_ could also_be reP'aced by the paaént
the joint level case using(q) instead ofi(q) as well as of one of the singularity-free spatial springs proposedyy,,
V(q) = V,(q) — Vu(q) instead ofVi(q). Consequently, the Fasse or Natale (see e.g. [28], [29)).
controller can be formulated as
VIIl. EXPERIMENTS
In this section some experiments are reported for evalgatin
_ dV.(f(q)) T . the proposed controllers. The first two experiments were cor
9(2.(0)) — < dg ) +D(0)8 ducted with the seven-degrees-of-freedom DLR-Lightweigh
) _ Robot-I, while the second two were performed with the newel
where g.(6) corresponds to the solution of the equatiopy R-| ightweight-Robot-Ill. These robots are equippedtwit
K (6 —q) = c(q) for g and D..(0) is a joint level damping joint torque sensors additionally to the motor positionssea
matrix chosen as and thus are ideally suited for the implementation of the
D.(0) = J(q.(0)"D.J(,(0)) (55) proposed controllers. For the experiments the Cgrt_esiatncdo
law from Section VII-B was chosen because it is the mosi
which is positive definite as long as the Jacobian matrix ébmplex controller from the paper and the interaction with
non-singular. For ensuring the existence and uniquenessti® human user is then more intuitive. For the evaluatior
q.(0) the following assumption is needed representing amiditionally a force-torque sensor was mounted on the tip o

u = ¢(q.(0))+D:(0)0, (54)

9=q.(9)

upper bound of the achievable Cartesian2 stiffness. the robots.
Assumption 4:The HessianH .(q) = 3%;@ of the po- Figure 6 shows the initial configuration of the robots for the
tential functionV,(q) satisfies the condition experiments. In the first experiment the achieved compdiasic

evaluated. The Cartesian impedance from Section VII-B wa

e e 1Hc(g)llx <[IKllx=1. (56) implemented with diagonal stiffness and damping matrice

This assumption implicitly represents an upper bound fer thwith the values given in Table |. The three translational
Cartesian stiffnes&’,, with respect to the joint stiffnesk” and coordinates are denoted by, e,,, ande.. For the orientation

is analogous to Assumption 3 from the joint level controllerepresentation RPY Euler angles were used. The oriengation

It ensures the existence qf.(8) according to the following coordinates are denoted by, ¢,, and ..

proposition. In the experiment a human user exerts (generalized) fontes ¢

Proposition 5: If Assumption 4 holds globally (i.e. for the robot end-effector by pulling and pushing, mainly in the

QP = R") then the functiong,.(6), i.e. the solution of horizontal ¢- and y-coordinates) directions. The interaction
K (6—q) = c(q) for g, exists globally. Moreover, the iterationforces are measured by a six-degrees-of-freedom forcgrer

. A sensot! mounted on the end-effector. Notice that this senso

Aent1 = Tellen) (57)  was not used in the implementation of the impedance con

with T, (q) := 6 — K~'¢(q) converges for every fixed and troller but is used only for evaluation purposes. The agplie

for every starting Po'_”ﬁc,o to qC(G). . i Swhich is positive definite only in the non-redundant case
The above description presents the implementation of theorthe giobal case is obstructed by the singularities of thetian.

controller so far. Notice that for the implementation neith 1A JR3 sensor was used.
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force [N]

Fig. 6. Initial configuration of the DLR lightweight robotd WR-II left,

4 6
time [s]
LWR-III right) for the experiments.

Fig. 7. Applied forces inz-direction (solid line) andy-direction (dashed

Coord. ex ey e bz by b2 line) in the first experiment.
Stiffness | 700 | 4000 | 4000 200 200 200
i, m, m m rad rad rad
Damping | 70 400 400
Ns Ns Ns Nms Nms Nms
m m m rad rad rad

TABLE |
STIFFNESS AND DAMPING VALUES FOR THE FIRST EXPERIMEN.T

forces inx- and y-direction over time are shown in Figure
7. In order to evaluate the resulting stiffness and damping,
the force and displacement in andy-direction are shown in
Figure 8 and Figure 9, respectively. The correspondingcstat -50 0 50
characteristic line according to the relevant stiffnestuea X [mm)]
from Table | is shown by the dashed line. Notice that the ) o -
hysteresidike deviation from the static value is caused b)?',?é ﬂéshﬁﬂﬂ';ﬁg Cfg:fgsvs' Snd'eﬂecmr deviation dndirection (solid line).
ponds to the desired stiffness. Titeddine shows a
the Cartesian damping. The dotted line shows additionalimplified) simulation result.
the result of a simple simulation of the desired Cartesian
impedance. In this simulation the measured contact force is
used as an input and the Cartesian motion is the output. THI§ impact force. The measured static end-effector dewiati
simulation contains some further simplificatiéhsNotice that and contact force give a stiffness value~o882 N/m which
the simulation shows only the desired compliance and na jofPrresponds very well to the desired value4060 N/m. The
elasticity is included. One can see that the experimensalte Peak of the contact force results mainly from the velocity at
fit quite well the simulation of the desired compliance fanlo the impact. One can see that the closed-loop system kee
(Figure 8) and high (Figure 9) Cartesian stiffness values. Stable also in contact with this environment having quitégé h
In a second experiment an impact with a wooden surface wi#fness and that also high impact velocities can be hahdle
performed using the controller from Section VII-B with the-p Two additional experiments with the DLR-Lightweight-Rdbo
rameters from Table II. This experiment shows the robustnd¥ were performed in order to analyze the step responseeof th
of the controller in contact with a passive environment. T[‘@artesian controller as well as the effects of uncertarntiehe
initial configuration is shown in Fig. 6. Figure 10 displapet end-effector load. The stiffness values for these experise
desired and the measured end-effector motion in the verti¥¢ere chosen smaller than in the first two experiments ani
z—direction during the impact. Additionally, Fig. 11 depictgre given in Tab. lll. In this experiment a heavy load of about

Coord. e e e ) o) )

Coord. ex ey e ba by o - @ y z © y z
Stifiness | 4000 | 4000 | 4000 | 200 | 200 | 200 Stiffness | 2000 | 2000 | 2000 [ 100 | 100 | 100

= = o | wer | vor | oo Bamping | 10 | TH0 T 10 | 1T T

- ampin

Damplng 400 400 400 ping Ns Ns Ns Nms Nms Nms

Ns Ns Ns Nms | Nms | Nms m m m rad rad rad

m m m rad rad rad

TABLE Il TABLE 11l
STIFENESS AND DAMPING VALUES FOR THE IMPACT EXPERIMENT STIFFNESS AND DAMPING VALUES FOR THE STEP RESPONSE EXPERIMEN

12The inertia matrix was considered constant and accordinglgentrifugal 4.5 kg was .attaChe.d' to th? end-effector. In this_evaluation only
and Coriolis-terms were included. the Cartesian position will be analyzed. In Fig. 12 the steg

Post-print version of the article: C. Ott, A. Albu-Schiffer, A. Kugi, and G. Hirzinger, “On the passivity—based impedance control of flexible
joint robots”, IEEE Transactions on Robotics, vol. 24, no. 2, pp. 416429, 2008. po1: 10.1109/TR0.2008.915438
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1109/TRO.2008.915438

AIC|IIN

force [V]

-10 0 10

y [mm]
Fig. 9. Applied force vs. end-effector deviation dndirection (solid line).
The dashed line corresponds to the desired stiffness. Titeddine shows a
(simplified) simulation result.

]

o
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0.45 X

time [s]
Fig. 10. End-effector height in the impact experiment. Thshed line shows
the end-effector height of the virtual equilibrium positiand the solid line
the measured end-effector position.

response for a step 80 mm in verticalz-direction is shown

was known for the controller computation. Since the cotlgrol

friction effects for this robot. Next, the effects of unanties
in the load shall be analyzed. Notice that the controllersdo

only contain the gravity model, while it does not requir
Coriolis-terms. Again, the load of 4.5 kg was attached
load is included in the computation of the controller. Than
is set to zero simulating a huge model uncertainty for t
deviations for the case of the known (time period A) an,
stiffness 0f2000 N/m with an external force resulting from
the unknown load. While uncertainties in the load thus ¢year

affect the position accuracy according to the desirednstif§
behavior, the stability of the system is not affected by ldige

to the end-effector. At the beginning of the experiment tl“gt

gravity compensation. Figure 13 shows the Cartesian positi”ned_ Finally.

impact force[N]
PR |
o u
(=) o

|
i
al
o

Fig. 11.

2
time [s]

Measured force in the impact experiment.

Fig. 12.

model error. This goes in accordance with the theoretically
proven (passivity-based) robustness properties.

with and without the load attached. In both cases the exadt lo

In this paper we propose two impedance controllers for flex;

does not shape the effective inertia but implements s88n€,o jgint robots. In both controllers an inner torque feadb
and damping, the step response changes accordingly. T

remaining end-effector deviation is in the range of the knOV\{OOD_ For the torque feedback a physical interpretatiorivisry
such that the complete controllers could be analyzed based ¢

assivity theory.

i o i - he first controller combines a motor position based gravity
the computation of the inertia matrix or the centrifugal angompensation term with a stiffness and damping term. In thy
second controller these parts instead are merged such th
steady state the desired equilibrium condition could b
- c ' satisfied exactly. It is shown that both controllers canlgasi
time stept = 0.26 s the load in the controller computationy . adapted to the case of visco-elastic joints. Furtherytioge
neralization to Cartesian impedance control has been ou
the efficiency of the proposed control amio

. . ) _\%as verified in several experiments with the DLR lightweight
unknown (time period B) load. One can see that the deviatio

Shots.

in time period B corresponds very well to the commanded

In this appendix the potential functidi};(0) for the grav-
ity compensation terng(0) is derived such thag(6) =

0.2

.04
time [s]

Step response for the Cartesian impedance canmtrdlhe dashed
line shows the commanded step. The step response with ahdutvibad are
shown by the dotted and solid line, respectively.

IX. SUMMARY

is used in combination with an outer impedance contro

APPENDIX

0.6

0.8
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Notice also that for all stationary points the potential rgye

0 of the manipulatorV,..(q,0) = Vi(q,0) + Vy(g), with
T Vi(g,0) = 1(6 — q)T K (6 — q) as the potential of the joint
g -5 stiffness, is identical to the gravity compensation pagnite.
T
© -10 Voot (q,0) = V5(0) V (q.0) € 2. (62)
= A B
g 15 < From this it follows thatl;(6) can also be written as
o
L')N 20 Vf?(e) = ‘/pot (6(9)7 0) = Vq(a(e)) + Vk (Q(O)a 0) . (63)
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