
This document contains a post-print version of the paper

Control and estimation strategies for pneumatic drives with partial
position information

authored by Andreas Pfeffer, Tobias Glueck, Florian Schausberger, and Andreas Kugi

and published in Mechatronics.

The content of this post-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:
A. Pfeffer, T. Glueck, F. Schausberger, and A. Kugi, “Control and estimation strategies for pneumatic drives with
partial position information”, Mechatronics, vol. 50, pp. 259–270, 2018. doi: doi.org/10.1016/j.mechatronics.
2017.09.012

BibTex entry:
% This file was created with JabRef 2.10.
% Encoding: Cp1252

@Article{acinpaper,
Title = {Control and estimation strategies for pneumatic drives with partial position information},
Author = {Pfeffer,Andreas and Glueck,Tobias and Schausberger,Florian and Kugi,Andreas},
Journal = {Mechatronics},
Year = {2018},
Pages = {259-270},
Volume = {50},

Doi = {doi.org/10.1016/j.mechatronics.2017.09.012},
Owner = {ap},
Timestamp = {2018.05.21}

}

Link to original paper:
http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012

Read more ACIN papers or get this document:
http://www.acin.tuwien.ac.at/literature

Contact:
Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
Vienna University of Technology E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012
http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012
http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at


Copyright notice:
This is the authors’ version of a work that was accepted for publication in Mechatronics. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in A.
Pfeffer, T. Glueck, F. Schausberger, and A. Kugi, “Control and estimation strategies for pneumatic drives with partial position information”,
Mechatronics, vol. 50, pp. 259–270, 2018. doi: doi.org/10.1016/j.mechatronics.2017.09.012

http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012


Control and Estimation Strategies for Pneumatic Drives with Partial Position
Information

Andreas Pfeffera,1,∗, Tobias Glückb,2, Florian Schausbergera, Andreas Kugia,1

aAutomation and Control Institute, TU Wien, Vienna, Austria
bComplex Dynamical Systems, Austrian Institute of Technology, Vienna, Austria

Abstract

Flexibility in production demands for flexible components which automatically adjust to new operating conditions.
Pneumatic drives are often used in various industrial applications, e.g., for point-to-point movements. The motion
characteristics is typically set up by manual tuning. Therefore, changes in the production lines typically require costly
manual readjustments. This can be avoided by using a robust, but expensive servo-control with pressure sensors and
a full-stroke position sensor. In this paper, we propose a cost-efficient and flexible alternative by combining classical
pressure sensors with cheap partial position sensors at the end strokes to estimate the parameters of the mechanical
system of the drive. This allows to readjust the motion characteristics in real time. Another costly issue is the limitation
of the lifetime of the drive, when varying loads lead to large impacts at the stroke ends. To increase the lifetime, a novel
non-overshooting trajectory planning algorithm is presented in this work. The overall control concept is implemented
on two lab test benches and the experimental results prove its excellent performance and robustness with respect to
changing operating conditions.

Keywords: Pneumatic systems; disturbance rejection; parameter estimation; feedforward control; trajectory planning.

1. Introduction

In today’s manufacturing plants, many tasks are performed
with pneumatics, see, e.g., [1]. One of the standard appli-
cations are simple endpoint-to-endpoint movements. Pneu-
matic drives are ideally suited to such tasks because they
feature low investment costs and a high power density, see,
e.g., [2, 3, 4]. In general, two approaches are used to control
the movement of pneumatic drives.

In the majority of cases, the pneumatic drives are equipped
with simple open-loop switching strategies and throttle
valves without any further sensors. The lack of measure-
ment information makes this approach cheap, but quite
inflexible in terms of operating conditions. The typical
fields of application are endpoint-to-endpoint movements,
where mechanical end-stops are employed to limit the move-
ment of the drive. A speed limitation is realized by manual
tuning of the throttle valves, while built-in damping ele-
ments (for example elastomer’s, pneumatic dampers,. . . )
in the pneumatic drive reduce the impact energy at the me-
chanical end-stops. These damping measures are intended
to ensure a so called soft landing of the piston and thus
increase the lifetime of the drive. Beside the extra effort
of including such dampers in the construction of the drive,
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some of these technologies require manual adjustments and
thus cause additional costs when bringing the system into
service. Often these pneumatic drives are oversized and
do not operate at high efficiency, see, e.g., [5], which of
course entails higher running costs. To sum it up, the main
drawbacks of these simple pneumatic drives are the inflexi-
bility due to the lack of sensors and the typically higher
operational costs. The initial cost savings may finally result
in high follow-up costs because also every change in the
environment of the drive demands for new adjustments,
e.g., of the throttle valves.

The second state-of-the-art approach is classical servo-
control, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13], which allows
to control the position of the piston along a desired trajec-
tory. Clearly, this requires full-stroke position sensors. An
overview of different types of servo-control strategies can
be found in [14, 15]. Nowadays, often modern non-linear
control strategies like exact linearization, see, e.g., [15, 16],
sliding mode control, see, e.g., [3, 7, 9, 10, 17, 18], or im-
mersion and invariance concepts [19] are applied. Typically
an expensive, e.g., 5-port/3-way, proportional valve is used
to control the drive, which leads to a single-input-single-
output system for position control, see, e.g., [4, 7, 18, 20, 21].
A pure feedback position controller can then be used for
the drive. But, even if measurable, the chamber pressures
cannot be controlled, since the only control input is used for
the position control. This in combination with the typical
leakage flows of such proportional valves results in a lower
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efficiency due to high chamber pressures, see, e.g., [2, 22].
An attractive alternative is given by two pneumatic half-
bridges equipped with two, e.g., 2-port/2-way switching
valves each. Beside the cost savings due to the elimination
of the leakage flows, this approach allows to separately
control the chamber pressure or the actuator force and the
piston position, see, e.g., [1, 3, 23, 24, 25, 26, 27, 28]. The
combination of a full-stroke position sensor with pressure
sensors and two half bridges is the most flexible approach,
but also the one with the highest equipment costs. In
literature, several works can be found which reduce the
equipment costs of servo-controlled drives, e.g., by omitting
the chamber pressure sensors, see, e.g., [29]. Alternatively,
an observer can be designed to estimate both chamber pres-
sures, see, e.g., [29, 30]. Note that for all these approaches
still a full-stroke position sensor is needed. Typically this
is cost effective for short-stroke drives where cheap position
measurement systems are available. For drives with long
strokes, the price of a full-stroke position sensor is much
higher compared to the costs of two pressure sensors.

Nowadays, the major challenge of pneumatic drives is to
reduce the overall running costs, see, e.g., [1, 22]. The main
cost drivers are air consumption and maintenance. The
air consumption can be curbed by avoiding leakage flows
and by reducing at least the sum of the chamber pressures,
while the maintenance costs can be kept small by a flexible
and robust control concept.
Moreover in industrial applications, pneumatic drives are
often faced with varying or not exactly known operating
conditions. A typical example is the supply pressure. Of
course, the supply pressure level at the compressor power
station can be chosen within certain limits and usually
different service units with mechanical pressure controllers
are used to regulate the supply pressure level in a manu-
facturing plant. But due to the costs of the service units,
they typically supply a large number of pneumatic compo-
nents. This in combination with different pipe diameters
and pipe lengths to the valves and to the actuators can
lead to varying supply pressure levels and sometimes even
to significant pressure drops at the pneumatic components.
For standard applications, the varying supply pressure may
thus lead to unintended changes in the clock speed of the
production line or may result in harmful impacts of the
piston on the stroke ends. In [31] a novel robust approach
for endpoint-to-endpoint movements is presented, which
tackles the systematic handling of such pressure drops and
represents the basis for the current work. For this approach,
the drive is equipped with leakage free switching valves
and a sensor concept comprising pressure sensors and two
cheap non-contacting position sensors with short measure-
ment range placed near each stroke end. Compared to a
combination of a proportional valve with only a low cost
full-stroke position sensor for a classical servo control, the
costs of the utilized valves and sensors are about 20 percent
smaller. When the servo control also comprises pressure
sensors, the cost advantage of the presented approach rises

up to more than 30 percent. The presented control ap-
proach allows to suppress supply pressure drops even during
the movement of the piston and to reduce the overall air
consumption compared to the classical approaches. In a
nutshell, the movement is realized by using chamber pres-
sure trajectory control. The desired pressure trajectories
are planned by utilizing the differential flatness property
of the system. This also allows to systematically compute
a feedforward controller for the valves in real time, which
offers the possibility to account for the measurable supply
pressure drops. An additional feedback controller is used
to ensure robustness with respect to model uncertainties
and disturbances. Apart from the supply pressure also the
real moving mass of the drive is not always exactly known.
Moreover, it is well known that the friction of the system
may exhibit large variations during operation depending on
the application. For most model-based control applications,
the knowledge of the exact mass is important to achieve
a high control performance and accuracy. In literature,
different estimation strategies for pneumatic drives can
be found, see, e.g., [19, 29]. The concept of [19] is based
on an adaptive immersion and invariance approach, see,
e.g., [32], where the friction force is estimated online. The
limitation is that the mass has to be known exactly for
accurate estimations. In the latter approach from [29], a
least-squares estimation is proposed. The drawback of this
approach is that the Coulomb friction parameter must be
known in advance for online estimation of the mass and of
the viscous friction parameter.
In the following, an extension of [31] to overcome the chal-
lenges concerning varying parameters is presented. To
estimate the mass and the friction of the system simultane-
ously an online parameter estimation algorithm is derived.
The algorithm presented in this work uses two identical
estimators in parallel to combine fast convergence with
high robustness with respect to noise. The two estimators
are based on recursive least-squares algorithms, see, e.g.,
[33]. Investigations concerning the influence of the mount-
ing orientation of the drive and of the sensor noise lead to
a tailored estimation concept. This parameter estimator
offers new possibilities for the control strategy presented
in [31]. First, the knowledge of the actual parameters al-
lows to update the flatness-based feedforward controller
of the endpoint-to-endpoint motion planning. Second, in-
stead of the robust but not very precise impedance control
presented in [31] a combination of feedforward and po-
sition control can be used in the region where position
information is available at the stroke ends. For this, a
tailored non-overshooting trajectory planning algorithm is
developed.

The paper is structured as follows: In Section 2, the exper-
imental setup is introduced and its mathematical model is
derived. Based on this model, the overall control strategy
is presented in Section 3 and the parameter estimation al-
gorithm is given in Section 4. Finally in Section 5, measure-
ments are shown to validate the feasibility of the proposed
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Figure 1: Schematic of the pneumatic linear drive containing the four
fast switching valves, the position sensors, and the pressure sensors
for a horizontal mounting of the drive.

concepts. The paper closes with some short conclusions.

2. Experimental Setup and Mathematical Model

In the following, the experimental setup is described and
the corresponding mathematical model is derived.

2.1. Experimental Setup

A schematic of the system under investigation is shown in
Figure 1. A pneumatic drive consisting of a differential
cylinder and four fast 2-port/2-way switching valves is
considered. Two short position sensors are mounted near
each stroke end. For the estimation strategy as well as
for the position control concept, three pressure sensors for
the supply pressure and the two chamber pressures are
required. In addition, a full-stroke position measurement
sensor is mounted for validation purposes only.

2.2. Mathematical Model

An average model of the pneumatic drive with PWM (pulse-
width modulation)-controlled switching valves is presented
in [31]. For the reason of completeness, it will be shortly
repeated in the following. Let ξ̄ denote an average value of
the variable ξ over a modulation period T , i.e.,

ξ̄ =
1

T

∫ t

t−T
ξ(τ)dτ. (1)

Then the average model of the PWM-controlled pneumatic
drive reads as [31]

¯̈s =
1

m

(
Ff

(
¯̇s
)

+ Fp

(
p̄1,p̄2

)
+ Fg + Fa

)
(2a)

¯̇pi =
κ

Vi(s̄)

(
(−1)iAi

¯̇sp̄i +Rθg ¯̇mi

)
, i ∈ {1,2} . (2b)

Coulomb and viscous friction is modelled by Ff (¯̇s) =
−c tanh(¯̇s/ε) − d¯̇s with the Coulomb friction coefficient
c > 0, the parameter 0 < ε � 1, and the viscous fric-
tion coefficient d. Moreover, Fp(p̄1,p̄2) = p̄1A1 − p̄2A2

denotes the pressure force, with the effective areas A1 and
A2, and Fa = pa(A2 − A1) is the pressure force offset
due to the (constant) ambient pressure pa. Depending
on the mounting orientation, the gravitational force takes
the form Fg = −mg sin(ϕ). Here, m denotes the overall
moving mass, g is the gravitational acceleration, and ϕ
is the angle of the mounting orientation relative to the
effective line of g. In (2b), κ denotes the specific heat ratio
of air, V1(s̄) = A1s̄+ V1,0 and V2(s̄) = A2(l− s̄) + V2,0 are
the chamber volumes with dead volumes V1,0 and V2,0, l
is the maximum stroke length, and R denotes the specific
gas constant. The gas temperature θg is assumed to be
constant and equal to the ambient temperature. The mass
flows ¯̇mi, i ∈ {1,2} read as

¯̇m1 = Cmax

(
Γ1s(p̄1)χ1s − Γa1(p̄1)χa1

)
(2c)

¯̇m2 = Cmax

(
Γ2s(p̄2)χ2s − Γa2(p̄2)χa2

)
, (2d)

with conductance Cmax, duty ratios χij ∈ [0,1], ij ∈
{1s,a1,2s,a2} of the pulse-width modulated conductances,
and

Γij(p̄i) = ρ0p̄jΨ (Πij) , ij ∈ {1s,a1,2s,a2} , (2e)

where ρ0 denotes the technical density of air, p̄s is the
supply pressure, and Πij = p̄i/p̄j is the pressure ratio.
In (2e), Ψ (Πij) refers to the flow-through function, see,
e.g., [14, 23],

Ψ (Πij) =





√
1−

(
Πij−Πc

1−Πc

)2

for Πij ≥ Πc

1 for Πij < Πc ,

(2f)

with the critical pressure ratio Πc.

3. Control Strategy

A control strategy for the extension and retraction of the
piston rod is presented. The strategy is schematically de-
picted in Figure 2. The light blue background indicates
that except for a short range near the stroke ends only pres-
sure information is available. Starting at an end stop, the
piston with the load is moved by pressure control towards
the opposite stroke end into the corresponding position
measurement range. In the position measurement range,
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Figure 2: Flow chart of the overall control strategy.

position control is activated. Both controllers consist of a
flatness-based feedforward controller and a feedback con-
troller. Smooth trajectories from one end stop to the other
are planned. When the piston enters the position mea-
surement range, the position trajectory is adapted to the
new measured conditions with respect to velocity and ac-
celeration and a non-overshooting position trajectory to
the end stop is planned. This is necessary because the
pressure controller does not guarantee that the position,
velocity, and acceleration of the piston coincide with the
reference trajectory due to model uncertainties and dis-
turbances. In addition, inside the position measurement
range a master-slave least-squares identification procedure
is used to estimate the moving mass and the friction. The
model-based pressure and position control algorithms are
parametrized by these estimated parameters. If errors occur
in the range without position information, a feedforward
controller is activated to ensure a piston movement into
the right direction until the corresponding measurement
range is reached.

In [31], the soft landing of the pneumatic piston at the
end stops is realized using an impedance control algorithm
in the position measurement range. This approach works
quite well for a given set of parameters. Furthermore, in
combination with the pressure control even large uncertain-
ties concerning the thermodynamic part of the model can
be handled. The proposed impedance control concept turns
out to be robust with respect to moderate uncertainties in
the mass and the friction parameters. However, in order
to ensure the same mass-spring-damper behaviour, either
mass shaping or a variation of the controller parameters
(spring and damper constants) is needed. Note that mass
shaping requires direct force measurement. In the follow-
ing, a combination of a MIMO position controller and a
tailored trajectory planning is proposed to allow for larger
variations of the mass and the friction parameters and
simultaneously guarantee a smooth landing of the drive at
the end stops.

3.1. Flatness-based Parametrization

The mathematical model (2) is differentially flat with out-
puts w1 = s̄ and w2 = p̄1 + p̄2, see, e.g., [4, 34]. Thus, all
states and control inputs can be parametrized in terms of
the flat outputs w1, w2, and their time derivatives. The
relative degrees of w1 and w2 with respect to the (virtual)
control inputs ¯̇m1 and ¯̇m2 are r1 = 3 and r2 = 1. Subse-
quently, an upper index d always refers to the corresponding
desired reference trajectory. The state parametrization can
be obtained from (2a) in form

s̄d = wd
1 (3a)

¯̇sd = ẇd
1 (3b)

p̄d1 = ψ1

(
wd

2 ,ẇ
d
1 ,ẅ

d
1

)
= − 1

A1 +A2

(
−mẅd

1

+ Ff

(
ẇd

1

)
−A2w

d
2 + Fa + Fg

)
(3c)

p̄d2 = ψ2

(
wd

2 ,ẇ
d
1 ,ẅ

d
1

)
= wd

2 +
1

A1 +A2

(
−mẅd

1

+ Ff

(
ẇd

1

)
−A2w

d
2 + Fa + Fg

)
. (3d)

Moreover, the parametrization of the control inputs ¯̇m1

and ¯̇m2 result from (2b) and directly constitute the feed-
forward controller for the desired reference trajectories
wd

1 = s̄d and wd
2 = p̄d1 + p̄d2. Finally, the real control inputs

χ1s, χ2s, χa1, χa2 result from (2c), (2d) by avoiding direct
flows between the corresponding inlet and outlet valves.

3.2. Trajectory Planning

As already mentioned before, a nominal trajectory for the
piston is planned which connects the two end stops. For
this, polynomial reference trajectories of class Cr1 and Cr2
are chosen for the flat outputs wd

1 and wd
2 . The trajectory

for wd
1 simply results from its boundary conditions. These

are the transition time, the maximum piston stroke and the
requirement of zero velocity and zero acceleration at the
beginning and the end of the trajectory. For the second flat
output of the system a tailored approach, where two poly-
nomials are connected, is used. The resulting additional
degrees of freedom allow to reduce the maximum inputs
needed to realize the chosen trajectories of the system. For
more information on the trajectory planning, see [31].

When the piston enters the position measurement range, a
new non-overshooting position trajectory wd

1 is proposed in
the following. It is based on the work of [35, 36] and [37].
For the sake of brevity, only the trajectory for the ex-
tension of the piston is considered. Due to the fact that
the feedforward and the pressure control move the piston
with a positive velocity and a negative acceleration into
the position measurement range, only negative accelera-
tions are requested to smoothly move the piston to the
end stop. The trajectory for the retraction can be derived
analogously, only the signs of the corresponding derivatives
must be changed. In order to obtain a non-overshooting
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position trajectory wd
1 , an acceleration trajectory with four

phases is used. The acceleration trajectory consists of two
constant segments and two sine-squared blend segments to
yield a trajectory of class C3. In the nominal case (Case 1),
the mathematical formulation reads as

ẅd
1 =





a0 J0 = [t0,t1]

a1(t) J1 = [t1, t2]

a2 J2 = [t2, t3]

a3(t) J3 = [t3, tf ]

(4a)

with

a1(t) = a0 − (a0 − a2) sin2

(
π

2t̃1
(t− t1)

)
(4b)

a3(t) = a2 − a2 sin2

(
π

2t̃3
(t− t3)

)
(4c)

and t̃i = ti+1 − ti, i = 0, . . . ,3 and the final time t4 = tf .
The time when the piston enters the position measurement
range is set to t0 = 0. There are six parameters to be de-
termined, i.e., a0, a2, t̃0, t̃1, t̃2, and t̃3. The first parameter
a0 is given by the initial acceleration3

ẅd
1(t0) = a0 = s̈(t0) . (5a)

The trajectories ẇd
1(t) and wd

1(t) are obtained by integrat-
ing (4) once and twice, respectively. In view of the desired
soft landing the change of the velocity ∆vd during the time
period tf − t0 follows as

∆vd = ẇd
1(tf ; a0,a2,t̃0, t̃1, t̃2,t̃3)− ẇd

1(t0; a0,a2,t̃0, t̃1, t̃2,t̃3)

= −v0 = −ṡ(t0),

(5b)

while the position change is given by

∆sd = wd
1(tf ; a0,a2,t̃0, t̃1, t̃2,t̃3) = sd(tf )− s0. (5c)

For simplicity, wd
1(t0) = s0 = 0 is chosen as starting posi-

tion because the position offset can always be shifted to
the measured position value. The trajectory automatically
fulfils the boundary conditions ẇd

1(tf ) = 0 and ẅd
1(tf ) = 0

because of (4). In addition to (5b) and (5c) the trajec-
tory should not exceed a minimum acceleration s̈min and a
minimum jerk

...
smin which is ensured by

a2 = ηs̈min (5d)

and

t̃1 =
π(a2 − a0)

2η
...
smin

, t̃3 =
πa2

2η
...
smin

(5e)

3Of course the initial acceleration cannot be measured. Due
to the active pressure control before the piston enters the position
measurement range, the acceleration of the piston is approximately
ẅd

1 . Therefore, ẅd
1(t0) is taken from the flatness-based trajectory

planning.

with η ∈ [0,1]. The remaining parameters t̃0 and t̃2 follow
from the conditions (5b) and (5c).

In the following, six cases resulting from different initial
conditions s̈(t0) and ṡ(t0) will be distinguished. The corre-
sponding trajectories are depicted in Figs. 3 to 8, where the
gray arrows indicate the remaining degrees of freedom used
to fulfil the requirements (5). Case 1 in Fig. 3 represents
the nominal case, where the parameters a0, a2, t̃1, and t̃3
are fixed by (5a), (5d), and (5e). When the piston shows a
lower entry velocity, less deceleration is needed. As a result,
t̃2 will be reduced. When t̃2 reaches zero the trajectory
changes to Case 2, see Fig. 4. Now condition (5d) does
no longer hold and a2 is a new degree of freedom instead
of t̃2. As a consequence a2 < a0 must hold. A further
reduction of the entry velocity leads to Case 3. Here, a2 is
set to a2 = a0 and the two remaining degrees of freedom
are t̃0 and t̃3. Fig. 5 shows the corresponding trajectory.
This case is valid until t̃0 = 0. When the entry velocity is
further reduced (Case 4) then a2 > a0 is needed to fulfil
all requirements and so the sign for the first blend segment
changes, see Fig. 6.
For some given entry conditions, Case 1 does not meet the
requirements because, e.g., the entry velocity is too high,
which is why another change in the trajectory planning
must be performed, which is shown in Fig. 7. First, the
time span t̃0 is set to zero and the new degree of freedom
is a2. Clearly, in this case a deceleration can be demanded
which cannot be realized with the given equipment. But it
is the best one can do under the given system constraints.
Finally, a further increase in the entry velocity leads to
Case 6, shown in Fig. 8. In this case, the maximum decel-
eration as well as the minimum jerk of (5e) are chosen as
additional degrees of freedom. In a compact form, the six
cases can be summarized as follows:

Case 1: The intervals J0–J3 are present. Unknown are
a0, a2, t̃0, t̃1, t̃2, and t̃3. They result directly from (5).

Case 2: The intervals J0,J1 and J3 are present and t̃2 is
set to zero. Unknown are a0, a2, t̃0, t̃1, and t̃3. They
result directly from (5a)-(5c) and (5e).

Case 3: The intervals J0 and J3 are present and again t̃2 is
set to zero. Unknown are a0, a2, t̃0, t̃1, and t̃3. They
result directly from (5a)-(5c), (5e), and a0 = a2.

Case 4: The intervals J1,J2 and J3 are present and t̃0
is set to zero. Unknown are a0, a2, t̃1, t̃2, and t̃3.
They result directly from (5a)-(5c), and (5e), with
|a2| < |a0|.

Case 5: The intervals J1,J2 and J3 are present and t̃0 is
set to zero. Unknown are a0, a2, t̃1, t̃2, and t̃3. They
result directly from (5a)-(5c), and (5e).

Case 6: The intervals J1 and J3 are present and t̃0 as well
as t̃2 are set to zero. Unknown are a0, a2, t̃1, t̃3, and
...
smin. They result directly from (5a)-(5c), and (5e).
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ẇ
d 1
in

m
/s

t̃0 t̃1 t̃2 t̃3

a0

a2

0 20 40 60 80
−15

−10

−5

0

time in ms

ẅ
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Figure 3: Position trajectory and its derivatives for Case 1.
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Figure 4: Position trajectory and its derivatives for Case 2.
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Figure 5: Position trajectory and its derivatives for Case 3.
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Figure 6: Position trajectory and its derivatives for Case 4.

0.00

0.01

0.02

0.03

w
d 1
in

m

wd
1

wd
1(tf )

0
0.2
0.4
0.6
0.8

ẇ
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Figure 7: Position trajectory and its derivatives for Case 5.
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Figure 8: Position trajectory and its derivatives for Case 6.
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The six cases are chosen according to Table 1. Note that
only the extension of the piston and thus combinations of
v0 > 0 and a0 < 0 are taken into account. This is ensured
by the feedforward and pressure control. Figure 9 shows the

Initialize: s0 > 0, v0 > 0, a0 < 0

do Case 1
if t̃2 < 0

do Case 2
if |a2| ≤ |a0|
do Case 3

if t̃0 < 0
do Case 4

else if t̃0 < 0
do Case 5

if t̃2 < 0
do Case 6

end
Table 1: Algorithm for the position trajectory planning in the position
measurement range.

distribution of the six cases for different initial conditions
v0 ∈ [0.1,1.1]m/s and a0 ∈ [−6,0]m/s2. The map indicates
that for high entry velocities the resulting trajectory is
generated by Case 6 and for low entry velocities Case 4
is used. It can be easily seen from Fig. 8 and (4) that
Case 6 holds true for all combinations of a0 and large v0.
In Case 4, the trajectory can fulfil the requirements even
with a sufficiently small a2 and an appropriate time span
t̃2 also for very small entry velocities v0. In this case, the
final time tf becomes very large. In practise, Case 4 is
only used if the entry velocity is above a lower limit. For
entry velocities below this limit, a constant final position
sf = s(tf ) is used as reference for the position control to
force the piston movement.

3.3. Pressure Control

Pure pressure control is used in the area without position
information to account for uncertainties in the pneumatic
subsystem, e.g., in the conductances or in the dead volumes.
Feedback linearization, see, e.g., [34], applied to (2b) with
outputs yi = p̄i for i ∈ {1,2} yields the virtual control
inputs

¯̇mi =
1

gi
(αi − fi) , i ∈ {1,2}, (6a)

with

fi =
κ

Vi(s̄)
(−1)iAi

¯̇sp̄i , gi =
κRθg
Vi(s̄)

. (6b)
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Figure 9: Distribution of the six cases for the position trajectory
planning depending on the initial velocity v0 and acceleration a0.

The true control inputs are obtained by

χis =

{
¯̇mi

CmaxΓis(p̄i)
, ¯̇mi ≥ 0

0 , ¯̇mi < 0 ,
(6c)

χai =

{
0 , ¯̇mi ≥ 0
− ¯̇mi

CmaxΓai(p̄i)
, ¯̇mi < 0 .

(6d)

The term αi in (6a) reads as

αi = ¯̇pdi − ai,0ei − ai,1
∫ t

0

ei dτ , (6e)

with the pressure reference trajectory p̄di according to (3),
the pressure error ei = p̄i − p̄di , and the constant controller
parameters ai,j > 0. Application of (6) to (2b) yields a
linear and exponentially stable error dynamics.

3.4. Combined Position and Pressure Control

Position control is used in the position measurement range.
Feedback linearization applied to (2) with outputs w1 and
w2 yields the virtual control inputs

[
¯̇m1
¯̇m2

]
= G−1 (β − f) . (7a)

The decoupling matrix G and the function f are given by

G =

[
A1

m g1 −A2

m g2

g1 g2

]
, f =

[
Ḟf +A1f1 −A2f2

f1 + f2

]
,

(7b)

with fi and gi, i ∈ {1,2} according to (6b). Note that the
decoupling matrix G is non-singular because of 0 ≤ s̄ ≤ l.
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The servo compensation is once again given by (6c) and
(6d). The term β in (7a) is chosen as

β =

[...
wd

1 − b1,0ε̈1 − b1,1ε̇1 − b1,2ε1 − b1,3
∫ t

0
ε1 dτ

ẇd
2 − b2,0ε2 − b2,1

∫ t

0
ε2 dτ

]
, (7c)

with the reference trajectories wd
i , the errors εi = wi − wd

i ,
and the constant controller parameters bi,j > 0. Note that
the derivatives ẅ1 and ẇ2 are determined using (2) and the
velocity ẇ1 is calculated by numerical differentiation using
a Savitzky-Golay filter, see, e.g., [38, 39]. Application
of (7) with (6c) and (6d) to (2) results in a linear and
exponentially stable error dynamics.

4. Estimator Design

As described in the introduction, the friction parameters
and also the moving mass of a pneumatic drive are not
always exactly known. Therefore, a parameter estimator
is designed to iteratively adapt the controller parameters.
Sampling of (2a) for t = kTs, k = 1,2, . . ., with sampling
time Ts results in the parametric linear model

yk = rT
k ζ, (8a)

with output yk = ¯̈s(kTs) + g sin(ϕ), parameter vector

ζT =
[
ζ1 ζ2 ζ3

]
=
[

1
m

c
m

d
m

]
, (8b)

and regressor

rk =



Fp

(
p̄1(kTs),p̄2(kTs)

)
+ Fa

−sign
(
¯̇s(kTs)

)

−¯̇s(kTs)


 . (8c)

Note that the sign-function is used instead of the tanh
approximation in (2a) for a better distinction between the
Coulomb and the viscous friction. Only the pressures and
the position can be measured. For calculating the time
derivatives ¯̇s and ¯̈s, an acausal centred Savitzky-Golay filter
is used, see, e.g., [38, 39].

Remark 1. The formulation (8) is based on an analysis of
the noise level of the signals ¯̈s, ¯̇s, p̄1, and p̄2. The functional
principle of the short-stroke position sensors at hand is
based on several hall sensors. From the resulting noisy po-
sition signal the first as well as the second time derivative
must be determined. To calculate the (higher) derivatives of
noisy signals, different strategies are known from literature,
see, e.g., [40, 38]. The comparison of an algebraic linear
identification, see, e.g., [40] and different types of Savitzky-
Golay filters, see, e.g., [38, 39] leads to the implementation
of an acausal centred Savitzky-Golay filter with a polyno-
mial order of 3 and a window length of 35 samples. The
filter is used to smooth the position and the pressure signals
and to calculate the required derivatives. In particular in a
horizontal mounting orientation the resulting acceleration

shows the highest noise level. This predestines it for the
choice of the output yk in (8), see, e.g., [33]. To further
reduce the influence of noise a so called output dead-zone
ymin ≤ |yk|, see, e.g., [41], with an additional upper con-
straint, where only measurements ¯̈smin ≤ |¯̈s(kTs)| ≤ ¯̈smax,
with the output yk = ¯̈s(kTs) + g sin(ϕ), are considered
valid for the estimation, is utilized. As a consequence,
the whole estimation stops when no sufficient excitation is
measurable, e.g., at standstill.

4.1. Constrained Recursive Least-Squares Algorithm

The parameter estimation is based on a discrete-time con-
strained recursive least-squares algorithm with an output
dead zone, see [41]. In every time step k, new measurement

data rk and yk are used to improve the estimate ζ̂k of the
parameters ζ ∈ X , with the feasible set of parameters X .
Inspired by the discrete-time constrained recursive least-
squares algorithm, see [41], the estimation algorithm is
formulated as

kk =
Pk−1rk

q + rT
kPk−1rk

(9a)

Pk =

{(
Pk−1 − kkr

T
kPk−1

)
1
q for ζ̂k−1 ∈ X

Pk−1 else
(9b)

ζ̂k = PX
(
ζ̂k−1 + kk

(
yk − rT

k ζ̂k−1

))
(9c)

with the forgetting factor q ∈ [0,1], the matrix4 Pk, and
the orthogonal projection operator PX . In the practical
application, the constraints are known for the physical
parameters, i.e., m ∈ [mmin,mmax], c ∈ [cmin,cmax], and
d ∈ [dmin,dmax]. Hence, the feasible set X for ζ takes the
form

X = {ζ|ζ1 ∈ [1/mmax,1/mmin], (10)

ζ2 ∈ [ζ1cmin,ζ
1cmax],

ζ3 ∈ [ζ1dmin,ζ
1dmax]}.

The corresponding projection operator reads as

PT
X (ζ) =

[
P1
X
(
ζ1
)

P2
X
(
ζ1,ζ2

)
P3
X
(
ζ1,ζ3

)]
(11a)

with

P1
X
(
ζ1
)

=





1/mmax for ζ1 < 1/mmax

ζ1 for ζ1 ∈ [1/mmax,1/mmin]

1/mmin for ζ1 > 1/mmin ,

(11b)

P2
X
(
ζ1,ζ2

)
=





ζ1cmin for ζ2 < ζ1cmin

ζ2 for ζ2 ∈ [ζ1cmin,ζ
1cmax]

ζ1cmax for ζ2 > ζ1cmax ,

(11c)

4The matrix Pk is sometimes denoted as covariance matrix due
to the similarity in stochastic theory.
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P3
X
(
ζ1,ζ3

)
=





ζ1dmin for ζ3 < ζ1dmin

ζ3 for ζ3 ∈ [ζ1dmin,ζ
1dmax]

ζ1dmax for ζ3 > ζ1dmax .

(11d)

Note that Lyapunov stability of the estimation algorithm
(9) and (11) cannot be shown in a systematic way. A
Lyapunov-stable discrete-time constrained recursive least-
squares algorithm is presented in [42]. However, a time-
consuming Cholesky decomposition of the matrix Pk is

utilized within this algorithm. The matrix P
− 1

2

k is then
used to map the estimated parameters and the constraints.

4.2. Master-Slave Scheme

For the estimation of ζ̂ always a trade-off has to be found
between fast convergence, which requires small values of the
forgetting factor q, and estimation robustness with respect
to noisy data, resulting in large values of q ∈ [0,1]. To
resolve this problem, a master-slave scheme is introduced,
where two recursive least-squares algorithms with identical
models are used in parallel. Similar approaches can be
found in literature, see, e.g., the AFMM approach from [43],
where multiple models are used, or the survey paper [44].
The working principle of the master-slave approach is shown
in Fig. 10. Here, two equivalent estimators are implemented,
and after a given number of valid measurements, the norms
of the residuals yk − rT

k ζ̂ are compared. The one with the
lower residual is set as master and its estimated parameters
are used to parametrize the controllers. The one with the
larger residual (the slave) is then reset. As a consequence,

the initial parameters ζ̂0 are set to the current estimation
of the master, the matrix P is reset to Pk = P0 and the
internal memory of the Savitzky-Golay filters is cleared.
This leads to fast convergence of the slave due to the large
entries in P0. Note that even if the residuals are, after a
given amount of valid data points, equal, which is the case
at the initial start, one of the estimators is reset.

�

Estimator A Estimator B

residual A ≤ residual B?

Yes No

ζ̂Areset B reset Aζ̂B

Figure 10: Working principle of the master-slave estimation scheme.

Load

Pressure sensors

Valves
Position sensor

Figure 11: Picture of the horizontal lab test bench.

Position

sensors

Load

Pressure sensors

Valves

Figure 12: Picture of the vertical lab test bench.

5. Measurements

In the following, measurements from two different test
benches are shown. The test benches primarily differ
in the mounting orientation, one with a horizontal, see
Fig. 11, and another one with a vertical mounting orien-
tation, see Fig. 12. Both use the same industrial stan-
dard pneumatic drive DNSU-25-400-PPV-A from Festo,
which is a standard part and not a special low friction
unit. Note that for all presented measurements the built-
in pneumatic dampers (PPV) are deactivated. Four fast
switching valves Festo MHA3-MS1H-3/2G-3-K are used
to control the pneumatic drive. The low cost Festo
SPTE-P10R-S6-V-2.5K pressure sensors are chosen for the
pressure measurements. At each end stop of the drive, the
position is measurable in a range of about 50 mm. For
this, the vertical test bench is equipped with two Festo
SDAT-MH5-M50-1L-SA-E-0.3-M8 position sensors. For
validation purposes, an additional full-stroke position sen-
sor MTS Sensor Temposonics R© R-series is installed at
each test bench. Due to different sliders, the friction of the
vertical test bench differs from the horizontal one.
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Figure 13: Measurement results for the extension and retraction of the piston rod.

5.1. Soft Landing

The soft landing strategy presented in Section 3 with nom-
inal mass and friction parameters is experimentally vali-
dated on the horizontal test bench. The tuning parameters
of the trajectory planning are listed in Table 2. Figure 13
gives measurement results for the extension and retraction
of the piston rod. On top, the measured piston position
sc and the corresponding desired flat output wd

1 as well as
the sum of the chamber pressures p̄1 + p̄2 and its desired
trajectory wd

2 are shown. The bottom of this figure depicts
the time evolutions of the control inputs χ1s, χa1, χ2s and
χa2. The gray background at the top and the bottom
in the position measurement indicate the position mea-
surement range. The control approach from Section 3.4
is used to control the piston position and the chamber
pressures when the position measurement range is reached.
The controller parameters according to (7c) are designed
by using pole placement. The poles for the position con-
troller are all set to −21 s−1 and for the sum pressure to
−1 s−1. The position reference trajectory is determined by
the trajectory planning algorithm from Section 3.2. The
trajectory of the desired sum pressure results from the
trajectory planning strategy presented in [31]. Due to the
pressure control during the movement between the position
measurement ranges, the sum pressure error is small and
there is no need for a new pressure trajectory planning.
This is in contrast to the position, where the first available
measurements are used to approximate the entry velocity

v0. The initial acceleration a0 is taken from the originally
planned trajectory, because the noisy position signal and
the low number of available data points make it impossible
to perform a further numerical time differentiation of the
velocity signal. Although only the pressure control is active
between the position measurement ranges, the measured
piston position coincides very well with the desired position
trajectory in the nominal case. This indicates a good match
of the mathematical model of the mechanical subsystem
with reality. Switching from pure pressure control to com-
bined pressure and position control can be easily seen at
the inputs. Figure 14 shows a detailed view of the end
regions of the cylinder. The dashed lines on the top refer
to the desired trajectories. The extension and the retrac-
tion movement are depicted on the left and the right hand
side, respectively. A comparison of the gray dotted lines
from the feedforward control (superscript d,ff ) with the
solid lines from the measurements reveal higher velocities
of the piston than initially planned. At t ≈ 0.52 s for the
extension and at t ≈ 0.53 s for the retraction, the initial
conditions are approximated and the desired trajectories
from Section 3.2 can be calculated (superscript d,si2). From
now on, the position control is active. The maximum posi-
tion errors in the measurement range are about 4 mm for
the extension and 3 mm for the retraction, which is quite
small for pneumatic systems. Comparisons with alterna-
tive trajectory planning strategies, like different filtering
approaches, lead to significantly higher maximum errors.
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Figure 14: Detailed view of the measurement range at the end stroke from Figure 13.

A better performance of the controller seems to be hard
to achieve with the given equipment due to the fact that
the controls are temporarily on their bounds. For the re-
traction movements, the non-modelled direction dependent
friction leads to different initial conditions compared to the
extension movement, see Table 3. In this case, calculating
a new trajectory for the controller is essential for a soft
landing of the piston. The extension and the retraction
movements show the robustness of the non-overshooting
sine-squared approach with respect to varying entry con-
ditions. The proposed trajectory planning in combination
with the position control ensures a soft landing of the drive.

5.2. Parameter Estimation

For the validation of the estimation approach, firstly a
comparison of a single recursive least-squares estimator
with the presented master-slave estimation concept is per-
formed. In a second step, the feedback is closed so that

Parameters for the trajectory planning

variable value description

T 0.75 s Transition time from one end
stop to the other

|s̈min| 10 m/s2 Approximation of the minimum
acceleration

|...smin| 700 m/s3 Approximation of the minimum
jerk

Table 2: Tuning parameters.

the estimated parameters are used for the online trajectory
planning as well as for the model-based controllers. For
the following experiments, the tuning parameters of the
estimators are chosen as q = 0.999999 and P0 = I. A sam-
pling rate of 1 ms ensures that the centred Savitzky-Golay
filter does not cause recognizable delays in the presented
measurements.
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Initial conditions for the non-overshooting trajectory

value extension retraction

∆sd 0.0365 m 0.0344 m
|v0| 0.48 m/s 0.39 m/s
|a0| 4.83 m/s2 4.37 m/s2

Table 3: Initial conditions of the trajectory planning algorithm for
the measurement shown in Fig. 13 and 14.

The advantages of the master-slave scheme are demon-
strated by simulation studies. The inputs for these simula-
tions are measurement data taken from the horizontal lab
test bench. For comparable results with the vertical test
bench, only the first and the last 50 mm of the measurement
range of the mounted MTS Sensor are taken into account.
For this simulation study, the output dead-zone is chosen
as |¯̈smin| = 1.8 m/s2 for the lower and |¯̈smax| = 60 m/s2 for
the upper constraint. The resulting position and pressure
measurements serve as a basis for analyzing the estimation
results of a single recursive least-squares estimator with
projection as presented in Section 4.1 and a combination
of two recursive least-squares estimators as given in Sec-
tion 4.2. The results are depicted in Fig. 15. The single
estimator is indexed with Sproj while the master-slave esti-
mator with projection is referred to with the index ABproj.
The light gray areas in the first part of the figure indicate
the measurement range, while the dark gray areas show
the chosen box constraints for the parameter estimation.
For the first cycles, where the moving mass is m = 2.1 kg,
the results of both estimators are similar. At t = 10 s and
t = 100 s, an additional mass is mounted, so that the mov-
ing mass is equal to m = 9.6 kg and m = 16.6 kg. From
the bottom of Fig. 15, the resets and role changes between
master and slave can be identified. As a consequence of
the shorter memory of the slave, the change in the mass
from m = 16.6 kg to m = 9.6 kg at t = 165 s can be iden-
tified much faster with the master-slave approach. The
switching from master to slave and vice versa takes place
just after two cycles of movement. The same behaviour
can be seen at t = 265 s when the last mass is unmounted.
The single recursive least-squares approach estimates an
even bigger mass. When the last additional mass is un-
mounted all projections are active for the single estimator
concept. Note that for the single estimator concept only
projection and freezing of the matrix Pk is realized for
the single estimator. This is why, even during the last few
cycles of movement the estimated parameters of the single
estimator stick on their bounds. A remedy for this may be
realized by a heuristic law for a reset of the single estimator
concept when all projections are active for a certain time.
In contrast, the master-slave estimation approach uses the
projection only for short times usually after switching the
master-slave roles. The presented measurement results
from the horizontal test bench clearly point out the advan-
tages of the master-slave concept compared to the classical
single recursive least-squares estimator.
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Figure 15: Comparison of the estimation results of a single recursive
least-squares estimator with the presented master-slave principle.

5.3. Overall Control Concept

So far, all movements are realized with nominal parameters.
In the following, an experiment from the vertical lab test
bench, see Fig. 12, is analyzed where the estimated mass as
well as the estimated friction parameters are used for the
model based controllers. For this, the actual estimation is
adopted for the controllers every time the piston is in the
lower position before the extension movement begins. The
vertical lab test bench is chosen because in this orientation
the impact of wrong parameter estimations is consider-
ably larger compared to the horizontal case. Note that for
this measurement the full-stroke MTS Sensor position
measurement system is only used for validation purposes.
The controller as well as the estimators are only connected
with the two short position sensors at the end stops. As
a consequence of the different position sensors and the
changed orientation, the output dead zone is chosen as
|¯̈smin| = 0.2 m/s2 for the lower and |¯̈smax| ≈ 130 m/s2 for
the upper constraint. First, a few cycles with the nominal
mass of m = 6.32 kg are performed to reach a steady state
of the estimator. Then an additional mass of 2.83 kg is
mounted, which is dismounted after a number of cycles.
The corresponding measurements are depicted in Fig. 16.
On top, the position measurement and the measurement
areas are shown. The estimated parameters follow below.
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ĉABproj

0

20

40

v
is
.
fr
ic
ti
on

p
ar
.
in

k
g/

s

d̂ABproj

0 50 100 150 200 250
A

B

time in s

ac
ti
ve

A
/B ABproj

À Á Â Ã Ä Å

0

0.1

0.2

0.3

0.4

p
os
it
io
n

in
m

meas. range
sc

4

6

8

10

m
as
s
in

k
g

m m̂ABproj

10

20

30

C
o
u
l.
fr
ic
ti
on

p
ar
.
in

N
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Figure 16: Measurements of the overall system with feedback of the estimated mass and friction. The experiment is performed on the vertical
lab test bench of Fig. 12.

The signal at the bottom of the figure indicates the active
estimator of the master-slave-scheme. As can be seen at
À, the estimated mass fits the nominal mass very well and
the friction parameters allow to smoothly move the drive
by the flatness-based feedforward controller. For the next
movements beginning with Á, an additional mass of 2.83 kg
is mounted. As a consequence, the piston cannot be moved
to the opposite measurement area with the nominal trajec-
tory, which is why an auxiliary function is used. After one
cycle of movement, the estimated mass is about 8 kg which
is not enough for the feedforward controller to reach the
opposite measurement area, see Â. In the following cycles,
the estimation of the mass and friction parameters exhibit
a fast convergence. It can be seen that the estimation
converges and that the movement is smoothly preformed
with the additional mass mounted. After the movement Ã,
the additional mass is unmounted. At Ä, the influence of
a too high estimated mass can be seen. The feedforward
controller expects a higher gravitational force and there-
fore the retraction movement cannot be realized. As the
measurement results show, the estimation algorithm with
the master-slave scheme again provides a fast convergence

and all parameters converge to similar values as at the
beginning of the experiment, cf. À and Å.

6. Conclusions

This paper deals with the design of control and estimation
strategies for a cost-efficient and flexible pneumatic drive
system to perform endpoint-to-endpoint movements. The
pneumatic drive consists of a differential cylinder, four fast
2-port/2-way switching valves, three pressure sensors, and
two short-stroke position sensors near each end stroke. A
tailored master-slave estimation scheme, which is based on
a constrained recursive least-squares approach, is designed
to reliably identify the friction parameters and the moving
mass.

The estimated parameters are used to iteratively adopt the
model-based controllers. The control concept comprises
a controller for the chamber pressure and a combined po-
sition and pressure controller which is only active in the
position measurement range near the end strokes. Thereby,

13

Post-print version of the article: A. Pfeffer, T. Glueck, F. Schausberger, and A. Kugi, “Control and estimation strategies for pneumatic
drives with partial position information”, Mechatronics, vol. 50, pp. 259–270, 2018. doi: doi.org/10.1016/j.mechatronics.2017.09.012
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/doi.org/10.1016/j.mechatronics.2017.09.012


the flatness-property of the mathematical model is system-
atically utilized. Moreover, a non-overshooting trajectory
planning algorithm for the piston trajectory was proposed
to ensure a soft landing of the piston at the end strokes.
The estimation and control concept was implemented on
two lab test benches, one with a horizontal, and one with
a vertical mounting orientation of the pneumatic drive.
Measurement results demonstrate the high performance
and the robustness of the proposed approach.
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