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In diesel common-rail systems, the exact knowledge of the injection pressure is important

to accurately control the injected diesel mass and thus the combustion process. This paper

focuses on the mathematical modeling of the hydraulic and mechanical components of a
common-rail system in order to describe the dynamics of the diesel rail pressure. Based on

this model, an average model is derived to reduce the model complexity and to allow for a

fast calculation of the mass flow into the rail for different crank shaft revolution speeds and
openings of the fuel metering unit. The main purpose of this average model is to serve as a

basis for a model based (nonlinear) controller design. The stationary accuracy of the models

is validated by means of measurement data.

Keywords: diesel engine; common-rail injection; control oriented modeling;
physics-based modeling
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1. Introduction

Common-rail injection technology is typically used in modern diesel engines. The
major advantage compared to prior injection systems as e.g. in-line injection pumps
is that the process of injection and high pressure generation are decoupled. This
enables injections with arbitrary timing and quantity, even so-called multiple injec-
tions, which can significantly increase the efficiency and reduce exhaust emissions
of the engine [1].

Fig. 1 depicts a schematic diagram of the considered common-rail injection sys-
tem. The central component of the system is a rail volume filled with highly pres-
surized diesel, which delivers diesel to the injectors. By opening and closing the
injectors, the desired amount of diesel can be injected into the combustion cham-
bers of the engine. The high pressure in the rail is generated by a radial piston
pump, which is actuated by one or more eccentrics at the camshaft of the engine.
The amount of diesel flow into the radial piston pump can be controlled by an elec-
tromagnetically actuated variable displacement valve (fuel metering unit, FMU).
The fuel metering unit is supplied by a constant pressure, which is generated by a
gear pump and an overflow valve. Due to leakages of the FMU it is necessary to
install a zero delivery throttle, which enables zero volume flows of the radial piston
pump. In many configurations, a pressure control valve (PCV) is installed in the
rail to transport diesel from the rail to the tank and thus to actively reduce the
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Figure 1. Schematic diagram of a common-rail system.

rail pressure.
Accurately controlling the rail pressure is an important prerequisite to achieve

the desired quantity of fuel injected. Mathematical models provide the basis for the
analysis of the dynamical behavior and the design of control strategies. Stationary
characteristic maps are frequently used to describe the system behavior. These
models must be calibrated by measurements and do not account for the dynamical
behavior. These models are thus not directly applicable for the controller design.
First-principle models are more suitable for this purpose.

The authors of [2] developed a model of a diesel injection system, where the focus
was set on the injection process itself. The models developed in [3] concentrate
on a detailed description of the rail and the injection process as well. In [4, 5],
models of common-rail systems are presented which were primarily intended for
the control design. These models are characterized by a low dimension and are
based on a number of simplifications, which neglect some important effects, e.g. of
the dynamics of the radial piston pump. Moreover, [2, 4, 5] do not consider a fuel
metering unit such that the models are not suitable for the considered common-rail
system. The authors of [6, 7] include the FMU in their model but do not consider
a physics based model of the radial piston pump. A more detailed model is given
in [8] where a hybrid model for the common-rail system is developed. Although an
approach for the description of cavitation in the radial piston pump is presented,
a measured curve is utilized to describe the flow rate of the radial piston pump as
a function of the current of the FMU.

Therefore, the aim of this paper is to develop a mathematical model of the
common-rail system which (i) allows for a fast and yet accurate simulation of
the dynamical behavior and (ii) which can be easily parameterized by means of
construction parameters of the system. Section 2 summarizes the mathematical
equations of this model and gives some simulation results. A comparison with
measurements shows that the model is capable of accurately reproducing the real
system behavior. Due to its complexity this model is, however, not directly appli-
cable to design a controller. Thus, a reduced model of the system is developed in
Section 3, which is based on averaging the system variables over one cycle of the
piston motion of the radial piston pump. Simulation results show that the reduced
model still exhibits a high accuracy and captures the essential dynamical behavior

2

Post-print version of the article: K. Prinz, W. Kemmetmüller, and A. Kugi, “Mathematical modelling of a diesel common-rail system”,
Mathematical and Computer Modelling of Dynamical Systems, vol. 21, no. 4, pp. 311–335, 2015. doi: 10.1080/13873954.2014.968590
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1080/13873954.2014.968590


June 16, 2015 Mathematical and Computer Modelling of Dynamical Systems main

of the system.

2. Detailed Model

In this section, a detailed mathematical model of the common-rail system is derived.
This model is based on the following assumptions and simplifications:

(i) The pressure at the high pressure side of the FMU is kept almost constant by
means of the overflow valve. Thus, models of the gear pump and the overflow
valve are not required. Instead, a constant pressure pgp is presumed.

(ii) The effect of zero diesel flow for closed FMU, which is achieved by the zero
delivery throttle in the real system, is approximated by an idealized FMU
without leakage flow.

(iii) In this paper, a common-rail system without pressure control valve (PCV)
is considered. This is a common configuration in cost-sensitive applications.
The control of the rail pressure is thus only achieved by means of the FMU.

(iv) The exact time evolution of the injected diesel flow into the cylinders of the
internal combustion engine strongly depends on the actual load of the engine.
The model presented in this paper is primary developed for the design of a
controller for the rail pressure. As will be seen later, it is not possible to
influence the fast pressure fluctuations in the rail caused by the injection
process. Therefore, a simplified model will be given, which, however, captures
the main effects of the injection process.

2.1 Isentropic Fluid Model

Diesel pressure in a common-rail system varies from lower than atmospheric pres-
sure (e. g. in the cylinders of the radial piston pump) to very high pressures in the
rail. At pressures lower than vapor pressure the fluid starts to vaporize. Moreover,
the compressibility of diesel considerably decreases for high pressures. As these
effects cause significant changes in the fluid properties, a model which describes
the fluid for both cavitation and high pressure cases is strived for, see also [9, 10].

The subsequent model is based on an isentropic fluid, where the mass density %
and the bulk modulus β (both depending on the pressure p) meet the relation

∂%(p)

∂p
=
%(p)

β(p)
. (1)

To characterize diesel depending on its pressure p, three cases are distinguished:

1) Diesel at pressures higher than the upper vapor pressure pvap,u, p ≥ pvap,u, is
liquid.

2) In the pressure range pvap,l < p < pvap,u diesel starts to vaporize, i. e. there is
some liquid and some vapor part.

3) At pressures lower than the lower vapor pressure pvap,l, p ≤ pvap,l, all diesel
mass is vaporized.

The next sections deal with these three cases in detail and provide equations for
β(p) and %(p).
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Figure 2. Mass density % and bulk modulus β.

2.1.1 Case 1: p ≥ pvap,u

When describing fluids at moderate pressures, a constant bulk modulus β0 can
be used, see, e. g., [11]. However, for diesel pressures in a common-rail system,
which can increase beyond 2000 bar, an increasing bulk modulus is observed in
measurements, see Fig. 2.1 The bulk modulus β is described as

β(p) = β0 + b1 (p− p0) , (2)

with the bulk modulus β0 at reference pressure p0 and the gradient b1. With (1)
the corresponding mass density %(p) is given by

%(p) = %f0

(
β(p)

β0

) 1

b1

, (3)

where %f0 is the mass density at reference pressure p = p0.

2.1.2 Case 2: pvap,l < p < pvap,u

In this case the fluid is considered to be partly liquid and partly vaporized. Given
the overall mass m, let us consider that a mass fraction mvap = Φvapm is vaporized,
while the mass fraction mf = (1−Φvap)m is still liquid. It is assumed that all fluid
is liquid at p = pvap,u, i. e. Φvap = 0, and all fluid is vaporized at p = pvap,l, i.e.
Φvap = 1. In general, the vaporized fraction Φvap is a nonlinear function of the
pressure p. In this work, it is supposed that Φvap increases linearly with decreasing
pressure, see, e.g., [9, 11]

Φvap = 1− p− pvap,l

pvap,u − pvap,l
. (4)

1Quantities labeled with tilde refer to normalized quantities. Here, the mass density % and the bulk modulus
β are normalized to their values %B and βB at ambient pressure p = 1 bar. All other quantities (·) are

normalized to their respective maximum values (·)B .
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The bulk modulus βf and mass density %f of the liquid fraction are given by (2)
and (3)

βf = β0 + b1 (p− p0) (5a)

%f = %f0

(
βf

β0

) 1

b1

, (5b)

such that the volume Vf of the liquid fraction is given by

Vf =
mf

%f
=

(1− Φvap)m

%f
=

(1− Φvap)m

%f0

(
βf

β0

)− 1

b1

. (6)

The behavior of the vaporized diesel is described by an isentropic process of ideal
gas with the isentropic exponent κ > 1

p

(
Vvap

Φvapm

)κ
= pvap,u

(
Vvap,u

Φvap,um

)κ
= pvap,u

(
1

%vap,u

)κ
, (7)

where %vap,u is the vapor density and Vvap,u is the volume at p = pvap,u. Hence, the
volume filled with vaporized diesel Vvap is given in the form

Vvap =

(
pvap,u

p

) 1

κ Φvapm

%vap,u
. (8)

The density % of the liquid-vapor-mixture in this case reads as

%(p) =
m

Vf + Vvap
= %f0%vap,u

pvap,u − pvap,l

%vap,u

(
βf

β0

)− 1

b1 (p− pvap,l) + %f0

(
pvap,u
p

) 1

κ

(pvap,u − p)
.

(9)
The bulk modulus β is derived using (1)

β(p) =
Vvap + Vf

Vvap

(
1

pκ
+

1

pvap,u − p

)
+ Vf

(
1

βf
− 1

p− pvap,l

) . (10)

2.1.3 Case 3: p ≤ pvap,l

For very low pressures below pvap,l, the fluid is considered to be completely
vaporized. This case is obtained by means of (7) and (3) resulting in the following
simplified equations for the mass density % and the bulk modulus β

%(p) = %vap,u

(
p

pvap,u

) 1

κ

(11a)

β(p) = κp . (11b)

Figure 3 shows the mass density % and the bulk modulus β for low pressures. Note
that the logarithmic scaling of the β-axis has been used to depict the rapid rise
at p = pvap,u. Moreover, the discontinuity of β at p = pvap,l is due to the linear
approximation of Φvap in (4). Using a continuously differentiable approximation
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Figure 3. Mass density % and bulk modulus β at low pressures p.

would eliminate this discontinuity. However, since continuity of β is not necessary
in the following derivations, the linear approximation (4) is feasible.

2.2 Fuel Metering Unit

The fuel metering unit (FMU) is used to control the diesel flow into the radial
piston pump. Figure 4 shows the hydraulic part of the FMU, given by an inlet
orifice, the variable cross section and an outlet orifice connected in series. The
turbulent flow through the orifices can be described by

ṁin = αinAin

√
2%in

√
∆pin (12a)

ṁv = αvAv(xfmu)
√

2%v

√
∆pv (12b)

ṁout = αoutAout

√
2%out

√
∆pout , (12c)

where αk, k ∈ {in, v, out}, are the discharge coefficients, Ak the corresponding
opening areas, %k the mass densities of the diesel and ∆pk the pressure drops over
the orifices.

pgp

pgal

FMU

ṁfmu

variable
orifice

inlet
orifice

outlet
orifice

∆pin

∆pv

∆pout

Figure 4. Hydraulic setup of the FMU.

Balance of mass gives ṁin = ṁv = ṁout = ṁfmu. It is further assumed that
%in = %v = %out = %fmu. This is reasonable due to the small changes in pressure.
Then the mass flow through the FMU reads as

ṁfmu = αfmuAfmu(xfmu)
√

2%fmu

√
∆pfmu , (13a)
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with

Afmu(xfmu) =
Av(xfmu)

α2
inA

2
inα

2
vA

2
v(xfmu) + α2

inA
2
inα

2
outA

2
out + α2

vA
2
v(xfmu)α2

outA
2
out

(13b)

αfmu = αvαinAinαoutAout (13c)

and ∆pfmu = pgp − pgal, with the gear pump pressure pgp and the gallery pressure
pgal. The mass density %fmu is approximated by the density at the mean pressure
according to Section 2.1 in the form

%fmu = %

(
pgp + pgal

2

)
. (14)

The variable area Av is given as a function of the position xfmu of the valve spool.
Since the opening area exhibits a triangular shape, Av increases quadratically with
xfmu, see Fig. 5. The movement of the valve spool is controlled by a solenoid, gen-
erating the (positive) magnetic force fm. The restoring force is due to a preloaded
spring with stiffness cv. The mechanical system of the FMU can be described by

d

dt
xfmu = vfmu (15a)

d

dt
vfmu =

1

mv
(fm − cv (xfmu − xo)− dvvfmu) , (15b)

with the position xfmu, the velocity vfmu, and the mass mv of the spool (includ-
ing the mass of all moving parts of the solenoid), and the damping coefficient
dv. The preload of the spring xo is chosen as the position which corresponds to
the maximum mass flow. The position xfmu is limited within the mechanical stops
xmin ≤ xfmu ≤ xmax. The contact with the end stops is modeled by a perfectly
inelastic collision, dissipating the whole kinetic energy. At the end stops, the equa-
tions of motion read as

d

dt
xfmu = 0

d

dt
vfmu = 0





if (xfmu = xmin) & (fm − cv(xmin − xo) ≤ 0)

or (xfmu = xmax) & (fm − cv(xmax − xo) ≥ 0) ,
(16)

and outside these stops, the motion is governed by (15).
The magnetic force fm is generated by a solenoid, where the force is a function

of both the position xfmu and the current applied to the electromagnet of the
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Figure 6. Magnetic force χm(ifmu, xfmu) as a function of the current set point ifmu and the position xfmu.

FMU. The current is controlled by a subordinate current controller such that the
setpoint of the current ifmu serves as the control input to the system. An analytic
model of the overall dynamics of the solenoid, including the current controller,
is not meaningful due to the resulting complexity. Instead, the dynamics of the
current controlled solenoid is approximated by a first order lag element with the
time constant Tm > 0 in the form

d

dt
fm =

1

Tm
(−fm + χm(ifmu, xfmu)) . (17)

Here, χm is the stationary characteristics of the magnetic force fm as a function
of the position xfmu and the current set point ifmu of the current controller. Fig. 6
depicts the measured characteristics χm.

2.3 Gallery Volume

The mass flow of the FMU (13) is delivered into the small gallery volume Vgal

between FMU and radial piston pump. The diesel mass flow out of Vgal is the sum
of all flows into the Nc cylinders of the radial piston pump. Therefore, the pressure
pgal is given by the balance of mass

d

dt
pgal =

βgal

Vgal

ṁfmu −
Nc∑
i=1

ṁsv,i

%gal
, (18)

with the bulk modulus βgal and the density %gal of diesel in this volume according to
Section 2.1, βgal = β(pgal), %gal = %(pgal). Moreover, ṁsv,i is the mass flow through
the inlet valve of the i-th cylinder.

2.4 Radial Piston Pump

The radial piston pump delivers diesel into the rail by a periodic motion of the
pistons. Starting at the top dead center, the cylinder volume is increased due to
the downward motion of the piston and the diesel in the cylinder is expanded until

8

Post-print version of the article: K. Prinz, W. Kemmetmüller, and A. Kugi, “Mathematical modelling of a diesel common-rail system”,
Mathematical and Computer Modelling of Dynamical Systems, vol. 21, no. 4, pp. 311–335, 2015. doi: 10.1080/13873954.2014.968590
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1080/13873954.2014.968590


June 16, 2015 Mathematical and Computer Modelling of Dynamical Systems main

the inlet (suction) valve, SV in Fig. 1, opens. Then, diesel flows from the gallery
volume into the cylinder until the inlet valve closes again, which is the case when
the cylinder pressure is higher than the gallery pressure. With the upward motion
the diesel is compressed until the outlet (high pressure) valve, HV in Fig. 1, into
the rail opens and diesel flows into the rail.

The radial piston pump is driven by the combustion engine such that its shaft
rotates with the angular velocity ϕ̇cr = ωcr of the crank shaft. During one revolution
of the shaft, the cylinders are movingNe times up and down due to the eccentricities
of the shaft. Moreover, the cylinders are mounted with a relative angle ∆ϕc to each
other, see Fig. 1, and the motion of the cylinders is sinusoidal. Thus, the volume
Vc,i of the i-th cylinder reads as

Vc,i(t) = Vc0 +
Vch

2
(1− cos(Neϕcr(t)−Ne(i− 1)∆ϕc)) i = 1, . . . , Nc (19)

with the number of cylinders Nc. The volumes Vc0 and Vch are the dead volume of a
cylinder and its displaced volume, respectively. In this paper, a radial piston pump
with Nc = 2 cylinders, Ne = 3 cylinder strokes per revolution and ∆ϕc = 60◦ is
used. The resulting volumes Vc,1 and Vc,2 of the cylinders are given in Fig. 7.

0.8

0.6

0.4

1

Ṽ
c,

i
=

V
c,

i

V
B

60 120 180 240 300 3600
ϕcr in °

cylinder 1 cylinder 2

Figure 7. Cylinder volumes Vc,1 and Vc,2 during one revolution of the crank shaft.

Using the balance of mass, the pressure pc,i in the cylinders reads as

d

dt
pc,i =

βc,i

Vc,i(t)

(
ṁsv,i − ṁhv,i − ṁl,i

%c,i
− V̇c,i(t)

)
, i = 1, . . . , Nc , (20)

with the diesel mass flow ṁsv,i through the inlet (suction) valve into the cylinder,
ṁhv,i through the outlet (high pressure) valve into the rail and the leakage mass
flow ṁl,i.

The areas Asv,i of the spring loaded inlet valves depend on the difference pressure
pgal − pc,i. If the pressure difference is lower than psv,c, the valve is closed, i. e.
Asv,i = 0. For pressures higher than psv,o the valve is completely opened, i. e.
Asv,i = Asv,0, with the maximum area Asv,0 of the suction valve. For pressures
between these two levels the area is assumed to increase linearly with the pressure
drop. This results in the mathematical model of the form

Asv,i =





0 if pgal − pc,i ≤ psv,c
pgal − pc,i − psv,c

psv,o − psv,c
Asv,0 if psv,c < pgal − pc,i < psv,o

Asv,0 if pgal − pc,i ≥ psv,o .

(21)
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The mass flow through the inlet valve is then given by

ṁsv,i = αsvAsv,i

√
2%sv,i

√
pgal − pc,i, i = 1, . . . , Nc , (22a)

with the discharge coefficient αsv and the corresponding mass density

%sv,i = %

(
pc,i + pgal

2

)
. (22b)

The high pressure valves are modeled analogously using the pressure pc,i−pr, with
the rail pressure pr

Ahv,i =





0 if pc,i − pr ≤ phv,c
pc,i − pr − phv,c

phv,o − phv,c
Ahv,0 if phv,c < pc,i − pr < phv,o

Ahv,0 if pc,i − pr ≥ phv,o

(23a)

ṁhv,i = αhvAhv,i

√
2%hv,i

√
pc,i − pr (23b)

%hv,i = %

(
pc,i + pr

2

)
, i = 1, . . . , Nc . (23c)

Here, the high pressure valve is completely opened, i. e. Ahv,i = Ahv,0, if the cylinder
pressure pc,i is higher than the rail pressure pr plus the opening pressure of this
valve phv,o. For cylinder pressures lower than pr + phv,c the valve is closed. Again,
a linearly increasing area is assumed if the cylinder pressure is between pr + phv,c

and pr + phv,o.
At the gaps between the cylinders and the pistons small leakage flows occur

which flow into the housing of the pump and can be modeled by a laminar flow
(leakage coefficient kl,i) in the form

ṁl,i = kl,i (pc,i − pgp) . (24)

Note that the housing of the pump is connected to pgp in order to lubricate the
pump.

2.5 Rail

The rail is used as a storage for pressurized diesel. It is connected to the radial
piston pump, which supplies the mass flow

∑Nc

i=1 ṁhv,i, and the injectors, which

inject the mass flow
∑Ni

i=1 ṁinj,i into the combustion chambers of the engine. The
diesel pressure in the (constant) rail volume Vr is formulated as

d

dt
pr =

βr

Vr

Nc∑
i=1

ṁhv,i −
Ni∑
i=1

ṁinj,i − ṁl,r

%r
, (25)

with the bulk modulus βr = β(pr) and the density %r = %(pr) of diesel in the rail
according to Section 2.1. The overall injector leakage mass flow ṁl,r is modeled in
the form of a laminar flow into the tank (pressure p0), i. e.

ṁl,r = kl,r (pr − p0) , (26)
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with the leakage coefficient kl,r.
As already mentioned at the beginning of this section, the injection process is

rather complex and therefore an accurate description of the injector mass flows
ṁinj,i, i = 1, . . . , Ni, with the number of injectors Ni (equal to the number of
cylinders of the combustion engine), is beyond the scope of this paper. A simplified
description is meaningful, since the exact time evolution of the injector mass flow
is irrelevant for the design of a control strategy for the rail pressure. Instead, a
model is proposed, which covers the following essential characteristics:

(i) The periodic injection of diesel yields fluctuations in the rail pressure with
the frequency Ni

2 ωcr = Ni

2 ϕ̇cr. These variations of the rail pressure should be
included approximately in the mathematical model.

(ii) Of course, the average mass flow ¯̇minj of the injectors of one injection cycle
must be accurately described by the model.

Based on these considerations, a saw tooth characteristic of the form

ṁinj =





Ni

2
ϕcr mod 2π

π
2 ¯̇minj if

Ni

2
ϕcr mod 2π ≤ π


1−

Ni

2
ϕcr mod 2π

π


 2 ¯̇minj if

Ni

2
ϕcr mod 2π > π

(27)

is used.

2.6 Simulation results

In this section, simulation results are shown to analyze the behavior of the modeled
system and the stationary mass flow is compared with measurements to validate
the model.

Figure 8 depicts simulation results of the cylinder pressures pc,i and the gallery
pressure pgal, as well as the mass flows ṁsv,i and ṁhv,i for a constant FMU position
x̃fmu = 0.85, a crank revolution speed ncr = 1000 min−1 and a constant rail pressure
pr = 1300 bar. Taking a closer look at cylinder 1 first, the pressure pc,1 decreases
during the downward stroke of the piston until the cylinder pressure pc,1 is lower
than the gallery pressure pgal and the inlet valve opens. Since the FMU is rather
widely opened, the increasing cylinder volume Vc,1 can be completely filled by the

diesel flowing through the inlet valve, i. e. ṁsv,i = %c,iV̇c,i. After some time, however,
the cylinder volume increases faster than it can be filled with diesel such that
the diesel in the cylinder starts to cavitate. Then, the cylinder pressure is almost
constant and thus also the mass flow into the cylinder remains almost constant.
The cylinder pressure begins to rise again when the cylinder is completely filled
with fluid. If this happens before the bottom dead center (BDC) (as it is the case
in Fig. 8), the cylinder is completely filled at the bottom dead center and the mass
flow of the radial piston pump is solely determined by the geometrical displacement
and the angular velocity of the pump. Moreover, in this case the two cylinders do
not influence each other since the inlet valve of cylinder 1 closes before the inlet
valve of cylinder 2 opens.

In contrast to this, the FMU opening is smaller (x̃fmu = 0.67) in the simulation
scenario depicted in Fig. 9. This brings along that the cavitation in the cylinder
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Figure 8. Pressure and mass flow for constant FMU position x̃fmu = 0.85, crank revolution speed ncr =
1000 min−1 and rail pressure pr = 1300 bar.

immediately starts after the inlet valve opens and the cylinder is not completely
filled when passing the bottom dead center. Thus, in this case the mass flow of the
radial piston pump is also influenced by the opening of the FMU. Time intervals do
occur where the inlet valves of both cylinders are opened and thus both cylinders
draw diesel from the gallery.

Measurements of the cylinder pressures and mass flows are not available for a
validation of the model. Thus, the average mass flow of the radial piston pump for
various FMU positions and crank shaft revolution speeds are used to validate the
stationary accuracy of the model. The results in Fig. 10 show a comparison of the
measurement data (cross symbols) with simulation results (solid lines). It can be
seen that for small openings of the FMU, the mass flow is basically determined
by the FMU opening and is almost independent of the angular velocity of the
crank shaft. For higher openings, the mass flow is, however, determined by the
geometrical displacement of the pump. A comparison of the measurement data
with simulation results of the model shows that the maximum errors are well below
10 %, which is a very good result since the model has been parameterized by the
nominal geometrical parameters of the system only.

Finally, in Fig. 11 the dynamics of the modeled system is discussed. Here, the
current ĩfmu is switched from 0 to 1.00 at t = 100 ms and back to ĩfmu = 0 at
t = 200 ms. Due to the pre-load of the spring, this implies that the FMU is entirely
opened for ĩfmu = 0 at the beginning and the end of the simulation and closed
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Figure 9. Pressure and mass flow for constant FMU position x̃fmu = 0.67, crank revolution speed ncr =
1000 min−1 and rail pressure pr = 1300 bar.
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ĩfm
u

=
ifm

u
i̇B0.25

0.50
0.75
1.00

0

f̃ m
=

f
m

ḟ
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Figure 11. Pressure and mass flow for constant crank revolution speed ncr = 1000 min−1 and average
injection mass flow ˜̇minj = 0.42, steps in the current set point ifmu.

in between. The average injected diesel mass flow is set to ˜̇minj = 0.42. Since the
injected mass flow is lower than the mass flow ṁhv delivered by the radial piston
pump from the beginning until t = 100 ms and after t = 200 ms, the rail pressure
is increasing. During 100 ms < t < 200 ms the FMU is closed and no diesel is
delivered to the rail. Thus, the rail pressure decreases in this time interval. When
the current in the solenoid is switched at t = 100 ms the magnetic force fm leads
the valve spool to move and close the FMU, see the time evolution of Afmu. Note
that the rail pressure is still increasing a short time after the FMU is closed. This is
due to the fact that one cylinder is still filled with diesel which is delivered into the
rail. The same effect occurs when the FMU is opening. The cylinders have to be
filled and the diesel compressed, before diesel is delivered to the rail. This results
in some kind of dead time in the system, which is a function of the angular velocity
of the crank shaft, see also [8].

The model developed in this section is not directly useful for a controller design
due to its high complexity. As the periodic cycles of the pump mass flow are not of
interest for the control strategy of the average rail pressure, a reduced model for
the average values of the variables is derived in the next section.

3. Average Model

As the ripples in the rail pressure due to the piston strokes of the pump and the
injection process cannot be affected by the FMU, only the average value of the rail
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pressure during one stroke is relevant for the control strategy.1 Typically, control
strategies for the rail pressure are based on a stationary (measured) characteris-
tic map of the mass flow of the pump as a function of the FMU position xfmu

and the rotational speed of the pump ncr. This approach, however, has two basic
drawbacks:

(i) In the controller design, handling of characteristic maps might be difficult,
since higher derivatives of these maps are frequently required, as e. g. in a
flatness-based controller. The numerical calculation of these derivatives might
become cumbersome.

(ii) It is difficult to analyze the influence of parameter variations or different
installation sizes by means of maps obtained from measurements.

Thus, an average model based on the detailed model of the previous section is
strived for. In order to derive an average model, only a single cylinder of the pump
is considered in the first step. The influence of the second piston is taken into
account in a second step.

3.1 Single cylinder
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Figure 12. Pressure and mass flow of one cylinder for constant FMU position x̃fmu = 0.77, crank revolution
speed ncr = 1000 min−1 and rail pressure pr = 1300 bar.

1Instead of controlling the average pressure it is often desired to control the peak pressure over one cycle
of the cylinder stroke. Since the average and the peak pressure are directly coupled, controlling the peak

pressure is equivalent to controlling the average pressure. Thus, subsequently only this case is considered.
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Figure 13. Pressure and mass flow of one cylinder for constant FMU position x̃fmu = 0.67, crank revolution
speed ncr = 1000 min−1 and rail pressure pr = 1300 bar.

Figures 12 and 13 show the pressure pc and the mass flows ṁsv and ṁhv of one
cylinder for one piston stroke, a constant FMU position (approx. 50 % opening in
Fig. 12 and approx. 30 % in Fig. 13), and a constant rail pressure. The piston stroke
can be divided into the subsequent phases:

(I) The high pressure valve is closed at the top dead center (TDC) and the
pressure pc in the cylinder is equal to the rail pressure at t = t0. During
phase I both valves are closed such that the diesel mass in the cylinder is
constant and the pressure decreases as the volume increases.

(II) The inlet valve is opened at t = t1 when the cylinder pressure is equal to the
gallery pressure pgal. In this phase, the mass flow through the inlet valve is
high enough to completely fill the increasing volume of the cylinder.

(III) If the pressure in the cylinder further drops beyond the vapor pressure pvap,u,
the diesel starts to vaporize. However, below the lower vapor pressure pvap,l,
all diesel is vaporized and the cylinder pressure is basically constant. In order
to simplify the treatment of cavitation, pvap = pvap,l = pvap,u is set in the
average model. This is reasonable, since pvap,u−pvap,l is small and thus errors
connected to this simplification are negligible.

(IV) In this phase, the volume of the cylinder can again be filled completely before
the piston reaches its bottom dead center (BDC). Note that this phase is
not present in Fig. 13, where the FMU is opened only approx. 30 % of its
maximum value. Figure 12 showing the results for a wider opened FMU of
50 % of its maximum value contains such a phase.
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(V) When the pressure pc rises above pgal at t = t4 the inlet valve is closed and
the diesel is compressed until the pressure reaches pc = pr at t = t5.

(VI) In this phase, the outlet valve is open and diesel is delivered into the rail.

It can be seen that the mass of diesel delivered into the rail during one cycle
of the piston stroke is given by the difference of the maximum diesel mass in the
cylinder before the inlet valve closes and the mass at t = t1, i. e. the time when the
inlet valve opens, ∆m = %Vc

(
max(t3, t4)

)
−%Vc(t1). This directly gives the average

mass flow in the form

¯̇msv =
1

Tc

∫ Tc

0
ṁsv(t)dt = Nencr

(
%Vc

(
max(t3, t4)

)
− %Vc(t1)

)

= Nencr%
Vch

2

(
cos(Neωcrt1)− cos

(
Neωcr max(t3, t4)

))
.

(28)

Here, Tc = 2π
Neωcr

is the time period of a complete stroke of the cylinder. In the
subsequent section, the different phases will be described in detail and the corre-
sponding times ti, i = 0, . . . , 5 are derived.

3.1.1 Phase I: t0 < t < t1 Expansion

At the top dead center t = t0 the high pressure valve is closed and the pressure
in the cylinder is pc(t0) = pr + phv,c. With the assumptions t0 = 0, ϕcr(t0) = 0,
ṁl,i = 0 and using βc,i due to (2), (20) with (19) can be solved analytically in the
interval t0 ≤ t ≤ t1 to

pc(t) =

(
Vc0

Vc0 + Vch

2

(
1− cos(Neωcrt)

)
)b1 (

pr + phv,c − p0 +
β0

b1

)
− β0

b1
+ p0 .

(29)

The inlet valve is opened when the pressure is lower than pgal − psv,c. Since the
gallery pressure pgal also varies with time, it is difficult to calculate pgal − psv,c

at time t1. Instead, the expansion process is calculated until the pressure in the
cylinder is equal to pvap, i. e. pc = pvap, which results in a small but negligible error
for t1. Then, t1, i. e. the time when the inlet valve opens, is approx. given by

t1 =
1

Neωcr
arccos

((
1−

(
β0 + b1 (pr + phv,c − p0)

β0 + b1(pvap − p0)

) 1

b1

)
2Vc0

Vch
+ 1

)
. (30)

3.1.2 Phase II: t1 < t < t2 Cylinder completely filled

During this phase the inlet valve is open and the diesel mass flow through the
inlet valve is determined by the change in cylinder volume, i. e.

ṁsv(t) = %svV̇c(t) = %svNeωcr
Vch

2
sin(Neωcrt) . (31)

To derive an analytical expression for the time t2, when the cavitation in the
cylinder starts (pc = pvap), a number of additional simplifications are made.

(i) The gallery volume Vgal is very small and is therefore neglected. Then, balance
of mass directly results in ṁfmu = ṁsv, see (18).
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(ii) The diesel pressure outside the cylinder (i. e. in the FMU and the gallery) is
well above vapor pressure pvap, such that setting %fmu = %sv = %̄ = const. is
reasonable.

(iii) It is assumed that the inlet valve is completely opened in the phases II-IV,
i. e. Asv = Asv,0. This is equivalent to setting psv,c = psv,o.

With these assumptions together with (13) and (22), we get

αfmuAfmu

√
2%̄
√
pgp − pgal = αsvAsv,0

√
2%̄
√
pgal − pc , (32)

which directly results in an expression for the gallery pressure pgal in the form

pgal =
pgpα

2
fmuA

2
fmu + pcα

2
svA

2
sv,0

α2
fmuA

2
fmu + α2

svA
2
sv,0

. (33)

Substituting (33) into (22) and using this result in (31) yields

%̄Neωcr
Vch

2
sin(Neωcrt) = αsvAsv,0

√
2%̄
√
pgal − pc (34)

and with (33) and (34) the cylinder pressure pc(t) is given by

pc(t) = pgp − %̄(Neωcr)
2V

2
ch

4
sin2(Neωcrt)

α2
fmuA

2
fmu + α2

svA
2
sv,0

2α2
fmuA

2
fmuα

2
svA

2
sv,0

. (35)

The time t = t2, when cavitation in the cylinder starts, i. e. pc = pvap, can be found
in the form

t2 =
1

Neωcr
arcsin

(√
2

%̄

2

Vch

1

Neωcr
αsvAsv,0αfmuAfmu

√
pgp − pvap

α2
fmuA

2
fmu + α2

svA
2
sv,0

)
.

(36)
Please note that for almost closed FMU it can happen that t2 < t1, which means
that phase II is not present and cavitation in the cylinder directly begins after
phase I.

3.1.3 Phase III: t2 < t < t3 Cavitation

In the cavitation phase, the pressure pc is equal to pvap and thus constant. This
also means that the mass flow ṁsv is constant. The corresponding constant gallery
pressure pgal is given by (33) for constant cylinder pressure pc = pvap. The mass
flow into the cylinder ṁsv = ṁvap is then given by (22b) as

ṁvap = αsvAsv,0

√
2%̄αfmuAfmu

√
pgp − pvap

α2
fmuA

2
fmu + α2

svA
2
sv,0

. (37)

The cavitation phase III ends when the cylinder volume is completely filled. The
corresponding end point t = t3 is given by the (numeric) solution of

(
t3 −max(t1, t2)

)
ṁvap = %̄

(
Vc(t3)− Vc

(
max(t1, t2)

))

= %̄
Vch

2

(
cos
(
Neωcr max(t1, t2)

)
− cos(Neωcrt3)

)
.

(38)
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If the end of cavitation t3 lies after the bottom dead center t4, the compression
phase V directly starts after phase III.

3.1.4 Phase IV: t3 < t < t4 Cylinder completely filled

If cavitation already ends before the piston has passed the bottom dead center
t = t4, again the volume flow into the cylinder is equal to the change in volume.
In this case, the inlet valve is closed at the bottom dead center t4 and diesel
compression begins.

3.1.5 Phase V: max(t3, t4) < t < t5 Compression

Equivalent to Phase I the diesel mass in the cylinder is constant. The differen-
tial equation (20) with (2) can be solved analytically, using the initial condition
pc(max(t3, t4)) = pvap. The opening time t5 of the outlet valve is reached when
pc = pr + phv,c resulting in

t5 =
1

Neωcr
arccos

(
2Vc

(
max(t3, t4)

)

Vch

(
β0 + (pvap − p0)b1

β0 + (pr + phv,c − p0)b1

) 1

b1

+
2Vc0

Vch
+ 1

)
.

(39)

3.1.6 Phase VI: t5 < t < t6 Outlet Valve Open

In this phase, the diesel mass taken in during phases II-IV and compressed in
phase V is flowing through the outlet valve into the rail volume. The average mass
flow is given by (28), using the delivered mass to the cylinder in phases II-IV.

3.2 Two cylinders

To extend the average model of the previous section by the second cylinder of the
pump, two cases have to be distinguished:

(i) If the inlet valve of the first cylinder closes before the inlet valve of the second
cylinder opens, i. e. t3 < t1 + Tc

2 (Tc = 2π
Neωcr

), then the two cylinders of the

pump operate independently, cf. Fig. 14. Thus, the overall mass flow ¯̇msv of
the pump with two cylinders simply doubles such that

¯̇msv = 2 ¯̇msv,1, (40)

with ¯̇msv,1 being the mass flow of one cylinder given by (28).
(ii) If the FMU is almost closed, the inlet valve of the first cylinder closes after

the inlet valve of the second cylinder opens, see Fig. 9. In this case, the
mass flows of the two cylinders interfere with each other, which alters the
overall mass flow of the pump. Taking a look at Fig. 9 it becomes clear that
phase I remains unchanged and, as a matter of fact, phase IV does not occur.
The time t2 when cavitation in cylinder 1 starts is changed since the second
cylinder already draws mass flow from the FMU. In order to calculate the
modified time t′2, the mass balance in the gallery

ṁfmu = ṁsv,1 + ṁsv,2 (41)

is considered. The pressure in the second cylinder is given by the vapor pres-
sure pc,2 = pvap and at t′2 also the pressure in the first cylinder reaches
pc,1 = pvap. Then, ṁsv,1(t′2) = ṁsv,2(t′2) holds, and with (22), (13) and
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Figure 14. Pressure and mass flow for constant FMU position x̃fmu = 0.75, crank revolution speed ncr =
1000 min−1 and rail pressure pr = 1300 bar.

ρfmu = ρsv,i = ρ̄ the following equation is fulfilled

αfmuAfmu

√
2ρ̄
√
pgp − p′gal = 2αsvAsv,0

√
2ρ̄
√
p′gal − pvap . (42)

The gallery pressure p′gal at t′2 can be obtained as a solution of (42) in the
form

p′gal =
pgpα

2
fmuA

2
fmu + 4pvapα

2
svA

2
sv,0

α2
fmuA

2
fmu + 4α2

svA
2
sv,0

. (43)

Using this result and the fact that ρ̄V̇c,1(t′2) = ṁsv,1(t′2), finally yields the
time t′2

t′2 =
1

Neωcr
arcsin

(√
2

%̄

2

Vch

1

Neωcr
αsvAsv,0αfmuAfmu

√
pgp − pvap

α2
fmuA

2
fmu + 4α2

svA
2
sv,0

)
.

(44)
For the calculation of the modified time t′3 when the inlet valve of the first

cylinder closes, the time span t′2 to t′3 is divided into three parts:
(a) From max(t1, t

′
2) to (t′3− Tc

Nc
) both inlet valves are open and both cylinders
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are in cavitation.1 The mass flows into the two cylinders are equal in this
case and are denoted by ṁvap,2. Using (22) with pgal = p′gal from (43),
the mass flow ṁvap,2 results in

ṁvap,2 = αsvAsv,0

√
2%̄αfmuAfmu

√
pgp − pvap

α2
fmuA

2
fmu + 4α2

svA
2
sv,0

. (45)

(b) At t = t′3− Tc

Nc
the inlet valve of the second cylinder closes. The mass flow

ṁvap into cylinder 1 is given by (37).

(c) At t = max(t1, t
′
2)+ Tc

Nc
the second inlet valve opens again. The mass flow

is again given by ṁvap,2, see (45).
Integrating the mass flows into the cylinder over the complete time span

max(t1, t
′
2) to t′3 gives the subsequent equation for t′3,

(
t′3 −max(t1, t

′
2)
)
ṁvap,2 +

(
2Tc

Nc
−
(
t′3 −max(t1, t

′
2)
))

(ṁvap − ṁvap,2)

= %̄
Vch

2

(
cos
(
Neωcr max

(
t1, t

′
2

) )
− cos(Neωcrt

′
3)
)

,

(46)

which has to be solved numerically. The average mass flow ¯̇msv is then given
by

¯̇msv = 2 ¯̇msv,1 , (47)

using ¯̇msv,1 from (28) but replacing t2 by t′2 and t3 by t′3.
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ẽ
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e
ṁ

B
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700 1000 1300
1600 1900 2200

Figure 15. Error between the detailed and average model.

Fig. 15 shows the error between the detailed model derived in Section 2 and the
average model of this section for the stationary mass flow into the rail. Here, the
rail pressure is constant pr = 1300 bar, while six different crank shaft rotational
speeds between ncr = 700 min−1 and ncr = 2200 min−1 are investigated. As already
mentioned, a system with a 3-lobe profile camshaft and two pistons, i. e. Nc = 2,
Ne = 3 is considered. It can be seen that the difference between the detailed and
the average model is less than 0.01. Thus, it can be concluded that the average
model constitutes an accurate approximation of the detailed model and thus serves
as a suitable basis for the controller design.

1Note that the closing time t′3− Tc
Nc

of the inlet valve of the second cylinder can be directly obtained from

the closing time t′3 of the inlet valve of the first cylinder by using the fact that the time behavior of the

second cylinder is equal to the time behavior of the first shifted by Tc
Nc

.
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3.3 Dynamics of mass flow

The average model developed so far only describes the stationary behavior of the
pump, assuming that a change in the position xfmu of the FMU directly leads to a
change in the mass flow ¯̇msv. In reality, however, there is a time delay between the
intake of the diesel into the cylinder and the delivery into the rail. In order to study
the dynamics of the pump, simulation results of the complete model are given in
Fig. 16. Here it is assumed that the FMU position xfmu can be directly assigned
and the responses due to a step input of the FMU position are discussed. Figure
16 shows the results for the mass flow ṁhv of the complete model for 5 different
steps, which are delayed relative to the top dead center of the first piston. Figure
16 reveals that if the step occurs at the top dead center of a piston, the mass flow
into the rail is delayed by Tp = 2π

NcNeωcr
in the worst case. The exact value of the

dead time depends on the opening of the FMU. If the step occurs between the dead
centers then the dead time is reduced.
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Figure 16. Simulation results of the detailed model for steps in the FMU position xfmu at different times
relative to the top dead center of piston 1.

An exact modeling of the dynamics is difficult within the framework of the aver-
age model, since the information of the exact piston shaft angular position would
be necessary. This information is, however, not available in the real application
(and thus for a controller design). So a simple approximation of the dynamics is
made. In this work, the dynamic behavior is approximated by a dead time in the
form

¯̇mhv(t) = ¯̇msv(t− Tp) , (48)

with the dead time Tp > 0, Tp = 2π
NcNeωcr

. Figure 17 depicts the resulting dynamics
of the average model for the same step inputs as already used in Fig. 16. It has to
be noted that the approximated dynamics represents the worst case in the sense
that the real dynamics is not slower than the approximated one.

Dynamic measurements of the system for the validation of the model are very
difficult to obtain in the considered application. First, most of the system variables
are very difficult to be measured in the real application due to small available space.
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Ã

fm
u

=
A

fm
u

A
B

0.2

0.4

0.6

0

˜̄̇ m
hv

,i
=

¯̇ m
hv

,i

ṁ
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Figure 17. Approximated dynamics of the average model of the radial piston pump.

Thus, e. g. it is not possible to measure the position of the FMU and the cylinder
and gallery pressures. Moreover, accurate and high dynamic measurement of mass
flows is very difficult and even more complicated because of the high pressures
arising in the system. Thus, only the stationary accuracy of the model could be
validated by measurements.

3.4 Overall average model

The complete average model is given by (17), (15), (48), (25) in the following form

d

dt
fm =

−fm + χm (ifmu, xfmu)

Tm
(49a)

d

dt
xfmu = vfmu (49b)

d

dt
vfmu =

1

mv
(fm − cv (xfmu − xo)− dvvfmu) (49c)

d

dt
pr =

βr

Vr

¯̇msv(t− Tp)− ¯̇minj(t)− ṁl,r(t)

%r
, (49d)

with the average mass flow ¯̇msv according to Section 3.2.

4. Conclusions

In this paper, a detailed mathematical model of a common-rail diesel system was
derived. A special focus was laid on the accurate modeling of the radial piston
pump in combination with the fuel metering unit, where it was shown that cavi-
tation occurs in the cylinders of the pump. This effect is typically not taken into
account analytically in mathematical models of the system but has a significant
influence on the system’s behavior. Based on this detailed model, an average model
of considerably reduced complexity was derived. The stationary accuracy of both
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models was proven by means of measurement results of a real common-rail system.
One major advantage of the proposed model is that it can be easily parameter-

ized by means of the geometric parameters of the system, not requiring extensive
measurements. Thus, it is also possible to simulate different designs of the sys-
tem (e. g. different size and number of pistons) and to estimate their performance
without relying on extensive measurements. The average model also features these
benefits and is, due to the reduced complexity, very well suited for a (nonlinear)
controller design.

Current research is dealing with new model based control strategies based on
the average model, where already first promising results have been obtained. These
control strategies are currently further investigated by our project partner Robert
Bosch GmbH.
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