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∗∗ Automation and Control Institute, Vienna University of Technology,
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Abstract: Axially moving strips are frequently encountered in industry for various applications.
On the one hand, accurate models of transverse displacements of strips are desired for plant
design and safety or reliability reasons. On the other hand, the models may serve as a basis
for model-based controller and observer design. For the latter also, the complexity of the
models should be as low as possible. This work focuses on the development of dynamical
models of the motion and elastic deformation of axially moving steel strips guided by rolls. For
spatial discretization of both in-plane and out-of-plane motion, the Galerkin weighted residual
method is employed and the longitudinal direction of the strip is divided into finite elements. A
tailored time integration method is implemented and dynamic simulations for different boundary
conditions of a strip in a hot dip galvanizing line are carried out and analyzed. The influence
of the geometrical nonlinearity on the transversal displacements of the strip is investigated by
means of a faulty air cooler. Finally, the affect of the geometrical nonlinearity on the dynamic
and static behavior of the steel strip is investigated in more detail.

Keywords: Mechanical system, Wave equations, Dynamical models, Distributed-parameter
system, Mathematical model, Control applications, Steel industry, Numerical simulation.

1. INTRODUCTION

Axially moving flat structures (strips) are typically en-
countered in many engineering applications. For instance,
strip processing in the steel industry, paper production,
and foil manufacturing. In such production facilities, strip
vibrations can influence the stability of the production
process. Moreover, strip vibrations can deteriorate the
quality of the processed products. Sophisticated dynam-
ical models are capable of describing the strip vibrations
accurately. Another important issue is residual stresses in
strips. Residual stresses may occur after thermal treatment
or plastic deformation of strips in previous sections of the
plant. This results in a curved strip, i.e., crossbow or a
coil-set. Hira et al. (1988) addressed this problem for var-
ious hot dip galvanizing lines. The residual stresses must
be considered in order to achieve accurate models. The
dynamical models of axially moving strips are the basis of
controller and actuator design, e.g., vibration damping in
steel strips or modification of the transversal strip profiles.
In order to keep the computing time low, low-dimensional
and linear models are desired. In this paper, a dynamical
model of axially moving steel strips is derived to inves-
tigate the necessity of geometrically nonlinear models for
different boundary conditions. Shin et al. (2006) presented
a model for dynamic responses of an axially moving mem-

⋆ Financial support by the Austrian Federal Ministry of Science,
Research and Economy and the National Foundation for Research,
Technology and Development, and voestalpine Stahl GmbH is grate-
fully acknowledged.

brane without consideration of the bending stiffness and
residual stresses. Also, the coupling between in-plane and
out-of-plane motion was neglected. This decoupling yields
a linear problem, which was solved with the Generalized-α
Method. It was presented by Chung and Hulbert (1993)
for solving linear problems in the field of structural dy-
namics. Shearer and Cesnik (2006) proposed an implicit
time integration scheme that extends the Generalized-
α Method to nonlinear systems. The so called Modified
Generalized-α Method will be applied for the nonlinear
problems presented in this paper. The spatially discretized
model of an axially moving steel strip will serve as basis
for the discussion whether the geometrical nonlinearity of
the model can be neglected or not.

2. MODELING

2.1 Equations of Motion

A strip element with the displacements ŭ, v̆, and w̆ along
the directions x, y, and z, respectively, is considered. The
strip has a uniform thickness h and a mass density ρ.
The axial bulk velocity V of the strip is assumed to
be constant, g represents the gravitational acceleration,
and q = q(x, y, t) is a transversal load. Utilizing the
assumptions of the Kirchhoff-Love plate theory, w(x, y, t),
u(x, y, t), and v(x, y, t) represent the displacements of a
point on the mid-plane of the strip and the displacement
w̆ is independent of z (cf. Reddy, 2007). In the following,
the equations of motion for a strip with the boundary
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conditions in Fig. 1 will be derived. Hamilton’s principle
for open systems states that

q
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Fig. 1. Plate model in a section between four rolls (bound-
ary condition A).

0 =

∫ t1

t0

(δU + δG− δK + δW + δM) dt (1)

holds, where U is the strain energy, G is the potential
energy due to gravity, K is the kinetic energy, W is
the work done by applied forces, M is the momentum
transport through the boundaries, and t0 and t1 are
arbitrary points in time. The variation of the strain energy
can be written in the form

δU =

∫

Ω

(
Nxxδǫ

0
xx +Mxxδǫ

1
xx +Nyyδǫ

0
yy +Myyδǫ

1
yy

+Nxyδγ
0
xy +Mxyδγ

1
xy

)
dxdy, (2)

where
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ǫ1yy
γ1
xy
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−∂2
xw

−∂2
yw

−2∂xyw


 ,
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ǫ0yy
γ0
xy


 =




∂xu+ 1
2 (∂xw)

2

∂yv +
1
2 (∂yw)

2

∂yu+ ∂xv + ∂xw∂yw




(3)

are curvatures and membrane strains, respectively. The
stress resultants Nxx, Nyy, and Nxy are forces per unit
width and Mxx, Myy, and Mxy are moments per unit
width. The variation of the potential energy due to gravity
reads as

δG = ρgh

∫

Ω

δudxdy, (4)

the variation of the kinetic energy can be expressed as

δK = ρ

∫

Ω

∫ h
2

−h
2

vT δvdzdxdy, (5)

with the total velocity vector

v = [V + ∂tu+ V ∂xu, ∂tv + V ∂xv, ∂tw + V ∂xw]
T
,

which results from the material derivative. The virtual
work done by a distributed transversal load q (x, y, t) as

well as the virtual work caused by the tensile load N̂xx,L

take the form

δW = −
∫

Ω

qδwdxdy −
∫ b

0

N̂xx,Lδu|x=Ldy. (6)

With the variation of the displacement vector

δr = [δu, δv, δw]
T
,

the variation of the momentum transport (cf. McIver,
1973) follows as

δM = ρV

∫ b

0

∫ h
2

−h
2

(
vT δr

)
|x=L
x=0 dzdy. (7)

Insertion of (2), (4), (5), (6), and (7) into (1) yields the
dynamic equations of the strip. Supposing quasi-static
relations for the in-plane displacements u and v, the
equations of motion read as

Du = ρh
(
V 2∂2

xu+ g
)
− ∂xNxx − ∂yNxy = 0 (8a)

Dv = ρhV 2∂2
xv − ∂yNyy − ∂xNxy = 0 (8b)

Dw = ρh
(
V 2∂2

xw + 2V ∂x∂tw + ∂2
tw

)

− ∂2
xMxx − 2∂2

xyMxy − ∂2
yMyy − q

− ∂x (Nxx∂xw +Nxy∂yw)

− ∂y (Nxy∂xw +Nyy∂yw) = 0,

(8c)

where suitable boundary conditions can be found in Sec-
tion 2.3. The initial conditions are given by

w (x, y, 0) = w0 and ∂tw (x, y, 0) = w1. (9)

2.2 Material Model

The terms Nxx, Nyy, and Nxy couple the differential equa-
tions (8). For the simpler case of an axially moving rod,
this coupling effect was analyzed in (Steinboeck et al.,
2015). Based on the findings published there, it can be
argued that the assumptions ∂tu ≈ 0 and ∂tv ≈ 0 are ten-
able. Using Hooke’s law and considering residual stresses
from prior deformation, the stress resultants follow in the
form[

Mxx

Myy

Mxy

]
=

Eh3

12 (1− ν2)



1 ν 0
ν 1 0
0 0 1−ν

2





ǫ1xx − ǫ1xx,res
ǫ1yy − ǫ1yy,res
γ1
xy − γ1

xy,res




[
Nxx

Nyy

Nxy

]
=

Eh

1− ν2



1 ν 0
ν 1 0
0 0 1−ν

2





ǫ0xx − ǫ0xx,res
ǫ0yy − ǫ0yy,res
γ0
xy − γ0

xy,res


 ,

where E is the Young’s modulus and ν is the Poisson’s ra-
tio. Six constant residual strain parameters ǫ1xx,res, ǫ

1
yy,res,

γ1
xy,res, ǫ

0
xx,res, ǫ

0
yy,res, and γ0

xy,res account for prior de-
formations of the strip. In case of a geometrically linear
analysis, the higher order terms in (3) are omitted and
(8a) and (8b) are independent of (8c).

2.3 Boundary Conditions

A strip with the following boundary conditions is con-
sidered: At the bottom boundary (x = 0), the dis-
placements u|x=0 = û0 = 0 and w|x=0 = ŵ0 and
the slope ∂xw|x=0 = ŵx,0 are constant. At the upper
boundary (x = L), the strip is simply supported
(Mxx|x=L = 0, w|x=L = 0). In longitudinal direction, two
different types of boundary conditions are employed at the
upper edge: Boundary condition A is a constant tensile
load Nxx|x=L = N̂xx,L, which is shown in Fig. 1. The
geometrical boundary condition B is a constant displace-
ment ûL. It relates to the steady-state displacement at
the upper roll (x = L), which is caused by a tensile load

N̂xx,L without any transversal load q acting on the strip.
The quantity ûL is the averaged displacement value over
the width. The remaining lateral boundaries of the strip
constitute free edges.
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3. DISCRETIZATION AND TIME INTEGRATION

3.1 Spatial Discretization

In order to solve (8) with the associated boundary condi-
tions, the Galerkin weighted residual method is applied.
The weak form of the equations of motion follows as∫

Ω

ūDu + v̄Dv + w̄Dwdxdy +

∮

Γ

ūn̄yNxy − ∂yw̄n̄yMyy

+ v̄ (n̄xNxy + n̄yNyy) + w̄n̄y (∂yMyy + 2∂xMxy

+Nxy∂xw +Nyy∂yw) ds+

∫ b

0

[
ū
(
Nxx − N̂xx,L

)]
x=L

+ [∂xw̄ (−Mxx)]x=L dy = 0,

where n̄x and n̄y are the directional cosines of the unit
normal vector (e.g. n̄x = 0 and n̄y = −1 at the edge
y = 0), and ū, v̄, and w̄ are weighting functions. After
partial integration, the weak form can be expressed as∫

Ω

ūρh
(
V 2∂2

xu+ g
)
+ v̄ρhV 2∂2

xv + w̄ρh
(
V 2∂2

xw

+2V ∂x∂tw + ∂2
tw

)
+ ∂xūNxx + ∂yūNxy + ∂y v̄Nyy

+ ∂xv̄Nxy − ∂2
xw̄Mxx − 2∂2

xyw̄Mxy − ∂2
yw̄Myy

+ ∂xw̄ (Nxx∂xw +Nxy∂yw) + ∂yw̄ (Nxy∂xw +Nyy∂yw)

− w̄qdxdy =

∫ b

0

ū|x=LN̂xx,Ldy. (10)

For spatial discretization, the strip is divided into n rect-
angular finite elements along the direction x as indicated
in Fig. 1. They have the element number e ∈ {1, 2, .., n}
and arbitrary length ae = xe,max − xe,min. The strip
displacements are approximated by the trial functions

u =

n∑

e=1

nx∑

i=0

nyu∑

j=0

Xe,i (x)Yj (y)T
u
e,ij (t) (11a)

v =

n∑

e=1

nx∑

i=0

nyv∑

j=0

Xe,i (x)Yj (y)T
v
e,ij (t) (11b)

w =

n∑

e=1

nx∑

i=0

nyw∑

j=0

Xe,i (x)Yj (y)T
w
e,ij (t) , (11c)

with four basis functions (nx = 3) in longitudinal direction
and freely selectable numbers of basis functions in lateral
direction (according to nyu, nyv, and nyw). The time
functions T u

e,ij (t), T
v
e,ij (t), and Tw

e,ij (t) are the Galerkin
coefficients. Xe,i (x) and Yj (y) are defined as

Xe,i (x) =

{
X̄e,i (x− xe,min) if xe,min ≤ x ≤ xe,max

0 else

Yj (y) =

Zj∑

s=0

(−1)
s
(2j − 2s)!

(
2y
b − 1

)j−2s

2js! (j − s)! (j − 2s)!
,

with

X̄e,0 (x̄) = 2x̄3/a3e − 3x̄2/a2e + 1

X̄e,1 (x̄) = −x̄3/a2e + 2x̄2/ae − x̄

X̄e,2 (x̄) = −2x̄3/a3e + 3x̄2/a2e
X̄e,3 (x̄) = −x̄3/a2e + x̄2/ae,

where

Zj =
j

2
− 1

4

(
1− (−1)

j
)
.

The trial functions X̄e,i (x̄) are Hermite polynomials and
Yj (y) are Legendre polynomials. Products of the type
Xe,i (x)Yj (y) are used as weighting functions ū, v̄, and
w̄. Using Hermite polynomials as trial functions has par-
ticularly advantages, if a geometrical boundary condition
is independent of the y-coordinate. This is the case for
boundary condition B, where the deflection ûL is equal
to the coefficient of the product Xn,2Y0. The number of
DOF of the resulting problem can be reduced by nyu + 1.
In a similar manner, the boundary conditions ŵx,0 and
ŵ0 can be realized. The matrix-vector representation of
the dynamical system obtained after substitution of the
weighting and trial functions into (10) can be written as(

V 2Huv +Kuv
)
Tuv = Fuv (t)− h (T) (12a)

MwT̈+ 2VGwṪ+
[
V 2Hw +Kw (Tuv,T)

]
T = Fw (t) .

(12b)

Here, the vectors T and Tuv are arranged in the form

T =
[
(T1,2)

T
, . . . , (Te−1,e)

T
, (Te,e+1)

T

︸ ︷︷ ︸
(Te)

T

, . . . , (Tn,n+1)
T
]T

Tuv =
[
(Tu)T , (Tv)T

]T
,

whereTu andTv have a similar but not identical structure
compared to T. The sub-vectors

Tu
e =

[
T u
e,00, T

u
e,01 , . . . , T u

e,0nyu
, T u

e,10 , . . . , T u
e,nxnyu

]T

Tv
e =

[
T v
e,00, T

v
e,01 , . . . , T v

e,0nyv
, T v

e,10 , . . . , T v
e,nxnyv

]T

Te =
[
Tw
e,00, T

w
e,01 , . . . , Tw

e,0nyw
, Tw

e,10 , . . . , Tw
e,nxnyw

]T

correspond to the element e. In (12), time derivatives are
denoted with dots as superscripts. The in-plane stiffness
matrix is denoted as Kuv. The matrix Kw (Tuv,T) ac-
counts for the stiffness in transverse direction and depends
on the in-plane displacements (membrane stress), on the
out-of-plane displacements (bending stress), and on resid-
ual stresses in the strip. The matrices Huv and Hw depend
on the centrifugal forces, 2VGw constitutes the Coriolis
force and Mw is the mass matrix for the out-of-plane
motion. Effects due to the gravity force, a constant dis-
placement ûL or in-plane loads like the tensile load N̂xx,L,
and the in-plane residual strain parameters ǫ0xx,res, ǫ

0
yy,res

and γ0
xy,res are included in the vector Fuv (t). Transversal

loads q, residual stresses in the strip, and contributions
due to non-zero values of the boundary conditions (x = 0)
are taken into account in Fw (t). As a consequence of the
geometrically nonlinear theory, the vector h (T) describes
the nexus between in-plane and transversal displacements.

3.2 Time Integration

Solving (12a) for Tuv and insertion into (12b) yields the
residuum

r =MwT̈+ 2VGwṪ

+
[
V 2Hw + K̄w (T, t)

]
T− Fw (t) = 0 (13)

with the abbreviation

K̄w (T, t) = Kw
((

V 2Huv +Kuv
)−1

[Fuv (t)− h (T)] ,T
)
.

The corresponding initial conditions T0 and Ṫ0 can be
determined from (9). T can now be computed by solving
the nonlinear ODE (13). For this purpose the Modified
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Generalized-α Method (cf. Shearer and Cesnik, 2006) is
applied, which is a tailored solver for structural dynamic
problems. The idea is to predict the values and respective
time derivatives of the next time step (predictor step).
A subsequent correction based on the Newton-Raphson
method in combination with a line search minimizes the
residuum r as long as a desired tolerance is achieved (cor-
rector step). Fig. 2 outlines the time integration scheme,
which is similar to the one proposed by Géradin and Rixen
(1997). The first step is to initialize the procedure, e.g.,
the computation of the constant mass matrix Mw and
the definition of the initial conditions T0 and Ṫ0. In the
second block, the initial acceleration T̈0 is computed. Now
all three states at the time stepm = 0 are specified and the
main procedure can be executed with the time increment
(step size) ∆t = tm+1 − tm.

1. Prediction: To predict the values at the time step
m+1, Géradin and Rixen (1997) proposes the relations

T∗
m+1 = Tm +∆tṪm +

(
1

2
− β

)
∆t2T̈m (14a)

Ṫ∗
m+1 = Ṫm + (1− γ)∆tT̈m (14b)

T̈∗
m+1 = 0, (14c)

where the superscript star refers to a prediction. The
values Tm, Ṫm, and T̈m at the present time step m are
known. Shearer and Cesnik (2006) related the parameters
β and γ with the adjustment of the dissipation of high
frequency modes. The parameter ρ∞ can vary from 1 (no
dissipation) to 0 (asymptotic annihilation)

γ =
1

2
− αm + αf

β =
1

4
(1− αm + αf )

2

αm =
2ρ∞ − 1

ρ∞ + 1

αf =
ρ∞

ρ∞ + 1
.

2. Correction: Expansion of the residuum into a Taylor
series and neglecting higher order terms yields

rk+1
m+1 = rkm+1 + S

(
Tk

m+1

)
∆Tk

m+1, (15)

with the Jacobian matrix

S
(
Tk

m+1

)
=

[
∂rm+1

∂T

]

Tk
m+1

,

where k denotes the iteration index. Utilizing the relations

∂T̈

∂T
=

1

β∆t2
I and

∂Ṫ

∂T
=

γ

β∆t
I

suggested by Géradin and Rixen (1997), with the identity
matrix I, the Jacobian matrix can be written as

S (T) = Mw 1

β∆t2
+ 2VGw γ

β∆t

+

[
V 2Hw +

∂

∂T

(
K̄w (T, t)T

)]
.

The displacement correction is obtained from (15) by

setting rk+1
m+1 = 0

∆Tk
m+1 = −

[
S
(
Tk

m+1

)]−1
rkm+1

and the values and their time derivatives are corrected in
the form

Tk+1
m+1 = Tk

m+1 +∆Tk
m+1 (16a)

Ṫk+1
m+1 = Ṫk

m+1 +
γ

β∆t
∆Tk

m+1 (16b)

T̈k+1
m+1 = T̈k

m+1 +
1

β∆t2
∆Tk

m+1. (16c)

The iteration is repeated as long as a desired residuum
||rk+1

m+1|| < rmin is achieved. For systems with a large

number of DOF, the situation ||rk+1
m+1|| > ||rkm+1|| may

occur. Shearer and Cesnik (2006) recommended to extend
the Newton-Raphson method with a line search algorithm
to overcome this difficulty. The method is not further
discussed in this paper. To ensure a benign numerical

Initialize
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Time increment

Prediction (14)

Calculate residuum

Convergence?

Compute correction (16)

Calculate residuals

||rk+1
m+1|| < ||rkm+1||

Line search algorithm
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Fig. 2. Implicit time integration method.

behavior, the dimensionless parameters

ũ =
u

L
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y

L
, b̃ =

b

L
, h̃ =

h

L

t̃ =
t

L

√
N̂xx,L/h

ρ
, Ṽ = V

√
ρ

N̂xx,L/h
, Ẽ =

E

N̂xx,L/h

q̃ =
q

N̂xx,L/h
, Ñxx =

Nxx

N̂xx,L

, Ñyy =
Nyy

N̂xx,L

, Ñxy =
Nxy

N̂xx,L

are used throughout all numerical simulations (cf. Shin
et al., 2006).

4. HOT DIP GALVANIZING PLANT

As an example, axially moving steel strips can be found in
hot dip galvanizing lines, see Fig. 3. The strip length of the
plant is L = 56.5m, which was discretized into 89 elements
of different lengths. Elements near to the stabilization
and tower rolls are chosen smaller than the inner ones.
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Fig. 3. A typical hot dip galvanizing line with an air cooler.

The mass density is assumed to be ρ = 7850kg/m3. The
dimensions of the coolers and their pressure loads q = qc
on the strip can be found in (Saxinger et al., 2015). The
number of trial functions in lateral direction are chosen as
nyu = nyv = 7 and nyw = 4. All subsequent studies are
summarized in the Section 5.

4.1 Frequency Analysis

First, the influence of the initial strip displacement and
boundary conditions for N̂xx,L (boundary condition A)
and ûL (boundary condition B) on the oscillation fre-
quency f of the strip is studied in simulations. In order to
conduct this analysis, the strip defined in Table 1 without
any residual stresses is assumed. Fig. 4 shows the results
of this analysis for various initial shapes w̄0 = max |w0|,
and w1 = 0. They are determined by means of an eigen-
value analysis after linearization of the system at w = 0.
The simulations for the nonlinear systems have been per-
formed with the time integration procedure described in
Section 3.2, where ρ∞ = 0.99 was used. For a prescribed
tensile load N̂xx,L (boundary conditon A), the frequen-
cies of the strip vibrations are virtually identical with
the frequencies determined by means of the eigenvalue
analysis. This behavior is independent of w̄0 and the shape
of the strip. Different characteristics can be observed for
a prescribed displacement ûL (boundary condition B): the
frequencies of the strip vibrations increase for larger values
of w̄0, and they strongly depend on the shape of the strip.

Table 1. Strip data without residual stresses.

b
m

h
mm

ŵ0
mm

ŵx,0

m/m

N̂xx,L

kN/m
E

N/m2
V

m/s

1.48 0.95 0 0 31.1 1.58 · 1011 0

4.2 Stationary Shape of the Strip if a Cooler Fails

In the next simulation, the displacement ŵ0 and the slope
ŵx,0 are prescribed at the stabilization roll. The residual
strain parameters and the boundary conditions at the
stabilization roll are computed according to Baumgart
et al. (2015). In this paper, an elasto-plastic beam model
for the strip shape in the zinc pot and the associated resid-
ual stresses are presented. The dimensions and boundary

0 0.5 1 1.5 2 2.5
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40

60

80

100

f / Hz

w̄
0
/
m
m

Eigenvalue analysis, geom. linear model
Prescribed displacement ûL

Constant tensile load N̂xx,L

Fig. 4. Frequency of strip vibrations for different initial
displacements w̄0 and boundary conditions.

conditions of three different strips are listed in Table 2.
Table 3 contains the non-zero quantities of the residual
strain parameters of these strips determined on the basis of
the elasto-plastic beam model. The quantities γ0

xy,res and

γ1
xy,res are set to zero for all strips and the strip velocity

is V = 105m/min.

Table 2. Dimensions and boundary conditions.

Strip b
m

h
mm

ŵ0
mm

ŵx,0

m/m

N̂xx,L

kN/m

A 1.34 0.5 0.074 −0.034 24.2
B 1.66 1.5 0.063 −0.032 27.7
C 1.48 0.95 0.22 −0.06 31.1

Table 3. Residual strain parameters.

Strip E

N/m2

ǫ0xx,res

10−3

ǫ0yy,res

10−3

ǫ1xx,res

1/m

ǫ1yy,res
1/m

A 1.6 · 1011 0.5402 −0.0629 −0.3856 0.2415
B 1.56 · 1011 0.0611 −0.0081 −0.1752 −0.0118
C 1.58 · 1011 0.3592 −0.0274 −0.4110 0.2629

In the following, the impact of a faulty cooler on the
steady-state strip shape is investigated. In this scenario,
which is indicated in Fig. 3, one half of cooler 3 does not
supply cooling air (zero pressure load). All other coolers
operate at the same pressure level p, which is varied in
the simulations below. The maximum transverse displace-
ment wmax of the geometrically nonlinear model as well
as the maximum transverse error emax = max |wN − wL|
between the geometrically linear (subscript L) and non-
linear (subscript N) models for a prescribed tensile load

N̂xx,L can be seen in Fig. 5. Corresponding results for
a prescribed displacement ûL are shown in Fig. 6. As a
consequence of the residual stresses in the strip, a small
error can be observed even for p = 0. A higher pres-
sure level p causes a higher transverse displacement w.
The increased pressure p leads to a rise in the error for
both simulations. However, the error is approximately 10
times higher, if the boundary condition is a prescribed
displacement ûL (boundary condition B). Fig. 7 shows
the steady-state shape of the strip A for p = 25mbar
and N̂xx,L = 24.2kN/m computed by the geometrically
nonlinear model.

5. CONCLUSIONS

The main findings of this work are as follows:
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Fig. 5. Maximum displacement of geometrically nonlinear
model and deviation of linear model for a prescribed
tensile load N̂xx,L.
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Fig. 7. Steady-state shape of strip A for p = 25mbar and
N̂xx,L = 24.2 kN/m (geometrically nonlinear model).

• Depending on the boundary condition at the tower
roll, e.g., a prescribed tensile load N̂xx,L or a pre-
scribed displacement ûL, different deviations between

geometrically nonlinear and linear models can be ob-
served.

• The geometrically linear model with a tensile load
N̂xx,L boundary condition is sufficiently accurate for
most applications.

• When larger displacements are expected for a strip
with a prescribed displacement ûL boundary con-
dition, the geometrically nonlinear model should be
used.

• There is only an insignificant difference in the os-
cillation frequencies between the geometrically linear
and nonlinear model for the a prescribed tensile load
N̂xx,L.

• Larger initial transverse strip displacements w0 lead
to higher vibrational frequencies for a prescribed dis-
placement ûL. The frequencies are strongly influenced
by the shape of the strip.
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