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Abstract

In hot-dip galvanizing lines for steel strips, it is important to ensure a homogeneous zinc layer thickness. For this,
vibrations of the strip at the gas wiping dies, where excess liquid zinc is blown off, must be suppressed. These vibrations
typically exhibit a dominant sinusoidal shape and the excitation process, the frequency, the amplitude, and the phase
are generally unknown.

In modern plants, electromagnetic actuators are employed to enable a contactless vibration and shape control of
the steel strip. Vibration control of flexible structures is well established in literature. However, in the considered
application the disturbance (source of periodic excitation), the control input (force of electromagnetic actuators), the
sensor output (strip displacement) and the desired system output (strip displacement at the gas wiping dies) are all
located at different positions along the strip, which makes the overall control task quite challenging. In this paper, a
control concept consisting of a linear quadratic regulator combined with a disturbance feedforward concept based on the
theory of invariant manifolds and an Extended Kalman Filter is developed. The proposed control strategy is successfully
tested on an experimental test rig for different scenarios.

Keywords: Distributed-parameter system, disturbance rejection, internal model principle, periodic signals, active
vibration control, steel industry

1. Introduction

1.1. Problem description and motivation for this work

Figure 1 outlines a sketch of an industrial hot-dip galva-
nizing line for steel strips. In such plants, steel strips are
coated in a bath of molten zinc. Excess liquid zinc is blown
off by so-called gas wiping dies. To get a homogeneous zinc
layer thickness, the supply pressure of the gas wiping dies
must be constant and the distance between the gas wiping
dies and the strip (air gap) must be both constant and uni-
form in lateral direction. Clearly, vibrations of the strip
lead to fluctuations in the air gap and thus a deterioration
of the product quality due to an inhomogeneous zinc layer.
Vibrations of the strip can originate from different sources,
e.g., air jets at the gas wiping dies and air jets in the cool-
ing section of the hot-dip galvanizing line [1, 2, 3]. In view
of the multiple actuators and rolls along the plant, main-
taining a constant tensile force in the strip is known to be
a challenging task. Fluctuations of the tensile force in the

∗Corresponding author
Email addresses: saxinger@acin.tuwien.ac.at (Martin

Saxinger), marko@acin.tuwien.ac.at (Lukas Marko),
steinboeck@acin.tuwien.ac.at (Andreas Steinboeck),
kugi@acin.tuwien.ac.at (Andreas Kugi)

strip can also lead to transversal strip vibrations. Eccen-
tric rolls in the zinc bath or eccentric touch rolls above
the gas wiping dies are a frequently encountered source of
vibrations [4, 5]. A typical amplitude spectrum of a trans-
verse displacement measurement at a hot-dip galvanizing
line of voestalpine Stahl GmbH in Linz, Austria, see also
[6], is shown in Fig. 2. Here, the frequency of the mea-
sured transverse strip displacement clearly coincides with
the rotating frequency of a zinc bath roll, i.e., the correc-
tion roll. It can be assumed that these disturbances have
approximately a sinusoidal shape, see Fig. 2. Typically, ei-
ther the correction roll or the stabilization roll, which both
have nearly the same diameter, cause these disturbances.
In our case, the sink roll, which has a large diameter, was
never observed as origin of the disturbances. In general,
the mechanism behind the periodic disturbances and the
exact excitation process are not known. Therefore, it is
reasonable to assume that the disturbance acts somewhere
on the strip, is periodic, and has an unknown frequency,
amplitude, and phase. For vibration damping and shape
control, newer plants are equipped with electromagnetic
actuators, which are located some distance above the gas
wiping dies, see, e.g., [7, 8]. Moreover, displacement sen-
sors are often located nearby the electromagnetic actua-
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tors. However, they are typically not perfectly collocated,
mainly due to space restrictions. Thus, we are confronted
with the situation that the disturbance input ( I©, source
of periodic excitation of the strip), the control input ( III©,
force of the electromagnetic actuators), the sensor output
( IV©, transverse strip displacement sensor), and the sys-
tem output ( II©, transverse strip displacement in the gas
wiping dies) are all located at different positions along the
strip. For such a configuration, it is well known that vi-
bration damping in the system output is quite challenging.
For the development of the overall control strategy, an ex-
perimental test rig according to Fig. 3 was designed to be
able to easily study different control concepts and the in-
fluence of different actuator and sensor positions. Clearly,
the test rig of Fig. 3 is a simplified representation of the
conditions in the real plant according to Fig. 1. The test
rig captures the main effects necessary for the design of a
robust and feasible vibration damping strategy. The posi-
tions I© to IV© in Fig. 3 correspond to those in Fig. 1. In
the experimental test rig, cf. Fig. 3, I© is the position of
a disturbance actuator, the transversal strip displacement
at the position II© is the system output, the electromag-
netic actuator at the position III© is used as the control
input, and IV© is the position of the (single) sensor out-
put used for the observer. The moderate longitudinal bulk
velocities of the strips (main strip transport) in industrial
hot-dip galvanizing lines only have a minor influence on
the transverse strip dynamics. Hence, neglecting the strip
transport in longitudinal direction in the experimental test
rig is justified. However, similar to the hot-dip galvanizing
line, the tensile load Nxx in the strip of the experimental
test rig can be accurately adjusted. The remaining laser
distance sensors in the experimental test rig are only used
for visualization of the strip shape during the experiments.

1.2. State of the art in vibration control of flexible struc-
tures

In the first place, PID controllers are often used for ac-
tive damping control in hot-dip galvanizing lines equipped
with electromagnetic actuators, see, e.g., [9]. More com-
plex control algorithms, e.g., positive position feedback as
described in [10] or passive damping and boundary con-
trol as reported in [11], are also proposed for vibration
damping in hot-dip galvanizing lines. More recently, elec-
tromagnetic actuators are also applied to rectify flatness
defects in strips to improve the quality of the lateral zinc
profiles. In [8], electromagnetic actuators were used for
both vibration control and the regulation of a uniform lat-
eral zinc profile.

Active vibration control of flexible structures like
strings, beams, plates, and shells has been an active field
of research in the last decades, see, e.g., [12, 13]. Most of
these control strategies require collocation of the sensor-
actuator pair. In [14], a magnetic suspension system is
described, which is used for non-contact processing and
vibration control of tubular beams. More recently, a vi-
bration control method for a clamped-clamped aluminum

beam using a multi positive feedback control was demon-
strated in [15]. In some applications, however, colloca-
tion of the sensor-actuator pair is not feasible, e.g. due
to space restrictions. Especially for systems with very
low structural damping, e.g., thin metal strips, it is hard
to achieve a stable control loop in case of non-collocated
sensor-actuator configurations, see, e.g., [16]. However, ac-
tive vibration control with non-collocated sensor-actuator
configuration has been demonstrated in different publica-
tions, see, e.g., [17, 18, 19]. H2, H∞, and µ-synthesis
methods are used for the synthesis of optimal and robust
controllers with guaranteed performance [20]. In [21], a re-
view of H∞ and µ-synthesis methods for both collocated
and non-collocated sensor-actuator pairs for the active vi-
bration control in flexible structures like beams and plates
can be found. Moreover, LQR and LQG methods are
also well established for active vibration control in flex-
ible structures like beams, see, e.g., [13].

Periodic disturbances are a frequently observed phe-
nomenon in machines with rotating parts. The most obvi-
ous solution would be to eliminate the disturbance itself. If
this cannot be realized, the difficulty of rejecting periodic
disturbances depends on the structure of the considered
system. The rejection of a sinusoidal disturbance at a po-
sition which coincides with the position of a sensor and an
actuator is a relatively simple problem. Here, disturbance
rejection control is even possible without a mathematical
model of the system. There are many publications address-
ing the so-called filtered-X LMS algorithm for minimizing
the least mean square of a measured error signal, see, e.g.,
[22, 23]. An overview of narrow-band disturbance rejection
control with known frequency is given, e.g., in [24, 25]. An
overview of disturbance rejection methods for both known
and unknown frequencies of the periodic disturbance can
be found, e.g., in [26]. Most of these methods can only
reject the disturbance at a position, which is measured
by a displacement sensor. In [27], disturbance rejection is
demonstrated for a known frequency. Here, a sinusoidal
disturbance in an optical disc drive due to disc eccentric-
ity is considered. The disturbance is rejected by an addi-
tional controller which is added to the existing feedback
controller. This method was extended in [28] to deal with
a sinusoidal disturbance with non-zero mean. The fre-
quency is estimated by an additional adaption algorithm.
Another extension for frequency estimation was published
in [29]. In [30], an algorithm for adaptive disturbance re-
jection in a MIMO system is presented. Furthermore, a
compensator with an adaptive internal model for the re-
jection of sinusoidal disturbances based on measurements
of the tracking error is given in [31]. In [32], a nonlinear
disturbance observer is proposed, where the disturbance
is excited by a linear exogenous system. The disturbance
observer design is separated from the controller design and
it is assumed that the states of the nonlinear system are
known. The control method is applied to a robotics ap-
plication. In [33], a method for the solution of an output
regulation problem for a linear distributed-parameter sys-
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tem is considered, where a so-called dual observer is used
and the system outputs to be controlled are not measured.
In a simulation study, the method is tested for the rejec-
tion of a sinusoidal disturbance with a constant and known
frequency at a certain position of an Euler-Bernoulli beam,
where an ideal and pointlike actuator force is considered
as system input.

This work deals with the rejection of an unmeasured
transverse vibration of a steel strip under tensile load at
a certain position (gas wiping dies). The vibration of the
strip is excited by an unknown sinusoidal disturbance
(with unknown frequency) at one end of the strip.
Custom-made magnetic actuators are used to exert a
desired force without measuring the gap between the strip
and the core. A direct measurement of the force acting
on the strip is not necessary. Hence, the quasi-static force
characteristics of the magnet is used. The states of both
the strip and the disturbance are observed by an Extended
Kalman Filter [34], which uses just one displacement
sensor as a measurement output and a magnetic actuator
(at a different position) as a control input. A combination
of an optimal state controller and an additional controller
for disturbance rejection, which is based on the principle
of invariant manifolds, is applied [35, 36, 37]. In general,
one actuator allows the rejection of the disturbance
at one certain point of the strip. Nominal parameters
of the strip, e.g., mechanical parameters, tensile load,
and the boundary conditions are known with sufficient
accuracy. This is also true for the force characteristics
of the magnetic actuator. The feasibility and robustness
of the developed control method are tested by means
of an experimental rig. This rig and the current work
serve as the basis for the implementation of the method
in an industrial hot-dip galvanizing line. An adaption
of the finite element model to the dimensions of the
hot-dip galvanizing line is possible without significant
effort [38, 39].

Remark: High temperatures and dust consisting of
zinc and other alloy particles in the vicinity of the
zinc pot constitute harsh conditions for sensors and
actuators. In order to prevent inaccuracies or failures of
these devices, they are usually placed in a housing with
special heat shields, active air cooling, and mechanical
protection. Besides the protection of the sensors and
actuators against overheating, increased temperatures
do also influence the magnetic properties of both the
magnetic cores and the strip. This affects the magnetic
force applied to the strip, see also [7]. Fortunately, the
longitudinal temperature profile of the strip in the hot-dip
galvanizing line is well known and can be taken into
account. Actually, there are two methods for considering
the temperature influence on the magnetic force. First, a
finite element model can be used for up-front calculations
of the quasi-static magnetic forces. These forces are
calculated as a function of different air gaps, coil currents,
and strip thicknesses and are stored in a look-up table.

Here, the mathematical model has to take into account
the dependence of the B-H curve (magnetic properties) of
the strip on the temperature. Note that the temperature
influence on the magnetic properties in different materials
is well investigated [40]. As a second possibility, the
quasi-static magnetic forces can be directly measured for
different air gaps, coil currents, strip thicknesses, and
strip temperatures using a special test rig. Based on these
measurements, the look-up tables can be generated. Such
a test rig must be equipped with a force sensor, a strip
heating device, and a controller for the specimen (steel
strip) temperature.
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Figure 1: Typical hot-dip galvanizing line for steel strips.
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Figure 2: Typical single-sided amplitude spectrum of a measured
strip displacement.

2. Mathematical model

In this section, the mathematical model of the steel strip
in the test rig according to Fig. 3 is derived. The strip has
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the length L, the width b, the thickness h, and the mass
density ρ. Both ends of the strip are cantilever-mounted.
As the width b of the strip is small compared to its length
L, the strip can be regarded as a beam. A slowly time-
varying sinusoidal disturbance in the form of a displace-
ment wd(t) is prescribed by the disturbance actuator at
the boundary x = 0. At the boundary x = L, a constant
tensile load Nxx is ensured by an actively controlled slide.
The transversal displacement of the strip (measured at its
center line) is denoted by w = w(x, t). Gravity acts along
the direction y and hence does not influence the transverse
strip displacement. Air resistance at the strip surface is as-
sumed to cause viscous damping with the coefficient c. A
viscoelastic material behavior of the strip is considered. A
transversal load due to the electromagnetic actuator acts
on the strip and is denoted by q = q(x, t). Based on the as-
sumption of a uniform distribution of the electromagnetic
force, q can be written in the form

q(x, t) =

{
Fm(t)
∆xm

for xm,l ≤ x ≤ xm,u
0 else,

(1)

where the resultant magnetic force Fm serves as control in-
put. The positions xm,l = xm−∆xm

2 and xm,u = xm+ ∆xm
2

are indicated in Fig. 3. An additional unknown transver-
sal load p = p(x, t), which will be useful in the observer
design, is considered.

2.1. Equations of motion

In [41], mathematical models of plates and beams are
developed applying the Kirchhoff-Love hypothesis. With
the assumptions made in this section, the equations of mo-
tion can be written as

ρbh∂2
tw − ∂2

xMxx −Nxx∂2
xw − (q + p) + c∂tw = 0, (2)

with the transversal displacement w. This equation is de-
fined in the range x ∈ (0, L). The first expression in (2)
is the inertia term, the expressions involving the bending
moment Mxx and the tensile load Nxx describe the stiff-
ness against the displacement w. The contribution of the
transversal loads and the viscous damping force is consid-
ered in the last three terms. In order to obtain (2), a free
lateral contraction is assumed along the boundaries of the
strip. The stress-strain relation according to Hooke’s law
extended by a Kelvin-Voigt material damping yields the
bending moment in the form

Mxx = −D
(
∂2
xw + λ∂t∂

2
xw
)

(3)

with D = EI. Here, E is Young’s modulus, and I = bh3

12 is
the moment of inertia. In (3), λE denotes the Kelvin-Voigt
damping factor. The parameters λ and E are assumed to
be uniform along the strip. Based on the previous assump-

tions, the boundary conditions are given by

w(0, t) = wd(t) (4a)

∂xw(0, t) = 0 (4b)

w(L, t) = 0 (4c)

∂xw(L, t) = 0. (4d)

The initial conditions take the form

w(x, 0) = w0(x) (5a)

∂tw(x, 0) = w1(x) (5b)

for x ∈ [0, L]. They must be consistent with the boundary
conditions (4).

2.2. Spatial discretization

In the following, a finite-dimensional approximation
is performed by applying Galerkin’s weighted residual
method to the mathematical model (2)-(5). The strip
length is discretized into n finite elements, where the
length of a local element e ∈ {1, . . . , n} is denoted by ae.
To accurately compute the shape and motion of the strip
in the vicinity of the boundaries x = 0 and x = L, the
elements are chosen smaller in this region compared to the
rest of the domain. Local trial functions are assembled in
the vector

Ψe(x̃e) =
[
Ψw
e−1,e(x̃e),Ψ

∂w
e−1,e(x̃e),Ψ

w
e,e+1(x̃e),Ψ

∂w
e,e+1(x̃e)

]T

with Hermite polynomials of the form

Ψw
e−1,e(x̃e) = 2x̃3

e/a
3
e − 3x̃2

e/a
2
e + 1 (6a)

Ψ∂w
e−1,e(x̃e) = −x̃3

e/a
2
e + 2x̃2

e/ae − x̃e (6b)

Ψw
e,e+1(x̃e) = −2x̃3

e/a
3
e + 3x̃2

e/a
2
e (6c)

Ψ∂w
e,e+1(x̃e) = −x̃3

e/a
2
e + x̃2

e/ae (6d)

for x̃e ∈ [0, ae]. The time-dependent vector of the Galerkin
coefficients of an element e can be written as

T̃e =
[
Twe−1,e, T ∂we−1,e, Twe,e+1, T ∂we,e+1

]T
(7)

and the approximated transversal displacement is given by

w = (Ψe(x̃e))
T
T̃e(t)

for the local element e. The entries in (7) have the follow-
ing meaning: Twe−1,e and Twe,e+1 describe the displacement
of the strip at the local positions x̃e = 0 and x̃e = ae, re-
spectively. T ∂we−1,e and T ∂we,e+1 define the slopes of the strip
at the positions x̃e = 0 and x̃e = ae. The distributed load
p is introduced in the form

p = (Υe(x̃e))
T
p̃e(t),

where
Υe(x̃e) =

[
Ψw
e−1,e(x̃e),Ψ

w
e,e+1(x̃e)

]T
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Figure 3: Experimental test rig of the clamped steel strip.

and
p̃e =

[
pwe−1,e, p

w
e,e+1

]T
(8)

are used. In (8), pwe−1,e and pwe,e+1 represent the transversal
loads at the boundaries x̃e = 0 and x̃e = ae of the finite
element e, respectively. Similar to [38, 39], the equations
of motion for an element e = 2, . . . , n − 1 can be written
in matrix form as

M̃e
¨̃Te + D̃e

˙̃Te + K̃eT̃e = F̃qe + H̃p
ep̃e, (9)

with the mass matrix M̃e, the stiffness matrix
K̃e = K̃M

e + K̃N
e , the damping matrix D̃e, the abbrevi-

ations

M̃e = ρbh

∫ ae

0

ΨeΨ
T
e dx̃e (10a)

K̃M
e = D

∫ ae

0

∂2
xΨe

(
∂2
xΨe

)T
dx̃e (10b)

K̃N
e = Nxx

∫ ae

0

(∂xΨe)(∂xΨe)
T

dx̃e (10c)

F̃qe =

∫ ae

0

Ψeqdx̃e (10d)

H̃p
e =

∫ ae

0

ΨeΥ
T
e dx̃e, (10e)

and ˙(·) for time derivatives. In (10), K̃M
e is a matrix de-

scribing the bending stiffness, and the matrix K̃N
e repre-

sents the stiffness due to the tensile load Nxx. Transver-
sal loads q caused by the electromagnetic actuator are
taken into account in the vector F̃qe. The matrix H̃p

e is
employed for considering the distributed load p. In (9),
D̃e = µM̃e + λK̃M

e constitutes a Rayleigh damping for-
mulation for outer viscous and internal material damping,
see, e.g., [42]. Here, µM̃e with the abbreviation µ = c

ρbh is

the damping matrix due to viscous air friction, and λK̃M
e

is the damping matrix caused by material damping.

2.3. Finite-dimensional model

For the elements e = 1 and e = n, the boundary condi-
tions (4) have to be implemented based on (7) and (6).
This yields Tw0,1 = wd(t), T ∂w0,1 = 0, Twn,n+1 = 0, and

T ∂wn,n+1 = 0. Thus, assembling the equations of motion

(9) for all elements e = 1, . . . , n, we get n̄ = 2(n− 1) in-
dependent Galerkin coefficients

T =
[
Tw1,2, T ∂w1,2 , . . . , Twn−1,n, T ∂wn−1,n

]T

and the equations of motion read as

M̂T̈ + D̂Ṫ + K̂T = B̂Fm + Ĥpp

− ĜKwd − ĜDẇd − ĜM ẅd. (11)

Here, M̂, D̂, and K̂ refer to the assembled mass, damp-
ing, and stiffness matrices, respectively, and the vectors
ĜK , ĜD, and ĜM correspond to the expressions with
Tw0,1 in (9). Moreover, B̂Fm refers to the assembled

vector F̃qe from (10d) with q replaced by (1). Ĥpp, with
p = [pw1,2, . . . , p

w
n−1,n]T, follows from (10e) for all elements

e = 2, . . . , n− 1 with the assumption pw0,1 = pwn,n+1 = 0.

Remark: The latter assumption implies that the ad-
ditional transversal load p(x, t) decays within the
boundary elements and is zero at x = 0 and x = L.
This is not really a restriction of the mathematical model
because the transversal displacements at x = 0 and
x = L are prescribed and thus not influenced by the
quantities pw0,1 and pwn,n+1. Moreover, the lengths of
the boundary elements are small compared to the other
elements meaning that the approximation error is just
local. However, the assumption is particularly beneficial
for the implementation of the mathematical strip model.

Henceforth, the expressions

ws =
(
Ĉs
)T

T, wr =
(
Ĉr
)T

T, wm =
(
Ĉm

)T

T,

denote the transversal strip displacement at the positions
x = xs of the displacement sensor, x = xr of the system
output, and x = xm of the electromagnetic actuator, re-
spectively. Let x̃χe , χ ∈ {s, r,m} be a position within the

corresponding finite element ξχ. Then Ĉχ takes the form

Ĉχ =
[
0, . . . , 0,Ψw

ξχ−1,ξχ(x̃χe ),Ψ∂w
ξχ−1,ξχ(x̃χe ),

Ψw
ξχ,ξχ+1(x̃χe ),Ψ∂w

ξχ,ξχ+1(x̃χe ), 0, . . . , 0
]T

. (12)
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For the following investigations, we consider a sinusoidal
disturbance wd(t) with unknown but constant frequency
ω. Thus, the exogenous disturbance model can be written
in the form

ẇd = Ad(ω)wd, wd
0 = wd(0) (13a)

wd =
[
wd ẇd

]T
(13b)

Ad(ω) =

[
0 1
−ω2 0

]
. (13c)

Remark: The assumption of a constant frequency ω
does not constitute a considerable restriction for the
considered application. In industrial hot-dip galvanizing
lines, strips are welded together to ensure a continuous
operation of the processing line. For quality reasons, the
longitudinal bulk velocity of the strips has to be kept
constant and is only allowed to be slowly changed if a
welded joint traverses the plant. Because roll eccentricities
are one of the main sources for the periodic disturbances,
also the disturbance frequency is constant for most of the
times and changes only slowly in transition periods. A
slow change of the frequency ω can be well captured by
the control method presented in this paper, as will also
be demonstrated by the experimental results in Section 5.

Introducing the state vector xT =
[
TT ṪT

]
and

substituting ẅd(t) from (13) into (11) finally yields the
state-space representation of the strip model

ẋ = Ax + Bu+ G(ω)wd + Hp, x0 = x(0) (14a)

y = (Cr)
T
x, (14b)

with the control input u = Fm, the system output y = wr,

A =

[
0n̄×n̄ In̄×n̄

−M̂−1K̂ −M̂−1D̂

]
, B =

[
0n̄×1

M̂−1B̂

]
(15a)

H =

[
0n̄×n−1

M̂−1Ĥp

]
(15b)

G(ω) =

[
0n̄×1 0n̄×1

−M̂−1
(
ĜK − ω2ĜM

)
−M̂−1ĜD

]
(15c)

Cr =

[(
Ĉr
)T

01×n̄
]T

, (15d)

and the identity matrix I. The complete plant model con-
sists of (13) and (14). The discrete-time representation of
the (linear) system (13), (14) for the sampling time Ts can

be calculated in the form

xk+1 = Φxk + Γuk + ∆(ωk)wd
k + Σpk, x0 = x(0) (16a)

wd
k+1 = Φd(ωk)wd

k, wd
0 = wd(0) (16b)

ωk+1 = ωk, ω0 = ω(0) (16c)

yk = (Cr)
T
xk (16d)

Φ = exp(ATs), Φd(ωk) = exp
(
Ad(ωk)Ts

)
(16e)

Γ =

∫ Ts

0

exp(Aτ)dτB (16f)

∆(ωk) =

∫ Ts

0

exp(Aτ)G(ωk) exp
(
Ad(ωk)(Ts − τ)

)
dτ

(16g)

Σ =

∫ Ts

0

exp(Aτ)dτH. (16h)

Here the index k refers to the time instant t = kTs.

3. Vibration control strategy

In a first step, a control strategy will be designed under
the assumption that the whole state information of the sys-
tem (16a), of the exogenous disturbance (16b), and of the
frequency (16c) is available. The control design is based
on a combination of a linear quadratic regulator (LQR) for
the suppression of broad-band disturbances and a distur-
bance feedforward concept, which exploits the theory of
invariant manifolds and is tailored to the rejection of sinu-
soidal disturbances (narrow-band disturbance), see, e.g.,
[35, 36, 37, 43]. Because the transversal displacement can
be measured at only one position, see sensor output at the
point xs in Fig. 3, an observer concept will be employed
in a second step.

3.1. Controller design

In (16), pk is set to zero for the controller design.
Because, the disturbance frequency ω is constant or
only slowly varying and the frequency is estimated by a
state observer, it is reasonable to consider ωk = ω(kTs)
to be known and constant for each sampling interval
kTs ≤ t < (k + 1)Ts. Therefore, the exogenous distur-
bance model (13) is neutral stable, which means that all
eigenvalues of Ad(ωk) are on the imaginary axis, see, e.g.,
[26, 44].

Now, we propose the control law

uk = (Kx)
T
xk︸ ︷︷ ︸

uxk

+(Kw)
T
wd
k, (17)

where the feedback gains Kx ∈ R2n̄ and Kw ∈ R2 have to
be properly designed. The feedback gain Kx results from
the solution of the LQR problem for the cost function

J(x0) =

∞∑

k=0

(
xT
kQxk + uxkRu

x
k

)
, (18)
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with the positive semi-definite weighting matrix Q and
the weighting factor R > 0, subject to the constraint
xk+1 = Φxk + Γuxk, where the influence of the exogenous
disturbance on the system is neglected (wd

k = 0). In
(18), Q is chosen to weight the squared strip displace-
ments w(xi, t) and velocities ẇ(xi, t) at equidistant posi-
tions xi, i = 1, . . . , m̄, along the strip length in the form

Q =

[
fpC̃

TC̃ 0

0 fvC̃
TC̃

]
,

with the positive weights fp, fv and

C̃ = [Ĉ1, . . . , Ĉi, . . . , Ĉm]T. The entries Ĉi are given
analogously to (12). The optimal feedback gain Kx can
be computed in the form, see, e.g., [45]

(Kx)
T

= −
(
R+ ΓTPΓ

)−1(
ΓTPΦ

)
, (19)

where P solves the discrete algebraic Riccati equation

P = Q + ΦTPΦ−
(
ΓTPΦ

)T(
R+ ΓTPΓ

)−1(
ΓTPΦ

)
.

If the pair (Φ,Γ) is stabilizable and the pair
(√

Q,Φ
)

is
detectable, then the system

xk+1 =
(
Φ + Γ(Kx)

T
)
xk, x0 = x(0) (20)

is asymptotically stable. Inserting (17) into (16), we ob-
tain the closed-loop system

xk+1 =
(
Φ + Γ(Kx)

T
)
xk +

(
Γ(Kw)

T
+ ∆(ωk)

)
wd
k

(21a)

yk = (Cr)
T
xk. (21b)

Applying the transformation [43]

zk = xk −Πwd
k

with the yet unknown matrix Π to (21) leads to the trans-
formed closed-loop system

zk+1 =
(
Φ + Γ(Kx)

T
)
zk +

(
∆(ωk) + Γ(Kw)

T

−ΠΦd(ωk) +
(
Φ + Γ(Kx)

T
)
Π
)
wd
k (22a)

yk =(Cr)
T
zk + (Cr)

T
Πwd

k (22b)

with the new state zk. If

∆(ωk) + Γ(Kw)
T −ΠΦd(ωk) +

(
Φ + Γ(Kx)

T
)
Π = 0

(23a)

(Cr)
T
Π = 0 (23b)

can be solved for the unknowns Π and Kw, (22) simplifies
to the autonomous system

zk+1 =
(
Φ + Γ(Kx)

T
)
zk (24a)

yk = (Cr)
T
zk. (24b)

In this case, the hyperplane (manifold) zk = 0 is invari-
ant, and since (24a) is asymptotically stable by the same
line of reasoning as in (20), the output yk asymptotically
converges to zero. This shows that the closed-loop system
of (16a) and (17) with pk = 0 is asymptotically stable in
the new state zk and that the sinusoidal disturbance wd is
asymptotically rejected in the system output y. Equation
(23a) can be rewritten as a Sylvester equation [43]

ÃΠ + ΠB̃ = C̃, (25)

with

Ã =
(
Φ + Γ(Kx)

T
)

(26a)

B̃ = −Φd(ωk) (26b)

C̃(Kw) = −∆(ωk)− Γ(Kw)
T

. (26c)

A unique solution of (25) exists if the eigenvalues of Ã
and −B̃ are different, see, e.g., [46]. In [36], necessary
and sufficient conditions concerning the solvability of the
so-called regulator equations (23b) and (25) are shown.
Finally, the feedback gain Kw is computed as a function of
ωk. In the case of a slowly varying disturbance frequency
ω, a fast real-time implementation of the controller (17)
can be achieved by numerically calculating the feedback
gain Kw for the relevant frequency range ω ∈ [ωl, ωu] in
advance. For this purpose, an adequate discretization step
∆ω has to be chosen and a linear interpolation between the
stored feedback gains can be performed.

3.2. Observer design

Because the states of the strip x, the disturbance wd,
and the frequency ω cannot be measured, a state observer
is designed in the form of an Extended Kalman Filter
(EKF) [47] based on the measured transversal displace-
ment at the sensor position x = xs. For the observer de-
sign, pk in (16a) is considered as a process noise acting on

the strip dynamics. Moreover, pw
d

k , pẇ
d

k , and pωk are added
as process noise to (16b) and (16c), respectively, and vk
represents the measurement noise in the output equation
(16d). This finally yields the system

x̄k+1 = Φ̄(ωk)x̄k + Γ̄uk + Σ̄p̄k (27a)

ȳk =
(
C̄s
)T

x̄k + vk (27b)
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with the state vector x̄k = [xT
k ,
(
wd
k

)T
, ωk]T and

Φ̄(ωk) =




Φ ∆(ωk) 0
0 Φd(ωk) 0
0 0 1


 (28a)

Γ̄ =
[
ΓT 0T 0

]T
(28b)

Σ̄ =




Σ 0 0
0 I2×2 0
0 0 1


 (28c)

p̄k =
[
pT
k

(
pdk
)T

pωk

]T
,
(
pdk
)T

=
[
pw

d

k pẇ
d

k

]
(28d)

C̄s =
[
(Cs)

T
0T 0

]T
, (Cs)

T
=

[(
Ĉs
)T

01×n̄
]
.

(28e)

The system (27) is used as a basis for the EKF design. As
usual for the EKF design, the process noise p̄k and the
measurement noise vk are assumed to meet the following
conditions

E(vk) = 0 E(vkvj) = R̄δkj (29a)

E(p̄k) = 0 E
(
p̄kp̄

T
j

)
= Q̄kδkj (29b)

E(p̄kvj) = 0, (29c)

with the Kronecker delta δkj , the covariance matrix
Q̄k ≥ 0 and the variance R̄ > 0. Following [34], the EKF
discrete-time (a priori) prediction equations of the state
and error covariance read as

ˆ̄x−k+1 = Φ̄
(
ω̂+
k

)
ˆ̄x+
k + Γ̄uk (30a)

P−k+1 = ∆Φ̄
(
ω̂+
k , ŵ

d,+
k

)
P+
k ∆Φ̄T

(
ω̂+
k , ŵ

d,+
k

)
+ Σ̄Q̄kΣ̄

T,

(30b)

with the state error covariance matrix Pk. Generally, es-
timated values are marked with the diacritic .̂ The (a
posteriori) update equations read as

L̂k =
P−k C̄s

(
C̄s
)T

P−k C̄s + R̄
(31a)

ˆ̄x+
k = ˆ̄x−k + L̂k

(
ȳk −

(
C̄s
)T ˆ̄x−k

)
(31b)

P+
k = (I− L̂k

(
C̄s
)T

)P−k . (31c)

∆Φ̄
(
ω̂+
k , ŵ

d,+
k

)
in (30b) follows from the linearization of

(27a) with respect to the state vector ˆ̄x+
k . Using (16e),

(16g), and (28a), this gives

∆Φ̄
(
ω̂+
k , ŵ

d,+
k

)
=
∂Φ̄
(
ω̂+
k

)
ˆ̄x+
k

∂ ˆ̄x+
k

=




Φ ∆
(
ω̂+
k

)
Ξ
(
ω̂+
k

)
ŵd,+
k

0 Φd
(
ω̂+
k

)
Ξd
(
ω̂+
k

)
ŵd,+
k

0 0 1




with

Ξ
(
ω̂+
k

)
=
∂∆
(
ω̂+
k

)

∂ω̂+
k

=

∫ Ts

0

exp(Aτ)

(
∂G

∂ω

)(
ω̂+
k

)
exp
(
Ad
(
ω̂+
k

)
(Ts − τ)

)
dτ

+

∫ Ts

0

exp(Aτ)G
(
ω̂+
k

)
exp
(
Ad
(
ω̂+
k

)
(Ts − τ)

)

(
∂Ad

∂ω

)(
ω̂+
k

)
(Ts − τ)dτ (32a)

Ξd
(
ω̂+
k

)
=
∂Φd

(
ω̂+
k

)

∂ω̂+
k

=

exp
(
Ad
(
ω̂+
k

)
Ts
)(∂Ad

∂ω

)(
ω̂+
k

)
Ts. (32b)

A suitable choice of the initial conditions ˆ̄x−0 and P−0 com-
pletes the design of the EKF.

The estimated transversal displacement of the strip at
the positions x = xs of the displacement sensor, x = xr
of the system output (gas wiping dies), x = xm of the
electromagnetic actuator, and at the laser distance sensor
positions x = xlsr i, i = 1, . . . , 10 (only used for validation
purpose) read as

ˆ̄yk = ŵsk =
(
C̄s
)T ˆ̄xk, ŵrk =

(
C̄r
)T ˆ̄xk, ŵmk =

(
C̄m

)T ˆ̄xk

and

ŵlsr ik =
(
C̄lsr i

)T
ˆ̄xk, i ∈ [1, . . . , 10].

The structure of all C̄κ with κ ∈ {r,m, lsr i} is similar to
(28e). Finally, if the control law (17) is combined with the
EKF (30), (31), we get

uk = K
(
ω̂−k+1

)
ˆ̄x−k+1 =

[
(Kx)

T (
Kw
(
ω̂−k+1

))T
0
]
ˆ̄x−k+1

with Kx from (19) and Kw
(
ω̂−k+1

)
as the solution of the

regulator equations (23b) and (25) for the frequency ω̂−k+1.

Here, ˆ̄x−k+1 is used instead of ˆ̄x+
k to compensate for the

computational time delay.

4. Experimental setup

In the following, we will give a more detailed descrip-
tion of the components of the experimental test rig out-
lined in Fig. 3. Figure 4 shows a photo of the setup.
An overview of the used components is given in Table 1.
The steel strips which can be used in the experiment have
lengths L between 1.9 m and 2.1 m, their thicknesses h
range from 0.5 mm to 1.5 mm and their width b is 150 mm.
A dSPACE MicroLabBox control system platform is used
as real-time hardware to record the measurement signals
and to accommodate the observer and controller imple-
mentation.
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Steel strip

Source of
disturbance

Displacement sensors

Tensioning device

Magnetic actuator

x

y

z

Figure 4: Experimental test rig with a clamped steel strip.

component product, type (specification)

tensioning device
linear axis (slides) Festo, EGC-185-700-BS
parallel kit Festo, EAMM-U
gear unit Festo, EMGA-SAS
servo drive Festo, EMME-AS
force sensor inelta, KMM20-5kN
spring Gutekunst, RZ-162U-43I

(three springs in parallel)
source of disturbance

electromechanical GUNDA-GmbH,
cylinder Colibri-L KE 23K10
linear guide igus, DryLin W: WS-10-120

igus, WW-10-120-10
laser displacement WELOTEC,OWLE 5060 S1
sensors
magnets

current controller maxon, ESCON 50/5
air gap δcc (50 mm)
number of windings (280)
dimension of core (100 mm)
in x-direction

real-time system dSPACE, MicroLabBox

Table 1: Components of the experimental test rig.

4.1. Tensioning device

The tensioning device consists of a non-driven (passive)
slide which is connected to a driven (active) slide by means
of three springs in parallel. One end of the strip is clamped
in the passive slide. At the other end, the strip is connected
to a slide, which can move along the direction z (transverse
strip direction). The force Nxx in the strip is controlled by
means of the elongation of calibrated springs between the
active and the passive slide. For calibrating the springs, a
force sensor was used. Compared to the strip, the spring
has a low stiffness, which allows an accurate adjustment
of the desired tensile load Nxx by controlling the position
of the active slide.

4.2. Displacement sensors

The experimental test rig is equipped with ten laser
triangulation sensors referred to as lsr 1, . . . , lsr 10 in
Fig. 3. They are located at the equidistant positions
xlsr 1, . . . , xlsr 10 and they are used for measuring the strip
shape during the experiments. The sensors are only used
for validation purposes. Only one of them is utilized for
control, i.e., the sensor at the position xs (sensor output).

4.3. Source of disturbance

At the boundary x = 0, the transverse displacement of
the strip wd(t) = w(0, t) is prescribed by a disturbance
actuator. This motion is considered as an external dis-
turbance in the form of a sinusoidal signal with various
frequencies and amplitudes. The slope of the strip is al-
ways zero at this point.
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4.4. Magnetic actuator

Displaced strip
position

Unloaded
strip posi-
tion (centric)

xz
E-shaped
magnetic core

Copper windings

δt

δb
wm

Steel strip

y

δcc

Top magnet

Bottom magnet

Figure 5: Magnetic actuator.

Figure 5 outlines the custom-made magnetic actuator.
The electromagnetic force Fm is always attractive, which
is why a pair of magnets is necessary to apply forces in both
directions (positive and negative z-direction) to the strip.
For the magnets, a compact design yielding high electro-
magnetic forces without saturating the magnetic core was
chosen. To minimize eddy currents, the magnetic core
is laminated, see also [7, 48, 49, 19]. However, satura-
tion of the thin steel strip itself cannot be prevented with
reasonable effort, see [7]. Figure 6 shows the measured
quasi-static electromagnetic force Fm = f

(
It, Ib, wm

)
as

a function of the transversal strip displacement wm and the
currents It and Ib supplied to the top and bottom mag-
net, respectively. This measurement was performed in a
special setup for characterizing the magnets which, in con-
trast to the experimental test rig of Fig. 4, was equipped
with force sensors. Based on the transversal strip displace-
ment wm, the air gap between the strip and the top and
bottom magnet read as

δt =
δcc

2
− wm and δb =

δcc

2
+ wm,

respectively, with the air gap between the top and bottom
magnet δcc. Since the electromagnetic force Fm acting on
the strip cannot be directly measured, neither in the exper-
imental test rig of Fig. 4 nor in the real plant according to
Fig. 1, a feedforward controller which inverts the current-
force characteristics depicted in Fig. 6 is employed. In a
discrete-time setting, the electromagnetic force Fm,refk at
the sampling time tk for the (estimated) displacement ŵmk
is realized by subordinate PI current controllers with the
reference values

It,refk =

{
f−1

(
ŵmk , F

m,ref
k

)
for Fm,refk ≥ 0

0 else
(33a)

Ib,refk =

{
0 for Fm,refk ≥ 0

f−1
(
ŵmk , F

m,ref
k

)
else.

(33b)

Note that this feedforward approach is only feasible for
quasi-static operation where eddy currents are negligible.
According to Faraday’s law of induction, eddy currents

are caused by the rate of change in the magnetic field and
therefore significantly increase with the frequency of the
disturbance. Moreover, the force dynamics of the magnetic
actuator is negatively influenced by eddy currents, see [7].

15 10 5 0 5 10 15

−100

0

100

Ib in A, It = 0 It in A, Ib = 0
F

m
in

N

wm : −20 mm −13.9 mm
−7.7 mm 0 mm 7.7 mm
13.9 mm 20 mm

Figure 6: Measured electromagnetic force acting on the strip de-
pending on the transversal strip displacement wm and the currents
It and Ib supplied to the top and bottom magnet.

5. Experimental results

A block diagram of the control concept is shown in
Fig. 7. Here, the green domain consisting of the sub-
ordinate PI current controllers with the reference values
according to (33) comprises the discrete-time feedforward
control for the electromagnetic force described in Section
4. The blue domain consisting of the LQR, the distur-
bance feedforward controller from Section 3.1, and the
observer from Section 3.2 comprises the discrete-time vi-
bration control strategy described in Section 3. Except
the separate PI current controllers, which all have sam-
pling times of TPIs = 1/(53.6 · 103) s, the control concept
is implemented on a real-time hardware with the sampling
time Ts = 1 · 10−3 s. The parameters of the PI current
controllers were manually tuned and configured with the
maxon ESCON Studio in order to achieve a good con-
trol performance. Fig. 8 shows the reference Iref and
the measured currents It and Ib of the PI current con-
trollers for the top and bottom magnet, where an approx-
imately sinusoidal force with max

(
|Fm,ref |

)
≈ 2 N is ap-

plied. The signals in Fig. 8 constitute a worst case scenario
with the disturbance frequency fd = 9 Hz. Nevertheless,
the measurements show that the controlled currents accu-
rately coincide with the desired reference trajectory Iref .
Table 2 contains all the parameters used in the mathemat-
ical model of Section 2. Except for the damping param-
eters µ and λ, which were determined in a measurement
campaign, all other parameters are assigned their nominal
values. Figure 9 shows the measured and simulated strip
displacement wm at the position xm. Because wm cannot
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Steel strip with force and dis-

turbance input (see (14)):

ẋ = Ax + BFm + G(ω)wd

y = (Cr)Tx, ȳ = (Cs)Tx

wm = (Cm)Tx

Extended Kalman Filter:

ˆ̄x−
k+1 = Φ̄

(
ω̂+
k

)
ˆ̄x+
k + Γ̄uk

P−
k+1 = ∆Φ̄

(
ω̂+
k , ŵd,+

k

)
P+

k ∆Φ̄T
(
ω̂+
k , ŵd,+

k

)
+ Σ̄Q̄kΣ̄T

x̂+
k and P+

k according to (31)

Magnetic

actuator

(Fig. (6))

PI control

PI control

It,refk

Ib,refk

Inverse

current-force

characteristics

(see (33))

Kx Kw
(
ω̂−
k+1

)

+

x̂−
k+1

ŵd,−
k+1

ŵm
k

uk = Fm,ref
k

Fm

wd ω p = 0

y

ȳ

wm

Discrete-time vibration control strategy

Discrete-time feedforward control:

electromagnetic force

Figure 7: Block diagram of the overall control system.
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Figure 8: Measurements showing the performance of the PI current
controllers. Settings in the maxon ESCON Studio: proportional
gain Kp = 11 831; integral time constant Tn = 2442 µs; the supply
voltage was 48 V.

be directly measured, see Fig. 3, it is approximated by the
linear interpolation of the measurements wlsr 3 and wlsr 4.
The results show that the mathematical model accurately
captures the dynamic behavior of the system.

The tuning parameters for the optimal state controller
of Section 3.1 are given in Table 3. These parameters were
determined by in-situ manual tuning. The parametriza-
tion of the EKF according to Section 3.2 is given in Ta-
ble 4. The variance R̄ of the measurement noise of the
displacement sensor at the position x = xs can be easily
obtained from measurement results. The covariance ma-
trix Q̄k ≥ 0 of the process noise, see (30b), is chosen in
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Figure 9: Strip displacement wm at the position xm for an initial
displacement wm(0) = 5 mm.

the form

Q̄k = diag


Q̄p, . . . , Q̄p︸ ︷︷ ︸

n−1

, Q̄w
d

k , Q̄ẇ
d

k , Q̄ω




with positive weighting parameters Q̄p, Q̄w
d

k , Q̄ẇ
d

k , and
Q̄ω. While Q̄p and Q̄ω are chosen constant, it turned out

to be beneficial for the performance to make Q̄w
d

k and Q̄ẇ
d

k

depend on the (slowly varying) estimated frequency ω̂−k .
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Effectively, the affine relation

Q̄w
d

k = Q̄w
d,2π

k +
(
Q̄w

d,18π
k − Q̄w

d,2π
k

) ω̂−k − 2π

16π
(34a)

Q̄ẇ
d

k = Q̄ẇ
d,2π

k +
(
Q̄ẇ

d,18π
k − Q̄ẇ

d,2π
k

) ω̂−k − 2π

16π
(34b)

is used for the relevant frequency range
2π rad/s ≤ ω ≤ 18π rad/s. The idea of an online adaption
of the covariances can be found at different places in
literature, see, e.g., [47]. A validation of the EKF was
carried out at the experimental test rig by comparing
the observed transversal strip displacements with the
displacements measured by the laser sensors according to
Fig. 10. For this experiment, the frequency fd = ω/(2π)
was varied. Figure 10 reveals a good accordance of the
estimated frequency f̂d with the time-varying disturbance
frequency fd. A slightly increased estimation error of
the disturbance frequency in the vicinity of 110 s is
obtained. Here, the undamped natural strip vibrations
are dominant compared to the vibrations caused by the
disturbance actuator. Therefore, it is hard for the esti-
mator to accurately track the real disturbance frequency
fd. The results for the two arbitrarily chosen sensors lsr 2
and lsr 7 are also shown in Fig. 10. The other sensors
yield similar results. In particular, the bottom part of
Fig. 10 demonstrates the good performance of the EKF.

A typical vibration of the strip for a harmonic distur-
bance wd(t) (blue line) with the frequency fd = 4 Hz and
1 mm amplitude, where the controller is off, is shown in
Fig. 11. Figure 12 presents the transversal strip displace-
ment at the positions of the laser sensors for different
disturbance frequencies fd and active control. The blue
line corresponds to the disturbance input wd(t), the red
line is the only sensor signal used in the control concept,
and the green line is the system output, where the vibra-
tions have to be suppressed. As can be seen, the controller
does a good job in rejecting the oscillations in the system
output y.

The frequency spectra of the displacement measure-
ments are shown in Fig. 13, without control on the left
hand side and with active control on the right hand side.
Moreover, the peak values max

(
|Fm,ref |

)
of the electro-

magnetic force Fm,ref (control input) are also displayed
in the subplots. The natural frequencies of the strip are
indicated as dashed ochre-brown lines. The disturbance is
not a strictly sinusoidal signal, see Figs. 11 and 12. How-
ever, the higher harmonics are small and can be neglected.
Clearly, the theory presented in this paper can be extended
to also reject higher harmonics.

Despite the assumption of a constant disturbance fre-
quency fd used in the observer and controller design, the
concept was also tested for slowly varying frequencies. The
corresponding results are shown in Fig. 14. The range of
fd was chosen to include the first natural frequency of
the strip. In Fig. 14, the frequency of the disturbance

equals the first natural frequency at approximately 65 s
and 110 s. If the control is inactive, high amplitudes of
the system output y do occur at these times (resonance).
The vibrations are reduced drastically in the case of ac-
tive control. In contrast to the frequency estimate f̂d for
an inactive control in Fig. 10, where the estimation er-
ror is slightly increased in the vicinity of the first natural
frequency (110 s), the frequency estimate f̂d follows the
time-varying disturbance frequency fd quite well in the
case of active control, see Fig. 14. Here, the vibrations
due to the first natural frequency of the strip are reduced
by the LQR feedback controller. The frequency of the dis-
turbance passes a transmission zero of the plant at about
81 s and 95 s, see Fig. 14, which results in small ampli-
tudes even for inactive control. However, the amplitudes
are further reduced by the controller. During the whole ex-
periment, the required electromagnetic force Fm,ref does
not exceed ±4 N. The picture details (A)-(C) highlight the
performance of the proposed control concept. The vibra-
tion at the system output y is clearly reduced, even if the
disturbance frequency is changing.
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6. Conclusions and outlook

This article dealt with rejection control of an unknown
sinusoidal disturbance at an arbitrarily chosen position of
a vibrating steel strip. A custom-made electromagnetic
actuator is used to apply the control force to the metal
strip. A single displacement sensor is necessary for the
proposed control method.

The main findings of this study are as follows:

• An algorithm for the rejection of an unknown sinu-
soidal disturbance was developed for a non-collocated
sensor-actuator setup and validated based on an ex-
perimental test rig.

• The control and observer configuration works well.

• The positions of disturbance, sensor, actuator, and
system output can be different and arbitrarily chosen.
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specification parameter value, unit

strip length L 2.04 m
strip width b 150 mm
strip thickness h 0.76 mm
density ρ 7850 kg/m3

Young’s modulus E 2.1 · 1011 N/m2

tensile load Nxx 687 N
viscous damping factor µ 0.232/s
material damping factor λ 4.67 · 10−6 s
position of magnet xm 0.649 m
dimension of magnet ∆xm 0.1 m
position of sensor xs 0.927 m
position of output xr 0.371 m
amplitude of d 1 mm
disturbance
number of finite n 9
elements

Table 2: Parameters of the mathematical model.

specification parameter value, unit

weight for position fp 5 (1/m)
2

weight for velocities fv 0.06 (s/m)
2

weight for the input R 0.005 (1/N)
2

weighting points m̄ 23

Table 3: Parameters used for the LQR.

specification parameter value, unit

sensor noise R̄ 2.25 · 10−8 m2

process noise strip Q̄p 10 (N/m)
2

process noise
disturbance:

position (lower limit) Q̄w
d,2π 2.25 · 10−12 m2

position (upper limit) Q̄w
d,18π 2.25 · 10−10 m2

velocity (lower limit) Q̄ẇ
d,2π 4.4 · 10−9 (m/s)

2

velocity (upper limit) Q̄ẇ
d,18π 4.4 · 10−7 (m/s)

2

frequency Q̄ω 2 · 10−4 (rad/s)
2

Table 4: Parameters used for the EKF.

• The experiment was inspired by the conditions ob-
served in hot-dip galvanizing lines.

• A calibrated quasi-static relation between electromag-
netic force, the transversal strip displacement, and the
currents of both coils (top and bottom magnet) was
used to apply forces in both directions to the strip.
The required currents have been realized by subordi-
nate current PI controllers.

• The proposed control method works well without ap-
plying a force sensor for measuring the magnetic force
or an extra distance sensor for measuring the strip dis-
placement at the position of the magnets.

• The observer and controller configuration is robust
against process noise and deviations from an ideal si-
nusoidal disturbance.

Stimulated by the good control performance observed in
the experimental rig, the implementation of the developed
control method in an industrial hot-dip galvanizing line is
intended for the near future.
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[45] K. Åström, B. Wittenmark, Computer-controlled Systems:
Theory and Design, 3rd Edition, Prentice Hall, Upper Saddle
River, New Jersey, 1997.

[46] R. H. Bartels, G. W. Stewart, Solution of the matrix equation
AX + XB = C [f4], Communications of the ACM 15 (9) (1972)
820–826.

[47] M. Boutayeb, D. Aubry, A strong tracking extended Kalman
observer for nonlinear discrete-time systems, IEEE Transactions
on Automatic Control 44 (8) (1999) 1550–1556.

[48] E. Maslen, G. Schweitzer, H. Bleuler, M. Cole, P. Keogh, R. Lar-
sonneur, R. Nordmann, Y. Okada, A. Traxler, Magnetic Bear-
ings: Theory, Design, and Application to Rotating Machinery,
Springer, Berlin Heidelberg, 2009.

[49] E. Kallenbach, R. Eick, P. Quendt, T. Ströhla, K. Feindt,
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Figure 12: Measured strip displacement with active control: blue line - disturbance wd with the amplitude 1 mm and different frequencies
fd; red line - sensor signal ws used in the control concept; green line - system output y to be controlled; grey lines - measured displacements
for validation purpose.
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Figure 13: Spectra of measured displacement signals without and with control for different disturbance frequencies fd.

17

Post-print version of the article: M. Saxinger, L. Marko, A. Steinboeck, and A. Kugi, �Active rejection control for unknown harmonic

disturbances of the transverse de�ection of steel strips with control input, system output, sensor output, and disturbance input at di�erent

positions�, Mechatronics, vol. 56, pp. 73�86, 2018, issn: 0957-4158. doi: 10.1016/j.mechatronics.2018.10.008

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.mechatronics.2018.10.008


−1

0

1

w
d

in
m

m

0

2

4

6

8

10
(A) (B) (C)

f
in

H
z

First natural frequency of strip fd f̂d

−4

−2

0

2

4

F
m

,r
e
f

in
N

0 10 20 30 40 50 60 70 80 90 100 110 120

−10

0

10

t in s

y
in

m
m

Controller off Controller on

−4

−2
0

2

4

F
m

,r
e
f

in
N

(A)

−4

−2
0

2

4

(B)

−4

−2
0

2

4

(C)

10 11 12 13
−4

−2
0

2

4

t in s

y
,
w

d
in

m
m

60 60.5 61
−4

−2
0

2

4

t in s

115 115.5 116
−4

−2
0

2

4

t in s

Figure 14: Experimental results for a slowly changing disturbance frequency.
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