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Mathematical modeling of the contour evolution of heavy plates in hot
rolling

F. Schausberger∗, A. Steinboeck, A. Kugi

Automation and Control Institute, Vienna University of Technology, Gußhausstraße 27–29, 1040 Vienna, Austria

Abstract

This paper deals with modeling of the contour evolution of heavy plates in hot rolling. During the
rolling process asymmetric rolling conditions, such as temperature gradients or non-homogeneous input
thickness profiles, may lead to a non-rectangular plate contour. A continuum mechanics approach is
employed to systematically derive the contour evolution of the plate based on the input and output
thickness. The mathematical model covering deviations in two dimensions is solved using methods for
plane problems in mechanics. A comparison between the simulated contour evolution and measurement
data from a real rolling process indicates the good accuracy of the model. Moreover, the model can be
executed within one millisecond on a standard computer which stresses its real-time capability. A short
analysis of the main reasons for the generation of camber utilizing the proposed model is presented.

Keywords: Contour evolution in hot rolling, Camber modeling, Heavy plate mill, Extended biharmonic
equation

1. Introduction

In steel rolling mills, slabs are rolled out to heavy plates with a certain plate thickness using reversing
mill stands. The quality of the final product depends mainly on the material properties, the thickness
and the shape of the plate. Common deviations from the desired shape (shape defects) are buckles
and waves. The causes of such imperfections are, e.g., the thermal expansion of the work rolls [1] or a
non-homogeneous run-out table cooling [2].

This work deals with unwanted geometrical deviations of the plate contour with respect to the vertical
axis of the plate, known as camber (cf. Fig. 1). Camber may lead to a lowered product quality or in the
worst case, even to damaged roller tables and measurement equipment behind the rolling mill.

The main reasons for the generation of camber in the considered hot rolling process can be identified
as:

• Asymmetric input and/or output thickness profiles in the lateral direction of the plate.

• Spatially non-homogeneous and time-dependent variations of the temperature of the plate.

An asymmetric output thickness profile may result from non-homogeneous rolling conditions in the
lateral direction during the rolling pass. The sources of these asymmetries are:

• An asymmetric input thickness profile as a consequence of the last rolling pass.
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Figure 1: Sketch of the reversing mill stand and plate with camber.

• Non-homogeneous material properties (especially the resistance to deformation) due to temperature
variations in the lateral direction.

• Asymmetric conditions of the mechanical setup of the rolling mill (e.g., different mill moduli on
drive and operator side, asymmetric roll contours).

• An eccentric position of the plate in the rolling gap resulting from a deviation of the straight
movement of the plate (snaking).

Note that the generation of camber caused by these reasons occurs during the rolling pass.
Beside the influence on the deformation properties of the plate, the temperature of the plate also

causes a dilatation. Therefore, e.g., a temperature gradient in the lateral direction of the rolled plate with
rectangular shape leads to a cambered plate after cooling down to a homogeneous (ambient) temperature.
Because this effect occurs mainly after the rolling of the plate, it is not explicitly considered in this work.

In the past, several approaches were suggested to model the contour evolution of a plate in hot rolling
and the strip movement in tandem mills. The existing models may be classified into two categories: The
first ones focus on the modeling of the lateral position of the plate during the rolling pass. In heavy plate
rolling, the resulting contour of the plate and its evolution are of special interest. This contour defines the
usable area of the final plate. These models typically come up with a moderate computational effort. The
models belonging to the second category are covering complex material properties of the rolled out plate
to estimate the plate contour. These models have a high accuracy but entail large computational effort,
which may render them unsuitable for real-time control.

One of the models belonging to the first category is proposed in [3]. The effect of snaking of a strip
in a tandem cold rolling mill is analyzed. The model utilizes the plastic deformation of the strip as well
as the elastic deformation of the rolls and the mill housing to predict the angular velocity of the strip at
the entry and exit of the rolling gap. The lateral position of the strip is derived from the angular velocity
vector by considering the rigid body motion of the strip outside the rolling gap.

Shiraishi et al. (cf. [4]) investigated the relation between camber and a thickness wedge of the strip
under restrictions of the lateral movement of the strip. The proposed model also includes the use of
edgers at the rolling gap entrance and the application of tension on the rolled strip. A model based on
the conservation of mass in the rolling gap is used to compute the curvature of the strip. Experimental
results are provided from a laboratory rolling mill to investigate the effects of the restrictions of the strip
movement.

The effects of asymmetric rolling conditions in strip rolling were analyzed in [5]. The mill stretch
and the deformation of the roll stack are used to approximate the lateral thickness profile, the resulting
camber and the snaking of the strip at the exit of the rolling gap.

An early control-based camber reduction was developed in [6]. They joined three measurement devices
for the lateral position of the plate located downstream of the rolling mill to determine the actual plate
camber. Furthermore, the control design is based on the prediction of the curvature of the plate and the
difference of the rolling gap height on the operator and drive side is used as control input.

In contrast, [7] suggests to use the bending forces applied to the roll as control inputs for a state
feedback controller. The bending cylinders feature a faster dynamic response than the rolling gap
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actuators. A state space model of the lateral position of the strip in the rolling gap including simple
actuator dynamics was derived and a state observer was developed to estimate the unknown states of the
system.

Kiyota et al. (cf. [8]) derived a slightly modified model based on [3]. In [8] an adjustment coefficient
accounting for different rolling conditions is added. Furthermore, an optimal regulator and a state
observer were designed to reduce the snaking of the strip.

Okada et al. (cf. [9]) used a sliding mode controller combined with a state observer to reduce the lateral
motion of the strip. The asymmetry of the rolling gap height is used as input of the linear mathematical
model.

To measure and counteract occurring camber, a vision based measurement system is presented in [10].
In particular, a CCD-camera and adequate image processing algorithms are employed to determine the
curvature of the plates.

An MPC strategy based on a linearized system for controlling the lateral position of the strip was
introduced in [11]. The MPC approach allows input and state constrains to be systematically considered
in the control law. A very similar modeling approach for camber generation was suggested in [12]. They
estimated the generation of camber in a roughing mill using the Frenet formula. The model is based on
a prediction of the resulting curvature of the plate at the exit of the rolling gap. For verification of the
proposed model, results from a finite element method (FEM) simulation were presented.

Models belonging to the second category are proposed, e.g., in [13], [14], [15] and [16]. A FEM
simulation was used in [14] to predict the camber and the lateral movement of a hot rolled strip with an
elastic-plastic material model. The camber model covers roll deflection as well as roll flattening during
the rolling process and shows a good agreement with measurements from a pilot plant.

Also in [13] FEM is used to simulate the evolution of camber during hot rolling. The influence of
lateral temperature variations of the plate on the resulting camber is investigated with a two-dimensional
analysis. Furthermore, three-dimensional FEM simulations with elastic-plastic material properties were
conducted to examine the effects of non-uniform rolling forces. Strategies for the reduction of camber
across several rolling passes were also discussed.

Trull et al. (cf. [15]) developed an advanced finite element model of a plate mill to simulate the shape
evolution of a rolled plate. The model includes the stretch of the mill housing, the profile of the rolls
and the material properties of the plate. It is used to investigate the influence of the roll condition on the
shape of the plate.

A 3D-FE model is used in [16] to predict the shape of heavy plates in hot rolling. In particular, a
rigid plastic thermomechanical FEM was developed to investigate inhomogeneous plastic deformations.
The evolution of uneven shapes in the longitudinal rolling process and the broadside-longitudinal rolling
process were analyzed in detail.

Most of the proposed models were initially designed to simulate and to control the lateral strip position
in tandem mills. Despite the fact that the rolling mill considered in this work is a reversing mill, these
models provide a good basis for the following analysis. This is because most of the reported models do
not take into account the interaction between the mill stands.

A mathematical model bridging the gap between the two different model categories is derived in this
paper. This model predicts the contour of the plate, which is in contrast to the models from the first
category. Additionally, it requires only a moderate computational effort compared to the models from
the second category. It utilizes the input and output thickness of the plate as well as its input contour to
predict the residual stresses and the contour of the plate after the rolling pass. Since the output thickness
profile is assumed to be known, a model of the rolling gap is not needed in this work. The presented
model serves as a solid basis for sensitivity studies regarding factors that influence the formation of
camber. Furthermore, the high accuracy of the proposed model and its moderate computational costs
make it suitable for model-based control concepts for the reduction of an existing camber.

The paper is organized as follows: In Section 2, the mathematical model of the contour evolution of
the plate is presented. Simulation results from the proposed model are compared to measurement data
in Section 3. The comparison shows that the contour evolution can be accurately predicted. In Section 4,
the paper concludes with a short summary and an outlook on future research activities.
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2. Modeling the evolution of the plate contour

This chapter is devoted to a mathematical model of the evolution of camber during the rolling process.
As indicated in Fig. 2, a Cartesian coordinate system with coordinates x, y and z is used. In order to
simplify the model, the following assumptions are made:

• The plate thickness profile hin(x, y) in lateral and longitudinal direction is known at least before
each rolling pass.

• The profile of the rolling gap height hout(x, y) is also a given quantity.

• After the plate exits the rolling gap, no further plastic deformation occurs.

• Lateral expansion in the rolling gap is not considered.
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y
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ou

t(
x

,
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Figure 2: Plastic deformation in the rolling gap.

Knowing the thickness hin(x, y) of the plate before the roll pass and the thickness hout(x, y) at the exit
of the rolling gap, the plastic strain in longitudinal direction is

ε
pl
xx =

hin(x, y)
hout(x, y)

− 1, (1)

where x and y are Lagrangian coordinates, which are valid before and after the rolling gap. The plastic
strain ε

pl
xx is the basis for the following model.

2.1. Mathematical model for estimating camber and residual stresses
Before the first rolling pass, the plate has approximately the shape of a rectangular block. Therefore,

the computational domain is initially chosen as a cuboid. As long as non-uniformities along the thickness
direction of the plate are neglected, a two-dimensional problem formulation may be used. For the given
problem, this simplifies the estimation of the strains and residual stresses in the plate. In the following
derivation, the assumption of plane stress is made. It is motivated by the absence of surface tractions and
the small dimension in thickness direction compared to the length and the width of the plate (cf. [17]).
This implies that stresses along the z-direction vanish and all quantities are uniform along the z-direction.

2.1.1. Two-dimensional problem formulation
If there are no body forces, the equilibrium equations for an infinitesimal volume element in the

two-dimensional space read as

∂σxx

∂x
+

∂σxy

∂y
= 0 (2a)

∂σxy

∂x
+

∂σyy

∂y
= 0, (2b)
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with the normal stresses σxx and σyy in x- and y-direction, respectively and the shear stress σxy. Adding
the constitutive equations for linear elastic material behavior

εel
xx =

1
E
(
σxx − νσyy

)
, (3a)

εel
yy =

1
E
(
σyy − νσxx

)
, (3b)

and

εel
xy =

1
2G

σxy, (3c)

with the Young’s modulus E, the shear modulus G, and the Poisson’s ratio ν leads to the elastic strains
εel

xx, εel
yy, and εel

xy.

These elastic strains have to be added to the plastic strains ε
pl
xx, ε

pl
yy and ε

pl
xy that are induced during the

rolling process. Hence, the total strains read as

εΛ = εel
Λ + ε

pl
Λ , Λ ∈ {xx, xy, yy}. (4)

The displacement fields u = u(x, y) and v = v(x, y) in longitudinal and lateral direction are linked
with the strains by

εxx =
∂u
∂x

(5a)

and

εyy =
∂v
∂y

(5b)

and the shear strain γxy is defined as

γxy = 2εxy =
∂u
∂y

+
∂v
∂x

. (6)

Furthermore, the three unknown strain components are subject to the compatibility equation

∂2εxx

∂y2 +
∂2εyy

∂x2 =
∂2γxy

∂x∂y
(7)

to obtain continuous, single-valued displacements (cf. [17]). Inserting Hooke’s law (3) into the relations
(4) and further into the compatibility equation (7) yields

∂2

∂y2

[
1
E
(
σxx − νσyy

)]
+

∂2

∂x2

[
1
E
(
σyy − νσxx

)]

− ∂2

∂x∂y

(
1
G

σxy

)
= −∂2ε

pl
xx

∂y2 −
∂2ε

pl
yy

∂x2 + 2
∂2ε

pl
xy

∂x∂y
. (8)

Summing up the derivatives of (2a) and (2b) with respect to x and y, respectively, gives

∂2σxy

∂x∂y
= −1

2

(
∂2σxx

∂x2 +
∂2σyy

∂y2

)
.
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This expression helps to eliminate the shear stress and Poisson’s ratio from (8) using G = E
2(1+ν)

and
E = const. The simplified version of (8) thus reads as

∂2σxx

∂x2 +
∂2σxx

∂y2 +
∂2σyy

∂x2 +
∂2σyy

∂y2

= −E

(
∂2ε

pl
xx

∂y2 +
∂2ε

pl
yy

∂x2 − 2
∂2ε

pl
xy

∂x∂y

)
. (9)

As mentioned in [18], (9) shows that only plastic deformations with nonvanishing second derivatives
induce residual stresses. That is, using a Taylor series expansion, constant and linear terms would not
induce additional elastic deformations. This is because the right hand side of (9) vanishes for such terms
resulting in the trivial solution σxx = σyy = σxy = 0 for the considered case of absent surface tractions at
the boundary of the plate.

An effective way to deal with the two-dimensional problem (9) was introduced by [19]. The so called
Airy’s stress function F = F(x, y), which satisfies

σxx =
∂2F
∂y2 , σyy =

∂2F
∂x2 , σxy = − ∂2F

∂x∂y
, (10)

can be inserted into (9) to obtain the fourth order inhomogeneous partial differential equation

∆∆F = −E

(
∂2ε

pl
xx

∂y2 +
∂2ε

pl
yy

∂x2 − 2
∂2ε

pl
xy

∂x∂y

)

︸ ︷︷ ︸
f (x,y)

, (11)

with the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 . Eq. (11) is also known as extended biharmonic equation. The term
extended hints at the inhomogeneous disturbance term on the right hand side. In the absence of plastic
strains, (11) is called biharmonic equation. Because of (11), the compatibility equation (7) is automatically
fulfilled by the chosen ansatz (10). Another interesting feature of the (extended) biharmonic equation is
its independence of the Poisson’s ratio ν.
Instead of solving the initial partial differential equation for the unknown stresses, strains and displacements
subject to the compatibility equation (7), it is equivalent to solve (11) for the stress function F. Once F is
known, the stresses are calculated based on (10) and the elastic strains follow from (3).

It remains to determine the displacements by integrating the strains to

u(x, y) =
∫ x

0
εel

xx(x̄, y)dx̄ +
∫ x

0
ε

pl
xx(x̄, y)dx̄ +

1
E

φ(y) (12a)

and

v(x, y) =
∫ y

0
εel

yy(x, ȳ)dȳ +
∫ y

0
ε

pl
yy(x, ȳ)dȳ +

1
E

ψ(x), (12b)

with scalar functions φ(y) and ψ(x). They define the boundary values of the displacements and cannot
be chosen arbitrarily. Note that (12) satisfies the displacement-strain relations (5) regardless of the choice
of φ(y) and ψ(x).
Combination of (6), (4), and (3c) yields

γxy =
∂u
∂y

+
∂v
∂x

= 2εel
xy + 2ε

pl
xy =

2(1 + ν)

E
σxy + 2ε

pl
xy
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and, by inserting (12), it follows that

2Eε
pl
xy + 2(1 + ν)σxy

= E
∫ x

0

∂εel
xx(x̄, y)

∂y
dx̄ + E

∫ x

0

∂ε
pl
xx(x̄, y)

∂y
dx̄ +

dφ(y)
dy

+ E
∫ y

0

∂εel
yy(x, ȳ)

∂x
dȳ + E

∫ y

0

∂ε
pl
yy(x, ȳ)

∂x
dȳ +

dψ(x)
dx

.

Furthermore, using (3a), (3b), and the definition (10) yields

dψ(x)
dx

+
dφ(y)

dy

= 2Eε
pl
xy − 2(1 + ν)

∂2F
∂x∂y

−
∫ x

0

(
∂3F(x̄, y)

∂y3 − ν
∂3F(x̄, y)

∂x̄2∂y

)
dx̄

−
∫ y

0

(
∂3F(x, ȳ)

∂x3 − ν
∂3F(x, ȳ)

∂x∂ȳ2

)
dȳ

− E

(∫ x

0

∂ε
pl
xx(x̄, y)

∂y
dx̄ +

∫ y

0

∂ε
pl
yy(x, ȳ)

∂x
dȳ

)

= δ1(x) + δ2(y). (13)

The left-hand side of (13) splits up in a term δ1(x) = dψ(x)
dx depending only on x and a term δ2(y) =

dφ(y)
dy

depending only on y. Integrating these terms gives

ψ(x) =
∫ x

0
δ1(x̄)dx̄ + Cδ1 (14a)

and

φ(y) =
∫ y

0
δ2(ȳ)dȳ + Cδ2, (14b)

with integration constants Cδ1 and Cδ2 representing the translational degrees of freedom of the rigid body
motion of the plate. Equation (14) delivers insight into the limitations of choosing the functions ψ(x) and
φ(y).

2.1.2. Derivation of the boundary conditions
Besides fulfilling the biharmonic equation (11), a suitable stress function F has to satisfy certain

boundary conditions. Two different types of boundary conditions can be identified: one giving a restriction
on the displacements at the boundary and one constraining the stresses at the boundary. Only the latter
one is discussed because the first one (rigid body motion) is not relevant in the considered problem.

The stresses at the boundary Γ of the plate (cf. Fig. 3) may be expressed by the components of the
external stress vector Tn

x = Tn
x (s) in longitudinal and Tn

y = Tn
y (s) in lateral direction, depending on the

curvilinear coordinate s. They are defined by

Tn
x = σxxnx + σxyny (15a)

and

Tn
y = σxynx + σyyny. (15b)
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Figure 3: Boundary conditions at the plate contour.

Here, nx and ny denote the components of the unit normal vector

n =

[
nx
ny

]
=

[
dy
ds
−dx

ds

]
(16)

of the boundary Γ. The vector n points outwards. A specific point on the boundary Γ is defined by its
Cartesian coordinates (x(s), y(s)). Insertion of (10) and (16) into (15) yields

Tn
x =

∂2F
∂y2

dy
ds

+
∂2F

∂x∂y
dx
ds

(17a)

and

Tn
y = − ∂2F

∂x∂y
dy
ds
− ∂2F

∂x2
dx
ds

. (17b)

In the considered problem, surface tractions are absent, i.e. the boundary conditions are Tn
x = Tn

y = 0.

2.2. Solution of the biharmonic equation
Searching for an exact solution of (11) and (17) is difficult. Only for trivial shapes, specific plastic

deformations and particular boundary conditions, exact solutions may be obtained. To circumvent
this difficulty, an approximate solution with a stress function that automatically satisfies (11) but not
necessarily (17) is used.

2.2.1. Power series solutions
The solution Fhom of the associated homogeneous biharmonic equation

∂4Fhom
∂x4 + 2

∂4Fhom
∂x2∂y2 +

∂4Fhom
∂y4 = 0 (18)

and the particular solution Fpart of the extended biharmonic equation (11) are added to form the solution

F = Fhom + Fpart. (19)

This superposition approach is possible due to the linearity of (11). Fpart fulfills (11), but not necessarily
(17). Therefore, Fhom, which is independent of the plastic deformation (cf. (18)), is chosen so that F satisfies
(17). In this work, power series are used to approximate Fpart. A method originally proposed by [20] is
applied to obtain the power series.
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A single homogeneous solution term Ψi with degree p is characterized by

Ψi =
p

∑
j=0

p

∑
k=0

bj,kxjyk (20)

with some constants bj,k. They are chosen so that the homogeneous biharmonic equation (18) is individually
satisfied by each term Ψi. By insertion of Ψi into (18), a system of linear equations for determining the
unknown coefficients bj,k is obtained. Fhom is a linear combination of the terms Ψi, i.e.,

Fhom =
n

∑
i=1

aiΨi = JTa (21)

with a = [ai]i=1,...,n and J = [Ψi]i=1,...,n for some constants ai, i = 1, . . . , n. The coefficients ai will be used
satisfy the boundary conditions. In an analogous manner, a series solution for the extended biharmonic
equation (11) can be found if the plastic strains are approximated by a two-dimensional power series

ε
pl
Λ =

k

∑
i=0

i

∑
j=0

cΛ,γxi−jyj

︸ ︷︷ ︸
ΦΛ,γ

, Λ ∈ {xx, xy, yy} (22)

with the degree k. The index function

γ =
(i + 1)i

2
+ j

defines an incrementing index γ for the elements of the double sum in (22). Each individual solution term
Fpart,γ of the particular solution

Fpart =
npart

∑
γ=0

Fpart,γ

with npart =
k2

2 + 3
2 k must satisfy (11), i.e.,

∆∆Fpart,γ = −E

(
∂2Φxx,γ

∂y2 +
∂2Φyy,γ

∂x2 − 2
∂2Φxy,γ

∂x∂y

)

︸ ︷︷ ︸
fγ(x,y)

(23)

with ΦΛ,γ according to (22). Similar to (20), Fpart,γ is based on a two-dimensional polynomial

Fpart,γ(x, y) =
p̄

∑
j=0

p̄

∑
k=0

b̄j,kxjyk,

with the degree p̄ selected properly depending on the degree of fγ(x, y). The polynomial coefficients b̄j,k
are found from a comparison of coefficients in (23).
As mentioned earlier, a solution that satisfies the boundary conditions in an approximate manner is
derived. Inserting an approximate ansatz F̂ for Airy’s stress function into the boundary conditions (17)
gives the residuals

Rx(F̂) =
∂2 F̂
∂y2

dy
ds

+
∂2 F̂

∂x∂y
dx
ds
6= 0

9
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and

Ry(F̂) = − ∂2 F̂
∂x∂y

dy
ds
− ∂2 F̂

∂x2
dx
ds
6= 0.

The idea is that these residuals vanish in a weighted integral sense, i.e.,
∫

Γ
vxRx(F̂)ds +

∫

Γ
vyRy(F̂)ds = 0, (24)

with the weighting functions vx and vy. Two different weighting functions are necessary to avoid that
only the sum Rx(F̂) +Ry(F̂) vanishes. With F̂ = F̂hom + F̂part and F̂hom = ĴTa according to (19) and (21)
the residual terms can be written as

Rx(F̂) =
(

∂2 ĴT

∂y2
dy
ds

+
∂2 ĴT

∂x∂y
dx
ds

)
a +

∂2 F̂part

∂y2
dy
ds

+
∂2 F̂part

∂x∂y
dx
ds

and

Ry(F̂) =
(
− ∂2 ĴT

∂x∂y
dy
ds
− ∂2 ĴT

∂x2
dx
ds

)
a− ∂2 F̂part

∂x∂y
dy
ds

− ∂2 F̂part

∂x2
dx
ds

.

Now a slightly modified least-squares method as reported by [21] is employed. The method suggests
using the residuals Rx(Ψi) and Ry(Ψi) as weighting functions vx and vy, respectively. Other weighting
functions are also suitable for the given problem, but Rx(Ψi) and Ry(Ψi) simplify the evaluation of the
integrals in (24). Equation (24) must vanish individually for each pair of weighting functions vx = Rx(Ψi)
and vy = Ry(Ψi). This results in a system of linear equations

(
Ax + Ay

)
a = yx + yy (25)

with the matrices

Ax =
∫

Γ
Rx(Ĵ)Rx(ĴT)ds (26a)

Ay =
∫

Γ
Ry(Ĵ)Ry(ĴT)ds (26b)

and the vectors

yx = −
∫

Γ
Rx(Ĵ)Rx(F̂part)ds (27a)

yy = −
∫

Γ
Ry(Ĵ)Ry(F̂part)ds. (27b)

The residual of a vector is just an assembly of the residuals of its components. The fact that the
proposed method generates symmetric matrices Ax and Ay can be utilized when solving (25) for the
unknown coefficients ai. The numerical properties of Ax and Ay are of good nature, even for polynomial
approximations with high degrees. For simplicity reasons, henceforth the approximate solution F̂ is no
longer denoted with a hat.
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2.2.2. Parameterization of the plate contour
There exist various methods to deal with curvilinear boundary domains of differential equations. In

some cases, a change of the chosen coordinate system may lead to a formally simpler representation of
the boundary. Polar coordinates, for instance, should be used for circular computational domains.

The problem considered in this work requires a tailored definition of the boundary, which also
allows to track the camber during several rolling passes. A closed-form parametric representation of
the boundary seems favorable in terms of integration along the edges. As indicated in Fig. 4, a convenient
formulation consists of four polynomials representing the four boundaries.

edge 1

edge 2

edge 3

edge 4

x

y

z

pB1(x)

pB2(y)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Figure 4: Definition of edges for a plate with a curvilinear boundary.

A point on the edges 1 and 3 (lateral edges) is parameterized by a polynomial with degree NB as

pBj(x) =
NB

∑
i=0

dj,ixi, j = 1, 3 (28)

and on the edges 2 and 4 (head and tail) as

pBj(y) =
NB

∑
i=0

dj,iyi, j = 2, 4. (29)

Hence, the curvilinear boundary Γ is described by

Γ =





edge 1 =
{
(x, y)

∣∣x ∈ [x1, x2] , y = pB1(x)
}

edge 2 =
{
(x, y)

∣∣y ∈ [y3, y2] , x = pB2(y)
}

edge 3 =
{
(x, y)

∣∣x ∈ [x4, x3] , y = pB3(x)
}

edge 4 =
{
(x, y)

∣∣y ∈ [y4, y1] , x = pB4(y)
}

.

Due to the integration along a curved boundary Γ, e.g. in (24), it seems reasonable to introduce a
curvilinear coordinate s defined by

ds =

√

1 +
(

dpBj(x)
dx

)2

dx

for j ∈ {1, 3} and

ds =

√

1 +
(

dpBj(y)
dy

)2

dy

for j ∈ {2, 4}.
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A curved shape Γ generally precludes an analytical integration of (24). Therefore, the integrals are
numerically evaluated by using a Gaussian quadrature.
An integral is thus approximated by a weighted sum

∫ 1

−1
f (ξ)dξ ≈

N

∑
i=1

wi f (ξi), (30)

where N denotes the quadrature order and wi represents the weight for the function value f (ξi) at the
sampling point ξi. Krylov (cf. [22]) showed that the sampling points of one possible quadrature method
may be found as the roots of the Legendre polynomial

pN(x) =
1

2N N!
dN

dxN

[(
x2 − 1

)N
]

and that the corresponding weights are defined by

wi =
∫ 1

−1

N

∏
k=0
k 6=i

x− xk
xi − xk

dx .

Additionally, a transformation

∫ xupp

xlow

f (x)dx =
xupp − xlow

2

∫ 1

−1
f (ξ)dξ

with

x =
xupp + xlow

2
+

xupp − xlow

2
ξ

and proper chosen integration boundaries xlow and xupp (cf. Fig. 4) has to be performed. This transformation
accounts for the different integration boundaries in (26) and (27) compared to (30).

2.2.3. Implementation
The simulation model is implemented in Matlab 2012b using the linear algebra packages Lapack

and BLAS for matrix operations and for solving the linear system of equations (25). Furthermore, the
numerical integration is performed in C-functions to achieve low computation times. The necessary
computations to achieve the plate contour are shown in Fig. 5. The procedure starts with an initial plate
contour achieved from measurements. In every calculation step, the contour has to be approximated by
the polynomial representation (28) and (29). Furthermore, the plastic strain (1) is estimated according
to (22). Afterwards the system of linear equations (25) is set up and solved for the coefficient vector a.
Finally, the plate contour results from the displacements (12)-(14) at the boundary Γ of the plate.

3. Simulation results

In the following, simulation results are compared to measurement results for a typical plate rolled at
AG der Dillinger Hüttenwerke, Germany.

The considered plate is rolled out from an initial plate thickness of 87 mm to its final thickness 36.5 mm
using 11 rolling passes. As inputs for the computations, the input thickness and the exit thickness of the
plate at the entry and exit of the rolling gap, respectively, are used. This thickness profiles are obtained
from measurements. Only plastic deformation along the direction x is considered, hence the plastic
deformations ε

pl
yy and ε

pl
xy vanish. Moreover, the temperature is assumed to be uniform and the parameters

used for the computations are listed in Tab. 1.
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Initial plate contour

Approximate
plastic strain (1)

Next
calculation?

Set up and
solve (25)

for a

Evaluate stresses (10),
strains (4) and

displacements (12)-(14)

Approximate
contour by (28) and

(29)

Figure 5: Computational scheme for the estimation of the plate contour.

Table 1: Parameters used for the computations.

Parameter Value Unit

E 140 kN/mm2

ν 0.3

n 70

k 8

p 19

npart 44

NB 4

N 20

Measurement data is only available before and after the rolling passes 1, 3, 5 and 11. Therefore,
the calculation is done in three steps, each covering several rolling passes, as indicated in Fig. 6. The
simulation uses measurement data only for the initial contour before calculation step I. In case of the
remaining initial contours for the calculation steps II and III, the resulting contour from the preceding
calculation step is used.

For the three calculation steps, Fig. 7 shows the plastic strains ε
pl
xx approximated by polynomials of

degree k = 8. The real plate contour is measured by means of a laser line scanner and some image
processing algorithms. The scanner is arranged across the roller table. It captures images (1D arrays) as
the plate moves along the roller table. Its images are joined by software to generate a full 2D picture of
the plate contour. Due to the purely translational motion of the plate this is a consecutive arrangement
of 1D arrays. This strategy gives a relatively low image resolution along the direction x, which does
not allow an accurate measurement of the edges 2 and 4 (head and tail of the plate). However, this
is not a problem because mainly the edges 1 and 3 (lateral edges) are relevant for the development of
camber. Consequently, only the edges 1 and 3 are shown and analyzed in the following. Fig. 8 depicts the
simulated and measured plate contours for all three calculation steps. Despite the fact that the calculation
covers 10 rolling passes, the model mismatch is in an acceptable range. More accurate results would be
achieved if the model were fed with measurement data not only at the beginning but after each rolling
pass with measurements.

Fig. 9 shows the residual stresses σxx after the first calculation step. It indicates that the homogeneous
stress boundary conditions at the head and the tail end of the plate are nicely satisfied. The simulation
was carried out on a personal computer with an i7-2600 processor featuring 3.4 GHz and 16 GB of RAM.
With this hardware configuration, a rolling pass can be simulated within less than 1 ms CPU time.
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Calculation
step I

Calculation
step II

Calculation
step III

1 2 3 5 11

... Rolling pass with available measurement data

↑↑ ↑↑↑
Initial

contour
from mea-
surements

Initial
contour

from
simulation

Initial
contour

from
simulation

Figure 6: Explanation of the three calculation steps.

4. Analysis of the reasons for the generation of camber

As shown in the last section, the proposed model is able to precisely predict the generation of camber
with known profiles of the input and output thickness of the plate. So it is obvious to use the mathematical
model to analyze the reasons for the generation of camber. One reason is the presence of an asymmetric
input thickness in the lateral direction.

Therefore, the last rolling pass of a plate with the final plate dimensions l = 40 m and b = 2 m and
the final plate thickness hout(x, y) = h̄out = 8 mm is considered. A rectangular shape of the plate before
the rolling pass is presumed and the parameters are taken from Tab. 1. The relatively long and thin plate
was chosen, because from experience exactly this type of plates is more likely to camber.

For simplicity, the input profile hin(x, y) is assumed to be affine in the y-direction and constant in the
x-direction. It is therefore parameterized in the form

hin(x, y) = h̄in +
y
b

∆hin,

with the mean input thickness h̄in and the lateral asymmetry of the input thickness ∆hin. Furthermore, an
average thickness reduction of h̄in

h̄out
− 1 = 8% during the pass is assumed. The chosen input and output

thickness profiles induce no residual stresses because in this case the right-hand side of (9) vanishes.
Moreover, the resulting contour of the plate is symmetrical with respect to the y-axis. As a measure of the
resulting camber, the lateral deviation vmax of the intersection of edge 2 and edge 3 (cf. Fig. 10) is used.

In Fig. 11, vmax is shown for different input asymmetries ∆hin, indicating an almost linear dependence
between those two quantities. In particular, Fig. 11 shows that asymmetries of about 3 hundredths of a
millimeter result in deviations of more than half a meter.

Hence, a precise control of the asymmetry of the thickness of the plate in the range of a few hundredths
of a millimeter is required to prevent the plate from camber. Further analysis for the reasons of camber,
e.g., differences in the deformation resistance of the plate or asymmetric conditions of the mechanical
setup of the mill in the lateral direction, necessitates the knowledge of a suitable model for the formation
of the rolling gap, see, e.g., [23].
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Figure 7: Plastic strains ε
pl
xx(x, y) for the three calculation steps.

5. Conclusion and outlook

A continuum mechanics model for the contour evolution of plates in hot rolling was presented. The
input and output thickness profile of the plate and the initial contour of the plate serve as inputs of the
model. The total strains of the two-dimensional model result from a superposition of elastic and plastic
strains. The usage of linear elasticity leads to a model consisting of the so called extended biharmonic
equation. This partial differential equation is solved by using a power series ansatz. A weighted residuals
approach is employed to fulfill the homogeneous boundary conditions. Finally, the model was validated
by means of a measured evolution of the plate contour. The tractable model shows a good agreement
with the measured contour geometries and requires only a low computational effort. Moreover, reasons
for the generation of camber were analyzed by means of the presented model. This analysis shows that a
precise control of the thickness profile in the lateral direction is necessary to prevent camber.

The developed model, together with an appropriate model for the formation of the rolling gap, serves
as a basis to analyze other possible reasons for the generation of camber and to identify improvements of
the mechanical setup of the mill to optimize the evolution of the plate contour. Together with a suitable
contour measurement device, the model will be exploited to curb the formation of camber by tailored
optimization based feedback control concepts, see, e.g., [11]. They aim at minimizing the deviation
between a desired and the achieved contour of the plate in terms of a desired cost function. To this
end, an asymmetric adjustment of the rolling gap actuators may be used as control input. Additional cost
function terms, e.g. penalizing the rate of change of the mill stand tilt, enable an intuitive adjustment of
the closed loop behavior. Furthermore, optimization based control facilitates the systematic incorporation
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Figure 8: Simulated and measured contour evolution for the three calculation steps.
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Figure 9: Normal stress distribution σxx after calculation step I.

of input and state constraints. Hence, limits for the roll gap asymmetry may be considered in the control
law. As the contour of the final plate influences the quality and the usable area of the plate, reduced
camber leads to an increased yield of the final product.
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