
This document contains a post-print version of the paper

Vision-Based Material Tracking in Heavy-Plate Rolling

authored by F. Schausberger, A. Steinboeck, A. Kugi, M. Jochum, D. Wild, and T. Kiefer

and published in Proceedings of the 17th IFAC Symposium on Control, Optimization and Automation in Mining,
Mineral and Metal Processing (MMM).

The content of this post-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:
F. Schausberger, A. Steinboeck, A. Kugi, M. Jochum, D. Wild, and T. Kiefer, “Vision-based material tracking in
heavy-plate rolling”, in Proceedings of the 17th IFAC Symposium on Control, Optimization and Automation in Mining,
Mineral and Metal Processing (MMM), vol. 49, Vienna, Austria, 2016, pp. 108–113. doi: 10.1016/j.ifacol.2016.
10.105

BibTex entry:
@Inproceedings{Schausberger16,
Title = {Vision-Based Material Tracking in Heavy-Plate Rolling},
Author = {Schausberger, F. and Steinboeck, A. and Kugi, A. and Jochum, M. and Wild, D. and Kiefer, T.},
Booktitle = {Proceedings of the 17th IFAC Symposium on Control, Optimization and Automation in Mining,

Mineral and Metal Processing (MMM)},
Year = {2016},
Address = {Vienna, Austria},
Month = {31.08. - 02.09.},
Number = {20},
Pages = {108--113},
Volume = {49},
Doi = {10.1016/j.ifacol.2016.10.105},
ISSN = {2405-8963}

}

Link to original paper:
http://dx.doi.org/10.1016/j.ifacol.2016.10.105

Read more ACIN papers or get this document:
http://www.acin.tuwien.ac.at/literature

Contact:
Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
TU Wien E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

http://dx.doi.org/10.1016/j.ifacol.2016.10.105
http://dx.doi.org/10.1016/j.ifacol.2016.10.105
http://dx.doi.org/10.1016/j.ifacol.2016.10.105
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at


Copyright notice:
This is the authors’ version of a work that was accepted for publication in Proceedings of the 17th IFAC Symposium on Control, Optimization
and Automation in Mining, Mineral and Metal Processing (MMM). Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version was subsequently published in F. Schausberger,
A. Steinboeck, A. Kugi, M. Jochum, D. Wild, and T. Kiefer, “Vision-based material tracking in heavy-plate rolling”, in Proceedings of
the 17th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral and Metal Processing (MMM), vol. 49, Vienna,
Austria, 2016, pp. 108–113. doi: 10.1016/j.ifacol.2016.10.105

http://dx.doi.org/10.1016/j.ifacol.2016.10.105
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Abstract: Knowledge of the position and the material conditions, e.g. the temperature, of the
plates during hot rolling is important for process control. In fact, a precise material tracking
system may help to prevent problems during the production process. This paper deals with
the tracking of the rotation of heavy plates before and after the lateral expansion phase. The
presented approach estimates the orientation and the position of the plate moving on the roller
table. Images captured by a thermographic camera are utilized to identify the edges of the plate
within the field of view. The detected edges are fed into an optimization-based estimation of
the angular and translational position of the plate. Measurements of a plate from an industrial
rolling mill demonstrate that the proposed method is robust against disturbances from the harsh
environment nearby the mill stand.

Keywords: Hot rolling, material tracking, image processing, thermographic imaging, edge
detection, unconstrained optimization

1. INTRODUCTION

The considered rolling mill of AG der Dillinger Hütten-
werke, Germany, is outlined in Fig. 1. The slabs are
first reheated in one of the furnaces. During the heating
process, a scale layer builds up, which is removed in
a descaling unit before the actual rolling steps at the
roughing mill. After the beginning of the rolling process,
the product is called plate. Following the lateral expansion
to the desired width at the roughing mill, the plate is rolled
in longitudinal direction to the desired plate thickness
and length at the finishing mill. In the following cooling
section, a specific reduction of the plate temperature may
be enforced to obtain the desired mechanical properties
of the plate material. Then, the plate is leveled to reduce
residual stresses.

pusher-
type

furnace

roughing
mill

finishing
mill

descaling
unit

Fig. 1. Processing line of AG der Dillinger Hüttenwerke,
Germany.

The temperature of the plate undergoes large changes
during the production process. Since the temperature evo-
lution is significant for the properties of the final product,
it has to be carefully considered when planning the roll
pass schedule. A large-area roller table is located between
the roughing mill and the finishing mill. It is used to store
plates until they have reached the necessary temperature
for the subsequent processing at the finishing mill. The
cooling time of a specific plate on the large-area roller
table depends on the processed type of steel and the per-
formed metallurgic treatments. Several plates with vary-
ing material properties and dimensions are simultaneously
processed in this production line. Because different cooling
times may be needed, the processing order of the plates can
change during the production. Clearly, a precise tracking
of the plate position is necessary to distinguish between
the plates.

A vision-based material tracking approach in heavy plate
rolling was proposed by Tratnig et al. (2007). They used
4 visible light cameras with overlapping fields of view
to track the position of the plates between a descaler
and a rolling mill. Vision-based systems are also used for
material tracking during the rolling pass itself, see, e.g.,
(González et al., 2001; Montague et al., 2005; Carruthers-
Watt et al., 2010; Schausberger et al., 2015).

Contrary, this paper deals with a special part of the
whole material tracking problem. After the heating and
the descaling of the slabs, they are first rolled in width
direction to their desired plate width. In the subsequent
rolling passes, the plate is rolled in longitudinal direction
to its final plate length. Before and after the lateral
expansion, the slabs or plates have to be rotated with
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respect to their vertical axis, i.e., at least 2 rotations of
the plate are necessary. The rotation in front of the mill
stand is performed by means of a roller table with tapered
rolls. Here, the tapering of the rolls is alternately arranged
(cf. Fig. 2). This special type of roller table has two roller
pairs which can be individually rotated.

Fig. 2. Roller table with tapered rolls and rotating plate.

The rotation of the plate is currently controlled by the
mill stand operator. However, feedback control could help
to reduce the time needed for the rotation of the plate
and hence may yield considerable time savings during the
rolling process. A simple feedforward control of the plate
rotation is not possible due to the slip between the plate
and the rolls of the roller table. Hence, feedback control
should be applied to control the rotation of the plate
which essentially builds up on the knowledge of the angular
position of the plate. In this work, a method to estimate
the angular position is presented.

The paper is organized as follows: An infrared camera
mounted at the ceiling of the rolling-mill building captures
images of the plate lying on the roller table. Within
the infrared bitmaps, a threshold based edge detection is
performed which is discussed in Section 2. The detected
edges are then used in Section 3 in an optimization-based
approach to estimate the plate movement. Measurements
of a plate taken from the standard production process
are presented in Section 4 to prove the feasibility of the
proposed method. Section 5 contains a short summary and
gives an outlook on further research activities.

A more detailed description of the calculation steps of the
presented material tracking approach is given in Tab. 1.

2. EDGE DETECTION

The first step of the presented material tracking approach
is the detection of the plate edges within the images
captured by an infrared 2D-CCD camera. Compared to
standard cameras for visible light, infrared cameras are
superior for the considered application due to the following
properties:

• Objects can be captured through a cloud of steam.
• The thermal contrast between the plate and its en-

vironment is high and therefore no illumination is
needed.
• There is no disturbance of the images due to other

light sources, e.g. sunlight.

The first property is beneficial for the subsequent edge
detection because the plate may be surrounded by a
cloud of steam due to the cooling water sprayed onto the

Table 1. Calculation steps of the material
tracking approach and their results.

Step Result

image capturing monochrome bitmap of ra-
diation intensity

edge pixel detection in
rows and columns

edge pixels in vertical and
horizontal direction

clustering of edge pixels 4 clusters of edge pixels
representing the 4 plate
edges

fitting of a polynomial to
each cluster of the initial
plate configuration

4 polynomials represent-
ing the plate edges of the
initial configuration

solving of the optimiza-
tion problem for the ac-
tual configuration

position and orientation of
the plate

plate during the rolling process. Furthermore, the high
thermal contrast (cf. Fig. 3) enables a simple threshold-
based edge detection. Clearly, visible light cameras are
suffering from disturbing light sources which may entail
erroneously detected edges, see, e.g., (Montague et al.,
2005). However, disturbing radiation sources are seldom
in the measured infrared range of thermographic cameras.
Additionally, the measured temperature distribution of the
surface of the plate can be used for process monitoring and
process control.
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Fig. 3. Thermographic bitmap of a rotating heavy plate.

The camera is mounted 25 m above the pass level of the
roller table. Mounting the camera at the ceiling of the
rolling-mill building isolates the camera from vibrations,
steam, and dust induced during the rolling pass and
hence renders an air flushing of the lens of the camera
unnecessary. The industrial camera captures 30 frames/s
with an image resolution of 659×494 pixels. Using a 25 mm
lens, a spatial resolution of approximately 1 cm/pixel is
achieved. The origin of a fixed global coordinate frame
(x, y, z) is located at the center of the field of view (FOV).

The camera is connected via Gigabit Ethernet to a PC and
addressed using the so called pylon API. The pylon API is
based on the GenICam standard and allows an interface-
independent control of the camera in the respective soft-
ware application. Furthermore, the pylon API allows to
change a large number of parameters of the camera. An
important parameter is the exposure time which has to be
properly chosen to get high contrast images. The camera
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features an automatic control of the exposure time. Here,
the exposure time is adjusted until an average intensity
in a user-defined area of interest (AOI) is reached. In the
considered application, this AOI is chosen inside the plate
boundaries.

Several algorithms are available for the detection of edges
in bitmaps. These algorithms differ in terms of accuracy
and computational effort. A frequently used approach is
the so called Canny-algorithm (cf. Canny, 1986). However,
for the considered application, a tailored algorithm for the
detection of the plate edges is used because it features a
lower computational effort and simplifies the subsequent
image processing steps. The pylon API provides the local
intensity of the detected infrared radiation in the form of a
monochrome bitmap with 12 bit resolution. Instead of the
temperature bitmap, the intensity bitmap is utilized for
detecting the edges. This is favorable because the intensity
features similar transitions from the hot plate to the cold
surrounding area even for different temperature levels,
which simplifies the choice of an appropriate intensity
threshold Ith. For the considered application, the choice

Ith = Imin + Λ (Imax − Imin)

with the minimum Imin and the maximum Imax of the
intensity I in the considered image proved useful. The
relative threshold Λ ∈ [0, 1] is a user-defined constant.
In every column of the image, the two outermost pixels
where the threshold Ith is exceeded determine the edges
in horizontal direction. Analogously, edges in the vertical
direction are found by processing the rows of the image.
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Fig. 4. Intensity distribution of a single row of a cold and a
hot plate as well as detected edge pixels. The intensity
is normalized to the upper measurement limit Ilim of
the infrared camera.

Remark: The intensity is linked with the temperature by
the Stefan-Boltzmann law I = σT 4, where σ denotes the
Stefan-Boltzmann constant (cf. Baehr and Stephan, 2006).
Hence, an equivalent temperature threshold could alter-
natively be calculated and the edge pixel detection could
be performed using the temperature bitmap. However, the
relation between the intensity measured by the camera and
the temperature deviates from Stefan-Boltzmann’s law be-
cause of imperfections of the intensity measurement. The
mapping used in the software of the camera is generally
not open which denies a temperature based edge detection.

Fig. 4 shows the intensity distribution of a single row for
two different plates. The upper part of Fig. 4 shows the
intensity of a cold plate and in the lower part a very hot
plate is shown. Both plates feature a steep slope from the
outside margin of the plate to its inner part which turned
out to be characteristic. The parameter Λ is chosen so
that the detected edge pixels are in the region of the steep
slope. The detected edge pixels for Λ = 0.2 are marked
with crosses in Fig. 4.

After the threshold detection, the edge pixels are clustered
into 4 edges of the plate. Fig. 5 shows the clustering for
an exemplary plate. The left part of Fig. 5(a) shows the
detected edge pixels in horizontal direction in red and blue
dashed lines. Here, the edge pixels in horizontal direction

plate contour from
previous image

valid angular range

ϕ0 ϕ

(a) Clustering of the horizontal edge pixels.

valid angular range
(b) Clustering of the vertical edge pixels.

Fig. 5. Clustering of the edge pixels into edges.

are used to extract the longitudinal edges as shown in the
right part of Fig. 5(a). Consequently, the edge pixels in
vertical direction are used to extract the lateral edges (cf.
Fig. 5(b)).

The choice to use the horizontal edge pixels to extract the
longitudinal edges and the vertical edge pixels to extract
the lateral edges becomes obvious by considering Fig. 6.
Here, the detected edge pixels are shown for simplicity
reasons within a bitmap with a lower resolution than the
used infrared bitmap. For the considered plate orientation,
the number of edge pixels related to the longitudinal edges
is larger when using the horizontal instead of the vertical

Fig. 6. Horizontal and vertical edge pixels in a bitmap with
a low resolution.
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edge pixels. The same holds true for the lateral edges and
the vertical edge pixels.

Clearly, the decision to choose the edge pixels in horizontal
or in vertical direction for a specific plate edge relies
on the orientation ϕ of the plate. However, the actual
orientation ϕ is unknown during the edge detection and
therefore the orientation ϕ0 of the previously captured
image is used. In particular, the horizontal edge pixels
are clustered into longitudinal edges and the vertical edge
pixels are clustered into lateral edges if −π4 < ϕ0 ≤ π

4

or 3π
4 < ϕ0 ≤ 5π

4 . For the remaining angular range, i.e.,
π
4 < ϕ0 ≤ 3π

4 or 5π
4 < ϕ0 ≤ 7π

4 , the vertical edge pixels are
clustered into longitudinal edges and the horizontal edge
pixels into lateral edges.

It is required that the angle ϕ of a valid edge is within a
specific range, i.e.,

|ϕ− ϕ0| < γ,

for at least Kmin neighboring pixels with the angle ϕ0

from the previously captured image and a constant γ > 0.
The valid range is chosen based on the angular position
of the plate estimated in the previously captured image.
The local angle of the current edge is calculated using
a Savitzky-Golay filter, see, e.g. (Orfanidis, 1996) with
degree 2 and window length 11. The edges in the vertical
direction of the image are processed in an analogous
manner by filtering along the y-direction.

3. ESTIMATION OF THE ROTATION

In this section, an optimization-based approach for the
estimation of the rotation of the plate is presented. It uti-
lizes the plate edges found by the edge detection approach
from Sec. 2. When the whole plate is inside the FOV of
the camera for the first time, every edge of the plate is
numbered (cf. Fig. 7) and parameterized by a polynomial

edge 1

edge 2

edge 3

edge 4

x

y

pB1(x)

pB4(y)

Fig. 7. Parameterization of the plate edges.

with degree NB . This is called the initial configuration.
The edges 1 and 3 of this initial configuration of the plate
are parameterized as

pBi(x) =

NB∑

j=0

di,jx
j , i = 1, 3

and the edges 2 and 4 as

pBi(y) =

NB∑

j=0

di,jy
j , i = 2, 4.

Furthermore, a coordinate frame (xpl, ypl, zpl) with base
vectors expl

, eypl , and ezpl is fixed to the center of the plate

as shown in Fig. 8. The origin of the plate-fixed coordinate
frame at the time step k is shifted by (∆xk,∆yk, 0) and
rotated by the angle ϕk around the axis z with respect
to the global coordinate frame. The initial configuration is
characterized by x0, y0, and ϕ0 = 0 rad.

The presented approach aims at minimizing the alignment
error between the initial and the shifted actual configura-
tion of the plate by an appropriate choice of the unknowns
∆xk, ∆yk, and ϕk. This idea is materialized in the static
optimization problem

min
∆xk, ∆yk, ϕk

N1,k∑

j=1

(ȳM1,j,k − pB1(x̄M1,j,k))
2

+

N2,k∑

j=1

(x̄M2,j,k − pB2(ȳM2,j,k))
2

+

N3,k∑

j=1

(ȳM3,j,k − pB3(x̄M3,j,k))
2

+

N4,k∑

j=1

(x̄M4,j,k − pB4(ȳM4,j,k))
2

(1a)

subject to[
x̄Mi,j,k

ȳMi,j,k

]
=

[
cos(ϕk) sin(ϕk)
− sin(ϕk) cos(ϕk)

] [
xMi,j,k −∆xk
yMi,j,k −∆yk

]

+

[
∆x0
∆y0

]
(1b)

using measurement pairs (xMi,j,k, yMi,j,k), i = 1, . . . , 4.
These pairs contain the spatial coordinates of the edge
pixels detected in Sec. 2. Hence, Ni,k denotes the number
of detected edge pixels associated with the i-th edge at the
time step k. The expression (1b) transforms these coor-
dinates so that the plate-fixed coordinate frame coincides
with the coordinate frame in the initial configuration. Each
individual sum in (1a) penalizes the deviation between
the polynomial representation and the measurements of
a single edge. Note that the deviations are measured in
the global coordinate frame (x, y, z) in y-direction for the
transformed edges 1 and 3 and in x-direction for the
transformed edges 2 and 4.

initial
configuration

actual
configuration

x

y

z

xpl

ypl

zpl

ϕ

∆y

∆x

Fig. 8. Parameterization of the position and the orientation
of the plate.
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The literature offers different algorithms for solving the
optimization problem (1), see, e.g., (Nocedal and Wright,
2006) for an overview. For a compact notation, the nor-
malized optimization variables are arranged in the vector

w = [∆xk/m ∆yk/m ϕk/rad]
T

. The objective function
(1a) may be written in the quadratic form J = eTe. This
property enables the use of the Gauss-Newton method,
a numerical method to solve unconstrained optimization
problems. It proved useful for the considered problem due
its superlinear convergence rate and the fact that it only
requires the evaluation of the Jacobian J of e with respect
to w in every iteration but not the Hessian matrix. Ac-
cording to Nocedal and Wright (2006), the Gauss-Newton
method proceeds as follows:

Step 0: Set the initial guess for w.

Step 1: Compute the search direction d = −
(
JTJ

)−1
JTe

with J(w) = (∇e)
T

.

Step 2: Perform the update w← w + d.

Step 3: Check if any termination criterion (maximum

number of iterations, convergence) is fulfilled.

If yes, stop here.

Step 4: Start again at Step 1.

The termination criterion ‖d‖∞ < δ with the positive
constant δ is used to check if the solution is acceptable.
Furthermore, the Jacobian is calculated analytically which
leads to a better convergence rate of the optimization
problem compared to the use of numerical differentiation.
The solution of the optimization problem at the time step
k is used as initial guess for the subsequent optimization
at the time step k + 1.

4. MEASUREMENTS

In the following, results for a plate rolled at the heavy-
plate mill of AG der Dillinger Hüttenwerke are presented.
The results for the considered plate with 2.7 m length and
1.9 m width are shown in Fig. 9. The plate is first rotated
using the roller table. The subsequent alignment of the
plate in rolling direction is performed by maneuverable
side guides of the rolling mill. The parameters used in the
computations are listed in Tab. 2.

Table 2. Parameters of the material tracking
problem.

Parameter Value Unit

Λ 0.2
γ 0.7 rad
Kmin 30
NB 2
δ 10−3

In Fig. 9(a), the image of the plate captured at different
time steps is shown for a time interval of 14 s. Furthermore,
the edges detected with the approach from Sec. 2 are
shown as green lines and the origin of the plate-fixed

coordinate frame is marked with a red circle. As seen in
the images of the first five time steps in Fig. 9(a), there is
a spatially fixed disturbance in the lower part of the FOV.
This is a pyrometer, which is required for an accurate
measurement of the surface temperature. However, due to
the post-processing used in the clustering of the edges as
explained in Sec. 2, such disturbances do not deteriorate
the edge detection result. Fig. 9(b) shows the estimated
angle ϕ of the plate as a function of the time t. Due to the
frame rate of the camera of 30 frames/s, the estimation
is performed with a sampling time of Ts = 1/30 s. As
shown in the lower part of this figure, at most 3 iterations
of the proposed optimization routine are necessary until
the convergence criterion is fulfilled. The estimated spatial
position of the plate-fixed coordinate frame is shown in
Fig. 9(c). The trajectories from Fig. 9(b) and Fig. 9(c)
make sense from a physical point of view because the
transitions are adequately smooth and agree well with the
movements that can be inferred from looking at Fig. 9(a).
Note that the presented approach obviously can handle
situations where parts of the plate are outside the FOV.

It takes less than 6 ms to detect the edges within the
bitmap and approximately 4 ms to solve the optimization
problem in Matlab (Standard PC with i7-2600 @ 3.4
GHz processor and 16 GB RAM). In the estimation results
from Fig. 9, every image captured by the camera was
used. Depending on the velocity of the plate, a satisfying
estimation result is also achieved if not every captured
image is used in the optimization. For the scenario from
Fig. 9(a), an increase of the sampling time by a factor of
15 deteriorates the quality of the estimation result only
insignificantly.

5. CONCLUSIONS

In this paper, the material tracking problem in heavy-plate
rolling was discussed. In particular, the rotation and the
position of the plate being maneuvered in front of the mill
stand are estimated by means of thermographic images.
First, edge pixels are detected in a bitmap captured by an
infrared 2D-CCD camera. The information about the plate
edges is then utilized in an optimization-based approach
to estimate the angular and translational position of
the plate. Measurement results of a single plate have
shown that the proposed method accurately estimates the
position and the orientation of a rolled plate.

Until now, only the measurements of a single plate are
available to validate the material tracking approach. How-
ever, because of the results obtained for the shown plate
and from the gained experience of other vision-based
material tracking tasks in hot rolling (cf. Schausberger
et al. (2015)) the authors are confident that the proposed
method will also lead to satisfying results for plates with
different dimensions and material properties.

Further research topics include the automatic rotation of
the plate where the presented approach can be used as
a measurement to control the roller table and the side
guides. Here, feedback control could help to reduce the
time needed for the rotation of the plate. That is, the
throughput of the rolling process could be increased.

Post-print version of the article: F. Schausberger, A. Steinboeck, A. Kugi, M. Jochum, D. Wild, and T. Kiefer, “Vision-based material
tracking in heavy-plate rolling”, in Proceedings of the 17th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral
and Metal Processing (MMM), vol. 49, Vienna, Austria, 2016, pp. 108–113. doi: 10.1016/j.ifacol.2016.10.105
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.ifacol.2016.10.105


t = 0 s t = 1 s t = 2 s t = 3 s t = 4 s

t = 5 s t = 6 s t = 7 s t = 8 s t = 9 s

t = 10 s t = 11 s t = 12 s t = 13 s t = 14 s

(a) Thermographic images of a plate at different time steps and detected edges. The estimated position of the origin of the plate-fixed
coordinate frame (∆x,∆y, 0) is marked with a red circle.
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(b) Estimated angle ϕ of the plate and required optimization
iterations. The estimated angles at the time steps shown in
Fig. 9(a) are marked with circles.
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(c) Position (∆x,∆y, 0) of the plate-fixed coordinate frame. The
coordinate frame positions at the time steps shown in Fig. 9(a)
are marked with circles.

Fig. 9. Infrared bitmaps and estimation results for a plate rolled at AG der Dillinger Hüttenwerke, Germany.
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