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Feedback control of the contour shape in
heavy-plate hot rolling

F. Schausberger, A. Steinboeck, and A. Kugi

Abstract—This paper deals with mathematical modeling and
feedback control of the contour evolution in heavy-plate rolling.
During the rolling process, asymmetric rolling conditions in
the lateral direction may lead to a deviation between the
actual and the desired plate contour. Such asymmetric rolling
conditions are often unknown and hence cannot be compensated
in advance. Therefore, a feedback control approach to reduce
contour errors during the rolling process is presented. However,
the measurement of the plate contour is subject to a transport
delay which complicates the design of feedback controllers. The
angular velocity of the plate is also linked with its contour
evolution. This is why the delay-free measurement of the angular
movement is used in a 2-DOF Smith-predictor structure. The
basis for the control approach is a mathematical model describing
the nexus between the angular velocity and the contour evolution
of the plate. The feedback controller utilizes an upstream and
a downstream measurement of the contour and the movement
of the plate. Furthermore, a proof of the robust stability of the
proposed control concept is presented. Simulation results and
measurements from an industrial plant demonstrate that the
presented approach can significantly reduce the contour errors
of rolled plates.

Index Terms—Shape control of heavy plates, Heavy plate
rolling mill, Snaking, Smith-predictor, Model-based control,
Feedback control

I. Introduction

IN the production of heavy plates, the thickness is succes-
sively reduced to a desired plate thickness using heavy-

plate rolling mills (cf. Fig. 1). A single reduction of the
plate thickness is called pass or rolling pass and is typically
performed in alternating direction at reversing mill stands. The
head end of the plate is the first part of the plate to leave the
rolling gap, whereas the tail end passes the rolling gap at the
end of the pass. The quality of the final product is mainly
characterized by the material properties, the shape and the
thickness of the plate. The usable area after edge trimming
clearly depends on the shape of the plate. Hence, the resulting
plate contour is of special interest in the production process.
Imperfections of the plate contour may result from asymmetric
rolling conditions in the lateral direction of the plate. This
includes inhomogeneous input and/or output thickness profiles
in the width direction and spatially inhomogeneous as well
as time-dependent temperature variations of the plate. These
are the motivations for the development of controllers which
improve the shape of the rolled products, in particular the plate
contour. Asymmetric rolling conditions in the lateral direction
are often unknown and cannot be compensated in advance to

The authors are with the Automation and Control Institute, TU Wien, 1040
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Fig. 1. 4-high rolling mill and contour error (camber) appearing during the
rolling process.

prevent the plate from camber. Hence, a common approach is
to apply feedback if contour errors appear. Such approaches
require a measurement of the plate contour. Furthermore,
the camber formation has to be understood to be able to
calculate the necessary control inputs to the mill stand. For
this calculation, mathematical models covering the evolution
of the contour and the movement of the plate may be used. As
the considered contour errors are caused by asymmetric rolling
conditions, a common countermeasure is to use asymmetric
rolling gap profiles in the range of a few hundredths of a
millimeter. The resulting non-homogeneous deformation in the
rolling gap may lead to a rotation of the plate as discussed in
[1].

The angular velocity is linked with the lateral movement
(snaking) of the plate in the rolling gap. This movement
may lead to an off-center position of the plate in the lateral
direction. Because of the resulting asymmetric loading of the
roll stack, knowledge of the lateral position of the plate is also
vital for the necessary adjustment of the rolling gap actuators.

Moveable side guides are installed before and after the
considered mill stand, which center the plate in the lateral
direction before each rolling pass. During the rolling pass,
the downstream side guides are opened at their outermost
position. The upstream side guides can also be used to center
the plates which would otherwise move sidewards during the
rolling pass.

A. Existing solutions

The literature offers different approaches for the measure-
ment of the contour and the lateral position of heavy plates
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and strips (flat products) during the rolling process. In hot strip
rolling, several consecutive mill stands reduce the thickness
of the strip. Thereby, mainly the lateral position and the
movement of the product during the rolling process are of
interest. In heavy-plate rolling, the plate contour is also of
interest and should thus be measured.

Mainly 2D visible-light or infrared cameras are used as
measurement devices in the published approaches. A common
approach is to detect the edges of the processed material
within the bitmaps by means of an appropriate edge detection
algorithm, see, e.g., [2]. The lateral position of a strip can be
directly calculated from the detected edges, see, e.g., [3]. If
the heavy plate fits into a single image, the measurement of
the contour is equivalent to the detection of the plate edges,
see, e.g., [4] and [5].

In general, a heavy plate cannot be captured within a single
image because the plate may be long and partly hidden by
other plant components. Hence, the camera can only capture
parts of the rolled plate and the contour has to be determined
using a series of images. A method to join the detected edges
of neighboring images based on the longitudinal speed of
the plate and to ensure C1-continuity is presented in [6].
Algorithms that stitch together several images of the plate are
addressed in [7]–[9]. Common feature points are identified on
two consecutive images to determine the relative displacement
between the images from a CCD camera.

Several approaches for modeling of the contour evolution
and the movement of plates and strips in hot rolling may be
found in literature. In [1] and [10], models only utilizing the
continuity of mass in the rolling gap to predict the evolution
of the strip centerline are presented. Soaring computer perfor-
mance facilitates complex models that capture the elastoplastic
deformation of the rolled material and the elastic deformation
of the mill stand by means of the finite element method (FEM),
see, e.g., [11]–[15].

The problem of steering control in hot strip rolling is
addressed in [16]–[21] with control concepts ranging from
simple PID-control to model predictive control. Control strate-
gies for the reduction of contour errors in heavy-plate rolling
are barely discussed in literature. An early control-based
approach for the reduction of contour errors is addressed in
[22]. A model linking the thickness asymmetry in the lateral
direction with the resulting camber and a setup to measure the
camber of the plate are presented. The camber of the plate is
measured in the forward pass and the asymmetry of the rolling
gap is adjusted in the backward pass to reduce the camber.

A three-dimensional FEM simulation for the hot rolling of
heavy plates is presented in [23]. The rolls of the mill stand
are assumed to be rigid and the plate is treated as a rigid
perfectly plastic body. The simulation is used to design an
output feedback fuzzy controller to control the camber and
the lateral movement of the plate during the rolling pass by
adjusting the rolling gap asymmetry. Simulation results show
that the presented feedback controller outperforms simple PI-
control.

B. Motivations and objectives of this work

The camber reducing approaches found in literature do not
fully exploit the capabilities resulting from the alternating
rolling direction during heavy-plate rolling. The subsequent
rolling passes on reversing mill stands offer the use of two
different control strategies:
• Use the measurement of the plate contour to curb occur-

ring camber in the subsequent pass(es).
• Measure the plate contour and counteract to contour

errors during the same pass.
Devices to measure the plate contour cannot be installed

right next to the rolling gap but in a certain distance from
the mill stand. This distance induces a time delay (transport
delay) between the generation of the plate contour in the
rolling gap and the contour measurement. Hence all appearing
contour errors can only be corrected with a delay. Therefore,
a feedforward compensation of contour errors from one pass
to the subsequent pass (see, e.g., [24]) seems suitable.

Despite a feedforward controller, imperfections like dis-
turbances, model-plant mismatches, or inaccurate rolling gap
control may lead to a deviation between the required and
the actual output thickness profile and hence to a deviation
between the desired and the resulting contour. In particular
during the last rolling pass, no further correction of the contour
is possible with a feedforward approach. Hence, an additional
feedback controller seems favorable to reduce contour errors
emerging during the current rolling pass.

The measurement of the plate contour used for feedback
control should be as near as possible to the rolling gap to keep
the transport delay between camber generation and camber
measurement small. Directly at the mill stand, the harsh
environment may deteriorate the accuracy and the robustness
of measurements. Furthermore, the plate is covered by the
rolling mill nearby the rolling gap. Hence, the contour can only
be measured at a certain distance from the rolling gap. At the
considered rolling mill, the fields of view of the cameras that
capture the plate contour are located 5 m away from the rolling
gap. Clearly, the resulting transport delay of the measured plate
contour in general complicates the use of feedback controllers.
Nevertheless, the transport delay and its effect on feedback
control are generally not addressed in the literature on camber
control.

This is why a feedback control approach utilizing the
measurement of both the angular velocity and the contour of
the plate is developed in this work. It is shown that the angular
velocity of the plate is linked with the contour evolution.
The measurement of the angular velocity is not subject to
a transport delay and is therefore utilized in the presented
feedback control approach. In particular, a 2-DOF Smith-
predictor, i.e., a combination of a feedforward controller and
a feedback Smith-predictor controller, is used. A prerequisite
of the presented feedback control approach is that in addition
to the plate contour also the angular movement of the plate
can be measured. However, most of the contour measurement
approaches found in literature do not cover the measurement
of the plate movement. Hence, the measurement approach
presented in [25] is used. It features a contour and movement
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measurement tailored to feedback control. The output of the
feedback controller is added to the output of the pass-to-pass
based feedforward control presented in [24]. The feedforward
controller uses the measurement of the plate contour after
a rolling pass to determine the necessary asymmetry of the
rolling gap which yields the desired plate contour after the
subsequent rolling pass. This combination of the pass-to-pass
feedforward control and the feedback control should help to
fully utilize the alternating rolling direction in heavy-plate
rolling for the reduction of contour errors.

C. Overview of the control approach

Fig. 2 shows an overview of the proposed control system.
To measure the contour during the rolling pass, two infrared
cameras are installed at the ceiling of the rolling mill, one
before and one after the mill stand. This configuration allows
to measure the contour and the angular velocity of the plate
both upstream and downstream of the rolling gap. The evolu-
tion of the downstream contour also depends on the upstream
movement and contour of the plate. Hence, the measurements
of both cameras are used in the proposed feedback controller
to effectively reduce contour errors. Feedforward control is
applied in every pass with a valid plate contour measurement
obtained during the previous pass. The feedback controller is
always activated when the plate length exceeds a certain value
because almost no improvement of the contour can be achieved
by feedback for short plates.

The outputs of the feedback and the feedforward controller
are added and then sent to the automation system of the mill
stand.

feedback
control

feedforward
control

contour
measurement

contour
measurement

plate contour from
previous pass (pass j − 1)

pass j

+

+

Fig. 2. Downstream and upstream contour measurement in combination with
feedforward and feedback control.

D. Structure of the paper

The paper is organized as follows: Section II very briefly
summarizes the method from [25] that determines the contour
and the angular velocity of the plate. A mathematical model
of the contour evolution and the movement of the plate is
discussed and validated in Section III. Based on this model, a

feedback controller to reduce camber is presented in Section
IV. Furthermore, the robust stability of the proposed control
concept is shown. Simulation results and measurements shown
in Section V demonstrate the feasibility of the proposed
method. Section VI concludes the work with a summary.

II. Measurement of the plate contour and the plate
movement

The proposed feedback control approach essentially requires
the measurement of the plate contour and the movement
(angular and translational velocity) of the plate. These require-
ments are fulfilled by the contour and velocity measurement
approaches presented in [25] and [26]. In these approaches,
infrared 2D-CCD cameras are used to capture the plate. For
the considered application, infrared cameras are superior com-
pared to standard visible light cameras due to several reasons.
First of all, hot objects can be also captured through a cloud
of steam and due to the high thermal contrast between the
plate and its environment further illumination is not needed.
Furthermore, infrared cameras are not subject to disturbing
light sources in contrast to visible light cameras, where, e.g.,
sun light can be a problem.

Often, the whole plate contour cannot be captured by a
single image because the plate may be long and partly covered
by other plant components. Furthermore, the measurement
has to be continuously repeated during the rolling pass for
feedback control. Hence, the camera only captures parts of
the rolled plate and the contour has to be determined using
a series of consecutive images. The edges are detected in
the bitmaps with a threshold-based edge detection algorithm
and then used to estimate a polynomial representation of the
longitudinal plate boundaries. The optimization-based moving-
horizon estimator considers the restrictions of the movement
of the plate, i.e. that the plate is clamped in the rolling gap.
The measurement outputs are the plate contour (longitudinal
and lateral edges) and the angular velocity of the plate.
Furthermore, the longitudinal velocity can be estimated by the
presented approach as long as the head or tail end of the plate
is in the field of view (FOV) of the camera. A measurement
of the longitudinal velocity is necessary for the whole rolling
pass. This is why the velocity is estimated by means of the
approach presented in [26] which utilizes the generally non-
uniform temperature field of the plate (cf. Fig. 3).
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Fig. 3. Thermographic image of a heavy plate with a spatially fixed
disturbance (pyrometer).
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These inhomogeneities may be caused by non-uniform heat-
ing in the slab furnace or inhomogeneous conditions during the
rolling process and are in general unfavorable. However, they
are advantageous in terms of the used velocity estimation.

III. Modeling of the plate movement

In the following, a tailored mathematical model covering
the plate movement and the evolution of the plate contour is
described. This model is based on some kinematic assumptions
and the continuity equation. The model is the basis for an
online feedback control approach utilizing measurements of
the plate contour and the angular velocity of the plate up-
and downstream of the mill stand. Fig. 4 shows a top view
of the mill stand with the global coordinate frame (ξ, η, ζ)
(Eulerian coordinates). It is assumed that the material flow in
the rolling gap is strictly perpendicular to the work roll axis,
which implies that lateral spread of the plate in the rolling
gap is neglected. The camber characterized by the lateral
displacement δ(ξ) of the centerline of the plate is of interest
(cf. Fig. 4). The displacement δ(ξ) is the arithmetical mean of
the coordinates η of the longitudinal boundaries of the plate.
Clearly, δ(ξ) is a function of the time t because of the motion
and the deformation of the plate. For the sake of readability,
the argument t is omitted in the following. The centerline δ(ξ)

roll stack

vin(Y) vout(Y)

ξ

η

ζ
δ(ξ) = η1(ξ)+η2(ξ)

2

arctan(δ′(ξ))

η1(ξ)

η2(ξ)

Fig. 4. Top view of the rolling process.

can be computed based on the contour measurement. The local
slope δ′(ξ) of the centerline (with respect to the axis ξ) is

δ′(ξ) =
∂δ(ξ)
∂ξ

and the local curvature δ′′(ξ) follows in the form

δ′′(ξ) =

∂2δ(ξ)
∂ξ2

(
1 +

(
∂δ(ξ)
∂ξ

)2
) 3

2

≈ ∂2δ(ξ)
∂ξ2 . (1)

Because the local slope δ′(ξ) is expected to be very small the
curvature δ′′(ξ) can be approximated by ∂2δ(ξ)/∂ξ2.

A. Movement of the plate

In the following, a kinematic model of the movement of
the plate based on the continuity equation in the rolling gap
is derived. The model describes the effects of changing the
lateral asymmetry of the input thickness and the rolling gap
on the movement of the plate.

Consider the Lagrangian coordinate

Y = η − δ(ξ)
which points along the direction η because the influence of the
very small local slope δ′(ξ) on the Lagrangian coordinate Y
can be neglected. Y = 0 holds at the centerline of the plate and
Y = ±w/2 defines the boundaries of the plate, with w as the
width of the plate. Neglecting any bending deflection or crown
of the work rolls, the rolling gap height can be formulated as

hout(Y) = h̄out + h̃out(Y) = h̄out + ∆hout Y
w
, (2)

which implies h̄out =
(
hout(w/2) + hout(−w/2)

)
/2 and ∆hout =

hout(w/2) − hout(−w/2). In the same way, the input thickness
at ξ = 0 is parameterized in the form

hin(Y) = h̄in + h̃in(Y) = h̄in + ∆hin Y
w
. (3)

The plate enters the rolling gap with the velocity vin(Y) and
leaves it with the velocity vout(Y). These two velocities are
linked at the point ξ = 0 by the continuity equation

vin(Y)hin(Y) = vout(Y)hout(Y). (4)

Specialization of (4) for Y = 0 yields

v̄inh̄in = v̄outh̄out (5)

with the spatial mean values v̄in and v̄out of the upstream and
downstream velocities vin(Y) and vout(Y), respectively. Because
there are no external loads outside the rolling gap, the motion
of the plate can be characterized as a rigid-body displacement
both upstream and downstream of the rolling gap. Due to the
assumption of zero material flow along the lateral direction η
in the rolling gap, the upstream plate velocity vin(Y) is given
by

vin(Y) = v̄in − Yωin

and the downstream plate velocity vout(Y) by

vout(Y) = v̄out − Yωout.

The upstream mean translational velocity follows in the form

v̄in =
vin(−w/2) + vin(w/2)

2

and the upstream angular velocity is

ωin =
vin(−w/2) − vin(w/2)

w

with respect to the axis ζ at the origin. Similarly, the down-
stream mean translational velocity follows in the form

v̄out =
vout(−w/2) + vout(w/2)

2

and the downstream angular velocity is

ωout =
vout(−w/2) − vout(w/2)

w
. (6)
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From (5) the mean velocity of the downstream plate reads as
v̄out = v̄inh̄in/h̄out. The local velocity of the downstream plate
follows from (4) in the form

vout(Y) = vin(Y)
h̄in + ∆hin Y

w

h̄out + ∆hout Y
w

, (7)

where (2) and (3) have been inserted. The asymmetry of the
input thickness and the asymmetry of the rolling gap height are
expected to be small compared to their mean values. Therefore,
it is reasonable to linearize (7) at the point ∆hin = ∆hout = 0
resulting in

vout(Y) ≈
(
v̄in − Yωin

)


h̄in

h̄out
+

Y
wh̄out

∆hin − h̄inY

w
(
h̄out

)2 ∆hout

 .

(8)

Insertion of (8) into (6) yields

ωout =
v̄in

w


h̄in

(
h̄out

)2 ∆hout − 1
h̄out

∆hin

 +
h̄in

h̄out
ωin. (9)

That is, the angular velocity ωout of the downstream plate
depends on the velocities of the upstream plate (v̄in and
ωin) and the input and output thickness of the plate. Here,
a model of the forward and backward slip, see, e.g., [27]
and [28], is not needed because the upstream as well as the
downstream longitudinal and angular velocities are assumed
to be measurable.

B. Evolution of the camber
The evolution of the camber defined in terms of the plate

curvature δ′′(ξ) and its nexus with the angular velocities ωin

and ωout of the plate are analyzed in the following. The
objective of this analysis is to explore whether the camber
can be computed based on the measurement of the angular
velocities ωin and ωout and the longitudinal velocities v̄in and
v̄out of the plate according to Sec. II. If the machine vision
system is directly used for camber measurement of the part of
the plate that is currently in the FOV of the camera, there is
an inherent transport delay between camber generation and
camber measurement. This delay is clearly undesirable for
feedback control of the camber. However, this delay can be
avoided by using measurements of the angular velocity of the
plate.

The plate enters the rolling gap with the curvature
(
δin

)′′
=

δ′′(0−) and leaves it with the curvature
(
δout)′′ = δ′′(0+).

Because of the very small expected slope of the centerline
δ′(ξ), the angle ϕ(ξ) = arctan (δ′(ξ)) of the centerline may be
approximated by ϕ(ξ) = δ′(ξ) and the angular velocity of the
material follows in the form

dϕ(ξ, t)
dt︸   ︷︷   ︸
ω

=
∂δ′(ξ)
∂t

+
δ′(ξ)
∂ξ

dξ
dt︸︷︷︸
v

.

Hence, the angle δ′(0) changes according to
∂δ′(0−)
∂t

+
(
δin

)′′
v̄in = ωin (10a)

∂δ′(0+)
∂t

+
(
δout

)′′
v̄out = ωout. (10b)

Because of the thickness reduction h̄out/h̄in in the rolling gap
at Y = 0 and the associated elongation of the plate, the
downstream slope δ′(0+) follows in the form

δ′(0+) =
h̄out

h̄in
δ′(0−). (11)

Hence, the derivatives δ′(ξ) and δ′′(ξ) can be discontinuous
at ξ = 0. In the following, it is considered that h̄out/h̄in is
constant. Elimination of δ′(0−) and δ′(0+) in (10) and (11)
and insertion of (5) yields

(
δout

)′′
=
ωout

v̄out −
h̄out

h̄in

ωin

v̄out +

(
h̄out

h̄in

)2 (
δin

)′′
, (12)

i.e., a relation between the angular velocities ωin and ωout and
the curvature of the plate before and after the rolling gap.

C. Time-free formulation

So far, most of the quantities have been parameterized in
terms of the time t. This implies that the dynamical behavior
depends on the plate velocities v̄in and v̄out, which can vary,
e.g., if the rotational speed of the work roll changes. Hence, the
dynamical model is generally time variant and the transport
delay between the mill stand and some downstream curva-
ture measurement device can entail time delays of various
lengths. These drawbacks can be circumvented if the processed
downstream plate length is used as an independent coordinate
instead of the time t. Let

X(t) =

∫ t

0
v̄out(τ)dτ (13)

be the length of the already rolled part of the plate measured
along the direction ξ. More precisely, X(t) is the curvilinear
distance from the mill stand to the head end of the plate.
During a rolling pass that starts at the time t = 0 (head end
of the plate enters the rolling gap), X(t) grows from 0 to the
plate length. From (13), it follows that

Ẋ(t) = v̄out(t) (14)

or equivalently

dX = v̄out(t)dt.

Based on this relation, the angular displacements per unit
processed plate length are defined in the form

Ωin =
ωin

v̄out (15a)

Ωout =
ωout

v̄out . (15b)

Insertion of these relations and (5) into (9) and (12) yields the
time-free description of the camber evolution

Ωout =
1

wh̄out
∆hout − 1

wh̄in
∆hin +

h̄in

h̄out
Ωin (16a)

(
δout

)′′
= Ωout − h̄out

h̄in
Ωin +

(
h̄out

h̄in

)2 (
δin

)′′
. (16b)

Note that all variables in (16) can be formulated as functions
of the variable X (in lieu of t).

Post-print version of the article: F. Schausberger, A. Steinboeck, and Kugi, “Feedback control of the contour shape in heavy-plate hot
rolling,” IEEE Transactions on Control Systems Technology, vol. 26, no. 3, pp. 842–856, 2018. doi: 10.1109/TCST.2017.2695168
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1109/TCST.2017.2695168


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, XXXX 2016 6

D. Validation

In the following, the model of the movement of the plate
covering the static equations (16) is validated. For the valida-
tion of (16a), the input and the output thickness (mean value
and asymmetry) of the plate have to be known. The reached
tolerances on the mean thickness of the plate are tight and
therefore the desired values of the input and output thickness
are used for h̄in and h̄out. Hence, it is sufficient to measure
the asymmetries of the input and output thickness. However,
at the considered rolling mill a thickness measurement device
is only installed downstream of the mill stand. Therefore, the
thickness of the plate and hence the thickness asymmetry can
only be measured after every second pass. This is why (16a)
cannot be validated by means of measurements.

Contrary, (16b) can be validated because no thickness
asymmetries appear in (16b). In the validation, the curvature
of the downstream plate is calculated based on (16b) and then
compared to the curvature calculated from the measurement
of the downstream centerline according to (1). All necessary
quantities in the validation are determined by the contour
measurement approach from Sec. II. A Savitzky-Golay filter
with degree 3 and window length 31 is used to calculate the
curvature based on the measurement of the centerline.

The curvature of the upstream plate can be calculated during
the contour measurement itself based on the centerline of
the already rolled part of the plate. However, the curvature
of the downstream plate can only be calculated after the
contour measurement at the downstream camera. To this end,
the measured plate contour is shifted in time based on the
movement of the plate to compensate for the transport delay
and to determine the curvature in the rolling gap.

after passbefore pass

y
in

m

x in m
−20 −15 −10 −5 0 5 10 15 20

−2.3

−1.7

1.7

2.3

Fig. 5. Contour of the plate before and after the considered rolling pass.

The thickness of the plate used in the validation is reduced
from 19.9 mm to 18.5 mm in the considered pass. Fig. 5 shows
the measured contours before and after the rolling pass of the
plate with a desired plate length of 43.3 m.

Furthermore, Fig. 6 shows the measured upstream and
downstream angular displacements as a function of the already
rolled plate length X. Only the overlapping part of the angular
displacements in Fig. 6 can be used for the validation of (16b).
Hence, the measurements of a long plate are used for the
validation to have a large overlap.

In this scenario, the upstream angular displacement of the
plate is almost zero. This is because the upstream side guides
were positioned close to the plate edges to prevent the plate
from rotations and from moving sidewards. Contrary, the
downstream plate can rotate due to the opened downstream
side guides. For rolled plate lengths X(t) larger than approx-

ΩoutΩin

Ω
in

10
−3
/m

X(t) in m
−10 0 10 20 30 40 50
−2

−1

0

1

2

Fig. 6. Measured upstream and downstream angular displacements Ωin and
Ωout , respectively.

imately 35 m, the plate is no longer between the upstream
side guides. This leads to a change of the almost constant
downstream angular displacement of the plate (cf. Fig. 6).

calculatedmeasured

(δ
ou

t )′′
in

10
−3
/m

X(t) in m
5 10 15 20 25 30 35 40 45

−8

−6

−4

−2

0

Fig. 7. Measured and calculated downstream curvature of the plate (δout)′′.

Fig. 7 shows the measured and the calculated downstream
curvature of the considered plate. The mismatch between the
measured and the calculated values is in an acceptable range.
The missing upstream guidance of the plate for X ≥ 35 m may
also be seen in Fig. 7. It leads to a higher magnitude of the
curvature near the end of the plate.

IV. Feedback control during the rolling pass

A non-ideal control of the rolling gap actuators, model-
plant mismatches or disturbances may lead to a deviation
between the desired and the actual plate contour even if
feedforward control is used. Hence, an additional feedback
controller is used to (further) improve the contour of the
plate. Simple feedback control utilizing the directly measured
contour is difficult to apply because of the inherent transport
delay between the camber generation in the rolling gap and the
camber measurement. To circumvent this difficulty, a control
approach using the delay free measurement of the downstream
and upstream angular velocities of the plate is presented. The
mathematical model of the plate movement from Sec. III is
used in the controller design. It describes the nexus between
the angular velocity and the resulting curvature of the plate.

A. Plant model

As a preparation step for the feedback controller design,
the idealized time-free model (16) is supplemented by an
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output equation for the measured camber and by disturbances,
which may, for instance, be caused by external influences or
modeling errors. The inputs of the system are

u1 = ∆hout, u2 = ∆hin, u3 = Ωin, u4 =
(
δin

)′′
.

Here, u1 is a control input (tilt of the rolling mill) whereas
u2, u3, and u4 are externally defined, known inputs. The static
model (16) is supplemented by bounded disturbances (process
noise) d1 and d2 to get the plant model

x1(X) = Ωout =
1

wh̄out
∆hout
︸︷︷︸
u1(X)

− 1
wh̄in

∆hin
︸︷︷︸
u2(X)

+
h̄in

h̄out
Ωin

︸︷︷︸
u3(X)

+d1(X)

(17a)

x2(X) =
(
δout

)′′
= Ωout

︸︷︷︸
x1(X)

− h̄out

h̄in
Ωin

︸︷︷︸
u3(X)

+

(
h̄out

h̄in

)2 (
δin

)′′
︸︷︷︸

u4(X)

+d2(X).

(17b)

In the following, the root cause of these disturbances and their
bounds will be described in more detail. The disturbance d1
is mainly attributed to errors of the asymmetry of the input
and output thickness, because the mean thickness h̄ and the
width w of the plate are well known. From experience the
relative error ∆h/h̄ of the thickness asymmetry is in the range
of two percent. Hence, it follows that |d1| < 2 0.02

w by assuming
the same maximum absolute value 0.02 for the relative error
of the asymmetry of the input and output thickness. The
disturbance d2 essentially covers errors of the measurement of
Ωout, Ωin, and

(
δin

)′′
. Assuming a relative error of 10 % of each

measurement and considering that the curvatures and angular
displacements from (17b) are in the range of approximately
1 ·10−3/m it follows that |d2| < 3 ·10−4/m with h̄out

h̄in < 1.
For the controller design it is assumed, that the contour

measurement described in Sec. II exactly measures the respec-
tive quantities, i.e., without errors. The machine vision system
measures the current values v̄in, v̄out, ωin, and ωout as well as
δ′′(ξ) for these parts of the plate that are currently inside the
fields of view of the cameras. Therefore, the current (upstream)
value u4(X) =

(
δin

)′′
is also known from images previously

captured by the upstream camera. In contrast, a direct mea-
surement of the current (downstream) value x2(X) =

(
δout)′′

can only be made by the downstream camera after the plate
has traveled the (constant) distance ξcam > 0 from the rolling
gap to the field of view of the downstream camera along the
direction ξ. This causes a delay between the generation of the
camber and its measurement. In the plant model, the camera
system is represented by the output equations

y1(X) = x1(X) (18a)
y2(X) = x2(X − (ξcam + ξ̃cam)). (18b)

Here, ξcam is the known nominal distance, and ξ̃cam is the
unknown uncertainty of the distance. It is assumed that ξcam

and ξ̃cam are constant. Because of the unknown disturbances
d1 and d2 in the (static) process model (17), there is no need
to consider extra measurement noise in (18). The output y1(X)
is computed in the measurement system based on (15b) using
the measured current values v̄out and ωout.

Note that the process model (17) is a static mapping. The
only dynamical behavior of the plant model is the delay in the
output equation (18b).

B. Camber control

The model (17) and (18) serves as a basis for the controller
design and is rewritten in the compact form

x1(X) = (A1 + Ã1)u1(X) + (A2 + Ã2)u2(X) +
1

A3 + Ã3
u3(X)

+ d1(X) (19a)

x2(X) = x1(X) − (A3 + Ã3)u3(X) + (A3 + Ã3)2u4(X) + d2(X)
(19b)

y1(X) = x1(X) (19c)
y2(X) = x2(X − (ξcam + ξ̃cam)) (19d)

where the coefficients

A1 + Ã1 =
1

wh̄out
(20a)

A2 + Ã2 = − 1
wh̄in

(20b)

A3 + Ã3 =
h̄out

h̄in
(20c)

are assumed to be constant. Ai + Ãi represents the unknown
true value of the respective coefficient and Ai is its known
nominal counterpart used for all computations. Constancy of
these values is a reasonable assumption if h̄in is constant and
if the thickness controller ensures h̄out to be constant. This
assumption is not necessary for practical control implemen-
tation but will simplify the proof of the closed-loop stability.
The constants Ã1, Ã2, Ã3, and ξ̃cam capture the model-plant
mismatch and satisfy |Ã1| � A1, |Ã2| � A2, |Ã3| � A3, and
|ξ̃cam| � ξcam. They will be of interest in an analysis of the
robustness of the controller and are set to zero in the nominal
model.

outer
controller

inner
controller+ −

u1 y1y1,re f y2
y2,re f Plant

(19a),
(19c)

Plant
(19b),
(19d)

Fig. 8. Cascade structure of the feedback controller.

Fig. 8 shows the proposed cascade control structure with
two loops. The inner loop controls y1 = Ωout with the control
input u1 = ∆hout, whereas the outer loop uses the control input
y1,re f to make y2 =

(
δout)′′ follow y2,re f . As usual for cascade

control structures, the inner control loop is assumed to be ideal
for the design of the outer control loop.

1) Inner loop : The inner control loop, which controls the
plant (19a) and (19c), is outlined in Fig. 9. The control law is
formulated as

u1 = u1, f f (X) + u1, f b(X),
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where the feedforward part u1, f f (X) is calculated according to
[24] and

u1, f b(X) =
VI

A1
TI

(
y1,re f (X) − y1(X)

)

+
VI

A1

∫ X

0

(
y1,re f (X̄) − y1(X̄)

)
dX̄ (21)

defines the PI-feedback controller CI with the controller pa-
rameters VI and TI . In the feedforward approach (see [24]),

A1 + Ã1

A2 + Ã2

(A3 + Ã3)−1

u1

u2

u3

d1

y1y1,re f

u1, f f

u1, f b +

+

+

+

+

+

++ − CI

eI

inner control loop

Fig. 9. Inner control loop.

the contour measured after the previous pass is used to
determine the necessary adjustment u1, f f (X) of the rolling gap
actuators to compensate for the contour error in the actual pass.
Herein, a continuum-mechanics model (see [29]) is utilized
in an optimization-based approach. As usual for feedforward
control, u1, f f can be calculated before the actual pass. In the
following, a hat ˆ labels signals in the Laplace domain and
s ∈ C is the Laplace variable with the unit 1/m. The transfer
function of the PI-feedback controller is

CI(s) =
VI

A1

1 + sTI

s
. (22)

In the Laplace domain, the input-output relation defined by
(19a) and (19c) reads as

ŷ1(s) = (A1 + Ã1)û1(s) + (A2 + Ã2)û2(s)

+
1

A3 + Ã3
û3(s) + d̂1(s)

and the tracking error (closed-loop control error) follows in
the form

êI(s) = ŷ1,re f (s) − ŷ1(s)

=
1

1 + (A1 + Ã1)CI(s)

(
ŷ1,re f (s) − (A1 + Ã1)û1, f f (s)

− (A2 + Ã2)û2(s) − 1
A3 + Ã3

û3(s) − d̂1(s)
)
. (23)

For closed-loop stability, the denominator of (23) must be
Hurwitz. Insertion of (22) into (23) shows that this is satisfied
if VI > 0 and VITI > −A1/(A1 + Ã1) ≈ −1. The scaling
1/A1 in the control law (21) results in a closed-loop dynamics
independent of w and h̄out for Ã1 = 0. This property simplifies
the choice of the controller parameters VI and TI as they do
not have to be adjusted to plates with different dimensions.
The final value theorem shows that

lim
X→∞

eI(X) = lim
s→0

sêI(s) = 0

holds for constant inputs y1,re f , u1, f f , u2, u3, and d1, i.e., the
steady-state error vanishes in this case.

2) Outer loop : The outer control loop, which controls the
plant (19b) and (19d), is shown in Fig. 10. Here, a 2-DOF
Smith-predictor structure, i.e., a combination of a feedforward
controller and a feedback Smith-predictor controller is used,
see, e.g., [30] and [31]. Because the model in its time-free
formulation (16) is used for the controller design, the transport
delay of the measurement of the curvature is constant. That
is, when using the rolled plate length X as independent
coordinate, the transport delay simply represents the distance
between the mill stand axis and the measurement device.
Clearly, this results in a constant delay of the measurement.
Thus, a control approach with a classical Smith-predictor can
be applied to the mathematical model (17) and (18) in a
straightforward way. For the design and the analysis of robust
stability of this loop, the inner loop is assumed to be ideal,
which means y1 = y1,re f .

The control law

y1,re f (X) = y1, f f (X) + y1, f b(X)

with the feedforward controller FO defined by

y1, f f (X) = y2,re f (X + ξcam) + A3u3(X) − A2
3u4(X) (24)

and the PI-feedback controller defined by

y1, f b(X) = VOTOẽO(X) + VO

∫ X

0
ẽO(X̄)dX̄

is used for the outer control loop. The PI-feedback controller
of the outer control loop with the parameters TO and VO reads
as

CO(s) = VO
1 + sTO

s
. (25)

As usual for a Smith-predictor, the input of the feedback
controller is defined in the form

ẽO(X) = y2,re f (X) − y2(X) − (
y1(X) − A3u3(X) + A2

3u4(X)

− y1(X − ξcam) + A3u3(X − ξcam) − A2
3u4(X − ξcam)

)
,

where y1(X)−A3u3(X) + A2
3u4(X) is the internal model predic-

tion of x2(X) (cf. (19b)).
In the Laplace domain, the input-output relation defined by

(19b) and (19d) reads as

ŷ2(s) =
(
ŷ1(s) − Ā3û3(s) + Ā2

3û4(s) + d̂2(s)
)
e−sξ̄cam

with ξ̄cam = ξcam + ξ̃cam and Ā3 = A3 + Ã3. The closed-loop
transfer function relevant for internal stability can be written
utilizing Fig. 10, (24), and (25) in the form

[
ŷ1,re f (s)

ŷ2(s)

]
= T(s)



ŷ2,re f (s)
d̂2(s)
û3(s)
û4(s)


(26)
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Fig. 10. Outer control loop.

with the matrix

T(s) =
1

1 + L(s)
N(s)

=
1

1 + CO(s)
(
1 + e−sξ̄cam − e−sξcam

)
[
N11(s) N12(s) N13(s) N14(s)
N21(s) N22(s) N23(s) N24(s)

]
(27)

and the abbreviations

N11(s) = CO(s) + esξcam

N12(s) = −CO(s)e−sξ̄cam

N13(s) = A3 + CO(s)
(
Ā3e−sξ̄cam + A3(1 − e−sξcam )

)

N14(s) = −A2
3 −CO(s)

(
Ā2

3e−sξ̄cam + A2
3(1 − e−sξcam )

)

N21(s) =
(
CO(s) + esξcam

)
e−sξ̄cam

N22(s) =
(
1 + CO(s)(1 − e−sξcam )

)
e−sξ̄cam

N23(s) = −Ã3N22(s)
N24(s) = Ã3(2A3 + Ã3)N22(s).

Without any model-plant mismatch and with an exactly
known position of the curvature measurement, i.e. Ã3 = 0
and ξ̃cam = 0, satisfying VO > 0 and VOTO > −1 ensures the
BIBO stability of (26) and thus internal stability of the system.
VO > 0 and VOTO > −1 are assumed throughout this chapter.

In general, the position of the curvature measurement is un-
certain, i.e., ξ̃cam , 0. The control loop is rearranged as shown
in Fig. 11 for the test of internal stability. The task of proving
internal stability is to show that the transfer functions between
every input/output combination in the closed-loop system of
the signals shown in Fig. 11 are BIBO-stable. The signal y1, f f

can be shifted and added to uI and uO. Furthermore, the signals
uI and uO can be shifted behind the transfer function blocks
1 − e−sξcam and e−s(ξcam+ξ̃cam), respectively, because these two
transfer functions are BIBO-stable. Hence, the effect of uI

and uO is equivalent to that of y2,re f . Consequently, y1, f f , uI ,

and uO are not relevant for the stability analysis and are set to
zero, i.e., y1, f f = uI = uO = 0 and it is sufficient to show the
stability of the control loop with the reference value y2,re f as
input and y2 as output.

uO = d2 − Ā3u3 + Ā2
3
u4

y1 y2

ỹ2

y2,re f

y1, f f

y1, f b x2

uI = −A3u3 + A2
3
u4

+

++

++

+

+

+

++ − CO

ẽO
e−s(ξcam+ξ̃cam)

1 − e−sξcam

outer controller

Fig. 11. Proof of robust stability of the outer control loop.

However, it is easier to show the stability for the reference
value y2,re f as input and ỹ2 as output because this input/output
combination results in a SISO feedback control loop with L(s)
in the forward branch and gain 1 in the feedback branch.
Proving the stability for ỹ2 is sufficient because when ỹ2 is
bounded also y2 is bounded. The test for internal stability is
to analyze whether 1

1+L(s) ∈ Â, see [32], for all admissible
values of ξ̃cam, where Â is the set of Laplace transforms of
BIBO-stable impulse responses as defined in [32] or [33]. The
idea of a Nyquist-like stability test, see, e.g., [33], is used for
this analysis which consists of two parts:

First, it must be shown that L(s) can be written in the form

L(s) = La(s) + Lr(s),

where La(s) ∈ Â and Lr(s) is rational and strictly proper.
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Insertion of (25) into L(s) from (27) yields, see also Fig. 11,

L(s) =

(VO

s

)

︸︷︷︸
Lr(s) rational and strictly proper

+ VOTO

(
1 − e−sξcam (1 − e−sξ̃cam )

)
− VO

s
e−sξcam

(
1 − e−sξ̃cam

)

︸                                                                   ︷︷                                                                   ︸
La(s) ∈ Â

.

(28)

Second, 1 + L(s) has to be analyzed. Suppose that L(s) has
p poles in C+

0 . Here, C+
0 denotes the right half of the complex

plane, i.e. C+
0 = {s ∈ C : <{s} > 0}, with <{·} denoting

the real part. Let N̄∞ be the so-called Nyquist contour, which
is the semi-circle contour encompassing C+

0 in the clockwise
sense. This semi-circle has an infinite radius and its straight
section is generally the jω-axis (imaginary axis). However, if
L(s) features poles on the jω-axis, small detours around these
poles have to be made. These detours are small semi-circles in
the counterclockwise direction around these poles (so that the
detours are in C+

0 ). The radius of the detours is infinitesimally
small, meaning that they do not exclude any relevant part of
C+

0 . Based on these definitions, the second part of the Nyquist-
like stability test requires that

1 + L(s) , 0 ∀s ∈ N̄∞

and that 1 + L(s)|s∈N̄∞ encircles the origin (s = 0) p times in
the counterclockwise sense.

From (28), it follows that p = 0. Therefore,

<{1 + L(s)} > 0 ∀s ∈ N̄∞ (29)

implies that the second part of the above stability test is
satisfied. Because (29) is sufficient but generally not necessary
for the second part of the stability test, (29) may yield
an overly conservative (yet safe) approximation of the true
stability region. However, for the proposed outer loop, (29) is
a tractable stability test.

The following statement is shown in Appendix A. For
satisfaction of (29) with L(s) from (27) it is sufficient (though
not necessary) that VO > 0, TO > 0, and

1
VO

+ TO > 2

∣∣∣∣∣∣sin
(
ω
ξ̃cam

2

)∣∣∣∣∣∣

√
T 2

O +
1
ω2

︸                             ︷︷                             ︸
rhs(ω)

∀ω ∈ R.

The global maximum of rhs(ω) occurs, see Appendix B, at
the point

ω =


0 if TO ≤ |ξ̃cam |

2
√

3

±ω∗ otherwise
,

where ω∗ is the smallest strictly positive solution of

0 =

(
ξ̃camω

∗

2

)3 (
2TO

ξ̃cam

)2

+
ξ̃camω

∗

2
− tan

(
ξ̃camω

∗

2

)
.

The values ω∗ and rhs(ω) have to be numerically computed
whereas rhs(0) = |ξ̃cam|. These results show which conditions
the tuning parameters VO and TO have to satisfy for robust
closed-loop stability and conclude the stability analysis.

From (26), the tracking error of the outer loop follows in
the form

êO(s) = ŷ2,re f (s) − ŷ2(s) =
1

1 + L(s)
E(s)



ŷ2,re f (s)
d̂2(s)
û3(s)
û4(s)



with the abbreviation

E(s) =



1 − e−sξ̃cam + CO(s)(1 − e−sξcam )(
CO(s)(e−sξcam − 1) − 1

)
e−sξ̄cam

−Ã3

(
CO(s)(e−sξcam − 1) − 1

)
e−sξ̄cam

Ã3

(
2A3 + Ã3

) (
CO(s)(e−sξcam − 1) − 1

)
e−sξ̄cam



T

.

Using the final value theorem, it follows that

lim
X→∞

eO(X) = lim
s→0

sêO(s) = 0

for constant inputs y2,re f , d2, u3, and u4, i.e., ŷ2,re f (s) = 1
sα0,

d̂2(s) = 1
sα1, û3(s) = 1

sα2, and û4(s) = 1
sα3 with arbitrary

constants αi ∈ R, i = 0, 1, 2, 3. The steady-state error vanishes
in this case.

C. Implementation

The discussed feedback control laws are parameterized
as functions of the processed plate length X. However, the
angular and longitudinal velocities as well as the curvature
of the plate are measured with a fixed sampling time Ts, f b.
This is why the controllers are implemented in a discrete-
time form. Assuming piecewise constant inputs and using
the Euler-forward integration scheme for a sampling period
kTs, f b ≤ t < (k + 1)Ts, f b, the PI-feedback control law of the
inner loop at t = kTs, f b follows in the form

u1, f b(kTs, f b) =
VI

A1
TI

(
y1,re f (kTs, f b) − y1(kTs, f b)

)
+

VI

A1
xI,k,

(30)

with the update of the discrete-time integrator state

xI,k+1 = xI,k + v̄out(kTs, f b)Ts, f b

(
y1,re f (kTs, f b) − y1(kTs, f b)

)
.

The spatial increment Xk+1 − Xk = v̄out
(
kTs, f b

)
Ts, f b follows

directly from (14). By analogy, the PI control law for the outer
loop reads as

y1, f b(kTs, f b) = VOTOẽO(kTs, f b) + VOxO,k, (31)

with the update of the discrete-time integrator state

xO,k+1 = xO,k + v̄out(kTs, f b)Ts, f bẽO(kTs, f b).

The initial states of the integrators are set to xI,0 = xO,0 = 0.
Clearly, the sampling time Ts, f b must not be too large to ensure
a sufficient approximation of the initial continuous control
laws. Additionally, if Ts, f b is chosen too large the internal
stability of the system may be lost.

The feedback part u1, f b of the inner control loop is limited
to u1,min ≤ u1, f b ≤ u1,max to avoid an excessive (additional)
asymmetry of the output thickness of the plate. In combination
with the integrators used in the feedback controllers, such a
constraint of the control input can lead to a windup behavior
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of the controller, which is associated with a deterioration of
the control performance. This is why a simple anti-windup
scheme called conditional integration, see, e.g., [34], is added
to the control laws (30) and (31). The integrator state xI,k is
only updated if one of the conditions

u1,min < u1, f b(kTs, f b) < u1,max

u1, f b(kTs, f b) ≤ u1,min ∧ y1,re f (kTs, f b) > y1(kTs, f b)
u1, f b(kTs, f b) ≥ u1,max ∧ y1,re f (kTs, f b) < y1(kTs, f b)

is fulfilled. Otherwise, the integrator state is held constant. The
first condition ensures that the integrator of the inner controller
is updated if the control input u1, f b(kTs, f b) is within the given
limits u1,min and u1,max. The second condition is fulfilled if
the control input is below or equal to the lower limit u1,min

and the control error eI(kTs, f b) = y1,re f (kTs, f b) − y1(kTs, f b) is
positive. Hence, in case of an active lower constraint the update
is only performed when the violation of u1,min will be reduced.
Similarly, condition three should help to reduce the violation
of the limit u1,max.

The input y1,re f of the outer control loop is not subject to a
limitation. However, an active constraint of the input u1 of the
inner control should also be considered in the outer control
loop. Assume that the lower constraint of the inner loop is
active, i.e. u1, f b(kTs, f b) ≤ u1,min, then a further decrease of
the reference value of the inner loop y1,re f (kTs, f b) should be
avoided. Hence, the integrator state xO,k is only updated if the
control error of the outer loop is positive which leads to an
increase of y1,re f (kTs, f b). Analogously, if the upper constraint
is active, i.e. u1, f b(kTs, f b) ≥ u1,max, the integrator state xO,k is
only updated if the control error of the outer loop is negative.

Consequently, the integrator state xO,k is only updated for

u1,min < u1, f b(kTs, f b) < u1,max

u1, f b(kTs, f b) ≤ u1,min ∧ ẽO(kTs, f b) > 0
u1, f b(kTs, f b) ≥ u1,max ∧ ẽO(kTs, f b) < 0.

Here, the first condition represents the case where no con-
straint of the inner control input is violated. The second and
third condition should help to reduce the violation of an active
lower or upper constraint, respectively.

V. Simulations and measurements

In the following section, the impact of disturbances and
parameter uncertainties on the proposed feedback control
approach from Sec. IV is studied by means of simulations.
Furthermore, measurements from the considered mill stand
demonstrate the effectivity of the proposed method.

A. Simulation results

The last pass of a plate with a final plate length of 31.7 m
and a width of w = 2.59 m is considered in the simulations.
The plate thickness is reduced during the considered pass
from 15.1 mm to the final plate thickness of 13.1 mm. A
rectangular shape before the rolling pass and a homogeneous
input thickness profile (∆hin = 0) are presumed. Hence, the
feedforward part of the asymmetry vanishes, i.e., u1, f f = 0.
A long and thin plate was chosen because from experience it

is known that such plates tend to camber during the rolling
process.

The mathematical model of the movement of the plate (19)
is used to simulate the contour evolution in the considered
pass. The input and the output thickness profiles as well as
the centerline of the plate before the rolling pass are fed to
the mathematical model (19a) and (19b) and the outputs (19c)
and (19d) are used in the feedback controller.

TABLE I
Parameters used for the simulations of the feedback controller.

Parameter Value Unit

VI 0.5 m−1

TI 0 m
VO 0.4 m−1

TO 0.1 m
Ts,cm 33 ms
Ts, f b 100 ms
u1,min -100 µm
u1,max 100 µm
ξcam 5 m
Xmin 9 m

The plate is rolled with a constant rolling speed v̄out = 3 m/s
in forward direction. Furthermore, it is assumed that the
upstream angular displacement vanishes, i.e., Ωin = 0 (cf.
Fig. 6) because the upstream side guides are closed. A non-
ideal control of the rolling gap actuator is considered by
choosing d1 = A1∆u1 where ∆u1 = 20 µm represents a constant
disturbance of the asymmetry of the output thickness. The
disturbance d2 and the constants Ã1, Ã2, and Ã3 are set to zero.
The centerline and the movement of the plate are measured
with the sampling time Ts,cm = 33 ms which is also used
by the infrared cameras. However, the sampling time of the
discrete time controller is set to Ts, f b = 100 ms because the
desired asymmetry of the output thickness can only be changed
every 100 ms at the considered rolling mill. The controller
parameters shown in Tab. I were empirically determined on the
mill stand during a commissioning phase with different types
of plates. According to the stability analysis from Sec. IV-B2,
the parameters used for the outer controller ensure internal
stability for

∣∣∣ξ̃cam

∣∣∣ < 2.6 m. In the simulations ξ̃cam = 0 m is
used.

Because a central control objective is a straight plate, the
desired curvature is set to y2,re f = 0. The FOVs of the
cameras are located ξcam = 5 m away from the rolling gap.
The plate must range a few meters into the FOV for a reliable
measurement of the contour and the movement of the plate.
Therefore, a rolled plate length larger than the constant Xmin

(cf. [25]) is necessary to measure the downstream angular
displacement. Hence, the feedback controller is activated when
the minimum rolled plate length Xmin is reached, i.e., X > Xmin

is satisfied for the first time.
Fig. 12 shows the simulation results without and with

applying the feedback controller. The centerlines shown in the
upper part of this figure are centered in longitudinal direction
and rotated such that the slope

(
δout)′ vanishes at x = 0 m.
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Fig. 12. Simulation results of the feedback control approach with d2 = 0.

For X < Xmin, the camber of the plate cannot be reduced
since a measurement of the downstream plate is not available
at this time. However, for the remaining part of the plate,
i.e., X ≥ Xmin, the curvature can be reduced to almost zero.
As shown in Fig. 12, the necessary control effort in form of
the output asymmetry is in the range of 20 µm. The lower
part of Fig. 12 shows that the controller of the inner loop
ensures y1,re f = y1 within a few meters after the activation
of the feedback controller. The outer controller should not
be activated until y1,re f = y1 is sufficiently ensured because
otherwise the prerequisite of an ideal inner control loop is
not fulfilled. For the parameters used in the inner controller,
activating the outer controller for X ≥ Xmin + 6 m has proven
to be useful. The control effort y1,re f of the outer control loop
stays almost constant after the activation of the controller. The
tolerable overcompensation of the curvature of the centerline
seen in the upper part of Fig. 12 results from the non-ideal
inner control loop which is not incorporated into the design
of the outer controller.

The second simulation scenario is similar to the first one but
uses the constant disturbance d2 = 0.2 ·10−3/m. Fig. 13 shows
the simulation results with (TO , 0, VO , 0) and without
(TO = 0, VO = 0) the outer feedback controller CO. After some
distance for the feedback controller to become active (X ≈
20 m), the outer loop compensates the effect of the disturbance
d2. By contrast, without using the outer control loop the effect
of the disturbance d2 cannot be suppressed.

B. Measurements

In the following, measurement results from plates rolled at
the heavy-plate finishing mill of AG der Dillinger Hüttenwerke
are presented. The discussed control strategies and the algo-
rithmic part of the contour measurement system presented in
[25] were implemented in C++ and are executed on a standard
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Fig. 13. Simulation results of the feedback control approach with d2 =
0.2 ·10−3/m with and without using the outer control loop.

PC. The data exchange between this PC and the mill stand
computer is performed by means of TCP/IP messages.

1) Exemplary plate: The same parameters as in the sim-
ulations of the feedback controller are used in the real-
time implementation, see Tab. I. The center input and output
thickness h̄in and h̄out are set to the desired input and output
thickness of the plate, respectively.

The contour measurement has a lower sampling time
(Ts,cm = 33 ms) compared to the sampling time Ts, f b =

100 ms of the feedback controller. To avoid aliasing effects,
the mean value of the quantities measured by the contour
measurement within a sampling period Ts, f b are used in the
feedback controller. At the end of the rolling pass, upstream
measurements of the plate are not available due to the distance
between the FOV of the camera and the mill stand. If upstream
measurements are not available, the upstream quantities

(
δin

)′′

and Ωin are set to zero in the feedback controller. Fig. 14 shows
the results obtained for a plate with a final plate thickness
of 12.4 mm and a final plate length of 29.8 m. During this
rolling pass, the upstream side guides centered the plate in
the lateral direction. The upper part of Fig. 14 shows the
centerline of the plate before and after the rolling pass. The
centerline before the rolling pass only shows a small camber.
However, the plate shows a considerable camber near the
head end (x > 5 m) after the rolling pass. Nevertheless, the
curvature of the downstream centerline has been reduced to
almost zero after Xmin plus a few meters for the controller
to become active. Furthermore, Fig. 14 shows the control
efforts of the feedforward and the feedback controller u1, f f

and u1, f b, respectively. The desired and measured downstream
angular velocities are shown in the lower part of Fig. 14.
For the considered plate, the measurement of the downstream
angular velocity is very noisy. However, the proposed control
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Fig. 14. Measurement results of the feedback control approach applied to the
last pass of a 29.8 m long plate.

approach can significantly reduce the camber of the plate even
for measurements which are corrupted by large noise.

2) Statistics: The plates are trimmed to rectangular shapes
at the end of the production process. Clearly, the usable area of
the plates should be maximized. This requirement is equivalent
to maximizing the width of the blue region (usable area) inside
the plate boundaries shown in Fig. 15 when neglecting the
shape of the tail and head end. The maximum width of the
usable area is denoted by w∗ (cf. Fig. 15) and is determined
from the longitudinal boundaries of the plate by means of static
optimization. In the following, the difference ∆w = w − w∗ is
used as an aggregate measure of the plate width lost due to
contour errors.

replacements

x

y

z

w∗
w

Fig. 15. Plate with contour error and rectangular usable area inside the
longitudinal boundaries of the plate.

Fig. 16 shows the frequency distribution of the contour
errors obtained without any control and with the feedforward
control from [25] in combination with the presented feed-
back control approach. Thereby, 2600 plates were rolled with
camber control switched on and 2600 plates with comparable
dimensions and material properties were rolled without any
control. The plates used in the comparison have a minimal
plate length of 15 m and a maximum final plate thickness
of 30 mm. For shorter plates almost no improvement of the
contour can be achieved by feedback control because of the

minimal plate length Xmin = 9 m associated with the distance
between the FOV of the camera and the mill stand.
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Fig. 16. Frequency distribution of ∆w obtained without any control and with
feedforward and feedback control (sample size 2600 plates).

Compared to the plates without any camber control, the
mean value of ∆w has been reduced by approximately 40 %
by the feedforward and feedback controller. In comparison,
only using the feedforward approach from [25] has led to a
reduction of ∆w of approximately 20 %. Using both control
measures yields ∆w < 5 cm for 92 % of the plates.

VI. Conclusions

In this work, a feedback control approach for the reduction
of contour errors in hot rolling of heavy plates was developed.
First, a vision-based system for the measurement of the
movement and the contour of the plate was shortly revisited.
A model describing the nexus between the movement and the
evolution of the centerline of the plate during the rolling pass
was presented and validated by means of measurements of
a plate rolled during the standard production process. The
model was used in a feedback control approach to reduce
errors between the desired and the actual curvature of the
centerline during the rolling pass. In particular, a 2-DOF
Smith-predictor controller utilizing the delay-free measure-
ment of the angular velocity was presented. The presented
approach differs from the approaches found in literature as the
upstream and downstream contour and the movement of the
plate are simultaneously measured and utilized in the feedback
controller. Simulations and measurement results show that the
proposed control approach can significantly reduce contour
errors in hot rolling.
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Appendix A

For proving BIBO stability of (26), it is sufficient to satisfy

<{1 + L(s)} > 0 ∀s ∈ N̄∞. (32)
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Insertion of L(s) from (27) into (32) and evaluation along the
jω-axis yields

1
VO

+
1
ω

[
sin(ωξcam) − sin(ωξ̄cam)

]

+ TO

[
1 − cos(ωξcam) + cos(ωξ̄cam)

]
> 0.

Applying the summation formulas for trigonometric functions
results in

1
VO

+ TO > 2TO sin
(
ω(2ξcam + ξ̃cam)

2

)
sin

(
ωξ̃cam

2

)

+
2
ω

cos
(
ω(2ξcam + ξ̃cam)

2

)
sin

(
ωξ̃cam

2

)
. (33)

Using Pythagoras’ theorem, an upper bound of the right-hand
side of (33) is found in the form

2

∣∣∣∣∣∣sin
(
ωξ̃cam

2

)∣∣∣∣∣∣

√
T 2

O +
1
ω2 .

Hence,

1
VO

+ TO > 2

∣∣∣∣∣∣sin
(
ωξ̃cam

2

)∣∣∣∣∣∣

√
T 2

O +
1
ω2

ensures internal stability of (26).

Appendix B

The task is to determine the global maximum of

rhs(ω) = 2

∣∣∣∣∣∣sin
(
ω
ξ̃cam

2

)∣∣∣∣∣∣

√
T 2

O +
1
ω2 (34)

with respect to ω. Note that (34) is symmetric in ω. The
maximum of rhs(ω) is found by analyzing the roots ω∗ of
drhs(ω)

dω

∣∣∣
ω=ω∗ . The roots ω∗ follow from solving the equation

0 =

(
ξ̃camω

∗

2

)3 (
2TO

ξ̃cam

)2

+
ξ̃camω

∗

2
− tan

(
ξ̃camω

∗

2

)
. (35)

Utilizing the Taylor series expansion of tan(x) about 0, i.e.,
tan(x) = x + 1

3 x3 + 2
15 x5 + 17

315 x7 + . . . , (35) may be written in
the specialized form

0 =

(
ξ̃camω

∗

2

)3

[ (
2TO

ξ̃cam

)2

− 1
3︸         ︷︷         ︸

k1

− 2
15

(
ξ̃camω

∗

2

)2

− 17
315

(
ξ̃camω

∗

2

)4

− . . .
︸                                             ︷︷                                             ︸

k2(ω∗)

]
.

(36)

Clearly, ω∗ = 0 is a solution of (36). Because of k2(ω∗) ≤ 0, an
additional solution of (35) exists for k1 > 0, i.e., if TO >

|ξ̃cam|
2
√

3
.

The solution ω∗ = 0 only represents a maximum of rhs(ω)
if TO ≤ |ξ̃cam|

2
√

3
because then

d2rhs(ω)
dω2

∣∣∣∣∣∣
ω=0

=
1

12

∣∣∣ξ̃cam

∣∣∣
(
12T 2

O − ξ̃2
cam

)

is non-positive. For TO >
|ξ̃cam|
2
√

3
, the global maximum occurs at

ω = ±ω∗ where ω∗ is the smallest strictly positive solution of
(35).
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