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Control of a flexible beam actuated by macro-fiber

composite patches - Part II: Hysteresis and creep

compensation, experimental results

J. Schröck, T. Meurer, A. Kugi

Automation & Control Institute, Gußhausstr. 27-29, 1040 Vienna, Austria

E-mail: schroeck@acin.tuwien.ac.at

Abstract. This paper considers a flexible cantilever beam, which is actuated by

piezoelectric macro-fiber composite (MFC) patch actuators. For accurate positioning

tasks, special attention has to be paid to the inherent nonlinear hysteresis and creep

behavior of these actuators. A detailed analysis of the MFC-actuated cantilever verifies

that these nonlinearities can be efficiently captured by an operator-based model using

Prandtl-Ishlinskii’s theory. Based on a Hammerstein-like model with the nonlinearities

at the input connected in series with a linear infinite-dimensional beam model it follows

that hysteresis and creep effects can be compensated by application of the inverse

operator. Experimental results prove the feasibility of this approach. With this result

the tracking accuracy of the combination of the compensator with the flatness-based

feedforward control design as proposed in the companion paper [1] can be verified.

Measurements demonstrate the applicability of this approach for the realization of

highly dynamic trajectories for the beam’s tip deflection.
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1. Introduction

Piezoelectric ceramics is a very popular material in the field of actuator and sensor

technology because of its large bandwidth, fast response time and the ability to

generate high forces. However, since the displacements of piezoelectric actuators are

rather limited their main application areas are focused on micro-positioning devices

and vibration suppression. In some applications, piezoelectric patches are bonded on

or embedded in flexible lightweight structures, thus providing smart structures with

intrinsic sensing and actuating capabilities. In this context, PZT (lead zirconate

titanate) is one of the most widely used piezoelectric material. Due to the very brittle

nature of PZT patches the structure is locally significantly stiffened such that the

original flexibility of the lightweight construction is drastically reduced. This drawback

can be eliminated by the use of macro-fiber composite (MFC) patch actuators. These

patch actuators are composed of rectangular piezoceramic fibers embedded in an epoxy

matrix and covered by interdigitated electrodes on both sides of the patch. This

configuration results in a very flexible patch. Additionally, the large input voltage range

[−500,+1500] V together with a larger electromechanical coupling coefficient compared

to conventional PZT patches allow for higher actuation forces and larger displacements

[2].

However, it is well known that active materials, like magneto- and electrostrictive

materials, shape memory alloys as well as piezoelectric materials, show intrinsic

hysteretic behavior and creep effects [3], [4]. Especially in the case of positioning

tasks, where the full range of the input voltage has to be used in order to realize

large displacements, these nonlinear effects cannot be neglected. Since the systematic

consideration of hysteresis and creep behavior in the formulation of the constitutive

relations of piezoelectric materials is still an open question most attempts in dealing

with these nonlinearities are based on phenomenological approaches [5], [6]. In this

contribution, the nonlinear MFC-actuated beam structure is represented in the form of

a Hammerstein-like model consisting of a serial connection of the nonlinear hysteretic

and creep model and a linear infinite-dimensional beam model (see [7] for related

results for a PZT parallel trimorph bender). A very efficient way for modeling these

nonlinearities are the Preisach and the Prandtl-Ishlinskii operator approach [6], [8]. Due

to the Hammerstein-like structure the appropriate inverse operator yields the hysteresis

and creep compensator that annihilates the nonlinear behavior of the MFC actuators.

In order to exploit the pleasant property of the analytic invertibility of the Prandtl-

Ishlinskii operator the actuator nonlinearities have to show certain characteristics.

However, a detailed analysis of the actuator behavior verifies the application of the

Prandtl-Ishlinskii approach in case of the MFC-actuated cantilever shown in figure

1. This configuration of a flexible beam with piezoelectric patch actuators is also

investigated in the companion paper [1]. Therein, the motion planning and feedforward

control problem is systematically solved based on a linear infinite-dimensional system

description. In this contribution it is shown by experimental results that combining the
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Control of a flexible beam actuated by macro-fiber composite patches - Part II 3

flatness-based feedforward controller with the hysteresis and creep compensator allows to

realize the accurate tracking of highly dynamic trajectories for the beam’s tip deflection

without the excitation of spurious oscillations.

The paper is organized as follows: In Section 2, a detailed analysis of the nonlinear

MFC actuator behavior is presented followed by an operator based modeling approach

of the hysteresis and creep effects. Section 3 discusses the compensator design which is

verified by measurements in Section 4. The experimental results are twofold. On the

one hand, it is shown that the proposed compensator allows to cancel the hysteresis

and creep behavior of the MFC patches and on the other hand the feasibility of the

feedforward control design proposed in [1] is validated by means of measurements.

MFC-patch

carrier layer laser sensor
�������:

����������9

����9

Figure 1. Piezo-actuated flexible beam.

2. Analysis and modeling of the actuator behavior

In the following, a cantilevered rectangular flexible beam with one pair of MFC patch

actuators is considered, see figure 1. By application of an asymmetric voltage supply the

deflection of the beam is restricted to a pure bending motion. This means the voltage

applied to the patch on the front side of the beam ufs(t) and the voltage applied to the

patch on the back side of the beam ubs(t) are given by

ufs(t) = u0 + u(t) and ubs(t) = u0 − u(t), (1)

respectively. Here, the constant supply voltage u0 = (umax + umin)/2 is used to enable

a balanced voltage supply u(t) ∈ [−umax+|umin|
2

,+umax+|umin|
2

], whereas umin = −500 V

and umax = 1500 V are the actuator specific minimal and maximal supply voltages. In

order to achieve large displacements of the beam’s tip the whole input voltage range of

the MFC patch actuators has to be utilized. However, the typical large-signal behavior

of piezoelectric materials shows significant hysteretic nonlinearities and creeping effects

that cannot be neglected. Therefore, the nonlinear behavior of MFC patch actuators is

analyzed prior to the design of an appropriate hysteresis and creep compensator.
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Figure 2. (a) Response of the beam’s tip deflection due to a rectangular voltage signal

of 500V. (b) Detailed view of the time interval [5.1, 6.2] s.

2.1. Nonlinear behavior of MFC patch actuators

According to [6] a hysteretic nonlinearity is a causal and rate-independent relation with

memory effect between an input signal u and an output signal y. Here the term memory

indicates that the output depends not only on the present value of the input but also

on the evolution of the input in the past. The notation of creep originates from the

field of solid mechanics and describes a rate-dependent deformation behavior as shown

by visco-plastic and viscoelastic materials.

Both nonlinearities, hysteresis as well as creep, are fairly developed in the behavior of

MFC actuators. Figure 2 depicts the measured response of the beam’s tip deflection

due to a rectangular voltage signal with the amplitude u = 500 V in the time interval

t ∈ [5, 45]. After the decay of the transient behavior significant creep effects can be

observed. By comparing the beam’s tip deflection at t = 0 s and t = 90 s it can be

seen that there remains an offset of approximately 1 mm after the creeping comes to a

rest. Application of a smooth staircase voltage signal between −500 V and 1500 V, as

depicted in figure 3 (a), results in the beam’s tip deflection illustrated in figure 3 (b).

By combining these measurements as shown in figure 3 (c), where the tip deflection

is plotted over the applied voltage signal, the formation of a hysteretic loop can be

observed. Additionally, creeping becomes visible in terms of the appearing vertical

sections, where a change in the beam’s tip deflection occurs although the applied voltage

remains constant. The latter behavior is also called rate-dependent material behavior

with equilibrium hysteresis [9].

At this point it should be mentioned that piezoelectric actuators generally show

significantly less hysteretic behavior in the case of charge control [10]. Figure 4 depicts

the hysteretic loop of the tip deflection/voltage relation as well as the hysteretic loop

of the tip deflection/charge relation, whereas in the latter case the charge is measured

by means of a Sawyer-Tower circuit [11]. From this it can be deduced that charge

control has the potential to significantly reduce the hysteretic effects of MFC actuators.

However, it is well known that in case of charge controlled actuators stationary

deflections cannot be achieved due to their inherent leakage behavior. Therefore, in
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Figure 3. (a) Voltage signals applied to the patch actuator on the front and back

side, ufs(t), ubs(t), respectively, (b) position of the beam’s tip w(L, t), (c) hysteresis

and creep behavior of the tip deflection/voltage relationship.

practical applications charge control is typically combined with voltage control for the

stationary case yielding a so-called hybrid control concept. Another possibility is the

application of voltage control with hysteresis and creep compensation. This allows

to avoid specialized equipment and thus reduces the complexity and the costs of the

control hardware. For this, the systematic design and realization of an operator-based

compensator will be presented in the next sections.

2.2. Operator-based modeling

The fact that the tip deflection/charge relation exhibits less nonlinear behavior than

the tip deflection/voltage relation as discussed in the preceding section gives rise to

the assumption that the main nonlinear effects originate in the charge/voltage relation.

Assuming the electric flux density D2 = D3 = 0, D1 = u/(esβ11) [1] and integrating

over the effective electrode surface A yields the electric charge

q =

∫

A

D1dA = q0 +
A

β11es
W̃ [u] = q0 +W [u], (2)

where q0 reflects the charge due to the constant voltage u0 in the asymmetric voltage

supply (1) and W̃ as well as W denote the operators modeling the nonlinear hysteresis

and creep effects. Note that due to the symmetric configuration of the piezo-actuated

flexible cantilever the hysteresis and creep operator for the patch located at the front

side of the beam and the operator for the patch located on the back side of the beam

coincide, i.e. W
fs

= W
bs

= W . This can be verified by means of measurements as

depicted in figure 5, where the asymmetric voltage supply (1) is applied to the MFC

patch pair. This asymmetric voltage supply is realized by the wiring presented in figure

6, such that only one adjustable voltage source u(t) is required. The electric charge at

the connected middle electrodes is given by

q = qfs − qbs = W [u]−W [−u] = W [u]. (3)

Here, the operator W has the property of point symmetry with respect to the origin,

i.e. W [u] = W [u]−W [−u] = −(W [−u]−W [u]) = −W [−u], what is also confirmed by

means of the measurements presented in figure 5.

As shown in the preceding section, the nonlinear behavior of the actuator pair is
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Figure 4. Hysteretic effects in the relation of the beam’s tip deflection w(L, t) vs. the

actuator voltage u(t) and in the relation of the beam’s tip deflection w(L, t) vs. the

electric charge of the actuator q(t).

based on hysteresis and creep effects. These effects can be clearly distinguished by their

rate-independent and rate-dependent behavior, respectively, such that the operator W

can be defined by the superposition of a rate-independent hysteresis operator H and a

rate-dependent creep operator C, i.e.

q = W [u] = H [u] + C[u], (4)

see [12]. With this operator-based hysteresis and creep model the overall system of

the MFC-actuated cantilever can be represented in form of a Hammerstein-like model

illustrated in figure 7 consisting of the operator q = W [u] at the input connected in

series with the linear model of the beam structure. In order to identify the operators

H and C the nonlinear behavior of the MFC patch pair is investigated in more detail.

The measurements in figure 8 show that, apart from some minor variations, which result

from the superposed creeping effects, the hysteretic behavior corresponds to the typical

branching behavior also known as Madelung rules [13], [5]:

(i) Any curve c1 originating at a turning point p1 of the input-output trajectory is

uniquely determined by the coordinates of p1.

−1000 −500 0 500 1000
−2

−1

0

1

2x 10
−4

u (V)

q
(C

)

 

 

W [u]

W
fs
[u]

W
bs
[u]

Figure 5. Hysteresis operator of the patch pair W , of the patch at the front side of

the beam W
fs
, and of the patch at the back side of the beam W

bs
.
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Figure 6. Voltage supply of the MFC patch pair.

(ii) The curve c2 generated by any turning point p2 on the curve c1 leads back to the

point p1 and generates a minor hysteretic loop.

(iii) The continuation of the curve c2 beyond the point p1 coincides with the major

hysteretic loop and leads back to the point p1.

Additionally, the measurements in figure 8 (b) illustrate the so-called intersection

property [14]. This property states that infinitely many branches can originate from

a given point in the input-output plane (e.g. p3) for a given direction of the input

signal. In order to reproduce such intersection effects, the appropriate model of the

hysteretic nonlinearity requires an infinite-dimensional memory representation. The best

known examples of such systems, which include a so-called global-memory structure,

are the Preisach and the Prandtl-Ishlinskii operators. While the Preisach approach

allows to model very general hysteretic nonlinearities the Prandtl-Ishlinskii approach

considers only hysteretic nonlinearities with odd symmetrical loops. Note that this

restriction can be overcome by concatenating the Prandtl-Ishlinskii operator with an

asymmetrical memory-free nonlinearity, which results in the so-called modified Prandtl-

Ishlinksii operator, see, e.g., [8].

As presented in figure 8, the MFC-actuated flexible beam structure exhibits hysteretic

nonlinearities with odd symmetrical loops. Additionally, the Masing rule [5] is fulfilled,

i.e. input signals that vary between relative extrema of arbitrary but fixed amplitudes

generate congruent minor hysteretic loops. Thus all requirements are fulfilled to use the

Prandtl-Ishlinskii approach for the modeling of the hysteretic effects of the MFC patch

pair.

A detailed investigation of the creeping effect shows a clear correspondence to log(t)-

creep behavior. This is shown in figure 9 (b), where the transition phases of the beam’s

tip deflection, which result from the application of a smooth staircase voltage signal

W
C

H linear

beam structure

model

Figure 7. Hammerstein-like model of MFC-actuated beam structure
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according to figure 9 (a), are plotted over a logarithmic time axis. The varying slopes of

the lines in figure 9 (b) indicate that the creep behavior depends on the evolution of the

voltage signal in the past. This memory effect can also be modeled by the global-memory

structure of a Prandtl-Ishlinskii operator [12].

3. Compensator design

Due to the special structure of the operator-based model (4) it is obvious that a

compensator based on the inverse operator W−1, which is defined by

W−1[W [u]] = u, (5)

annihilates the hysteresis and creep behavior of the actuator pair and ensures a linear

input-output behavior. As mentioned in the preceding section the Prandtl-Ishlinskii

approach as well as the Preisach approach represent both adequate possibilities for

modeling the analyzed behavior. However, the determination of the inverse Preisach

operator can be performed only numerically and requires a high computational effort

while the Prandtl-Ishlinskii approach allows an analytical solution for the inverse

operator. This property is of great advantage in view of real-time implementation.
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Figure 9. Creep behavior shown by measurements of the beam’s tip deflection. (a)

Trajectory of the beam’s tip, (b) transition phases (1)-(6) depicted over a logarithmic

time axis.
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3.1. The Prandtl-Ishlinskii approach

In the following, the hysteresis and creep model with an input signal υ(t) and an output

signal ς(t) is defined by

ς(t) = H [υ](t) + C[υ](t) = W [υ](t), (6)

with the Prandtl-Ishlinskii operators H and C. For implementation purposes the

infinite-dimensional memory is approximated by a sufficiently high finite-dimensional

memory. This means that the operators H and C are defined by the superposition of a

finite number of elementary operators with local memory.

For the hysteresis operator, these elementary operators have to fulfill the Madelung

rules. Suitable elementary operators are the linear play and stop operators, see, e.g.,

[6]. In the following, only the linear play operator is considered. The play operator PrH

parametrized by the threshold value rH ∈ R+
0 is defined as

χH(t) = PrH [υ(t), χH(tj)]

= max{υ(t)− rH ,min{υ(t) + rH , χH(tj)}}, tj < t ≤ tj+1

(7)

with the initial consistency condition for χH(t0) = χH0 given by

χH0 = max{υ(t0)− rH ,min{υ(t0) + rH , χH0}} (8)

for piecewise monotonous input signals υ(t) with a monotonicity partition t0 ≤ t1 ≤
... ≤ tj < t ≤ tj+1 ≤ ... ≤ tN . Hence, the appropriate operator equation is usually given

in the form

χH(t) = PrH [υ, χH0](t). (9)

The finite-dimensional memory structure of the Prandtl-Ishlinskii hysteresis operator H

is achieved by the weighted superposition of nH + 1 elementary linear play operators

such that

ςH(t) = H [υ,χH0](t) =

nH∑

i=0

wH,iχH,i(t) =

nH∑

i=0

wH,iPrH,i
[υ, χH0,i](t), (10)

with initial values χH0 = [χH0,0, χH0,1, . . . , χH0,nH
]T , the weights wHi, and the threshold

values rHi with i = 0, ..., nH fulfilling the conditions
nH∑

i=0

wH,i < ∞, (11)

0 = rH,0 < rH,1 < rH,2 < ... < rH,nH
< ∞, (12)

whereas (11) ensures strong monotonicity in the branching behavior. In this

representation the outputs of the elementary operators χH,i are also called the inner

system states of the so-called threshold-discrete Prandtl-Ishlinskii hysteresis operator

H .

As already mentioned before, a similar approach can be used in order to model the

rate-dependent creep effects. Here, the elementary creep operator

χC(t) = KrC ,a[υ, χC0](t), (13)
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is defined by the solution of the nonlinear differential equation

d

dt
χC(t)− aPrC [υ − χC , 0](t) = 0 (14)

with the play operator PrC and the initial condition χC(t0) = χC0, see [15]. The

elementary operatorKrC ,a depends on the creep eigenvalue a ∈ R+ and on the threshold

value rC of the play operator. As shown in [14], the detected log(t)-creep behavior can

be reproduced by an unweighted superposition of mC elementary creep operators with

different creep eigenvalues aj , j = 1, ..., mC but equal threshold value rC , which results

in the so-called elementary log(t)-creep operator given by

ς̃C =
1

mC

mC∑

j=1

χC,j(t) =
1

mC

mC∑

j=1

KrC ,aj [υ, χC0,j](t). (15)

Finally, the model of the creep behavior with memory effect is given by a threshold-

discrete Prandtl-Ishlinskii creep operator that is based on a number of nC+1 elementary

log(t)-creep operators with different threshold values rC,i, i.e.

ςC(t) = C[υ,χC0](t) =

nC∑

i=0

wC,iς̃C,i =

nC∑

i=0

wC,i

mC

mC∑

j=1

KrC,i,aj [υ, χC0,i,j](t),(16)

with initial values χC0 = [χC0,1,1, χC0,1,2, . . . , χC0,nc,mc−1, χC0,nc,mc ]
T and

nC∑

i=0

wC,i < ∞, (17)

0 = rC,0 < rC,1 < rC,2 < ... < rC,nC
< ∞, (18)

In summary, the considered hysteresis and creep model (6) is given by two

threshold-discrete Prandtl-Ishlinskii operators consisting of (nC + 1)mC + nH + 1

inner state variables χ = [χH,0, ..., χH,nH
, χC,0,1, ..., χC,nC ,mC

]T that are determined

by nH + nC + 2 threshold parameters r = [rH,0, ..., rH,nH
, rC,0, ..., rC,nC

]T , mC

creep eigenvalues a = [a1, ..., amC
]T and nH + nC + 2 weighting parameters w =

[wH,0, ..., wH,nH
, wC,0, ..., wC,nC

]T .

For the compensator design the inverse hysteresis and creep operator υ(t) = W−1[ς](t),

which is defined by the implicit operator equation

υ(t) = H−1[ς − C[υ]](t), (19)

is required. The existence and uniqueness of this inverse operator is shown in [16].

For the real-time implementation of the compensator, a time-discrete solution based

on time-discrete hysteresis and creep Prandtl-Ishlinskii operators is derived in the

following. Assuming a staircase-shaped input signal that is constant between the

sampling instances (k − 1)Ts and kTs with sampling time Ts the time-discrete play

operator P̂rH and the time-discrete elementary creep operator K̂rC ,a are given by [15]

χk
H = P̂rH [υ

k, χk−1
H ] = max{υk − rH ,min{υk + rH , χ

k−1
H }},

χk
C = K̂rC ,a[υ

k−1, χk−1
C ] = χk−1

C +(1−exp−aTs)P̂rC [υ
k−1−χk−1

C , 0].
(20)
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Note that the output of K̂rC ,a at the time instance k depends only on the state of the

rate-dependent part χk−1
C and on the input υk−1 at time instance (k − 1)Ts. From this

it follows that the compensator in its time-discrete form

υk = Ĥ−1[ςk − Ĉ[υk−1]] (21)

is no longer an implicit operator equation. It can be shown that under the assumption

that the Prandtl-Ishlinskii hysteresis operator H has a strong monotonicity in the

branching behavior (11) the appropriate inverse operator H−1 exists uniquely and is

again a Prandtl-Ishlinskii operator, see [17]. This also holds true for the time discrete

form of the inverse hysteresis operator υk = Ĥ−1[ς, χ′
H0]

k, where the weights w′
Hi,

thresholds r′Hi, and initial values χ′
H0i can be calculated by simple transformation rules

from the appropriate values of the original operator, see, e.g., [18]

r′H,j = wH,0rH,j +
∑j

i=1 wH,i(rH,j − rH,i),

w′
H,0 = 1

wH,0
, w′

H,j = − wH,j

(
∑j

i=0 wH,i)(
∑j−1

i=0 wH,i)
,

χ′
H0,j = (

∑j
i=0wH,i)χH0,j +

∑n
i=j+1wH,iχH0,i.

(22)

Hence, after the identification of the hysteresis and creep parameters represented by the

weights, the thresholds and the creep eigenvalues the output signal of the compensator

υk can be directly calculated by means of (21).

3.2. Determination of hysteresis and creep parameters

As shown in [14] the identification problem of the hysteresis and creep model (6) can

be solved by the following procedure. After an appropriate choice of the model order

represented by nH , nC , and mC , the thresholds are calculated according to

rH,i =
rmax

nH + 1
i, i = 0, ..., nH , rC,i =

rmax

nC + 1
i, i = 0, ..., nC , (23)

where rmax is set to the maximum value of the absolute input signal, i.e. rmax =

max|υ(t)|. In order to reproduce the linear creep response shown in figure 9, the creep

eigenvalues of the model have to be exponentially distributed [14], i.e.

aj =
1

10jTs
, j = 1, ..., mC . (24)

The determination of the weights w = [wH,0, ..., wH,nH
, wC,0, ..., wC,nC

]T relies on the

minimization of the least-squares measure based on the output error constrained by the

linear inequality constraints (11) and (17), i.e.

min
w

1
2

te∫
ts

(W [υ](t)− ς(t))2dt,

subject to
nH∑
i=0

wH,i < ∞,
nC∑
i=0

wC,i < ∞.

(25)

On the assumption that the error model is non-redundant in the weights and all

elementary operators get excited during the identification process by choosing an

appropriate input signal the constrained minimization problem is strongly convex and

has a unique solution [19].
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Figure 10. Effect of the compensator in comparison to figure 3 (represented by grey

lines). (a) Voltage signals generated by the compensator for the patch actuator on the

front and back side, ufs
hcc(t) and ubs

hcc(t), respectively, (b) position of the beam’s tip w,

(c) compensated hysteresis and creep behavior w/u.

4. Experimental results

In a first step, the effectivity of the hysteresis and creep compensator is verified by

measurements. Afterwards, it is shown that the combination of this compensator with

the feedforward control design as proposed in the companion paper [1] allows to perform

accurate highly dynamic open-loop tracking control.

4.1. Hysteresis and creep compensation

The model order of the hysteresis and creep model is chosen in form of nH + 1 = 12

elementary hysteresis operators and nC + 1 = 12 elementary log(t)-creep operators

with mC = 5 creep eigenvalues. By applying a periodic staircase voltage signal as

depicted in figure 3 (a) with the overall amplitude being sequentially reduced in each

period, the weights w are determined by minimization of the least-squares error (25).

The application of the resulting compensator (21) shows that this approach almost

completely eliminates the actuator nonlinearities, see figure 10. For comparison reasons,

the same scenario as presented in figure 3 is utilized, whereas the results without

hysteresis and creep compensation are depicted by the grey lines. Hence, figure 10

(a) allows to compare the prescribed voltage signals (grey) with voltages generated by

the compensator (black). Obviously, the nonlinear actuator behavior is eliminated by

adaption of the voltage step height and by the decreasing voltage peaks at the beginning

of each step. Clearly, apart from some minor variations this results in a linear relation

between the beam’s tip deflection and the prescribed voltage signal.

4.2. Model identification

For the realization of the feedforward control design proposed in [1] the determination

of the system parameters of the MFC-actuated cantilever is of decisive importance. The

experimental setup includes a cantilever beam structure consisting of pre-impregnated

glass fibre material of dimension L = 0.22m, bc = 0.075m, and hc = 0.7× 10−3m. On

each side of the beam an MFC patch actuator (type M8557P1, see [20]) with an active

area of dimension Lp = 85 × 10−3m, bp = 57 × 10−3m, hp = 3 × 10−4m, and electrode
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Figure 11. Schematics of the considered flexible beam actuated by one pair of MFC

patches.

spacing es = 5 × 10−4m, is bonded symmetrically at a distance of xp = 32.5 × 10−3m

from the clamped edge (cf. figure 11). The beam’s tip deflection is measured by a

laser sensor based on the triangulation measurement principle. The measurements and

the implementation of the feedforward control concept are realized using the real-time

control board DS1103 of dSPACE with a sampling time of Ts = 0.2ms. The power

supply is provided by two high-voltage four-quadrant power amplifiers PA05039 of Trek

Inc. [20]. With respect to the Hammerstein-like model the linear flexible beam model

is given by

µ(x1)∂2
tw + γe(x1)∂tw + ∂2

x1

(
Λ(x1)∂2

x1w + γi(x1)∂t∂
2
x1w

)

= −2uΓp∂
2
x1Ω(x1),

(26)

together with the respective boundary conditions (BCs) at the clamped end (x1 = 0)

and at the free end (x1 = L) following as

w = 0, ∂x1w = 0, for x1 = 0

Λc∂
2
x1w + γi

c∂t∂
2
x1w = 0,

Λc∂
3
x1w + γi

c∂t∂
3
x1w = 0,

}
for x1 = L.

(27)

Here, µ(x1) = Acρc + 2ApρpΩ(x
1) denotes the mass per unit length, Λ(x1) = Λc +

2ΛpΩ(x
1) the stiffness, γe(x1) = γe

c + 2γe
pΩ(x

1) and γi(x1) = γi
c + 2γi

pΩ(x
1) the viscous

and Kelvin-Voigth damping coefficient, respectively, while Γp = Ap(hc+hp)h
11
1 /(2β11es)

summarizes some material parameters and Ω(x1) = [h(x1 − xp)− h(x1 − xp − Lp)] with

the Heaviside function h(·) specifies the placement of the MFC-patch pair. For further

details and the derivation of the equations of motion the reader is referred to [1].

In order to account for model uncertainties due to an anisotropic behavior of the

material and due to the neglected adhesive layers between the MFC patches and the

beam material a parameter identification has to be performed. Note that in general

this is not a trivial task since some parameters of the model will be significantly

influenced by the hysteresis and creep effects of the MFC actuators. However, the

application of the developed compensator, which cancels the nonlinear effects, allows to

determine the parameters of the linear beam model by means of standard identification

techniques. Measurements demonstrate that the step response of the hysteresis and

creep compensated MFC-actuated beam represents the typical behavior of a linear beam
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Figure 12. (a) Step response with and without hysteresis and creep compensation,

yhc and y, respectively. (b) Input voltages of the patch actuator on the front side of

the beam with and without compensation, ufs,d
hcc (t) and ufs,d(t), respectively.
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Figure 13. (a) Comparison of measured y and simulated step response ysim. (b)

Detailed view of the time period [1, 1.25] s

model, as is illustrated in figure 12 (a). Clearly, the creep effects are fully canceled out by

application of the voltage signal generated by the compensator, which is shown in figure

12 (b) for the patch on the front side of the beam ufs,d
hcc (t). This allows the identification

of the system parameters according to γe
c = 10−3 kg/(sm), γi

c = 5.1 × 105 kgm3/s,

γe
p = 2.93 kg/(sm), γi

p = 106 kgm3/s, Yc = 17.06 × 109 Pa, c1111p = 31.97 × 109 Pa,

ρc = 1187.6 kg/m3, ρp = 4761.4 kg/m3, and a111 /β11 = 11.88As/m2 by minimizing the

mean square error between a measured and a simulated step response based on the

finite-dimensional approximation with n = 15 basis functions [1]. As illustrated in

figure 13, these parameter values result in an excellent agreement of the measured and

the simulated step responses of the MFC-actuated cantilever.

4.3. Feedforward tracking control

Finally, the tracking behavior achieved by the feedforward control proposed in [1]

combined with the hysteresis and creep compensation is investigated in experiments. For

this, the parametrization of the finite-dimensional model [1, Section 3.2.] is evaluated

with n = 15 basis functions. The nominal input voltage ufs/bs,d(t) = u0 ± ud(t), with
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ud(t) determined from the proposed input parametrization [1, Eq. (33)], is calculated

based on the same flat output trajectory zd(t) as already considered in the simulation

scenario in [1], i.e.

zd(t) =





zd0 , t < 0

zd0 +
zdT
2

(
1 + tanh

(
2( 2t

T
−1)

( 4t
T (1−

t
T ))

σ

))
, t ∈ [0, T ]

zd0 + zdT , t > T

(28)

where the slope and the transition time of this function is chosen by σ = 1.1 and T =

0.75 ms, respectively. Note that the first eigenfrequency of the considered beam structure

is at about 12 Hz such that the transition time T is smaller than the time constant

corresponding to this eigenfrequency. As depicted in figure 14 (a) and (b) measurements

of the beam’s tip displacement show a very accurate realization of prescribed highly

dynamic rest-to-rest trajectory from yd(t0) = 0 m to yd(t0 + T ) = 0.01 m without

excitation of spurious oscillations. Of course, this result strongly depends on the correct

compensation of the hysteresis and creep effects. Figures 14 (c) and (d) compare

the nominal input voltage ufs,d(t) to the pre-processed output voltage ufs,d
hcc (t) of the

compensator, which is finally applied to the MFC actuator on the front side of the

beam. In particular after completion of the transition phase the evolution of the voltage

signal ufs,d
hcc (t) shows the contribution of the creep compensation that is necessary to

obtain a constant drift free tip displacement of the beam. It has to be emphasized

that no feedback control is involved but only the determined feedforward control with

hysteresis and creep compensation is applied to the MFC patch actuators.

5. Conclusion and outlook

This contribution presents an operator based compensator design for an MFC-actuated

flexible beam. A detailed analysis of the inherent hysteresis and creep behavior of

the considered MFC patch actuators shows that these nonlinearities can be efficiently

modeled by means of a Prandtl-Ishlinskii operator. Based on a Hammerstein-like

model with the hysteresis and creep operator at the input connected in series with a

linear infinite-dimensional beam model the compensator directly results from the inverse

operator. The pleasing property that the inverse operator is again a Prandtl-Ishlinskii

operator and the fact that the weight and threshold parameters of the inverse operator

can be directly determined by simple transformation rules from those of the original

operator makes this approach very suitable for an automated identification procedure

in a realtime environment. Measurements prove that this compensator design allows

to cancel the nonlinearities induced by the hysteresis and creep effects of the MFC-

patch actuators. Additionally, the applicability of the motion planning and feedforward

control design proposed in [1], which is based on an infinite-dimensional hysteresis and

creep compensated model, is validated by experimental results. Measurements show that

highly dynamic rest-to-rest trajectories for the beam’s tip deflection can be realized with

high tracking accuracy.

Post-print version of the article: J. Schröck, T. Meurer, and A. Kugi, “Control of a flexible beam actuated by macro-fiber composite
patches: II. Hysteresis and creep compensation, experimental results”, Smart Materials and Structures, vol. 20, no. 015016, pp. 1–10, 2011.
doi: 10.1088/0964-1726/20/1/015016
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1088/0964-1726/20/1/015016


Control of a flexible beam actuated by macro-fiber composite patches - Part II 16

2 3 4 5 6 7 8

0

2

4

6

8

10

x 10
−3

t (s)

y
(m

)

 

 

yd
y

(a)

2.8 2.85 2.9 2.95 3

0

2

4

6

8

10

x 10
−3

t (s)

y
(m

)

 

 

yd
y

(b)

2 4 6 8
400

600

800

1000

1200

1400

t (s)

u
(V

)

 

 

ufs,d

ufs,d
hcc

(c)

2.8 2.85 2.9 2.95 3

600

800

1000

1200

1400

t (s)

u
(V

)

 

 

ufs,d

ufs,d
hcc

(d)

Figure 14. Experimental results for the application of the flatness-based feedforward

control to the flexible cantilevered beam with two MFC patch actuators. (a) Desired

(gray) and measured (black) output trajectory. (c) Input voltage ufs,d(t) = u0−ud(t)

with u0 = 500V applied to the patch actuator on the front side: nominal input

ufs,d(t) (dashed line) and input after the pre-processing by the hysteresis and creep

compensation ufs,d
hcc (t) (solid line). (b),(d) Detailed views of the time period [2.8, 3] s.

Future research is devoted to augment the feedforward control with feedback control

within the so-called two-degrees-of freedom control concept (see, e.g., [21]) in order to

be able do suppress disturbances acting on the beam structure.
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