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Non-collocated Feedback Stabilization of a
Non-Uniform Euler-Bernoulli Beam with In-Domain Actuatio n

J. Schrock, T. Meurer, A. Kugi

Abstract— For the stabilization of a flexible beam actuated validated by means of experimental results, which confirm
by piezoelectric patches a Lyapunov-based _control stratggis  the applicability of the presented approach.
presented in terms of a non-collocated dynamic output feedick 1 haner js organized as follows. In Sec. |1, the abstract op
control. Thereby, a distributed-parameter Luenberger obsrver - - . .
is incorporated to provide an estimate of the variables reqired eratqr theoretic formulatlon of the equatflons of.mf)tlonhfft
by the control law. Besides the proof of asymptotic Stabll& of ConSIdered non-unlform Eulel‘-Bel’nou”l beam IS |ntr0dﬂ.lce
the closed-loop system, the derived control concept is velited Based on this, the design of the non-collocated feedback
by experimental results. control with observer is derived in Sec. Ill and validated by

measurements results at a laboratory test bench in Sec. IV.
. INTRODUCTION Some final remarks conclude the paper.

The stabilization problem of flexible beams is a widely
studied problem in the areas of aerospace as well as ropotics Il. MODELING AND ANALYSIS
e.g., flexible space structures and lightweight robots.-Typ |n this contribution, the feedback stabilization problem
ically, the control design is based on a finite-dimensionas considered for a cantilevered Euler-Bernoulli beam with
approximation of the governing partial differential equatip mass. The beam is actuated by pairs of piezo-electric
tions. However, this early lumping approach may lead tgatch actuators, where the patches on the front sigeeafd
non-satisfying control performance or, even worse, utstabthe patches on the back sides) are bonded symmetrically
closed-loop behavior induced by the well-known control an@nto the beam structure, see Fig. 1. Utilizing an asymmetric
observer spillover problem [1], which originates from the

neglected system dynamics. This can be avoided by the late
lumping approach, which directly exploits the distributed =
parameter description of the system in the control design.
In the following, a PDE-based control design for the sta-
bilization of an Euler-Bernoulli beam actuated by a finite
number of spatially distributed piezoelectric patcheshwit
additional tip mass is considered, see Fig. 1. While most con

Mim, Itm

T Tpa

IS

trol strategies for beam stabilization utilize boundarytcol, Fig. 1. Cantilever beam with pairs of patches.
see, e.g., [2], the actuation of the beam considered in this Fa(bs)
contribution represents an in-domain actuation resuiting  voltage supply u;”"(t) = uo Huk(t), k = 1,..., N,

non-uniform beam configuration. For this beam structure, #is type of actuation allows to locally induce bendingistsa
Lyapunov-based control design is presented, which is basithin the patch covered intervals,, i, 2,1 + L,] of the
on the collocation property of the actuator input and a dertabeam domain defined by

system output. Thereby, asymptotic stability of the clesed B B ¢

loop system can be proven by means of semigroup theory Ailz) = (0@ = wpk) — (@ = zpi = Ly)), (1)
and LaSalle’s invariance principle. However, due to the fagyhere of(z) € C40,L.) represents a smooth transition
that the respective collocated output is not measurablef@nction from of(z) = 0 for & < —e/2 to p°(z) = 1 for
distributed-parameter Luenberger observer is designed jo~ ¢/2. Here, L. and L, denote the length of the beam
obtain an estimation of the required quantity by considgrinand the patches, respectively. Considering the individual
available deflection measurements from the tip of the bearpatch contributions to stiffness, damping, and inertias th
Similarly to the stability proof of the controller, asymfito  configuration results in a beam model with spatially varying
stability of the observer error system can be proven. Iparameters such that the governing equations of motion for

order to guarantee the asymptotic stability of the closeg| the beam deflection(z, t) are given by

composite system including the controller and the observer N

a separation principle for generators of asymptoticabypkt 9 . ) ) z

semigroups is applied. Finally, the derived control desgn pfw + 4 0w + 03 (BI0jw) = =y Thur  (2)
k=1

J. Schrock, T. Meurer, and A. Kugi are with the Automation

and Control Institute (ACIN), Vienna University of Techno- “Here, ug = 500 V allows to balance the available supply volt-
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with the boundary conditions B. Well-posedness of the model
w=0, dyw=0 for x =0, By application of the Lumer-Phillips theorem, see, e.g.,
[2], it can be shown that the operatdris the infinitesimal
BIOw + Iy 07 0,w = 0 () generator of a,-semigroup of contractions. For this it has
0o EI0?w) — mymdPw = 0 for = L to be shown that the operater is dissipative and there is

a o > 0 such that the range d\Z — A) is X with the

The parameterp(z) = pe + 2507, AL(z)y, de- identity operatot.

not?vs the cross section den5|tyye(m) ~ ve T+ Proposition 1. The operatorA is dissipative.

23 2y Ag(w)yy represents the viscous damping/(z) =

EI, + 250 AS(2)EI, is the stifiness, and'y(z) = Proof: Recognizing that?(t) = 5 (w, w), represents

I, 102\ (z) represents the in-domain actuation, whEge, the total energy of the free system (5) a direct calculation
summarizes patch actuator specific parameters. Additignalishows that

m, denotes the mass arg,, the inertia of the tip mass. d L.

Here, the indices, p andtm indicate the contributions of the —F = (Aw,w) , :—/ 74 (ws)?dx <0,

carrier layer, the patches and the tip mass, respectivaly. T dt 0

equations of motion (2), (3) can be directly determined by hich implies the dissipativity ofd.

means o_f Hamilton’s principle as shown in [3] for a cantileve Instead of verifying thatA\oZ — A) : X — X is onto for
without tip mass. Mo > 0 it is sufficient to show that the inverse operatbr

A. Abstract representation exists and is bounded [4, Thm. 1.2.4].

For the following analysis, it is convenient to reformu-Proposition 2. The operatorA~" exists and is bounded.
late the governing equations as an abstract system in an Proof:
appropriate Hilbert space. Consider the state veator=
[wi (z,1), wa(z, 1), w3 (t), we(t)]T with w1 (z,t) = w(z,t),
wa(z,t) = Sw(z,t), ws(t) = we(x,t)|z=r,, andwy(t) =
(9rwa(x,1)),_, together with the spack = HZ (0, L.) x @ ps o q Le pLe
L2(0, L) x R x R, where HZ(0, L) = {wy € H*(0,L.)] wy = /O /O m/ /
wi|g=0 = (0,w1),_, = 0}. The spacet is a Hilbert space s s q
with the inner product /0/0 Fo0) (ha(Le — p2) + h3) dpadps @)

G

To show the existence ofi~! the equation
Aw = ¢ with w € D(A) is solved for a giver{ € X.
Here, the solution can be directly determined as

h1(po)dpodprdp2dps
P2 P1

L _ _ —
<w1,w2>X :/0 (uw%wg + EI@iw%@%w%) dx w2 =

173 173 ) ws = (C)y=r,
+ Memwzws + mwywy wy = (0:C1) >

for all w!, w? € X he | _
or all wh, w” € X and the induced normjw|x with the functionshy (z, ) = —pu(2)Ca(, £) —* ()G (2, £),

<w7w>¥2. Based on these preparations the model of the .. _ - O and ha(f) = I ) This proves the
beam structure (2), (3) can be rewritten as eii(szence g"ffi(l .)biveng(e)X, i:cé(e) H%(O,pLC), G e
Np L2(0,L.) and(s, ¢4 € R it follows thatw € ((H*N HZ) x
dw = Aw + Z brui, t>0 . H2 x R x R) = D(A). Furthermore, it can be shown that
k=1 ®) the boundedness af implies the boundedness @b such
w(0) = wo € D(A). that A=! € £(Xx, D(A)).
with the linear operatorA : D(4) — X, D(A) = Theorem 1. The operatorA generates &’s-semigroup of

(H*(0,L.) N HZ(0,L.)) x HA(0,L.) x R x R, dense in contractionsT().

A and the bounded input operatobg € L(R, ), k = Proof: The proof follows directly by application of the

L., Ny according to Lumer-Phillips theorem in view of Proposition 1 and 2.
wa Furthermore, it is assumed thaj, € L(R,X) is an
—% (Yws + 02 (E10%wy)) admissible input operator such that with [5, Prop. 4.2.5 and
Aw = 1 (6 (E1w,)) Remark 4.1.3] the initial value problem (5) has a unique mild
e v « z=Le (6) solution inX in the form
_It'm, (Eff)gwl)Z:Lc
T Np t
bo=[0 T 0 0] w(t) :T(t)wg+2/ T(t — 1bpu(r)dr  (8)
—_0v/0
With this, the existence and uniqueness of the solution Jof (5 =0
can be directly established. for everyu(t) € L2 ([0, 00); R) andwy € X,
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I1l. FEEDBACK STABILIZATION S ={w e X|& E(t) = 0} provided that the solution trajec-
For stabilization of the piezo-actuated non-uniform EulerOries are precompact i’ This precompactness property
Bernoulli beam a Lyapunov-based control strategy is prdl"’}”f’le verified by means of [2, Thm. 3.65]. For this, note that
posed. Recalling thaE(t) = i (w,w),, applying integra- (A) exists and is bounded. Since the empeddm@@ﬁ)
tion by parts and considering the boundary conditions (%0 & is compact by the Sobolev embedding theorem [7]

yields the change of energy along a solution trajectory dfd) ™' is also a compact operator iki. In addition, by [6,
(5) in the form Thm. A.3.46] the operatod is closed. Hence, [8, Chap. 3,

Thm. 6.29] implies that the resolveR(\, A) = (A\Z— A)~!

N, N,
d Lef 9 - = is compact for any\ in the resolvent set ofi. Moreover,
&E:_/O (7 (Orw) +;Fk9twu'«> dl’f—kz weMk, it can be easily seen from the definition dfthat 0 is in
=1 =1

(9) the range of4 such that the precompactness of the solution
with M (t) = ﬁJLC T'wOyw(z,t)dz. From this, it directly trajectories is ensured by [2, Thm. 3.65] and the invariance

follows that the control law principle can be applied. Investigation of (9) directly lge
S ={w e X|LE(t) = 0} = {w € X|0w(z,t) =
up = KpMp (10)  wy(z,t) = 0}. Hence, the maximal invariant set$fconsists

with #, > 0 rendersE(#) a Lyapunov functional candidate, Of the solutionsw(z, t) € X' satisfying the equations

which allows to prove the asymptotic stability of the closed 1., )
loop system. 0=——0; (EI97uwn)
12
A. Stability analysis 0= 1 (0, (EIPw))._, (14)
For the proof of asymptotic stability of (5) with (10) note m“{l ‘
that 0=——(EIOwr), _, .

tm

Le
Uk = IikMk = /{ka‘k/ 6§A§0twdz (11)
0 Since the only possible solution i is w = 0 LaSalle’s

such that the closed-loop system can be rewritten as invariance principle implies that the solution of the cldse
dw = Aw, >0 w2 I;ooop system (12) asymptotically approaches the origih-as
w(0) = wo € D(4) Note, the evaluation of the control law (11) requires the

with the operator velocity profile of the beam deflectiob.w(z,t). Since this

information can be hardly obtained by measurements the

“1’2 ) ) LN derivation of an appropriate observer is presented in the
T (vow2 + 07 (EI9Zw1)) — m 2kl Tk My following.
w = 1

L (9, (EI0%u))

Mim x=L.

1 (Efaﬁwl)

Tim

B. Observer design

x=L,.

~ (13) Based on measurements at the tip of the beam the required
defined on the domai®(A) = D(A). velocity profile of the beam deflection is estimated by means
of a distributed-parameter Luenberger observer. For thés,
observer system with the stat&«x,t) is chosen as a copy
of the original system, i.e.

Theorem 2. The operatorA is the infinitesimal generator
T(t) of a Cy-semigroup of contractions. Moreovér(t) is
asymptotically stable.

Proof: Utilizing the Lumer-Phillips Theorem the proof om0 5. il
is similar to the procedure presented in Section 1I-B. F@ th o + 70 + 0 (BIOR0) = — Z Drug (15
note that the dissipativity of the operator is shown by (Spwi k=1
uk(t) = wpMy(t) and kg, > 0. The proof of the existence yith the boundary conditions adapted by the functior(s)
of the inverse operatdid) ' is identical to the proof of the andis(t) in the form
existence ofdA~! by solving the equationlw = ¢. Thereby,

the solution is equal to (7) with; (z,t) = —u(x)(e(x, t) — w=0, dpw=0 for z =0,
N,
Yo (@)Ci(z,t) — D02y kalk(z)Mi(t). As a result, by the . .
Lumer-Phillips Theorem the operater is the infinitesimal BIOZw + Iy 070,10 = Iy for v — L (16)
generator of aCy-semigroup of contractions. Op (EIO20) — mymOf = Iy = Le-

In order to prove the asymptotic stability of the semi-

group, LaSalle’s invariance principle generalized forriité-  Introduction of the estimation errow(z,t) = w(z,t) —
dimensional systems is applied [2, Thm. 3.64]. Considering(x,t) directly yields the observer error system, which is
the Lyapunov functional candidafé(¢), the invariance prin- due to the linearity of the system equal to (15), (16) but with
ciple states that all solutions of the closed-loop syste®) (1w(z,t) instead ofw(x,t) and ux(t) = 0. Similarly to the
asymptotically tend to the maximal invariant subset of thie s control design, the energy of the observer error systemmgive
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by E(t) = 1 (w,w), represents a Lyapunov functionalthe inner product is defined as
candidate since

X

L. _
4 (w',w) :/0 (m;w%maﬁwiagw%) dzy

L.
E= 7/ 76(8t171)2d$
0

dt + mtmw;%ib_ﬁ + Itm“vleluuf_i
. v 17 —
O,y + b @00),_, D) +ag(wlnf)  +au(0wi0.07)
< —ly (O4D),_; + 11 (Dn0D),_ ) "‘ (23)
' Lo TH ' be for all w', w? € X.
with L(t) = —o1(0:0(x,1),—p, and b(t) = qpeorem 3. The operatord is the infinitesimal generator

a2 (O (2, 1)), _p, o1, a2 > 0, is negative semi-definite. 7y o¢ 5 ¢ _semigroup of contractions. Moreové{t) is

Remark 1. Considering the boundary conditions (16) oneasymptotically stable.
recognizes that the functions(¢) and l3(¢) can be in-
terpreted as a bending moment and a force acting at the
position z = L. This clarifies that(l,(t), (0:0u0),_y, ) represented by’ (1) = L (i, 1) ;..

and(lz(t), (@w)w:%) represent collocated power pairings, As a result, an estir2nation o); the spatial-temporal system
which allow to manipulate the energy stored in the observet ;o . can be obtained solely from the measurements
error system. of (Byw(@,t))eer., (dw(@,t))oer., w(z,t)s—r., and

The functiond; (¢) andi,(t) are proportional to velocities (Oxw(,t))e=L. -
only such that static deviations between the estimatedrand t

measured signals are not considered. To improve the ohfser\(/:e Stability of the composite system

design, an extended Lyapunov functional, i.e. The composite system consisting of the controlled can-
tilever beam and the observer error system can be représente
H ext __ T “N\NT1T ¥

2+% (Opt0)per,)? (18) 1N the extended state*”* = [(w)*, (w)"]" € X x X by

. . atwezt — Aemtwemt7t > 0 24

with az, Qg > 0is uused. He_nce, the change W6{t) along Wt (0) = witt € D(A!) (24)

a solution trajectoryb(z, t) yields

Proof: The proof is similar to the proof of Theorem
by taking into account the Lyapunov functional can be

1 Qs
V= =
2

5 (W0.10)  + 5 (i8]—1.)

with the operator

d d .
—V==F 0 D T 0y T D
dtv T + <oz3w8tw+a46 wo, Otw)ac=Lc AeTtqpent — [ f(‘)l -’2 } we (25)
< (atu”) (0551:[) — lz) + 0, 0p0 (05401-117 + ll)) y
z:L(ig) defined on the domai(A°**) = D(A) x D(A). Here, P
such that the choice is a linear bounded operator, i.B.€ L(X, X), given by
0
ll = - (alawatw + 05481»1)3) —L 1 N, L. o
=t 20 o — L Y T'0ywde
lg = (agatw + agw)I:Lc ( ) Pw = H Zk 1 0 fO t . (26)
0

results in a dissipative observer error system. In order to

prove the asymptotic stability of the observer error systeBased on this, it can be verified by [9, Thm. 3] that the

note that (15), (16), (20) can be rewritten in the abstragchfo asymptotic stability of both the controlled system and the
observer error system implies the asymptotic stabilityhef t

Oy = Aw, t>0 21) composite closed-loop system.
Ww(0) = 1y € D(A) In the following, it is shown by experimental results on a
laboratory test bench that the presented approach yields a
with = [0y (x, t), wa(z, t), w3 (t), Wa(t),] = highly efficient control strategy for vibration control dfie
[W(z,t), Oy (z,t), (Op(x,t))g=rL,, (OO0 (2, t))s=L.] piezo-actuated cantilever beam with tip mass.

and the operator
IV. EXPERIMENTAL RESULTS

w21 o 9 .~ The experimental validation is performed by considering a

A — *fi (7 w2 + 8;. EEIQL.wl)) . (22) cantilevered beam actuated by macro-fiber composite (MFC)
Mt (a’t (Efawwl))zch — o2 patch actuators, see Fig. 2. The beam consists of a fiber re-
5 (BI&wn),_, + inforced composite material with dimensiohs = 0.406 m,

} b, = 0.045m, andh. = 0.75 x 10~ m and an end mass
defined on the domaii(A) = (H'NHZ)x H3Z xR xR)  of my, = 0.0126kg. The rotational inertid,,, of the end
dense inX'. Here,X = H%(0,L.) x L?(0, L.) x Rx R and mass is supposed to be zero. Two pairs of MFC patches (type
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Fig. 2. Picture of the cantilevered beam with two pairs of M&uators  Fig. 3. Measured and simulated beam'’s tip deflection due wtage step
and tip mass. of u; = —500V at the patch pair located at, ; att = 1s followed by

a voltage step ofi; = 500V at the patch pair atp, 2 att = 12s.

M8557P1%) with an active area of dimensioh, = 85 x

1073m, by, = 57x107%m, h;, = 3x10~*m are bonded to the pair of pointwise bending moments located at the boundary
beam at distances, ; = 0.031m andx, » = 0.246m from of the patches. In general, the functiong(z) express
the clamped edge (cf. Fig. 1). For measurements two laséiscontinuous patch characteristics which require to icens
sensors located at,,; = 0.88L, m andz,, » = 0.95L. m the model of the cantilever beam (2), (3) in a weak or
are used to obtain the deflection of the beam. With this andgariational form. However, it can be shown that based on
the assumption that the bending of the beam between the weak formulation and the analysis of sesquilinear forms
zm1 andz = L, is negligible, the deflection and the anglethe feedback stability is preserved for discontinuous lpatc
at the beam’s tip are approximated by extrapolatiofthe characteristics.

measurements and the implementation of the control concep . o
i . . he parameters of the beam model are identified by
are realized using the real-time control board DS1103 of. . "t
. L minimizing the mean squares error between measured and
dSPACE, with a sampling time &f; = 0.2ms. The power . o .
simulated step responses based on the finite-dimensional

supply is provided by two high-voltage four-quadrant power N . oo .
amplifiers PA05039 of Trek Iné. approximation. At this point it should be emphasized that

For the realization of the derived controller including th a hysteresis and creep compensation is utilized to caneel ou

distributed-parameter observer a finite-dimensional rethe nonlinearities of the MFC patch actuators, for details
P Pl see [10]. Note that the application of this compensator

imation of (15), (16) is used by means of the Galerkinﬁ crucial for the proposed modeling and design approach
method. Here, the approach suggested in [3] is applied wi ased on linear equations of motion of the MFC-actuated

the basis function chosen as the fifsteigenmodes of a beam. As illustrated in Fig. 3, this procedure results in an

uniform cantilever beam. .
excellent agreement between the measured and the simulate
Remark 2. For implementation purposes the control lawstep responseg; = w(z, 2,t). The corresponding set of
(11) is evaluated by means of the spatial patch characgtaristidentified parameters is presented in detail in [10].
A (x) = limeyo AL(2) = o(z — 2p k) —0(x — 2p 5 — Lp),  In view of the implementation of the observer, the velocity
whereo(-) denotes the Heaviside function. In this case, (11and the angular velocity used for stabilizing the observer
includes the spatial derivative of the Dirac delta functiorerror system, cf. (20), are determined from the measuresnent
§(x) sinced?o(z) = 9,0(x) such that using integration by by means of appropriate filtering techniques. This allows
parts and assuming thécf)IAg(x))m:Lc = 0 the control law to determine correct estimates for the quantities required
evaluates to in the control law (27) such that the beam structure can
be efficiently stabilized in closed-loop. For illustratirige
high control performance, experimental results concernin
vibration suppression are presented. The beam is set into an
oscillatory motion by a specified impulse generated by an
impact hammer which is positioned at= 0.37 m. In the
weMy = u Ty g [(3taxw)x:zp,k+L,,,k — (&sazw)m:xp,k] uncontrolled case, this results in weakly damped vibration
o L . due to the high flexibility of the beam, as shown in Fig.
in view of (9), represents a power pairing including angulay - opnosed to this, in the controlled case the oscillations

velocities and it follows b):C the coIIocat_ion property thaty o immediately damped out, see Fig. 5 (a), where Fig. 5
the effect of the voltages/”(t) can be interpreted as a () depicts the voltage signals applied to the MFC patch
LSmart Material Corp., http:/Aww.smart-material.com pairs. These voltage signals result from the evaluation of

2In this case the angle at the tip of the beam can be approxitate (27) _With eStimate$atazw)I:Zp,k+Lp,k and (&tazw)z:?p,k
pw(Le,t) = arctan[(w(zm,2,t) — w(Tm,1,t)/(Tm,2 — Tm,1)]- obtained from the observer and subsequent processing by the

Uk = K',kMk

- H’krp,k [(8tazw)z:zp,k+L,,)k - (&tazw)z:z,,,k}
(27)
With this, the choice
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principle, and a separation principle for generators ofrgsy
totically stable semigroups. In addition, the feedbacktiain

is validated by experimental results.

Future work is dedicated to the combination of the dynamic
feedback controller with the feedforward control presdrite
[3], [10] within the so-called two-degrees-of-freedom toh
concept, see, e.g, [11], in order to realize robust trajgcto
tracking control for the flexible cantilever beam.
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Fig. 4. Vibrations generated by an impact hammer positiarest the tip
of the beam.
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Fig. 5. Vibration control in case of an impact near the tiptef beam. (a)
deflectiony (t) = w(xm,2,t), (b) voltages applied to the MFC patch pairs,
whereug of the patch pair located at, ; is adapted tmos = 500—150 V
and ul® = 500 + 150 V in order to compensate an inherent deflection
resulting from the manufacturing process of the beam.

hysteresis and creep compensator.

V. CONCLUSION AND FUTURE WORKS

In this contribution, a control concept in form of a non-
collocated dynamic output feedback control for the stahili
tion of a cantilevered Euler-Bernoulli beam with in-domain
actuation is presented. For this, based on the distributed-
parameter description of the system a feedback controller
with observer is derived by means of Lyapunov’s theory
including the proof of asymptotic stability of the closed-
loop system using semigroup theory, LaSalle’s invariance
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