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Non-collocated Feedback Stabilization of a
Non-Uniform Euler-Bernoulli Beam with In-Domain Actuatio n

J. Schröck, T. Meurer, A. Kugi

Abstract— For the stabilization of a flexible beam actuated
by piezoelectric patches a Lyapunov-based control strategy is
presented in terms of a non-collocated dynamic output feedback
control. Thereby, a distributed-parameter Luenberger observer
is incorporated to provide an estimate of the variables required
by the control law. Besides the proof of asymptotic stability of
the closed-loop system, the derived control concept is validated
by experimental results.

I. INTRODUCTION

The stabilization problem of flexible beams is a widely
studied problem in the areas of aerospace as well as robotics,
e.g., flexible space structures and lightweight robots. Typ-
ically, the control design is based on a finite-dimensional
approximation of the governing partial differential equa-
tions. However, this early lumping approach may lead to
non-satisfying control performance or, even worse, unstable
closed-loop behavior induced by the well-known control and
observer spillover problem [1], which originates from the
neglected system dynamics. This can be avoided by the late
lumping approach, which directly exploits the distributed-
parameter description of the system in the control design.
In the following, a PDE-based control design for the sta-
bilization of an Euler-Bernoulli beam actuated by a finite
number of spatially distributed piezoelectric patches with
additional tip mass is considered, see Fig. 1. While most con-
trol strategies for beam stabilization utilize boundary control,
see, e.g., [2], the actuation of the beam considered in this
contribution represents an in-domain actuation resultingin a
non-uniform beam configuration. For this beam structure, a
Lyapunov-based control design is presented, which is based
on the collocation property of the actuator input and a certain
system output. Thereby, asymptotic stability of the closed-
loop system can be proven by means of semigroup theory
and LaSalle’s invariance principle. However, due to the fact
that the respective collocated output is not measurable a
distributed-parameter Luenberger observer is designed to
obtain an estimation of the required quantity by considering
available deflection measurements from the tip of the beam.
Similarly to the stability proof of the controller, asymptotic
stability of the observer error system can be proven. In
order to guarantee the asymptotic stability of the closed-loop
composite system including the controller and the observer
a separation principle for generators of asymptotically stable
semigroups is applied. Finally, the derived control designis
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validated by means of experimental results, which confirm
the applicability of the presented approach.
The paper is organized as follows. In Sec. II, the abstract op-
erator theoretic formulation of the equations of motion of the
considered non-uniform Euler-Bernoulli beam is introduced.
Based on this, the design of the non-collocated feedback
control with observer is derived in Sec. III and validated by
measurements results at a laboratory test bench in Sec. IV.
Some final remarks conclude the paper.

II. MODELING AND ANALYSIS

In this contribution, the feedback stabilization problem
is considered for a cantilevered Euler-Bernoulli beam with
tip mass. The beam is actuated by pairs of piezo-electric
patch actuators, where the patches on the front side (fs) and
the patches on the back side (bs) are bonded symmetrically
onto the beam structure, see Fig. 1. Utilizing an asymmetric

x
z

y

Lc

bc

hc

xp,1 xp,2

mtm, Itm

bp

Lp

w(Lc, t)

Fig. 1. Cantilever beam with pairs of patches.

voltage supply1 u
fs(bs)
k (t) = u0

+
(−)uk(t), k = 1, . . . , Np,

this type of actuation allows to locally induce bending strains
within the patch covered intervals[xp,k, xp,k + Lp] of the
beam domain defined by

Λǫ
k(x) = (̺ǫ(x− xp,k)− ̺ǫ(x − xp,k − Lp)) , (1)

where ̺ǫ(x) ∈ C4(0, Lc) represents a smooth transition
function from ̺ǫ(x) = 0 for x < −ǫ/2 to ̺ǫ(x) = 1 for
x > ǫ/2. Here,Lc andLp denote the length of the beam
and the patches, respectively. Considering the individual
patch contributions to stiffness, damping, and inertia, this
configuration results in a beam model with spatially varying
parameters such that the governing equations of motion for
the beam deflectionw(x, t) are given by

µ∂2
tw + γe∂tw + ∂2

x

(
EI∂2

xw
)
= −

Np∑

k=1

Γkuk (2)

1Here, u0 = 500 V allows to balance the available supply volt-
age rangeufs(bs)

k (t) ∈ [−500,+1500] V of the MFCs touk(t) ∈
[−1000,+1000] V.
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with the boundary conditions

w = 0, ∂xw = 0 for x = 0,

EI∂2
xw + Itm∂2

t ∂xw = 0

∂x
(
EI∂2

xw
)
−mtm∂2

tw = 0

}
for x = Lc.

(3)

The parameterµ(x) = µc + 2
∑Np

k=1 Λ
ǫ
k(x)µp de-

notes the cross section density,γe(x) = γe
c +

2
∑Np

k=1 Λ
ǫ
k(x)γ

e
p represents the viscous damping,EI(x) =

EIc + 2
∑Np

k=1 Λ
ǫ
k(x)EIp is the stiffness, andΓk(x) =

Γp,k∂
2
xΛ

ǫ
k(x) represents the in-domain actuation, whereΓp,k

summarizes patch actuator specific parameters. Additionally,
mtm denotes the mass andItm the inertia of the tip mass.
Here, the indicesc, p andtm indicate the contributions of the
carrier layer, the patches and the tip mass, respectively. The
equations of motion (2), (3) can be directly determined by
means of Hamilton’s principle as shown in [3] for a cantilever
without tip mass.

A. Abstract representation

For the following analysis, it is convenient to reformu-
late the governing equations as an abstract system in an
appropriate Hilbert space. Consider the state vectorw =
[w1(x, t), w2(x, t), w3(t), w4(t)]

T with w1(x, t) = w(x, t),
w2(x, t) = ∂tw(x, t), w3(t) = w2(x, t)|x=Lc , andw4(t) =
(∂xw2(x, t))x=Lc

together with the spaceX = H2
C(0, Lc)×

L2(0, Lc) × R × R, whereH2
C(0, Lc) = {w1 ∈ H2(0, Lc)|

w1|x=0 = (∂xw1)x=0 = 0}. The spaceX is a Hilbert space
with the inner product

〈
w1,w2

〉
X =

∫ Lc

0

(
µw1

2w
2
2 + EI∂2

xw
1
1∂

2
xw

2
1

)
dx

+mtmw1
3w

2
3 + Itmw1

4w
2
4

(4)

for all w1, w2 ∈ X and the induced norm‖w‖X =

〈w,w〉1/2X . Based on these preparations the model of the
beam structure (2), (3) can be rewritten as

∂tw = Aw +

Np∑

k=1

bkuk, t > 0

w(0) = w0 ∈ D(A).

(5)

with the linear operatorA : D(A) → X , D(A) =(
H4(0, Lc) ∩H2

C(0, Lc)
)
× H2

C(0, Lc) × R × R, dense in
X and the bounded input operatorsbk ∈ L(R,X ), k =
1, . . . , Np according to

Aw =




w2

− 1
µ

(
γew2 + ∂2

x

(
EI∂2

xw1

))

1
mtm

(
∂x
(
EI∂2

xw1

))
x=Lc

− 1
Itm

(
EI∂2

xw1

)
x=Lc




bk =
[
0 −Γk

µ 0 0
]T

.

(6)

With this, the existence and uniqueness of the solution of (5)
can be directly established.

B. Well-posedness of the model

By application of the Lumer-Phillips theorem, see, e.g.,
[2], it can be shown that the operatorA is the infinitesimal
generator of aC0-semigroup of contractions. For this it has
to be shown that the operatorA is dissipative and there is
a λ0 > 0 such that the range of(λ0I − A) is X with the
identity operatorI.

Proposition 1. The operatorA is dissipative.

Proof: Recognizing thatE(t) = 1
2 〈w,w〉X represents

the total energy of the free system (5) a direct calculation
shows that

d

dt
E = 〈Aw,w〉X =−

∫ Lc

0

γe(w2)
2dx ≤ 0,

which implies the dissipativity ofA.
Instead of verifying that(λ0I −A) : X → X is onto for

λ0 > 0 it is sufficient to show that the inverse operatorA−1

exists and is bounded [4, Thm. 1.2.4].

Proposition 2. The operatorA−1 exists and is bounded.

Proof: To show the existence ofA−1 the equation
Aw = ζ with w ∈ D(A) is solved for a givenζ ∈ X .
Here, the solution can be directly determined as

w1 =

∫ x

0

∫ p3

0

1

EI(p2)

∫ Lc

p2

∫ Lc

p1

h1(p0)dp0dp1dp2dp3

−
∫ x

0

∫ p3

0

1

EI(p2)
(h2(Lc − p2) + h3) dp2dp3

w2 = ζ1

w3 = (ζ1)x=Lc

w4 = (∂xζ1)x=Lc
,

(7)

with the functionsh1(x, t) = −µ(x)ζ2(x, t)−γe(x)ζ1(x, t),
h2(t) = mtmζ3(t), andh3(t) = Itmζ4(t). This proves the
existence ofA−1. Given ζ ∈ X , i.e. ζ1 ∈ H2

C(0, Lc), ζ2 ∈
L2(0, Lc) andζ3, ζ4 ∈ R it follows thatw ∈ ((H4 ∩H2

C)×
H2

C × R × R) = D(A). Furthermore, it can be shown that
the boundedness ofζ implies the boundedness ofw such
thatA−1 ∈ L(X , D(A)).

Theorem 1. The operatorA generates aC0-semigroup of
contractionsT (t).

Proof: The proof follows directly by application of the
Lumer-Phillips theorem in view of Proposition 1 and 2.

Furthermore, it is assumed thatbk ∈ L(R,X ) is an
admissible input operator such that with [5, Prop. 4.2.5 and
Remark 4.1.3] the initial value problem (5) has a unique mild
solution inX in the form

w(t) = T (t)w0 +

Np∑

k=0

∫ t

0

T (t− τ)bku(τ)dτ (8)

for everyu(t) ∈ L2
loc([0,∞);R) andw0 ∈ X .
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III. FEEDBACK STABILIZATION

For stabilization of the piezo-actuated non-uniform Euler-
Bernoulli beam a Lyapunov-based control strategy is pro-
posed. Recalling thatE(t) = 1

2 〈w,w〉X , applying integra-
tion by parts and considering the boundary conditions (3)
yields the change of energy along a solution trajectory of
(5) in the form

d

dt
E=−

∫ Lc

0

(
γe(∂tw)

2 +

Np∑

k=1

Γk∂twuk

)
dx≤−

Np∑

k=1

ukMk,

(9)
with Mk(t) =

∫ Lc

0
Γk∂tw(x, t)dx. From this, it directly

follows that the control law

uk = κkMk (10)

with κk > 0 rendersE(t) a Lyapunov functional candidate,
which allows to prove the asymptotic stability of the closed-
loop system.

A. Stability analysis

For the proof of asymptotic stability of (5) with (10) note
that

uk = κkMk = κkΓp,k

∫ Lc

0

∂2
xΛ

ǫ
k∂twdx (11)

such that the closed-loop system can be rewritten as

∂tw = Ãw, t > 0

w(0) = w0 ∈ D(Ã)
(12)

with the operator

Ãw =




w2

− 1
µ

(
γew2 + ∂2

x

(
EI∂2

xw1

))
− 1

µ

∑Np

k=1 ΓkκkMk

1
mtm

(
∂x
(
EI∂2

xw1

))
x=Lc

− 1
Itm

(
EI∂2

xw1

)
x=Lc




(13)
defined on the domainD(Ã) = D(A).

Theorem 2. The operatorÃ is the infinitesimal generator
T̃ (t) of a C0-semigroup of contractions. Moreover,T̃ (t) is
asymptotically stable.

Proof: Utilizing the Lumer-Phillips Theorem the proof
is similar to the procedure presented in Section II-B. For this
note that the dissipativity of the operator is shown by (9) with
uk(t) = κkMk(t) and κk > 0. The proof of the existence
of the inverse operator(Ã)−1 is identical to the proof of the
existence ofA−1 by solving the equatioñAw = ζ. Thereby,
the solution is equal to (7) withh1(x, t) = −µ(x)ζ2(x, t)−
γe(x)ζ1(x, t) −

∑Np

k=1 κkΓk(x)Mk(t). As a result, by the
Lumer-Phillips Theorem the operator̃A is the infinitesimal
generator of aC0-semigroup of contractions.
In order to prove the asymptotic stability of the semi-
group, LaSalle’s invariance principle generalized for infinite-
dimensional systems is applied [2, Thm. 3.64]. Considering
the Lyapunov functional candidateE(t), the invariance prin-
ciple states that all solutions of the closed-loop system (12)
asymptotically tend to the maximal invariant subset of the set

S = {w ∈ X | ddtE(t) = 0} provided that the solution trajec-
tories are precompact inX . This precompactness property
can be verified by means of [2, Thm. 3.65]. For this, note that
(Ã)−1 exists and is bounded. Since the embedding ofD(Ã)
into X is compact by the Sobolev embedding theorem [7]
(Ã)−1 is also a compact operator inX . In addition, by [6,
Thm. A.3.46] the operator̃A is closed. Hence, [8, Chap. 3,
Thm. 6.29] implies that the resolventR(λ, Ã) = (λI−Ã)−1

is compact for anyλ in the resolvent set of̃A. Moreover,
it can be easily seen from the definition of̃A that 0 is in
the range ofÃ such that the precompactness of the solution
trajectories is ensured by [2, Thm. 3.65] and the invariance
principle can be applied. Investigation of (9) directly yields
S = {w ∈ X | ddtE(t) = 0} = {w ∈ X |∂tw(x, t) =
w2(x, t) = 0}. Hence, the maximal invariant set ofS consists
of the solutionsw(x, t) ∈ X satisfying the equations

0 = − 1

µ
∂2
x

(
EI∂2

xw1

)

0 =
1

mtm

(
∂x
(
EI∂2

xw1

))
x=Lc

0 = − 1

Itm

(
EI∂2

xw1

)
x=Lc

.

(14)

Since the only possible solution inS is w = 0 LaSalle’s
invariance principle implies that the solution of the closed-
loop system (12) asymptotically approaches the origin ast →
∞.

Note, the evaluation of the control law (11) requires the
velocity profile of the beam deflection∂tw(x, t). Since this
information can be hardly obtained by measurements the
derivation of an appropriate observer is presented in the
following.

B. Observer design

Based on measurements at the tip of the beam the required
velocity profile of the beam deflection is estimated by means
of a distributed-parameter Luenberger observer. For this,the
observer system with the statêw(x, t) is chosen as a copy
of the original system, i.e.

µ∂2
t ŵ + γe∂tŵ + ∂2

x

(
EI∂2

xŵ
)
= −

Np∑

k=1

Γkuk (15)

with the boundary conditions adapted by the functionsl1(t)
and l2(t) in the form

ŵ = 0, ∂xŵ = 0 for x = 0,

EI∂2
xŵ + Itm∂2

t ∂xŵ = l1

∂x
(
EI∂2

xŵ
)
−mtm∂2

t ŵ = l2

}
for x = Lc.

(16)

Introduction of the estimation error̆w(x, t) = ŵ(x, t) −
w(x, t) directly yields the observer error system, which is
due to the linearity of the system equal to (15), (16) but with
w̆(x, t) instead ofŵ(x, t) and uk(t) = 0. Similarly to the
control design, the energy of the observer error system given
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by Ĕ(t) = 1
2 〈w̆, w̆〉X represents a Lyapunov functional

candidate since

d

dt
Ĕ = −

∫ Lc

0

γe(∂tw̆)
2dx

− l2 (∂tw̆)x=Lc
+ l1 (∂x∂tw̆)x=Lc

≤ −l2 (∂tw̆)x=Lc
+ l1 (∂x∂tw̆)x=Lc

(17)

with l1(t) = −α1 (∂x∂tw̆(x, t))x=Lc
and l2(t) =

α2 (∂tw̆(x, t))x=Lc
, α1, α2 > 0, is negative semi-definite.

Remark 1. Considering the boundary conditions (16) one
recognizes that the functionsl1(t) and l2(t) can be in-
terpreted as a bending moment and a force acting at the
position x = Lc. This clarifies that(l1(t), (∂x∂tw̆)x=Lc

)
and (l2(t), (∂tw̆)x=Lc

) represent collocated power pairings,
which allow to manipulate the energy stored in the observer
error system.

The functionsl1(t) andl2(t) are proportional to velocities
only such that static deviations between the estimated and the
measured signals are not considered. To improve the observer
design, an extended Lyapunov functional, i.e.

V =
1

2
〈w̆, w̆〉X +

α3

2
(w̆|x=Lc)

2+
α4

2
((∂xw̆)x=Lc)

2 (18)

with α3, α4 > 0 is used. Hence, the change ofV (t) along
a solution trajectory̆w(x, t) yields

d

dt
V =

d

dt
Ĕ +

(
α3w̆∂tw̆ + α4∂xw̆∂x∂tw̆

)
x=Lc

≤
(
∂tw̆

(
α3w̆ − l2

)
+ ∂x∂tw̆

(
α4∂xw̆ + l1

))

x=Lc

(19)
such that the choice

l1 = − (α1∂x∂tw̆ + α4∂xw̆)x=Lc

l2 = (α2∂tw̆ + α3w̆)x=Lc

(20)

results in a dissipative observer error system. In order to
prove the asymptotic stability of the observer error system
note that (15), (16), (20) can be rewritten in the abstract form

∂tw̆ = Ăw̆, t > 0

w̆(0) = w̆0 ∈ D(Ă)
(21)

with w̆ = [w̆1(x, t), w̆2(x, t), w̆3(t), w̆4(t), ] =
[w̆(x, t), ∂tw̆(x, t), (∂tw̆(x, t))x=Lc , (∂x∂tw̆(x, t))x=Lc ]
and the operator

Ăw̆ =




w̆2

− 1
µ

(
γew̆2 + ∂2

x

(
EI∂2

xw̆1

))
1

mtm

(
∂x
(
EI∂2

xw̆1

))
x=Lc

− 1
mtm

l2
− 1

Itm

(
EI∂2

xw̆1

)
x=Lc

+ 1
Itm

l1


 (22)

defined on the domainD(Ă) = (H4 ∩H2
C)×H2

C ×R×R)
dense inX̆ . Here,X̆ = H2

C(0, Lc)×L2(0, Lc)×R×R and

the inner product is defined as

〈
w̆1, w̆2〉

X̆ =

∫ Lc

0

(
µw̆1

2w̆
2
2 + EI∂2

xw̆
1
1∂

2
xw̆

2
1

)
dx1

+mtmw̆1
3w̆

2
3 + Itmw̆1

4w̆
2
4

+ α3

(
w̆1

1w̆
2
1

)
x=Lc

+ α4

(
∂xw̆

1
1∂xw̆

2
1

)
x=Lc

(23)
for all w̆1, w̆2 ∈ X̆ .

Theorem 3. The operatorĂ is the infinitesimal generator
T̆ (t) of a C0-semigroup of contractions. Moreover,T̆ (t) is
asymptotically stable.

Proof: The proof is similar to the proof of Theorem
2 by taking into account the Lyapunov functional can be
represented byV (t) = 1

2 〈w̆, w̆〉X̆ .
As a result, an estimation of the spatial-temporal system

state w̆ can be obtained solely from the measurements
of (∂tw(x, t))x=Lc , (∂t∂xw(x, t))x=Lc , w(x, t)|x=Lc , and
(∂xw(x, t))x=Lc .

C. Stability of the composite system

The composite system consisting of the controlled can-
tilever beam and the observer error system can be represented
in the extended statewext = [(w)T , (w̆)T ]T ∈ X × X̆ by

∂tw
ext = Aextwext, t > 0

wext(0) = wext
0 ∈ D(Aext)

(24)

with the operator

Aextwext =

[
A P

0 Ă

]
wext (25)

defined on the domainD(Aext) = D(A) ×D(Ă). Here,P
is a linear bounded operator, i.e.P ∈ L(X̆ ,X ), given by

P w̆ =




0

− 1
µ

∑Np

k=1 Γkκk

∫ Lc

0
Γk∂tw̆dx

0
0


 . (26)

Based on this, it can be verified by [9, Thm. 3] that the
asymptotic stability of both the controlled system and the
observer error system implies the asymptotic stability of the
composite closed-loop system.
In the following, it is shown by experimental results on a
laboratory test bench that the presented approach yields a
highly efficient control strategy for vibration control of the
piezo-actuated cantilever beam with tip mass.

IV. EXPERIMENTAL RESULTS

The experimental validation is performed by considering a
cantilevered beam actuated by macro-fiber composite (MFC)
patch actuators, see Fig. 2. The beam consists of a fiber re-
inforced composite material with dimensionsLc = 0.406m,
bc = 0.045m, andhc = 0.75 × 10−3m and an end mass
of mtm = 0.0126 kg. The rotational inertiaItm of the end
mass is supposed to be zero. Two pairs of MFC patches (type
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Fig. 2. Picture of the cantilevered beam with two pairs of MFCactuators
and tip mass.

M8557P11) with an active area of dimensionLp = 85 ×
10−3m, bp = 57×10−3m, hp = 3×10−4m are bonded to the
beam at distancesxp,1 = 0.031m andxp,2 = 0.246m from
the clamped edge (cf. Fig. 1). For measurements two laser
sensors located atxm,1 = 0.88Lc m andxm,2 = 0.95Lc m
are used to obtain the deflection of the beam. With this and
the assumption that the bending of the beam betweenx =
xm,1 andx = Lc is negligible, the deflection and the angle
at the beam’s tip are approximated by extrapolation2. The
measurements and the implementation of the control concept
are realized using the real-time control board DS1103 of
dSPACE, with a sampling time ofTs = 0.2ms. The power
supply is provided by two high-voltage four-quadrant power
amplifiers PA05039 of Trek Inc.1

For the realization of the derived controller including the
distributed-parameter observer a finite-dimensional approx-
imation of (15), (16) is used by means of the Galerkin
method. Here, the approach suggested in [3] is applied with
the basis function chosen as the first5 eigenmodes of a
uniform cantilever beam.

Remark 2. For implementation purposes the control law
(11) is evaluated by means of the spatial patch characteristics
Λ0
k(x) = limǫ→0 Λ

ǫ
k(x) = σ(x − xp,k)− σ(x − xp,k − Lp),

whereσ(·) denotes the Heaviside function. In this case, (11)
includes the spatial derivative of the Dirac delta function
δ(x) since∂2

xσ(x) = ∂xδ(x) such that using integration by
parts and assuming that

(
∂xΛ

0
k(x)

)
x=Lc

= 0 the control law
evaluates to

uk = κkMk

= κkΓp,k

[
(∂t∂xw)x=xp,k+Lp,k

− (∂t∂xw)x=xp,k

]
(27)

With this, the choice

ukMk = ukΓp,k

[
(∂t∂xw)x=xp,k+Lp,k

− (∂t∂xw)x=xp,k

]

in view of (9), represents a power pairing including angular
velocities and it follows by the collocation property that
the effect of the voltagesuk(t) can be interpreted as a

1Smart Material Corp., http://www.smart-material.com
2In this case the angle at the tip of the beam can be approximated by

∂xw(Lc, t) = arctan[(w(xm,2, t) − w(xm,1, t)/(xm,2 − xm,1)].
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Fig. 3. Measured and simulated beam’s tip deflection due to a voltage step
of u1 = −500V at the patch pair located atxp,1 at t = 1 s followed by
a voltage step ofu2 = 500V at the patch pair atxp,2 at t = 12 s.

pair of pointwise bending moments located at the boundary
of the patches. In general, the functionsΛ0

k(x) express
discontinuous patch characteristics which require to consider
the model of the cantilever beam (2), (3) in a weak or
variational form. However, it can be shown that based on
the weak formulation and the analysis of sesquilinear forms
the feedback stability is preserved for discontinuous patch
characteristics.

The parameters of the beam model are identified by
minimizing the mean squares error between measured and
simulated step responses based on the finite-dimensional
approximation. At this point it should be emphasized that
a hysteresis and creep compensation is utilized to cancel out
the nonlinearities of the MFC patch actuators, for details
see [10]. Note that the application of this compensator
is crucial for the proposed modeling and design approach
based on linear equations of motion of the MFC-actuated
beam. As illustrated in Fig. 3, this procedure results in an
excellent agreement between the measured and the simulated
step responsesy1 = w(xm,2, t). The corresponding set of
identified parameters is presented in detail in [10].
In view of the implementation of the observer, the velocity
and the angular velocity used for stabilizing the observer
error system, cf. (20), are determined from the measurements
by means of appropriate filtering techniques. This allows
to determine correct estimates for the quantities required
in the control law (27) such that the beam structure can
be efficiently stabilized in closed-loop. For illustratingthe
high control performance, experimental results concerning
vibration suppression are presented. The beam is set into an
oscillatory motion by a specified impulse generated by an
impact hammer which is positioned atx = 0.37 m. In the
uncontrolled case, this results in weakly damped vibrations
due to the high flexibility of the beam, as shown in Fig.
4. Opposed to this, in the controlled case the oscillations
are immediately damped out, see Fig. 5 (a), where Fig. 5
(b) depicts the voltage signals applied to the MFC patch
pairs. These voltage signals result from the evaluation of
(27) with estimates(∂t∂xw̆)x=xp,k+Lp,k

and(∂t∂xw̆)x=xp,k

obtained from the observer and subsequent processing by the
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Fig. 4. Vibrations generated by an impact hammer positionednear the tip
of the beam.
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Fig. 5. Vibration control in case of an impact near the tip of the beam. (a)
deflectiony1(t) = w(xm,2, t), (b) voltages applied to the MFC patch pairs,
whereu0 of the patch pair located atxp,1 is adapted toufs

0 = 500−150 V
and ubs

0 = 500 + 150 V in order to compensate an inherent deflection
resulting from the manufacturing process of the beam.

hysteresis and creep compensator.

V. CONCLUSION AND FUTURE WORKS

In this contribution, a control concept in form of a non-
collocated dynamic output feedback control for the stabiliza-
tion of a cantilevered Euler-Bernoulli beam with in-domain
actuation is presented. For this, based on the distributed-
parameter description of the system a feedback controller
with observer is derived by means of Lyapunov’s theory
including the proof of asymptotic stability of the closed-
loop system using semigroup theory, LaSalle’s invariance

principle, and a separation principle for generators of asymp-
totically stable semigroups. In addition, the feedback control
is validated by experimental results.
Future work is dedicated to the combination of the dynamic
feedback controller with the feedforward control presented in
[3], [10] within the so-called two-degrees-of-freedom control
concept, see, e.g, [11], in order to realize robust trajectory
tracking control for the flexible cantilever beam.
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