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A fast simulation method for 1D heat conduction

A. Steinboeck?, D. Wild®, T. Kiefer®, A. Kugi?

a8Automation and Control Institute, Vienna University of ieclogy, Gusshausstrasse 27—-29, 1040 Wien, Austria
bAG der Dillinger Hiittenwerke, Werkstrasse 1, 66763 DijinSaar, Germany

Abstract

A flexible solution method for the initial-boundary valueoptem of the temperature field in a one-dimensional ¢
main of a solid with significantly nonlinear material parders and radiation boundary conditions is proposed,
transformation of the temperature values allows to isdlaenonlinear material characteristics into a singlefitoe
cient of the heat conduction equation. The Galerkin metkadilized for spatial discretization of the problem ar
integration of the time domain is done by constraining thartatary heat fluxes to piecewise linear, discontinug
signals. The radiative heat exchange is computed with thedfehe Stefan-Boltzmann law, such that the ambie
temperatures serve as system inputs. The feasibility anud@acy of the proposed method are demonstrated by miq
of an example of heat treatment of a steel slab, where nuateeisults are compared to the finitéfdrence method.

Key words: heat conduction, nonlinear material parameters, methagafhted residuals, Galerkin method,
radiative heat exchange, implicitfBBrence equation

1. Introduction

In process control applications, there is a need for mattieadanodels which are both computationally ine]
pensive as well as reliable in terms of accuracy and conmesgelhese requirements are particularly important
models to be used in real-time applications like trajecfaignning, optimization, or control. Motivated by thesg
needs, a method to determine the transient temperaturéfialdne-dimensional domain of a solid with significant
nonlinear material parameters and radiation boundaryitiond is proposed. The approach originates from an
plication in the steel industry, where slabs or rolled prddware to be heat-treated or reheated according to spe
temperature trajectories [2, 21, 22]. However, by analtiyggy,method can be applied to otheffdsion-convection
systems described by parabolic initial-boundary valudblems.

The paper is organized as follows: Section 2 starts with ef beview of the heat conduction equation (stroi
formulation) with nonlinear material parameters and Neamiaoundary conditions, followed by a transformation
the temperature such that the nonlinearity is isolatedargimgle parameter of the parabolic problem. Thereupon,
problem is restated in the weak formulation, which is suédbr the Method of Weighted Residuals (MWR). Her
the Galerkin Method (GM) is employed to derive a low-dimensil lumped-parameter system, and a time integra
method is proposed which allows for piecewise linear, difiowous input signals. Finally, the boundary conditio
are supplemented by elementary laws of thermal radiatibe. f€asibility and the accuracy of the proposed mett
are examined by means of an example of heat treatment oflesktbeén Section 3. For comparison, also the Fin
Difference Method (FDM) is applied to the problem under conaiitar. A brief overview of the assumptions ar|
approximations utilized in this work is given in the final 8en 4.

U A preliminary version of this paper was presented at fAd/&nna Conference on Mathematical Modelling in Februar9@@f. [20].
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2. Theoretical concept

2.1. Heat conduction problem with Neumann boundary coorakiti

y 'q+(t) Ta(®
L/2
/ T§ T,H

-L/2 ‘
q®) T.@®

Figure 1: An infinitely extended solid with radiation boungaonditions.

Let T(y,t) be the temperature field in a solid defined along the spdtizisiony withy € [-L/2, L/2], as shown
in Fig. 1. Hereyis a Lagrangian coordinate, and the absolute temperatisreonsidered constant along any directi
orthogonal toy. The heat fluxq(y, t) inside the solid is determined by the properties of the netehe temperature
gradient, and the boundary conditionyat ¥L/2. In this analysis, neither heat sources nor heat sinkdeartbie solid
are considered.

Fourier's law is defined ay(y, t) = —29T (y, t)/dy, with the thermal conductivity. Therefore, the heat conductio
process can be defined by thédsion law [1, 12]

pcaTgt" v _ _aqg/, v _ %(Am(g/’ t)) ye (a2, t>0 (1a)
with initial conditions
T(Y.0)=Tey) yel-t2l2 (1b)
and Neumann boundary conditions
q@t) = -4 O —4gf®)  t>0 (1c)
a y=FL/2

The heat inputg(t) andg*(t) define the heat exchange between the solid and its envinunamindicated in Fig. 1.
They may depend on the surface temperatdred./2,t) and T(L/2,t), respectively. Here, the heat conductic
problem is given in itsstrongformulation. Section 2.3 touches upon the correspondiagkformulation and its
solution by means of the MWR.

In (1), p represents the mass density, which may depenganly. The specific heat capacityand the thermal
conductivityd may depend oy or T or both. However, in this analysis, a homogeneous matér@alindependence
of the parameters frony, is stipulated. Moreover, possible dependence of the pateasion the history of is
disregarded, i. ec and1 may only depend on the current local temperature. The nealitemperature dependen:
of candA renders the partial @ferential equation (1) nonlinear.

An example for the dependence of the parameters on the kecaldraturd (y, t) is given in Fig. 2 for standarg
steel (01 % carbon). The salient peak ©otorresponds to a phase transition. Throughout this arsalf$emperature
dependence is accounted for, data from Fig. 2 is used. Méwenation on the temperature dependence of mate
parameters may be obtained from [4, 10].

2.2. Transformation of temperature

If the MWR were applied directly to (1), generally anplicit differential algebraic equation would be obtaine
Fortunately, a simple transformation of the temperatumel to isolate the nonlinear material characteristics ant
singleparameter, as demonstrated in [1] by elimination of the &napire dependence &f In an analogous way, the
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Figure 2: Temperature dependent material parametersaiodatd steel with.Q % carbon (data adapted from [10]).

temperature dependenceait eliminated in the sequel, such that the MWR will finallyrfigh anexplicit Ordinary
Differential Equation (ODE). The transformation law reads as

T
T(T) := f0+§ f c(r)dr. 2)
C ‘|'0
It is generallynonlinearandtime-invariant Bijectivity of the transformation is ensureddfT) > 0 Y T—a condition
that is satisfied for all practical purposes. Generally, aalyical expression for the inverse transformatiof )
cannot be given, however, a simple look-up table will bfiisient for computer implementations. The transform
stateT is proportional to the specific enthalpy, with the propartiity codficient /€. The constantparameterﬂ'
o andc’'may be chosen at will. However, the stipulatidins= T andc¢ = c(TO) seem reasonable and will be use
herelnafter Thus, the slope BfT) atT = T isl. Ifcis constant (2) simplifies to the identity function.
Utilization of (2) and introduction of the fferential operators

D(T) = pc% B _( AT ))C(T(ET)) aa;)
= A(T)
B5(T) = —q* () ¥ 1 %
y=%L/2

allow to reformulate (1) as

DAY.))=0 ye(-Y22),t>0 (3a)
with initial condition (1b) and Neumann boundary condison

B (Ty,1)=8"(Ty,1))=0 t>0. (3b)

It is assumed thaf (y, t) always satisfies the filerentiability requirements induced by the operatorand 87,
Obviously,q(y,t) = —A(T)aT/dy still defines the heat flux density. Fig. 3 shows the tempeganapping and the
transformed heat conductivifyif the material parameters from Fig. 2 ang= 273K are used. The temperature ax
are equally scaled.

2.3. Method of weighted residuals
Consider the Sobolev spave= H(-L/2,L/2) and the bilinear form

L/2
a(vy, v,) = f Lo vivody @ VXV — R. 4)
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Figure 3: Transformation of temperature and transformed &@nductivity for standard steel.{0% carbon).

Usinganytest functiorv(y) € V andanyscalar factors—, vt € R, the identity

a(v(y), D(T(y. 1)) + v B (T(y. 1) + V' 8" (T(y.1)) = 0

must hold for any > 0. Here, D(T (y, t)) € L3(-L/2, L/2) and|B¥(T (y, 1))|| < o are required, where?(-L/2, L/2) is
the space of square integrable functions on the interdal?, L/2). The usual way for obtaining the weak formulatic
is integration by parts (cf. [7, 16]), which yields

0= pe T80 o 20 i )T v vy

ot (v, 1)
%

aT (v, t) (%)

ay

— (Vv = Vv(-L/2) 1 + (V= Vv(L/2) A t> 0.

y=-L/2

y=L/2

In this equation, the requirements on th&etientiability of T (y, t) with respect toy are less restrictive than in th
operatorD. Apart from this fact, (3) and (5) are equivalent. Until ndivere is no mathematical approximatio
implying that the solution of (5) is identical to the solutiof the strong formulations (1) and (3).

The basic idea of the MWR is to derive @pproximatesolution of (5) by restrictingl (y, t) to somefinite-
dimensionabpace and by discarding the stipulation that (5) must bsfeatifor any(y) € V and anyw—, vt € R. A
mathematically simple solution may be found if (5) only heofdr anyv(y) € V, € V and anw*® € V] C R, whereV,
is afinite-dimensionasubspace.

Clearly, the choices* = v(¥L/2) causes the second line of (5) to vanish. This reasonatmplification is
particularly useful for Neumann boundary conditions [24gnce, it is used throughout this paper. Unfortunately,
second term on the right-hand side of (5) contains the gépernlinear functioni(T (y, t)). Assuming for the time
being thaia(ov(y)/dy, T (y,1)/dy) # 0, the weighted mean value

(3V(Y) /I(T( 1)) 3T(yt))

T= 200 7090 = s ©
can be used to rewrite (5) as
0=afv. 6™ 80 ¢ T T 00 22, D) vy g0 -vima o ™

Note that the parametgrdoes not depend on In principle, the introduction of (6) does not entail anypegximation
error. However, later some accuracy will be sacrificed tqodifjtime integration. For a computer implementation |
the method, special care should be taken to avoid numerniohlgms if the denominator of (6) is close to zero. F
instancey(y) = constor T(y, t) = const w.r.t. y should automatically result i = 0.
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2.4. Galerkin method

The GM (cf. [8, 16]) is an important subcategory of the MWRsUggests to approximate the exact solutign t)
by T, (v.t) € V,, i.e, the finite-dimensional subspace of the approximaitisa equals the space of trial function
V,, = sparth,(y), h,(y), ..., h,(y)} € V. Thus,

"
To, ) = > % ON(Y). ®)
i=1

The time dependence &f is reflected by the Galerkin ciients x(t), which can be summarized in the vects
X(t) = [x,(1), %,(1), ..., x,()]T. TheH basis functiond(y) € V, are used as trial functions, which have to be li
early independent. Moreover can be chosen such that some homogeneous boundary cogditeoautomatically
satisfied byTh(y, t). However, for the considered problem, the boundary caitare generally inhomogeneous.
Evaluation of (7) for theH trial functionsh,(y) (v(y) is replaced byn,(y)) yields an initial-value problem in form
of an explicit ODE for the unknown Galerkin chieientsx(t). Thereforex(t) are the states of a dynamical syste
of orderH. It is referred to as lumped-parameter system. In line withMWR, it seems reasonable to obtain |
initial valuesx(0) = x, by minimizing the deviation beMegm(y, 0) and the given initial temperature profireéTo(y))

weighted by the trial functions,(y). Thereforea(h,(y), T, (y,0) - T(To(y))) =0Vie{l,2,...,H}. Insertion of (8)
and utilization of the linearity oa(vl, v,) (cf. (4)) y|eId the linear equation
ath,(y).hy(y)) - alhy(y), hy(y)) a(hy(y), T(To()
: - : Xo = 3 - ©)
athy(v).hy(y)) --- athy(y). hy(y) a(hy (), T(To())

Since linear independence of the basis functig(g was assumed, (9) can be readily solved for the initial state
In the sequel, the proposed approach is explained with a-thireensionabrthogonalbasis

2
=1 ho=2  he=(2) -3 (10
i.e.H =3 andTh(y, t) is a quadratic polynomial ig. The rationale for this choice is that—given the right iliti
condltlonT(TO(y))—lt would allow anexactsolution of (3) if 2, g (t), andq*(t) were constant. For an arbitrar
initial conditionT (T,(y)), the error would converge to zero. Even for non-constaatenmal parameters or heat fluxe
the chosen trial functions prove useful. In Section 3, if Ww# demonstrated that for the intended application, (]
facilitates an acceptable balance between computatidiivet and achieved accuracy. Adding additional polynom
trial functions, i.eH > 3, is possible in an analogous way. Corresponding resultd&shown in Section 3.
Substitution of (10) and (8) into (7) far= h,, v = h,, andv = h, yields

X(t) = A(x(®)x(t) + Bq(t) t>0 (11a)
with the initial valuex(0) = x,, the heat flux inputsi(t) = [q™(t), " ()]", and the matrices
12 - = - =
A=-— o diag{o a(h, T,) 5a(hs, Tp)] (11b)
1 11
B=—-diag{l 3 152}|-1 1. (11c)
pCL 11

Note that the ODE (11) is generaltpnlinearbecauseA contains the parameteth,, T’h) anda(h,, fh) with fh from
(8). The computation of these parameters requires two atiahs of (6) at each time integration point. The favoral
property thatA exhibits a diagonal structure is lostHf > 3, however, the method proceeds in the same way.

A substitution of the heat inpui(t) in (11a) by the expression for the radiative heat exchangédintroduce a
significant nonlinearity to the system becagsét) andq’(t) depend on the surface temperatuTcéfh( L/2,t)) and
T(Th(L/2 t)), respectively. Therefore, the consideration of rade@lieat exchange is postponed until a discrete-ti
system is obtained.
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2.5. FOH-type time integration method

Any standard numerical ODE solver algorithm for explicitial-value problems should fiice to integrate (11).
However, the benefit of manual discretization of the systemmat usually laborious iterative solver algorithms ¢
be replaced by algebraicftérence equations, which allow rapid evaluation. Consiaiseretized time domain with
sampling instantg ¥ k € N, which are generallpotequidistant, and lef, = t,,, —t, be the corresponding samplin
period.

YO O d
“ >——0 - o\gk \v/i‘//o'\o
— : : !
: tk=—1 tik tkil T : tki— ti t|<!+1 T
a) e b) T

Figure 4: Shape of input signal, a) ZOH method, b) FOH-typé&hoe:

In order to obtain a discrete-time representation [9, 144 sfate space system like (11), the Zero-Order-H
(ZOH) method [9, 15] is frequently applied. ZOH means that exput is forced to a function space which has tl
step functionsgr(t-t,) V k € N as a basis, as exemplified in Fig. 4.a for some scalar inputinspired by the fact that
the First-Order-Hold (FOH) method [9, 15] furnishes morewaate results than the ZOH method, a time integrat
method capable gfiecewise lineamput signals is outlined in the following. Moreover, thensadered function spacg
allows fordiscontinuousnput signals, which may occur in process control appleati Sampling pointg must be
set at least at discontinuities of the input signals or thleipe. Then, the inpu(t) of (11a) can be defined as

q(t) = gt k+l + qﬁt - % for t <t <t (12)
k k

with gi = [g, gi*]"T andg? = [g2~,g2*]". The meaning of these vectors is illustrated in Fig. 4.b. Ela, the
componentsg~(t) andg*(t) are generally not equal. The vectors may be obtained from

ak = qa(ty), O = T"—>n3— Ati,q + 7).

The serlescﬂ ) and (q ) are the inputs to the discretized system. In order to tatdia simple analytical solution o
the ODE (11), it is assumed that the parame&h@ T p) anda(hs, T ) take theconstantvaluesAa(h,, Th(y t)) and
/l(hs, Th(y, t,)) within each time intervalt], t, ). Implementlng thlsapproxmatlonthe integration of (11) with the
input (12) readily yields the discrete-time system

Xie1 = A% + Bi(X) 0 + BR(X,) GE (13a)
with
A, = diag{ 1 eXp(—lZ/l(h;,E'l'Cz(y,tk))Tk> exp(fson(hig&(y,tk))Tk)} (13b)
s
- (14 (14 o’ CL_)(l_ ) L
By = diag) 2, T,4)) 1220, T ()T, P\ —i ELL (13¢)
L B pEL? _ ~601(h;. T, 4T, )
8(hs, T, (v.t) 1+ (1 + 601(h,, T, (Yt )T, (1 exp( pEL2 ))
Tk
20eL o
2 L (1 - peL (l - exp(_’m(hz’Th(Vik))Tk))) 11
Bi = diagq 4in, 7. yan\" 121, T, 00T, G —1 1 : (13d)
L ~ oL ~ —601(h,, T, ()T,
8(h, T, (%:1) eoI(hs,fh(y,tk))Tk(l exp( pEL? )))
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Strictly speaking, (13) is non-causal, smq%occurs at the same time &g, ,. Moreover, it is generallyionlinear
because the system matrices depenﬂf&(y, - The system isime-variantif the sampling period is not constant.
The favorable diagonal structure A, is lost |f H>3.

To show that the FOH integration method [15] is a special chiege approach proposed above, consider a lin
time-invariant system with the transfer functi@{s), equidistant sampling time, i.d, = const, and a continu-
ous scalar input. Lets be the Laplace variable armthe complex variable of the Z-transform. Then, the famili
transformation equation [9]

(z- )ZZ{G(S)SZLTK}

for the Z-transfer functiof®s,(2) is obtained. Here, {&} represents the transition from the (continuous) Laplaceaio
to the (discrete) Z-domain by means of inverse Laplace fioamstion, sampling of the obtained time signal, and
transform of the resulting series.

The benefit of the proposed integration scheme compared tddksical ZOH or FOH method is that complicat
input signals with non-equidistant discontinuities canalp@roximated more accurately. Therefore, the analysi
continued using the discrete-time system (13).

z()_

2.6. Radiative heat exchange

The boundary conditions are defined by two decoupled radigtioblems in the volumes below and above t
domain FL/2,L/2]. Consider in Fig. 1 the tgpottom wall surface as well as the surface= ¥L/2, which are
separated by aon-participatingmedium, meaning that the medium daest emit thermal radiation and any ray
passing the medium are neitheatterednor absorbedor attenuated This assumption is acceptable for pure air a
if the distances between the considered surfaces do not@xcéew meters. However, for other media or for h
atmospheres, like they may appear in the steel industryggeemption is likely to be unjustified (cf. [11, 12, 13]
Frequently, a reliable measurement of the gas temperaturetiavailable whereas wall surface temperatures
be measured with higher reliability. Consequently, thel waiface temperatures serveamtrol inputs which are
commonly governed by cascade control loops (cf. [6, 18,.23]herefore, the gaseous atmosphere between
radiating surfaces is disregarded in this analysis. Modeimeters, like the emissivity, are adjusted to compemrsa
least partially for the error introduced by the restric@ssumption of a non-participating medium.

Let the two involved surfaces befflise gray bodies with emissivitieg ande*, respectively and assume that tt
temperature distribution on the surfaces is homogeneohsn,Tthe net heat flux density between the wall and
surfacey = ¥L/2 is obtained as

00 = (T - T* (#2), (14)
w_1

FoF
grey,

where the Stefan-Boltzmann law and Kirclifi® law of thermal radiation have been used [11, 12, 13]. He
o = (5.670400:0.000 040 x 108 W is the Stefan-Boltzmann constant. The surface temperai(we/2,1) in
(14) is replaced by its Galerkin apprOX|mat|6|(1Th(+L/2 t)) = T([1 F1, 2/3]x(t)). The evaluation of (14) at the
sampling pointd, andt, , allows to derive the input valueﬁ andq of the discrete-time system (13) as

gt + &,

= g ()T w1 ) e

F oF
gtey,
a

G = w—5— (JLrg,((Tvi)4(tk+1+T))—T4([1 1 7 Xk+1))- (130)

gt + &),

erey
The one-sided limits in (15) are necessary to allow for disicmous input signal3;(t). At first sight, this may
seem implausible since surface temperatures cannot jurowever, the approach is suitable for batch processe
discontinuous process steps, where the solid is quicklgeshinto a new environment. ThereforE],(t) may be
regarded as an ambient temperature referring to the clgneironment of the solid.
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2.7. Implicit system
Insertion of (15b) into (13a) yields amplicit algebraic equation

Xk+1 = f(Xk+1) (16)

for the unknown state, ,. Obviously,f(x,,,) depends oA, B, B2, Xi» q&, o, %, g, the transformatiorT(f),
and the left-sided limit oT ;i (t) att =t ,.

For usual parameter values and reasonable choices of tipdisgeriodT,, f : R" — R" is alocal contraction
[3], meaning that it is locally Lipschitz continuous with @kchitz constanK € (0, 1). SinceK <« 1 is observed in
most cases, the fixed-pointiteration method [3] suggestff ias an iterative routine for solving the implicit eqoati
However, its convergence behavior depends on the choseaplisgrperiod and is onlyinear. Thus, for expedited
computation, it is recommended to utilize the Newton-Raphsethod, which exhibitquadraticconvergence. If a
chosen starting point inhibits the convergence of the NevRaphson method, it may be worth using relaxed Newt
Raphson methods (variable step length), returning to tlkee fpoint iteration method, or reducing the chosen samp
period. Generally, the proposed mathematical model isréble insofar as for both iterative solution methods t
value ofx, proved to be a good starting point to search¥gr,. Convergence problems have not been observed, ¢
for coarse discretization of the time domain, as will be destiated in the following section.

3. Example problem

The proposed method is used to compute the temperature riiglcsieel slab which undergoes heat treatm
in some radiative environment as outlined in Fig. 1. The &ilce of the chosen sampling peridg is studied,
and numerical results are compared to values obtained b¥IiM. In conventional reheating furnaces, it tak
approximately 6 h until steel slabs acquire their desired@ssing temperatures above 1350 K. However, the rehe:
time depends strongly on the geometric dimensions and ragpeoperties of the slab.

The slab to be analyzed in this example has a homogeneoias tainperaturel (y) = 300K, a thickness of
L = 0.5m, and surface emissivities ef = 0.65 ande™ = 0.75 at the surfaceg= —L/2 andy = L/2, respectively.
The smaller value at the bottom surface may be considered@aspensation for the shade caused by some sup
(not shown in Fig. 1) which holds the slab in place. Valuesheftemperature-dependent material parame(@rs
andA(T) are defined in Fig. 2. The enclosing surfaces have the arityss], = ¢, = 0.7. Their temperatures

1600K ift<12h
300K else

1600K ift<6h

To(t) =
w(®) { 300K else

o]

serve as inputs. In real applications, significafitdences between the environmental temperatures belowbane &
the slab, like in the interval from 6 h to 12 h, may occur in lieaype furnaces. However, here, the input ambi
temperatures are chosen to represent a challenging exantipleespect to the numerical solution of the problem.

An exact analytical solution of the problem has not beendbinerefore, the results of a standard FDM algoritt
implemented in the MrLaB® commancdepe [19] are used as@ference solutionThe number of equidistant spatie
grid points is chosen ad = 100, whereas time stepping is adaptive. For time integratiiepdepe command uses
a variable order multistep solver, which realizes Gear'sho@ [17]. In the following, the deviation between &
approximate temperature resiijfand a reference resultwill be denoted aaT =T, - T.

For comparison, the ODE obtained from the FDM is also integravith the implicit Crank-Nicolson method [5
executed at fixed time steps. Like for the proposed FOH-tygiration scheme (cf. Section 2.7), the Crank-Nicols
approach requires to solve an implicit algebraic equatioeagh sampling instant. It is emphasized that expl
integration methods, which are computationally easieatudhe, would significantly limit the sampling time becau
of possible numerical instability. It is an advantage of HixM that it can be applied directly to the heat conducti
equation (1), i. e. the transformation proposed in Secti@ninot required. To make the results comparable to
proposed GM witHH trial functions, the FDM is computed with = H equidistant grid points.
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Figure 5: Input ambient temperatures and minimum, meanpedmum temperature of the solid.
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Figure 6: Deviation between the approximate mean temperaind the reference solution.
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Together with the inputs and the reference solution, nurakresults computed by means of both the propo;
GM with the FOH-type integration method and the FDM with theudk-Nicolson integration scheme are shown
Fig. 5. It contains the minimum, the maximum, and the meanevalf the temperature profile for each samplii
period. To keep the figure uncluttered, only results for adfis@mpling timeT, = 60 min are shown. Itis possible t¢
further increase the sampling period, however, the acHiageuracy obviously deteriorates.

Two major sources of inaccuracies are the discretizaticghepatial domain and the time domain. Refining {
resolution of only one of these dimensions is lefsdive than refining the resolution of both dimensions astmae
time. For the GM this would mean to increadethe number of trial functions, which entails an increaseeirms of
the computational load. Therefore, in this analyBigjever exceeds 5.

The deviationsAT .., between the mean temperatures of the approximate resdtarmean temperature @
the reference solution are shown in Fig. 6 for varidlisN, andT,. The FDM with smallN underestimates the
thermal inertia of the system, whereas with the GM this iy diné case for large sampling periofis Evidently, the
improvement fromH = 3toH = 5 is only moderate.

The GM produces the largest deviations right after disomtis changes of the inputs. However, the practi
relevance of these transient errors is rather marginal. ebhaar, the errors can be easily reduced if the samp
periodsT, are decreased in the vicinity of discontinuous changeseiitputs.

In thls analyssﬂ(h,, Th(y, t)) is considered to be constant during the intervglt . ) and it depends only or,
andi € {1,2,...,H}. Therefore, the accuracy could be further improved if batrand x, ., were utilized in the
computation of/l for the interval [t,.. t, , ;). For simplicity, this idea was not followed in this work.

Normalized CPU time
3041 [] Solved with GM 3.0%

[] Solved with FDM
1.4% 1.4%

2% -

1% 2% 6%
0.1%
H=N=3 H=N=3 H=N=5
T,=60min T, =10min T, = 6min

Figure 7: Required computation time normalized with respethe computation time of the reference solution.

The influence oH, N, andT, on the computation time is summarized in Fig. 7. Generdily results of the GM
with the FOH-type integration scheme are in terms of lamturacyandcomputational loaduperior to the results of
the FDM with a fixed-step integration scheme.

The example problem demonstrates the virtues of the prdposthod. The obtained system is low-dimensiona|
it hasH states. The accuracy achieved with= 3 is very acceptable for many applications in the steel itrgiusven
if the sampling timed', are in excess of 1 h. Variations of the sampling period do inat the applicability of the
method since each time interval is integrated individually

4, Discussion

A method for computing the transient temperature field inl@l sath nonlinear material parameters subjected
radiative heat inputs was proposed. Imporfamciplesadopted in the course of the analysis are:

¢ the postponement of nonlinear radiation boundary conwit{@4) by employing Neumann boundary conditio
(1c) until the discretized system (13) is obtained,

e a nonlinear, bijective, time-invariant transformation) ¢ the temperature to simplify the consideration
nonlinear material parameter&nda,

e the GM withH = 3 trial functions (10) to derive a lumped-parameter systéf),

¢ and an FOH-type time integration method to discretize tine tlomain (cf. (13)).
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Finally, the implicit algebraic equation (16) is obtaineghich can be solved without filiculty. The most salient
modeling assumptiomeaterialized in this work can be summarized as follows:

e The geometries of the solid and the ambient surfaces aredewad infinitely large along two spatial dimer|
sions. The temperature field is assumed to be constant dlesg tlirections. The approximation seems justif
if the length and the width of the solid significantly exceesdhicknesd. or if many solids are densely arrange
side by side.

e For the formulation of radiation boundary conditions, ibssumed that the surfaces are separated by a
participating gaseous medium.

e The surfaces themselves are considered fiss@i gray bodies with homogeneous temperatures and con
emissivitiese}, ande™.

However, modeling assumptions are not the only comproméagenm this analysis—there are also some signific
mathematical approximations

e The MWR suggests to approximate the tempe[atureﬁ(eydt) by 'fh(y, t) taken from some finite-dimensioné
space. In this paper, the GM was utilized, whef¢y, t) and the trial functions(y) are confined to the sami
spaceV,. A reasonable choice for the trial functiohs(i € {1,2,..., H}) is vital for minimizing the entailed
approximation error. _

e Itis assumed that(hi,'f'h) Yie({l,2,...,H}in (11b) takes the constant valuehi,'f'h(y, t.)) during each time
interval [t,.. t, . ).

e The inputq(t) is constrained to a piecewise linear signal (12), which joayp att,. Therefore, sampling points
t. should be set at least at discontinuitiegf).

e The radiation boundary conditions (14) are only satisfiethatsampling points, since they have been in
troduced after discretization of the time domain. For tiseimputation, the surface temperatlifgL/2,t,) is
replaced by its Galerkin approximation.

e The implicit difference equation (16) is only numerically solved.

Despite these limitations, the proposed method proved tadeguate for many purposes, especially the inten
application in the steel industry.

Compared to the FDM, the GM yields a mathematical structia is beneficial for control tasks. Timeean
of the transformed temperatuiieand, forH = 2 or H = 3, thesymmetryof the current temperature profile ar
reflected by the single state variabbggt) andx,(t) or X1k andx,  for the continuous-time or discrete-time systel
respectively. Neglecting the temperature dependenokél‘gffh(y, t)) in (11b), which, anyhow, is weak, (t) and
X,(t) are independent states of (11a), sidcexhibits a diagonal structure. Moreover, the structurB stiggests the
regular input transformation

Cla®f 111 -1){aq, ()
a) = [cr(t)]‘ 2|1 1] [qi(t)

to obtain twodecoupledsystems, where,(t) controls onlyx, (t) andg,(t) only x,(t). If the (stable) state(t) is
ignored as an output, the two systems are of the single-Bipgle-output type. Compared to the FDM, this approe
significantly simplifies the design of a temperature cogravhich uses the ambient temperatures as inputs, bec
the original multi-input multi-output system (11) simpdifi to two independent single-input single-output syste|
The same input transformation can be applied withdigireto the discrete-time system (13).

Some more advantages of the proposed method are acceptabta@y with only three Galerkin trial function
(10), even for large sampling periods, robustness agaimittions of the sampling time, reliable convergence beh
ior, small model dimensions, and low computational costse latter properties may be of particular interest if t
model should be used in real-time applications. Theretbeeproposed method can be suitable for implementati
in trajectory planning, optimization, or control tasks,aewh constraints on the computing time are often tight.

Acknowledgments

The authors from Vienna University of Technology thankfaltknowledge the sustained support provided by 4
der Dillinger Huttenwerke.

Post-print version of the article: A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A fast simulation method for 1D heat conduction”,
Mathematics and Computers in Simulation, vol. 82, no. 3, pp. 392-403, 2011. por: 10.1016/j.matcom.2010.10.016
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1016/j.matcom.2010.10.016

AIC|IIN

References

[1] H.D. Baehr, K. Stephan, Heat and Mass Transfé# 2., Springer-Verlag, Berlin Heidelberg, 2006.
[2] L. Balbis, J. Balderud, M. J. Grimble, Nonlinear prediet control of steel slab reheating furnace, Proceedingh@fAmerican Control
Conference, Seattle, Washington, USA (2008) 1679-1684.
[3] V. Berinde, Iterative Approximation of Fixed Points,lv&912 of Lecture Notes in Mathematics, Springer, Berli®Q2
[4] BISRA, Physical constants of some commercial steelfestiged temperatures, Tech. rep., British Iron & Steel ReteAssociation, London
(1953).
[5] J. Crank, P. Nicholson, A practical method for numerieghluation of solutions of partial fierential equations of the heat conduction typ
Proc. Cambridge Philos. Soc. 43 (1947) 50-67.
[6] G.v. Ditzhuijzen, D. Staalman, A. Koorn, Identificatiamd model predictive control of a slab reheating furnacec@&edings of the 2002
IEEE International Conference on Control Applicationsasgjow, UK (2002) 361-366.
[7] L. C. Evans, Partial Oferential Equations, vol. 19 of Graduate Studies in Math@siadmerican Mathematical Society, Providence, Rho
Island, 2002.
[8] C. Fletcher, Computational Galerkin Methods, Springé&w York, 1984.
[9] G.F.Franklin, J. D. Powell, M. Workman, Digital Controf Dynamic Systems,’$ed., Prentice Hall, Upper Saddle River, 1997.
[10] K. Harste, Untersuchung zur Schrumpfung und zur Ehtstg von mechanischen Spannungen wahrend der Erstarnghgachfolgender
Abkuhlung zylindrischer Blocke aus Fe-C-Legierungeh,? thesis, Technische Universitat Clausthal (1989).
[11] H. C. Hottel, A. F. Sarofim, Radiative Transfer, McGrédilt, New York, 1967.
[12] J. H. Lienhard IV, J. H. Lienhard V, A Heat Transfer Teatik, 3ded.,, Phlogiston Press, Cambridge, Massachusetts, 2002.
[13] M. F. Modest, Radiative Heat TransfePd2d., Academic Press, New York, 2003.
[14] K. Ogata, Discrete-Time Control System&9 2d., Prentice Hall, Upper Saddle River, 1995.
[15] C. Philipps, H. Nagle, Digital Control System Analysisd Design, '8 ed., Prentice Hall, Englewood @8, 1995.
[16] B.D. Reddy, Introductory Functional Analysis, TextsApplied Mathematics, Springer, New York, 1997.
[17] L.F. Shampine, M. W. Reichelt, J. A. Kierzenka, Solvingex-1 DAEs in MATLAB and Simulink, SIAM Review 41 (1999) B3552.
[18] H. Sibarani, Y. Samyudia, Robust nonlinear slab terapee control design for an industrial reheating furnacem@uter Aided Chemical
Engineering 18 (2004) 811-816.
[19] R.D. Skeel, M. Berzins, A method for the spatial disizaion of parabolic equations in one space variable, SIAMrdal on Scientific and
Statistical Computing 11 (1990) 1-32.
[20] A. Steinboeck, D. Wild, T. Kiefer, A. Kugi, A flexible tim integration method for the 1D heat conduction problemc&edings of the®
Vienna Conference on Mathematical Modelling, Vienna, AiastARGESIM Report no. 35 (2009) 1204-1214.
[21] D.Wild, T. Meurer, A. Kugi, Modelling and experimentalodel validation for a pusher-type reheating furnace, Mahtical and Computer|
Modelling of Dynamical Systems 15 (3) (2009) 209-232.
[22] N. Yoshitani, T. Ueyama, M. Usui, Optimal slab heatimptrol with temperature trajectory optimization, Prodegd of the 28' International
Conference on Industrial Electronics, Control and Insentation, IECON’94 3 (1994) 1567-1572.
[23] B.Zhang, Z. Chen, L. Xu, J. Wang, J. Zhang, H. Shao, Thdetiog and control of a reheating furnace, ProceedingseoAtherican Control
Conference, Anchorage, Alaska, USA (2002) 3823-3828.
[24] O. C. Zienkiewicz, K. Morgan, Finite Elements and Apgroation, Wiley, New York, 1983.

Post-print version of the article: A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A fast simulation method for 1D heat conduction”,
Mathematics and Computers in Simulation, vol. 82, no. 3, pp. 392-403, 2011. por: 10.1016/j.matcom.2010.10.016
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1016/j.matcom.2010.10.016

