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Model-based trajectory planning, optimization, and
open-loop control of a continuous slab reheating furnace

A. Steinboeck∗,a, K. Graichena, D. Wildb, T. Kieferb, A. Kugia

aAutomation and Control Institute, Vienna University of Technology, Gusshausstrasse 27–29, 1040 Wien, Austria
bAG der Dillinger Hüttenwerke, Werkstrasse 1, 66763 Dillingen/Saar, Germany

Abstract

A temperature control method is developed for reheating steel slabs in an industrial furnace. The work was
motivated by the need for mathematically simple furnace control schemes that feature accuracy, robustness,
applicability to online control, and capabilities of non-steady-state operating scenarios, where the tempera-
ture goals and other properties of the slabs may vary considerably. The proposed hierarchical control concept
computes desired heat inputs for each individual slab based on a discrete-time nonlinear model. Then, a
quadratic program is solved to plan reference trajectories of furnace temperatures which optimally realize
the desired heat inputs into the slabs. The iterative algorithm accounts for constraints on system inputs as
well as states and may be used for open-loop control or as a feedforward branch in two-degrees-of-freedom
control structures. The feasibility and the limitations of the approach are demonstrated by means of an
example problem.

Key words: Reheating furnace for steel slabs, nonlinear discontinuous dynamical system, open-loop
control, trajectory planning, quadratic programming, non-steady-state operation

1. Introduction

1.1. Slab reheating furnaces

The metal industry uses various types of furnaces for heat treatment or reheating, i. e., as a preparation
for hot working. The energy consumption, the processing costs, the overall throughput, and the product quality
are key performance indicators for the control of such industrial furnaces. The furnaces can be classified as
nonlinear, distributed parameter systems with multiple inputs and outputs and usually discontinuous time
dependence. Moreover, interdependencies of physical quantities are sometimes not clear-cut.
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Figure 1: Sectional view of a pusher-type slab reheating furnace (not to scale, symbols explained in Subsection 2).
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This paper presents a model-based process control scheme of fuel-fired continuous furnaces for reheating
steel slabs before working in a hot rolling mill. However, the approach is equally applicable to furnaces for
billets, bars, or similar products and can be adapted for other furnace types.

In a continuous slab reheating furnace, slabs are conveyed through the furnace interior while being
reheated. A pusher-type slab reheating furnace, as considered in this analysis, is outlined in Figure 1. The
slabs are arranged in a single or several parallel rows and pushed in the longitudinally direction through the
furnace. They slide on skids to enable their reheating from both the bottom and the top side. The term
continuous is somewhat misleading because the slab movement itself is discontinuous.

The temperature distribution inside the slabs is a highly important but not measurable system quantity.
Therefore, temperature readings from thermocouples being installed in the refractory furnace walls [1–11]
may be utilized for estimating unknown slab temperatures by observers [12].

1.2. Furnace control task

Frequently, the furnace operation is governed by supervisory plant control that defines the order of the
slabs, their movement, and their desired final temperature profile, which is considered homogeneous in this
analysis. In terms of temperature control, only the supply rates of fuel and combustion air to the burners
serve as controllable inputs. The (sometimes antagonistic) objectives of an industrial furnace control scheme
are:

• Minimum deviation between the desired and the realized final slab temperature profiles

• Minimum specific energy consumption =
Energy supplied by fuel

Mass of reheated material
• Minimum loss of material through oxidization (scale formation)
• Minimum decarburization depth (may impair the material quality)

These control objectives are stimulated by economical reasons, in particular energy costs and ever-increasing
demands in terms of quality and diversification of products. The control task is greatly determined by the
discontinuous nature of the furnace process. Apart from the non-steady-state flow of slabs, they may vary
significantly in size, steel grade, material properties, initial temperature, desired final temperature, available
reheating time, path-time diagram, and monetary value (cf. [1, 4, 9, 13–16]). Therefore, multiple probably
incompatible control objectives are to be reached. For instance, if the difference between the desired final
temperature of neighboring slabs is too large, the control problem may be not feasible.

Furnace control should additionally account for constraints like:

• Construction and geometry of the furnace including type and arrangement of heat sources (burners)
and heat sinks (slabs, furnace walls, skids, etc.)

• Protection of the furnace against immoderate wear
• Constraints on the temperatures of the furnace walls in order to protect them from damage
• Limitations of the manipulated variables, i. e., fuel and air feeds
• Metallurgical constraints of the slab temperature trajectories
• Unforeseen standstills or delays caused by upstream or downstream process steps

Especially, the restrictions on the manipulated variables and the furnace wall temperatures can limit the
control performance. If such constraints are active, controllability of the corresponding quantities may be
lost—at least temporarily.

1.3. Existing control schemes

Generally, it may be distinguished between control strategies that regulate exclusively the temperature or
the velocity of the material to be reheated [17] or both [6, 9, 11, 16, 18–20]. Temperature control systems may
either control slab temperatures directly or indirectly by regulating furnace temperatures as intermediate
quantities. The latter strategy is adopted in [2, 21] and in this paper. It may be classified as open-loop
control of slab temperatures, since there is no feedback from (estimated or measured) slab temperatures.
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Reference signals of furnace temperatures are commanded to some subordinate (feedback) control devices,
which regulate the supply of fuel and combustion air.

Several control schemes, e. g., [1–4, 6, 8, 11, 18, 21–23], have been developed for steady-state furnace
operation or are based on steady-state furnace models, meaning that all slabs have equal properties (geom-
etry, material, initial temperature, desired final temperature, residence time in the furnace, etc.) and that
the slabs are moved forward at regular time intervals. Clearly, if these controllers are used to operate the
system under non-steady-state conditions, the control performance may suffer.

Most furnace temperature control systems are based on some sort of modular control, mainly hierarchical
(open-loop) or cascaded (closed-loop) control structures [4–6, 9–11, 13, 14, 18, 19, 21, 24–28]. In cascaded
structures, the inner loops are usually controlling the furnace temperature, for instance by PI or PID
controllers [4, 10, 11, 13, 24–26, 28].

Some control concepts utilize table look-up algorithms with setpoints of furnace zone temperatures being
stored in databases [1, 2, 4, 6, 9, 11, 15, 16, 22]. The tabulated data can be determined off-line using steady-
state planning and optimization algorithms or empirically from operators’ experiences.

The control task is simplified if the dynamic interaction between the zones is neglected [2–4, 10, 24, 29, 30].
The idea of zone-based feedback control (cf. [3, 7, 15, 24, 25]) is that the slabs should reach predefined
(optimal) temperature setpoint values (at the end of the furnace zones). The feedback controller either
defines setpoints for the zone temperature [5, 9, 10, 13, 15, 24, 25, 30] or straightaway for the heat input (fuel
supply) to the respective zone [3, 20]. Alternatively, the control error may be used in a static optimization
problem to select optimum zone temperatures [7].

For two-degrees-of-freedom control, the output of feedback controllers is added to preplanned (optimal)
furnace temperature trajectories [6, 8, 10, 11, 22] or preplanned fuel flow rates [16]. Usually, the feedback
law is based on the control error of the slab temperature, which, therefore, has to be estimated by some
observer. For a single furnace zone, [29] presents a nonlinear feedback control law ensuring asymptotic
stability.

Surface temperatures measured by pyrometry after the furnace or after the first roughing mill are used
for feedback control in [1, 7, 9, 10, 14, 16, 23]. The control performance can be limited because of both the
temperature drop and the time delay from the furnace exit to the measuring point. These effects may cause
oscillations in the closed loop [7, 10].

Moreover, dynamic optimization can be used to derive optimal fuel flow rates under non-steady-state
(transient) conditions [31]. Model predictive control (cf. [5, 18, 19, 26, 32, 33]) requires to solve optimization
problems in the closed loop, i. e., in real time. Therefore, such algorithms usually rely on simple dynamical
models.

1.4. Motivation

Most furnace control strategies, including those mentioned above, are either computationally demanding,
which makes them unsuitable for online control, or based on simple dynamical models or even steady-state
models, which may limit control accuracy. This paper aims to fill this gap by providing a control method

• which is suitable for realtime execution,
• which accounts for the dynamic interaction between furnace zones,
• which properly accounts for nonlinear effects,
• which ensures accurate slab reheating,
• which can cope with non-steady-state furnace operation, i. e., scenarios where the desired final tem-
peratures and other properties of the slabs vary considerably,

• and which ensures compliance with relevant constraints as far as possible.

1.5. Contents

The paper is organized as follows: Section 2 briefly describes a dynamical model of the considered furnace,
which is employed in a hierarchical open-loop control scheme outlined in Section 3. The main result of the
paper is an iterative trajectory planning and optimization algorithm, which is developed in Section 4. Based
on an example problem, Section 5 demonstrates the feasibility and the accuracy of the method.

3

Post-print version of the article: A. Steinboeck, K. Graichen, D. Wild, T. Kiefer, and A. Kugi, “Model-based trajectory planning, opti-
mization, and open-loop control of a continuous slab reheating furnace”, Journal of Process Control, vol. 21, no. 2, pp. 279–292, 2011. doi:
10.1016/j.jprocont.2010.08.004
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.jprocont.2010.08.004


2. Mathematical models

This analysis utilizes two mathematical models of the considered furnace, each being tailored to its
specific purpose. The models are referred to as comprehensive model and reduced model. The accuracy of
both has been verified by measurements with instrumented test slabs that were reheated in the furnace [34].

The comprehensive model was presented by Wild and coworkers [12, 34]. It is based on radiation, heat,
and mass balances and uses the flow rates of fuel and combustion air as inputs. In this analysis, the model is
utilized in simulations for verifying the reduced model and for testing planning and optimization algorithms.

Steinboeck et al. [35] proposed a reduced model that is mathematically less demanding and therefore
suitable for optimization and control applications. It accounts for radiative heat exchange in the furnace
and heat conduction inside the slabs. The model is outlined in the following.

2.1. Slab management, geometry, and position

Consider the furnace shown in Figure 1 and let each slab be uniquely identified by an index j ∈ N. All
slabs j ∈ J = {jstart, jstart + 1, . . . , jend} are currently inside the furnace, where jstart refers to the next
slab to be withdrawn from the furnace and jend to the last slab that was pushed in. The slab j enters the
furnace at the time tj,0 and leaves it at the time tj,exit. Let tj,0 and tj,exit of all slabs be summarized in the
series of event times (tsl ) with l ∈ N. Therefore, jstart and jend are updated according to jstart = jstart + 1
and jend = jend + 1 at tjstart+1,0 and tjend,exit

, respectively. Likewise, the number of slabs Ns = |J | in the
furnace is updated upon such events.

In the global frame of reference shown in Figure 1, the center of the slab j has the current z-position zj .
Slabs may only be moved in positive z-direction. Moreover, let y be a local coordinate in vertical direction,
which is 0 at the center of the respective slab j. The thickness Dj and the width Wj is the extension of the
slab along the direction y and z, respectively.

2.2. Continuous-time model

The bottom and the top half of the furnace volume are each divided into 5 zones, i. e., N−
z = N+

z = 5
(cf. Figure 1). Henceforth, all quantities belonging to the bottom and the top half are designated by the
superscripts − and +, respectively.

The zone temperatures T∓
z = [T∓

z,1, T
∓
z,2, . . . , T

∓
z,N∓

z
]T are assumed to be homogeneously distributed within

each zone. They represent a combination of local flue gas temperatures and wall surface temperatures and
serve as inputs of the model. Therefore, the inputs directly correspond to measured zone temperatures in
the real furnace. Figure 2 shows the structure of the continuous-time model that is detailed in the following.

T+
z (t)

T−
z (t)

M+

M− (·)4

(·)4 [P+
z (t) P

+
s (t)]

[P−
z (t) P

−
s (t)]

q+j (t)

q−j (t)

Slab jstart

Slab jstart + 1

Slab jend

xjstart
(t)

xjstart+1(t)

xjend
(t)

Figure 2: Structure of the continuous-time model.

The heat conduction problem inside the slabs can be solved by means of the Galerkin method with
three orthogonal trial functions hj,1(y) = 1, hj,2(y) = 2y/Dj, and hj,3(y) = (2y/Dj)

2 − 1/3. The temper-

ature distribution inside the slab j is approximated as Tj(y, t) =
∑3

i=1 xj,i(t)hj,i(y), where the so-called
Galerkin coefficients xj,i(t), summarized in the state vector xj(t) = [xj,1(t), xj,2(t), xj,3(t)]

T, reflect the time
dependence of the slab temperature. The system dynamics follows as (cf. [35, 36])

ẋj(t) = ajxj(t) + b−j q
−
j (t) + b+j q

+
j (t) t > tj,0 (1a)
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with the initial value xj(tj,0) = xj,0 corresponding to the initial temperature profile Tj(y, tj,0) = Tj,0(y),
the expressions

aj = −
12λ̄j(xj(t))

ρj c̄j(xj(t))D
2
j

diag
{
0 1 5

}
, b∓j =

1

ρj c̄j(xj(t))Dj

[
1 ∓3 15/2

]T
, (1b)

the mass density ρj , and the net heat flux densities q−j (t) and q+j (t) into the bottom and top surface of the
slab, respectively. The model (1) represents a single slab j as a block on the right hand side of Figure 2. The
heat flux densities q∓j (t) into the slab j may be interpreted as intermediate inputs. The parameters c̄j(xj(t))

and λ̄j(xj(t)) are weighted mean values of the specific heat capacity cj and the thermal conductivity λj ,
respectively, which may nonlinearly depend on the local slab temperature [35, 36].

The states xj(t) have a direct physical interpretation: xj,1(t) is the mean temperature, xj,2(t) defines the
asymmetry of the temperature profile, and xj,3(t) corresponds to the symmetric inhomogeneity. Moreover,
Tj(∓Dj/2, t) = [1 ∓ 1 2/3]xj(t) is an acceptable approximation of the surface temperature, which is useful
for radiation boundary conditions (cf. (3)).

The heat inputs and the states of all slabs j ∈ J are summarized in the vectors q∓(t) = [q∓jstart
(t),

q∓jstart+1(t), . . . , q
∓
jend

(t)]T and X(t) = [xT
jstart

(t),xT
jstart+1(t), . . . ,x

T
jend

(t)]T, respectively. Note that their

components as well as their dimensions Ns and 3Ns, respectively, may vary at tsl . The model (1a) is
assembled for the whole system as (cf. [35])

Ẋ(t) =
[
δi,jaj

]
i=jstart...jend
j=jstart ...jend

X(t) +
[
δi,jb

−
j

]
i=jstart...jend
j=jstart...jend

q−(t) +
[
δi,jb

+
j

]
i=jstart...jend
j=jstart...jend

q+(t) (2)

with the Kronecker delta δi,j . The favorable decoupled structure of (2) is lost as the expression of the
radiative heat exchange

q∓(t) = P∓
z (t)

(
T∓

z (t)
)4

+ P∓
s (t)

(
M∓X(t)

)4
(3)

(cf. [35]) is considered, as shown on the left-hand side of Figure 2. The 4th power, emerging from the Stefan-
Boltzmann law [37–39], is applied to each component of the respective vector. The Ns × 3Ns sparse matrix
M∓ = [δi,j [1 ∓ 1 2/3]]i=1...Ns,j=1...Ns

maps X(t) to the vector of bottom and top slab surface temperatures,

respectively. Equ. (3) is a result of the net radiation method [37–40]. Remarks on the mapping matrixes
P∓

z and P∓
s are provided in Appendix A.

In the considered furnace, only N∓
zc = 4 zones, i. e., the zones 2 through N∓

z = 5, are equipped with
burners. They are referred to as controllable zones, and their temperatures are summarized in the vector
T∓

zc = [T∓
z,2, . . . , T

∓
z,N∓

z
]T. Since zone 1 is not controllable, the empirical formula

(T∓
z,2(t))

4 − (T∓
z,1(t))

4 = T∆z∓
z,12 (4)

with a constant value T∆z∓
z,12 (unit K4) is used to predict the unknown temperature T∓

z,1.
The continuous-time model (2) and (3) may assist in theoretical analyzes and will be used for formu-

lating constraints and control objectives in Appendix B. For computer implementation, however, a reliably
converging and accurate discrete-time representation is needed, as outlined in the following.

2.3. Discrete-time model

To obtain a discrete-time model, (3) can be evaluated at sampling points tk (k ∈ N), which must be
set at least at event times tsl ∀ l ∈ N. Let xj,k be the discrete-time approximation of xj(t) at t = tk. By

assuming that the heat flux densities q∓j (t) are piecewise linear signals which may be discontinuous at tk,
i. e.,

q∓j (t) = q1∓j,k
tk+1 − t

∆tk
+ q2∓j,k

t− tk
∆tk

for tk ≤ t < tk+1,
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the discrete-time dynamic model of a single slab follows as (cf. [35])

xj,k+1 = aj,kxj,k + b1−j,kq
1−
j,k + b1+j,kq

1+
j,k + b2−j,kq

2−
j,k + b2+j,kq

2+
j,k (5a)

with

aj,k = exp
{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j
diag

{
0 1 5

}}
(5b)

b1∓j,k =




∆tk
2ρj c̄j(xj,k)Dj

∓ Dj

4λ̄j(xj,k)

(
−1 +

(
1 +

ρj c̄j(xj,k)D
2
j

12λ̄j(xj,k)∆tk

)(
1− exp

{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))

Dj

8λ̄j(xj,k)

(
−1 +

(
1 +

ρj c̄j(xj,k)D
2
j

60λ̄j(xj,k)∆tk

)(
1− exp

{
− 60λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))


 (5c)

b2∓j,k =




∆tk
2ρj c̄j(xj,k)Dj

∓ Dj

4λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

12λ̄j(xj,k)∆tk

(
1− exp

{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))

Dj

8λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

60λ̄j(xj,k)∆tk

(
1− exp

{
− 60λ̄j(xj,k)∆tk

ρj c̄j(xj,k
)D2

j

}))


 , (5d)

and the not necessarily constant sampling period ∆tk = tk+1 − tk. By analogy to (2), (5) can be assembled
for the whole system as (cf. [35])

Xk+1 = AkXk +B1−
k q1−

k +B1+
k q1+

k +B2−
k q2−

k +B2+
k q2+

k (6a)

with Xk = [xT
jstart,k

,xT
jstart+1,k, . . . ,x

T
jend,k

]T, qα∓
k = [qα∓jstart,k

, qα∓jstart+1,k, . . . , q
α∓
jend,k

]T ∀ α ∈ {1, 2}, and the
sparse matrices

Ak =
[
δi,jaj,k

]
i=jstart...jend,j=jstart...jend

, Bα∓
k =

[
δi,jb

α∓
j,k

]
i=jstart ...jend,j=jstart...jend

∀ α ∈ {1, 2}. (6b)

Together with (3), (6) constitutes an implicit, nonlinear equation for Xk+1 requiring that Xk, T∓
z,k =

T∓
z (tk), and T∓

z,k+1 = T∓
z (tk+1) are known. The discrete-time model is used for designing required heat

inputs into each slab (Subsection 4.2), for selecting optimal zone temperatures in controllable zones (Sub-
section 4.3), and for trajectory planning (Subsections 4.2 through 4.5).

3. Outline of the hierarchical control system

The primary physical inputs of the furnace system are the flow rates of fuel and combustion air. Directly
controlling or optimizing them would require a sophisticated, mathematically complex model. Alternatively,
the simple model outlined in the previous section is used in a hierarchical control scheme, which splits the
control task into supervisory plant control, high-level furnace control, and low-level furnace zone temperature
control.

3.1. Supervisory plant control

The task of supervisory plant control is to coordinate all rolling mill components, including the slab
furnaces. The supervisory controller provides the so-called slab schedule which defines the sequence of
slabs, the movement of slabs, some bounds on the slab reheating trajectories (cf. Subsection B.2.2), and the
parameters listed in Table 1.
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Variables Description
tj,0 . . . . . . . . . . Time when slab enters the furnace
tj,exit . . . . . . . . Time when slab is withdrawn from the furnace
Tj,0(y) . . . . . . . Temperature profile at tj,0
T̃j,end . . . . . . . . Desired temperature at tj,exit (homogeneous profile)

cj , λj . . . . . . . . Specific heat capacity and thermal conductivity (temperature-dependent)
Dj , Wj . . . . . . Thickness and width of the slab
wj . . . . . . . . . . . Weighting factor reflecting the monetary value of the slab

Table 1: Some parameters of the slab j specified by supervisory plant control.

A path-time diagram for each slab (cf. Figure 6c)) can be derived based on tj,0, tj,exit, and Wj of all
considered slabs. The slab schedule is defined for a sufficiently large future period such that the high-
level furnace controller, which is assumed to have no influence on the slab schedule (including the slab
movements), can preplan future control actions.

3.2. High-level furnace control

Supervisory
plant control

Furnace
controller

Zone
temperature
controllers

Furnace

Slab j

T∓
z (t)

T̃
∓
zc(t)

Air,
fuel

Slab schedule
q∓j (t)

Tj(y, t)

Figure 3: Hierarchical open-loop control system of a slab reheating furnace.

This paper focuses on high-level furnace control, which is referred to as trajectory planning. Its purpose

is to provide low-level controllers with (optimal) reference signals T̃
∓
zc(t) for controllable zone temperatures

T∓
zc(t) based on a given slab schedule. To accomplish this task, a feedforward control scheme, as outlined

in Figure 3, is developed in the following. Note that open-loop control is suitable for stable systems only.
Weak additional conditions ensure that the system considered here belongs to this class. In [35], Lyapunov’s
theory is used to prove stability.

3.3. Low-level furnace zone temperature control

The inner feedback loop (low-level control) controls the temperatures T∓
zc(t) in the controllable furnace

zones. It defines the flow rates of fuel and combustion air by means of standard PI controllers. Since the
temperatures T∓

zc(t) can be measured by thermocouples, they are appropriate to link variables from high-
and low-level control.

As usual for hierarchical or cascaded control structures, the design of the high-level controller assumes
T∓

zc(t) = T̃
∓
zc(t). Two noteworthy problems are associated with this assumption: First, the slabs, of course,

have an influence on the furnace temperatures, which is considered to be compensated by the low-level
controllers. The second problem arises from restrictions on the fuel supply rates and is discussed in Subsec-
tion B.1.
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4. Trajectory planning and optimization

This section outlines a simple iterative trajectory planning and optimization algorithm used for high-
level furnace control in order to compute optimal reference signals T̃

∓
zc(t) for the period [tk0

, tk1
]. The

approach is based on the discrete-time model (5) and (6) supplemented by (3). A nonlinear optimization
problem is solved for designing T̃

∓
zc,k = T̃

∓
zc(tk). However, even if only a finite period [tk0

, tk1
] is considered,

the optimization problem exhibits (N−
zc + N+

zc)(k1 − k0 + 1) degrees of freedom. To circumvent such high-
dimensional optimization problems, an iterative two-step approach is proposed in the following. Figure 4
outlines a scheme of the iterative method.

Reference reheating
trajectories (x̃j,k)

Desired heat flux
densities q̃1∓

k+1

Planned zone
temperatures T̃

∓
zc,k+1

Expected reheating
trajectories (xj,k)

Step 0
Initialization

Step 1a
Slab control

Step 1b
Optimization problem

Step 1c
Forward integration

Step 2
Rescaling

kk

xj,1,kx̃j,1,k
T̃j,end

Figure 4: Iterative trajectory planning and optimization.

First, an initial guess of so-called reference reheating trajectories (x̃j,k) has to be made for all considered
slabs (step 0). The next step is divided into three substeps 1a, 1b, and 1c, which are successively executed
for each sampling point tk within the planning period [tk0

, tk1
], i. e., the values at tk+1 are to be planned

given that the planned values at tk are known. In step 1a, the dynamic subsystems (5) of the slabs j ∈ J
are considered, and desired heat flux densities q̃1∓

k+1 are determined which ensure that the slab states follow

some reference trajectories (x̃j,k) ending at the desired final state x̃j,end = [T̃j,end, 0, 0]
T. Within step 1b,

the bottom and the top half of the furnace are individually considered, and the reference values T̃
∓
zc,k+1

are chosen such that the difference between q1∓
k+1 and q̃1∓

k+1 is minimized. In step 1c, the states Xk+1 are

computed with the planned input values T̃
∓
zc,k+1.

In the second step, the trajectories (xj,k) obtained in step 1 are rescaled such that the desired final states
x̃j,end are exactly reached. The rescaled trajectories (xj,k) are used as new reference trajectories (x̃j,k), and
the iterative process may be restarted at step 1a. Depending on the initial guess of (x̃j,k), usually one or two

executions of the overall iteration loop suffice. Finally, the planned zone temperature trajectories (T̃
∓
zc,k)

are commanded to the low-level controllers.
In the following, the steps of the iterative method are individually explained. Although, the discussion

of the steps 0 and 1a are confined to a single slab j, they have to be carried out (individually) for all slabs.

4.1. Step 0 - Initialization

An initial reference trajectory (x̃j,k) is designed based on parameters listed in Table 2. Later, it will be
replaced by a more realistic, optimized trajectory. The shape of the initial guess was ’heuristically’ derived
from measurements in the real furnace.
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Variables Description

tj,0, tj,exit, Tj,0(y), T̃j,end . . . . . . . See Table 1

tj,homo . . . . . . . . . . . . . . . . . . . . . . . . . Minimum length of the homogenization period

δj,homo ∈ [0, 1] . . . . . . . . . . . . . . . . . . Fraction of temperature change that is left for the homogenization

period
γj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normalized smoothing radius for the transition between the main

heating period and the homogenization period

Table 2: Parameters specifying the initial reference trajectory of the slab j, see also Figure 5.

The values of tj,0, tj,exit, Tj,0(y), T̃j,end, and tj,homo are governed by the supervisory plant controller.
Let

τj(t) =





0 if t ≤ tj,0
t−tj,0

tj,exit−tj,0
if tj,0 < t ≤ tj,exit

1 else

(7)

be a normalized time variable. Then, a continuous shape function θj(τj) : [0, 1] → [0, 1] with θj(0) = 0

and θj(1) = 1 is utilized to construct the initial reference trajectory as T̃j(y, t) = (1 − θj(τj(t)))Tj,0(y) +

θj(τj(t))T̃j,end(y), or approximated in terms of Galerkin coefficients of the discrete-time system as x̃j,k =
(1− θj(τj(tk)))xj,0 + θj(τj(tk))x̃j,end.

0 1− tj,homo

tj,exit−tj,0

1
0

1− δj,homo

1

γj = 0.8

γj = 0.5

γj = 0

θj

τj

homogenization
period

main heating
period

Figure 5: Normalized shape of the initial reference trajectory.

The shapes θj(τj) shown in Figure 5 proved suitable in the practical application. They are controlled by
the parameters δj,homo and γj and consist of two linear sections joined by a circular arc (radius γj). In the
first period of the reheating process (main heating period), the slope of θj(τj) is relatively large. Therefore,
the slab is rapidly heated and its surface temperatures will significantly exceed its core temperature. Aiming
for a homogeneous final temperature profile, the slope of θj(τj) is reduced during the second period, referred
to as homogenization period. A smooth transition between the two linear sections of θj(τj) is achieved by
the circular arc that terminates the main heating period. The influence of the arc radius γj is indicated in
Figure 5.

A fraction δj,homo of the desired total temperature change T̃j,end−Tj,0(y) is allocated to the homogeniza-
tion period. The two parameters δj,homo and γj are chosen by the algorithm depending on the constraints
of the slab temperature trajectory (cf. Subsection B.2.2). Usually, 0 < δj,homo ≪ 1 is a good choice, which
ensures that θj(τj) is monotonically increasing.
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4.2. Step 1a - Slab control

Given the reference trajectory (x̃j,k), the desired heat inputs (q̃1∓j,k ) and (q̃2∓j,k ) can be planned. At first
glance, the discrete-time system (5) seems to have four independent inputs q1−j,k , q

1+
j,k , q

2−
j,k , and q2+j,k . However,

q1∓j,k+1 implicitly depends on q2∓j,k , which imposes some restrictions on the planning process. Unfortunately,
this dependence cannot be formulated without considering the whole furnace system (3) and (6).

If the slabs do not change their position at tk+1, the continuity of temperatures in (3) ensures q1∓j,k+1 = q2∓j,k .
Even if slabs are moved, q1∓j,k+1 − q2∓j,k remains small such that

q1∓j,k+1 = q2∓j,k (8)

is a justifiable assumption for planning (q̃1∓j,k ) and (q̃2∓j,k ).
The task of designing (q̃1∓j,k ) for some given (x̃j,k) essentially requires an inversion of the system (5). Since

there are less independent inputs than system states, planning the series (q̃1∓j,k ) such that (q1∓j,k ) = (q̃1∓j,k ) ⇒
(xj,k) = (x̃j,k) is generally not feasible. However, a good match between (xj,k) and (x̃j,k) should suffice.

Simple proportional SISO feedback control laws are applied to the simulation model (5) for planning
(q̃1∓j,k ). They generate input signals of reasonable amplitudes, can easily cope with the time-variant character
of the system, and are robust against boundedness of inputs.

By means of (8) and the input transformation

[
qΣj,k
q∆j,k

]
=

[
1 1

−1 1

] [
q1−j,k
q1+j,k

]
, (9)

(5) disintegrates into a 2nd order system

[
xj,1,k+1

xj,3,k+1

]
= aΣ

j,k

[
xj,1,k

xj,3,k

]
+ bΣ1

j,kq
Σ
j,k + bΣ2

j,kq
Σ
j,k+1 (10a)

aΣ
j,k = diag

{
1 exp

{
− 60λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}}
(10b)

bΣ1
j,k =

[
∆tk

2ρj c̄j(xj,k
)Dj

Dj

8λ̄j(xj,k)

(
− 1 +

(
1 +

ρj c̄j(xj,k)D
2
j

60λ̄j(xj,k)∆tk

)(
1− exp

{
− 60λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))]T
(10c)

bΣ2
j,k =

[
∆tk

2ρj c̄j(xj,k)Dj

Dj

8λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

60λ̄j(xj,k)∆tk

(
1− exp

{
− 60λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))]T
(10d)

and a 1st order system

xj,2,k+1 = a∆j,kxj,2,k + b∆1
j,kq

∆
j,k + b∆2

j,kq
∆
j,k+1 (11a)

a∆j,k = exp
{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k
)D2

j

}
(11b)

b∆1
j,k =

Dj

4λ̄j(xj,k)

(
− 1 +

(
1 +

ρj c̄j(xj,k)D
2
j

12λ̄j(xj,k)∆tk

)(
1− exp

{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))
(11c)

b∆2
j,k =

Dj

4λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

12λ̄j(xj,k)∆tk

(
1− exp

{
− 12λ̄j(xj,k)∆tk

ρj c̄j(xj,k)D
2
j

}))
. (11d)

Introducing the error variables

eΣj,k = xj,1,k −
[
1 0 0

]
x̃j,k, e∆j,k = xj,2,k −

[
0 1 0

]
x̃j,k (12a)

and the proportional SISO feedback laws

q̃Σj,k+1 = −kΣj,ke
Σ
j,k, q̃∆j,k+1 = −k∆j,ke

∆
j,k (12b)

allows exponential stabilization of all states of the systems (10) and (11)—and therefore of the system (5)—
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at any homogeneous temperature profile. The stability proof is based on the induced norm of the transition
matrix describing the error dynamics of the closed-loop system (autonomous system), which has a triangular
structure. Based on this, it can be shown that the infinity norms of both [eΣj,k+1

T, eΣj,k
T] and [e∆j,k+1

T, e∆j,k
T]

decrease exponentially. The time indices in (12b) (k+1 on the left-hand side and k on the right-hand side)
are in line with the planning approach of step 1, since the control variables at tk+1 are planned given that
the planned values at tk are known (cf. the discussion at the beginning of Section 4).

In (12a), the current state xj,k is either the initial state xj,0 (slabs that have just entered the furnace) or
an estimate previously computed in step 1c (cf. Subsection 4.4). The feedback laws (12b) allow individual
control of xj,1,k (mean slab temperature) and xj,2,k (asymmetry of the temperature profile).

The conditions kΣj,k > 0 and k∆j,k > 0 are necessary for exponential stability. Moreover, upper limits for

the sampling period ∆tk, the controller gains k
Σ
j,k and k∆j,k and limitations concerning their time dependence

can be readily derived from the stability proof. In practical terms, even for the discrete-time control laws
(12), the upper limits of kΣj,k and k∆j,k do not correspond to the stability bound but to constraints on the

heat inputs q1∓j,k+1. Fortunately, the proposed controllers are sufficiently robust against limitations of the

inputs q1∓j,k+1, which may be interpreted as a reduction of kΣj,k or k∆j,k or both.
By finally applying the inverse of the transformation (9) to (12), the planning formula for the original

inputs of (5) is found as

[
q̃1−j,k+1

q̃1+j,k+1

]
=

1

2

[−kΣj,k k∆j,k 0

−kΣj,k −k∆j,k 0

]
(xj,k − x̃j,k).

4.3. Step 1b - Optimization problem

Now, since the desired inputs q̃1∓j,k+1 are known for each slab j ∈ J , it remains to find temperatures T̃
∓
zc,k+1

for the controllable zones which best realize the desired values q̃1∓
k+1 = [q̃∓jstart,k+1, q̃

∓
jstart+1,k+1, . . . , q̃

∓
jend,k+1]

T.

The model (3) and (6) allows individual consideration of the bottom and the top half of the furnace. There-
fore, this subsection solves the static optimization problem of achieving Ns control objectives for q1∓

k+1 by

choosing only N∓
z setpoint values T̃

∓
z,k+1. At first sight, it may seem inconsistent that the control problem

is solved for T̃
∓
z,k+1 rather than T̃

∓
zc,k+1, although T∓

z,1,k+1 is generally not individually controllable (cf.
Section 2.2). However, the approach further simplifies the mathematical expressions, and the empirical

constraint (4) can still be approximately accounted for. If restrictions on T̃
∓
z,k+1 (cf. (20)) are active, the

number of controllable inputs is reduced, at least temporarily.

4.3.1. Nonlinear optimization problem

Because of N∓
z < Ns, it is generally impossible to accomplish all control objectives exactly. A common

method of resolving the dilemma are optimization problems ensuring that the control objectives are satisfied
as good as possible. For instance, T̃

∓
z,k+1 can be chosen such that the cost function

(q1∓
k+1 − q̃1∓

k+1)
TW∓

k+1(q
1∓
k+1 − q̃1∓

k+1) (13)

with some positive definite W∓
k+1 ∈ RNs×Ns is minimized. Again the stipulation T̃

∓
z,k+1 = T∓

z,k+1 from
Subsection 3.3 is used.

Evaluating (3) at tk+1 yields the expected values q1∓
k+1. Unfortunately, (3) contains the unknown states

Xk+1 in a nonlinear fashion. To simplify the problem, the desired value AkXk + B1−
k q1−

k + B1+
k q1+

k +
B2−

k q̃1−
k+1 +B2+

k q̃1+
k+1 is substituted for Xk+1 (cf. (6a)).

4.3.2. Constraints

The slab reheating process is restricted by constraints on both input signals and system states. The
constraints are discussed in Appendix B. The most important results are summarized in the following.
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The preplanned reference signals must satisfy the temperature constraints (20), i. e.,

T∓
z,i,min(t) ≤ T̃∓

z,i(t) ≤ T∓
z,i,max(t), Ṫ∓

z,i,min(t) ≤ ˙̃T∓
z,i(t) ≤ Ṫ∓

z,i,max(t) ∀ i ∈ {1, 2, . . . , N∓
z }. (14)

It is assumed that any reference trajectory T̃
∓
z (t) satisfying (14) (and (4)) can be realized by the furnace

system, which is a prerequisite for the hierarchical control structure. Consider that the planned values T̃
∓
z,k

are known. Then, (14) can be formulated in the discrete-time domain as

T∓
z,i,k+1 = max

{
T∓
z,i,min(tk+1), T̃

∓
z,i,k +∆tkṪ

∓
z,i,min(tk)

}
≤ T̃∓

z,i,k+1

≤ min
{
T∓
z,i,max(tk+1), T̃

∓
z,i,k +∆tkṪ

∓
z,i,max(tk)

}
= T∓

z,i,k+1 ∀ i ∈ {1, 2, . . . , N∓
z }.

As defined in Subsection B.2, the system states are restricted by soft constraints xj,k+1 ∈ XS
j (tk+1) ∀ j ∈ J ,

k ∈ N and hard constraints xj,k+1 ∈ XH
j ∀ j ∈ J, k ∈ N. In contrast to the hard constraints, the time-

dependent set XS
j (t) ⊆ XH

j may be relaxed or abandoned if otherwise a solution of the planning problem is
not feasible.

Consider for a single slab j ∈ J that the expected state xj,k ∈ XS
j (tk) and the previous heat inputs q1∓j,k

are known. Then, (5) allows the computation of limits on q2∓j,k = q1∓j,k+1 which ensure that xj,k+1 remains
within a certain set. Hence, soft constraints qS∓

j,k+1, q
S∓
j,k+1 and hard constraints qH∓

j,k+1, q
H∓
j,k+1 can be found

such that

qS−
j,k+1 ≤ q1−j,k+1 ≤ qS−

j,k+1 ∧ qS+
j,k+1 ≤ q1+j,k+1 ≤ qS+

j,k+1 ⇔ xj,k+1 ∈ XS
j (tk+1) (15a)

qH−
j,k+1 ≤ q1−j,k+1 ≤ qH−

j,k+1 ∧ qH+
j,k+1 ≤ q1+j,k+1 ≤ qH+

j,k+1 ⇔ xj,k+1 ∈ XH
j (15b)

are at least approximately satisfied. Clearly, these restrictions can be individually derived for all j ∈ J . To
obtain henceforth a shorter notation, let qS∓

j,k+1, q
S∓
j,k+1, q

H∓
j,k+1, and qH∓

j,k+1 for j ∈ J , as well as T∓
z,i,k+1 and

T∓
z,i,k+1 for i ∈ {1, 2, . . . , N∓

z } be summarized in the vectors qS∓
k+1, q

S∓
k+1, q

H∓
k+1, q

H∓
k+1, T

∓
z,k+1, and T∓

z,k+1,
respectively.

4.3.3. Reformulation as quadratic optimization problem

So far, both the cost function (13) and the constraints (15) are nonlinear with respect to the optimization
variables T̃

∓
z,k+1. Fortunately, by virtue of (3), the optimization problem simplifies to a (standard) quadratic

program with linear constraints if formulated in terms of (T̃
∓
z,k+1)

4 rather than in terms of T̃
∓
z,k+1.

Using the monotonicity relation materialized in (3) and discussed in Appendix A, the lower-bound in
(15a) is reformulated as

qS∓
k+1 ≤ q1∓

k+1 = P∓
z (tk)(T

∓
z,k+1)

4 + P∓
s (tk)(M

∓Xk+1)
4. (16)

Here, qS∓
k+1 ≤ q1∓

k+1 means that the inequality relation holds true for all corresponding components of qS∓
k+1

and q1∓
k+1. In (16), the unknown stateXk+1 is replaced by the conservative approximationAkXk+B1−

k q1−
k +

B1+
k q1+

k +B2−
k qS−

k+1 +B2+
k qS+

k+1. The term conservative is justified because of (6a) and the remarks given
in Appendix A. Other inequalities containing qS∓

k+1, q
H∓
k+1, and qH∓

k+1 can be derived by analogy to (16).
However, qH∓

k+1 and qH∓
k+1 are not required for the moment, because XS

j (t) ⊆ XH
j .

Undesirable fluctuations of the zone temperatures can be avoided by adding the term

((T̃
∓
z,k+1)

4 − (T̃
∓
z,k)

4)
T
W∆t∓

k+1 ((T̃
∓
z,k+1)

4 − (T̃
∓
z,k)

4) (17a)

with positive semidefinite W∆t∓
k+1 ∈ RN∓

z ×N∓
z to the cost function (13). If the process operation strategy

requires specific offsets between neighboring zone temperatures, the cost function can be extended by

(∆∓
z (T̃

∓
z,k+1)

4 − T∆z∓
z )

T
W∆z∓

k+1 (∆
∓
z (T̃

∓
z,k+1)

4 − T∆z∓
z ) (17b)
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with ∆∓
z =

[
δi,j − δi,j−1

]
i=1...N∓

z −1,j=1...N∓
z
, a constant vector T∆z∓

z ∈ RN∓
z −1, and positive semidefinite

W∆z∓
k+1 ∈ RN∓

z −1×N∓
z −1. This is an appropriate method of implementing the empirical formula (4), i. e., of

coupling T̃∓
z,1,k+1 with T̃∓

z,2,k+1. The corresponding coefficient in the main diagonal of W∆z∓
k+1 can get a large

(penalty) value, which effectively reduces the degrees of freedom of the optimization problem by 1.
Adding up the cost functions (13) and (17) and using (3) yield the optimal zone temperature values as

T̃
∓
z,k+1 =


 argmin

(T̃
∓
z,k+1

)4 ∈ (R+)
N∓

z





(T̃
∓
z,k+1)

4T
(
P∓

z
T(tk)W

∓
k+1P

∓
z (tk) +W∆t∓

k+1 +∆∓
z
TW∆z∓

k+1 ∆
∓
z

)
(T̃

∓
z,k+1)

4 + . . .

. . . 2 (T̃
∓
z,k+1)

4T
(
P∓

z
T(tk)W

∓
k+1

(
P∓

s (tk)
(
M∓(AkXk +B1−

k q1−
k +B1+

k q1+
k . . .

. . . +B2−
k q̃1−

k+1 +B2+
k q̃1+

k+1

))4 − q̃1∓
k+1

)
−W∆t∓

k+1 (T̃
∓
z,k)

4 −∆∓
z
TW∆z∓

k+1 T
∆z∓
z

)








1
4

.

P∓
z (tk)(T̃

∓
z,k+1)

4 ≥ qS∓
k+1 − P∓

s (tk)
(
M∓(AkXk + . . . (18)

. . . B1−
k q1−

k +B1+
k q1+

k +B2−
k qS−

k+1 +B2+
k qS+

k+1

))4 ∧
P∓

z (tk)(T̃
∓
z,k+1)

4 ≤ qS∓
k+1 − P∓

s (tk)
(
M∓(AkXk + . . .

. . . B1−
k q1−

k +B1+
k q1+

k +B2−
k qS−

k+1 +B2+
k qS+

k+1

))4 ∧
(T∓

z,k+1)
4 ≤ (T̃

∓
z,k+1)

4 ≤ (T∓
z,k+1)

4

This expression merely constitutes a quadratic optimization problem with linear constraints for which efficient
algorithms are readily available (cf. [41–45]). Here, the Matlab® command quadprog is used for solving
the problem separately for the bottom and the top half of the furnace. From the optimal solution T̃

∓
z,k+1,

the component T̃∓
z,1,k+1 is simply discarded to obtain T̃

∓
zc,k+1.

Using diagonal matrices W−
k+1 = W+

k+1, W∆t−
k+1 = W∆t+

k+1 , and W∆z−
k+1 = W∆z+

k+1 proved useful. The
time dependency of W∓

k+1 is designed to penalize the deviation (q1∓j,k+1 − q̃1∓j,k+1)
2 more as the exit time

tj,exit of the respective slab j draws nearer. Moreover, W∓
k+1 should account for the monetary value of the

slabs, as reflected by wj from Table 1. Expanding the cost function in (18) would allow the incorporation
of additional control objectives, e. g., shifting the bulk heat input towards the end of the furnace, which
improves energy efficiency [3, 9, 15, 20, 21].

4.3.4. Inequality constraints

The bounds qS∓
j,k+1 and qS∓

j,k+1 may be so restrictive that a solution of (18) is not feasible. Therefore,
if a numerical algorithm fails to solve (18), some (low-priority) constraints are expanded or given up. The
strategy is implemented as follows: Recurrently expand the limits qS∓

k+1 and qS∓
k+1 by

qS∓
k+1 = (I − diag{α})qS∓

k+1 + diag{α}qH∓
k+1, qS∓

k+1 = (I − diag{α})qS∓
k+1 + diag{α}qH∓

k+1

until a solution of (18) is feasible. The vectors α, α ∈ (0, 1]Ns contain user-defined adaptation parameters,
which are usually significantly smaller than unity. Their selection takes into account the weighting factors
wj from Table 1.

4.4. Step 1c - Forward integration

Once the optimal inputs T̃
∓
zc,k+1 are known, the unknown new system states Xk+1 are computed by

forward integration of the model (3) and (6) with T̃
∓
zc,k+1 from step 1b. Xk+1 will be used mainly in the

control laws (12) (step 1a) and the optimization problem (18) (step 1b) when planning the trajectories at
the subsequent sampling point.

The actual calculation of Xk+1 proceeds as follows: (3) is specialized for t = tk+1 and plugged into (6).

Utilizing (4) and given that Xk, q
1∓
k , and T∓

zc,k+1 = T̃
∓
zc,k+1 are known, an implicit nonlinear equation

for Xk+1 is obtained. It can be solved by means of the Newton-Raphson method, which exhibits quadratic
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convergence. It is emphasized that many approximations adopted in the steps 1a and 1b, e. g., (8), are not
needed here.

If the end of the planning period [tk0
, tk1

] is reached, i. e., if tk+1 = tk1
, the algorithm proceeds with step

2, otherwise with step 1a.

4.5. Step 2 - Rescaling

Generally, the expected trajectories (xj,k) will deviate from the reference values (x̃j,k), especially, after
the first iteration loop. It is a reasonable assumption that (xj,k) is a more realistic trajectory than (x̃j,k). In
contrast to (x̃j,k), (xj,k) is a solution of (3) and (6) with the inputs (T̃

∓
zc,k). Therefore, the previous reference

trajectories (x̃j,k) are replaced with the expected trajectories (xj,k). Since the final state xj,end = xj(tj,exit)
will deviate from its desired value x̃j,end, (xj,k) is rescaled such that xj,end = x̃j,end, i. e.,

(x̃j,k) = (xj,k + τj(tk)(x̃j,end − xj,end)) (19)

with τj(t) from (7).
Given that the achieved planning results (xj,k) ∀ j ∈ J and (T̃

∓
zc,k) are good enough, the planning algo-

rithm terminates at this point. Otherwise, it restarts at step 1a. In practical terms, it proved sufficient to
stop after the first or second iteration loop.

5. Example problem

The control scheme has been tested in a simulation environment, which contains the comprehensive
furnace model [34] and an emulator of the low-level zone temperature controllers (inner loop shown in

Figure 3). The inner loop was simply provided with reference signals (T̃
∓
zc,k) from the trajectory planning

algorithm.
On a standard PC (2.4GHz, 2GB RAM), an implementation of the algorithm in Matlab® requires

less than 0.5 s CPU time for planning 1 h of furnace operation with sampling periods ∆tk < 2min. This
is tantamount to 12 s CPU time for planning one full day of operation. As demonstrated in [36], the
computational effort can be further reduced if the sampling period ∆tk is increased.

5.1. Problem formulation

Figure 6 shows a test scenario with 198 slabs being processed during 68 h of furnace operation. At
the beginning, slabs with Dj = 0.15m and Wj = 1.98m are reheated to a desired final temperature

T̃j,end = 1400K within 5 h. Later, the thickness undergoes a step such that Dj = 0.4m holds for all slabs
withdrawn later than t = 12h (cf. Figure 6a)). The furnace is 35.1m long and contains 18 slabs at a time.

Starting at t = 24h (slab j = 87, cf. Figure 6b)), the reheating time of the slabs is gradually increased up
to 7 h (slab j = 105), which is a reasonable value for slabs of this thickness. Figure 6c) shows representative
path-time diagrams. To avoid clutter, only every second slab is embodied in the plot. The slabs j = 1
through j = 87 exhibit an identical yet time-shifted path-time diagram. The same holds true for the slabs
j = 105 through j = 198.

The test scenario proceeds with variations in the desired final slab temperature. At t = 36h, T̃j,end

steps from 1400K to 1460K. Between t = 48h and t = 57h, T̃j,end is ramped down and up again with a
temperature difference of 10K with respect to the previous slab (cf. Figure 6d)). The slabs enter the furnace
with an initial temperature of Tj,0 = 380K, because they are already heated when waiting in front of the
furnace.
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Figure 6: Overview of slab schedule, a) slab thickness, b) residence time of the slab inside the furnace, c) path-time diagrams,
d) desired final slab temperature profile.
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Figure 7: Planned and simulated furnace zone temperatures, a) bottom half of the furnace, b) top half of the furnace.

To keep the scenario as simple as possible, all slabs have the same width Wj , the same weighting factor
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wj , and the same material. The temperature-dependent material parameters cj and λj are taken from [36,
Figure 2]. Constraints on the slab temperature trajectory (cf. Appendix B.2.2) were chosen as Tj,homo,min =

Tj,end,min = T̃j,end − 15K with tj,homo = 0.67h, Tj,end,max = T̃j,end + 15K, Tj,abs,max = T̃j,end + 100K,
∆Tj,max = Dj1500K/m, and ∆Tj,end,max = Tj,end,max − Tj,end,min = 30K.
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Figure 8: Expected and simulated slab temperatures, a) representative slab temperature trajectories, b) final slab temperatures,
c) final slab temperatures (continued).

5.2. Furnace zone temperatures

Figure 7 shows the planned reference zone temperature (dashed lines) together with the simulated values
(solid lines). These trajectories are subject to constraints—not shown in Figure 7—in terms of both value
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and gradient (cf. (14)). The control errors are mainly caused by limitations of the fuel flow rates which are
considered only by the comprehensive model. That means, the zone temperature controllers are not always

capable of exactly following the commanded trajectories (T̃
∓
zc,k), even if they conform to the constraints

(14). Zone 2 in the top half of the furnace is a typical example for this problem. There, the burners
practically always operate at minimum output. Results for the slab reheating curves obtained with the zone
temperatures from Figure 7 are discussed in the sequel.

5.3. Slab temperatures

Temperature trajectories of three representative slabs are provided in Figure 8a). The mean tempera-
tures are plotted as thick lines, whereas the thin lines correspond to the minimum and the maximum slab
temperatures. Results from the trajectory planning process, based on the reduced model, are displayed as
dashed graphs. Note that here the expected reheating trajectories, i. e., those before the last rescaling oper-
ation in step 2 (cf. Figure 4), are given. The solid curves are the simulation results from the comprehensive
model [34].

Neither the hard constraint ∆Tj,max (cf. (22a)) nor the hard upper limit Tj,abs,max (cf. (21b)) is exceeded
by any slab, which is also corroborated by Figure 8a). For the thin slabs (Dj = 0.15m) a reheating time of
5 h is almost too long, as may be inferred from the trajectory of slab j = 19. Other simulations have shown
that already a reheating time of 2.2 h suffices for these slabs.

The final slab temperature profile of every second slab is shown in Figure 8b) and c). Expected values
from the reduced model are marked with squares, whereas circles represent results of the comprehensive
model. Once again, it is confirmed that reheating thin slabs (Dj = 0.15m) is not a difficult task.

At the transition from thin to thick slabs (around t = 12h) some slabs leave the furnace at too low
temperatures, because the dynamics of the furnace does not permit such abrupt changes of the slab thickness.
Hence, for the real furnace operation, it seems expedient to change the slab geometry only gradually.
Although the slabs j = 56 through j = 91 more or less reach their desired final mean temperature, the time
for homogenizing their temperature profiles is insufficient (cf. Figure 8b)). The lower constraint Tj,homo,min

(cf. (21c)) is violated for these slabs, as illustrated in Figure 8a) for slab j = 83. From slab j = 92 onward
(until j = 118), all constraints of the slab temperature trajectory are satisfied. Slab j = 92 stays in the
furnace for 5.6 h.

At t = 36h, the desired final slab temperature takes a considerable leap—a scenario which should be
avoided in the real process. Here, 3 slabs (j = 119, 120, and 121) miss their desired final temperature range
[Tj,end,min, Tj,end,max] and the lower bound Tj,homo,min. The situation is better, if the desired final slab
temperature changes only gradually like for the slabs j = 148 through j = 170. In this case, most bounds
are satisfied, except for slabs with T̃j,end ≤ 1380K, which tend to be (moderately) too hot upon leaving the
furnace. Most burners operate at their lower limit while these slabs are reheated.

The temperature trajectories in Figure 8a) exhibit a dent around the temperature Tj = 1050K, which
is a consequence of phase transitions of the material occurring at this temperature level. This effect is
acceptably reflected in the planning process, because cj was taken as a nonlinear function of Tj (cf. [36,
Figure 2]).

There are two main reasons for slabs not meeting their control objectives: a) diversity of slab sched-
ules, e. g., thickness or desired final temperature may vary considerably between neighboring slabs, and b)
limitations of manipulated variables (fuel flow rates). The problem a) can be alleviated by designing less
demanding slab schedules, whereas the issue b) characterizes a principal shortcoming of many hierarchical
control structures.

6. Conclusion

A trajectory planning and optimization algorithm for non-steady-state operation of a slab reheating

furnace was developed. The model-based control approach plans furnace zone temperatures (T̃
∓
zc,k), which

serve as reference signals for low-level controllers governing the fuel and air supply of multiple burners.
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The considered plant is nonlinear, time-variant, and the control inputs as well as the system states are
constrained.

The outlined algorithm materializes an iterative two-step approach. In step 1, desired heat inputs q̃1∓
k+1

into the slabs are individually designed by SISO feedback control of Galerkin coefficients of the simulation
model. These states are subject to several soft and hard constraints defining the slab reheating quality.
Moreover, zone temperatures T̃

∓
zc,k+1 are computed for the whole system by means of a quadratic program

to achieve an optimum realization of the desired values q̃1∓
k+1. In step 2 of the algorithm, the expected slab

temperature trajectories are rescaled such that the final temperature profile exactly matches the desired
value.

The feasibility of the method was demonstrated by means of an example problem simulated with the
validated furnace model [34]. The most salient advantages of the approach are:

• Constraints on both the furnace operation and the slab reheating trajectories are adequately reflected.
• The method accounts for radiative interaction within the whole furnace and is, thus, not restricted to
controlling a single zone.

• Optimal slab reheating trajectories are generated for each individual slab, i. e., they are not parame-
terized in terms of slab location or furnace zone.

• The algorithm is suitable for planning non-steady-state furnace operation, meaning that the slabs may
vary significantly in terms of their desired final temperature and other properties.

• The method always furnishes a solution, i. e., problems with unfeasible planning results are effectively
remedied.

• The approach manages without heavy mathematics or control theory and is, therefore, computationally
undemanding. Employing a standard PC, one full day of furnace operation can be planned within
12 s, which renders the scheme suitable for both offline and online trajectory planning.

• The algorithm exhibits linear time complexity with respect to the length of the planning period [tk0
, tk1

]
and also with respect to the total number of slabs.

• It is a stand-alone algorithm, insofar as interfaces to measurement devices, observers, or downstream
control entities are not required. Thus, the method is suitable for preplanning and open-loop control.

The proposed algorithm furnishes reference signals which may be utilized in feedback control, e. g., in
a two-degrees-of-freedom control scheme. It is likely that this would further improve the reheating quality
of the slabs. Consequently, future research should focus on developing a MIMO state feedback law. Also,
implementing the planning algorithm in the high-level controller of a real furnace system is envisaged for
the near future. Bearing in mind the high accuracy of the comprehensive model (cf. [34]), it is expected
that the presented results can be reproduced in reality.
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A. Mapping matrices of the radiative heat exchange law

The matrices P∓
z = [P∓

z,i,j ]i=jstart...jend,j=1...N∓
z

and P∓
s = [P∓

s,i,j ]i=jstart...jend
,j=jstart ...jend

used in (3)

are straightforward results of the net radiation method [37–40] (see also [35]). They depend on the geometry
and the radiative properties of the participating surfaces. Flue gases are considered as transparent. P∓

z and
P∓

s are piecewise constant with respect to t; in fact, they are constant during each period [tsl , t
s
l+1). At any

time,

0 ≤ P∓
z,i,j < σ, |P∓

s,i,j | < σ,

P∓
s,i,j

{
≥ 0 if i 6= j

< 0 else
,

jend∑

j=jstart

P∓
s,i,j < 0,

N∓
z∑

j=1

P∓
z,i,j+

jend∑

j=jstart

P∓
s,i,j = 0,

where σ is the Stefan-Boltzmann constant. Generally, P∓
z,i,j and P∓

s,i,j are unequal to zero. The above
expressions confirm that (cf. [35])

• q∓j (t) ∀ j ∈ J is monotonically non-decreasing with
[
1 ∓1 2/3

]
xi(t) ∀ i ∈ J , i 6= j,

• q∓j (t) ∀ j ∈ J is monotonically non-rising with
[
1 ∓1 2/3

]
xj(t), and

• q∓j (t) ∀ j ∈ J is monotonically non-decreasing with T∓
z,i(t) ∀ i ∈ {1, 2, . . . , N∓

z }.

These properties are useful for transforming between temperature bounds and constraints on q∓j (t).

B. Constraints on the slab reheating process

A furnace control algorithm should take into account that the slab reheating process is constrained by
safety limits and physical restrictions. For convenience, the constraints summarized in this section are given
for the continuous-time domain only.
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B.1. Constraints on the furnace zone temperatures

The fuel flow rates to the burners are restricted by both lower bounds (considerably above zero) and
upper bounds. These narrow limits constrain the zone temperatures, which can be formulated as

T∓
z,i,min(t) ≤ T∓

z,i(t) ≤ T∓
z,i,max(t), Ṫ∓

z,i,min(t) ≤ Ṫ∓
z,i(t) ≤ Ṫ∓

z,i,max(t) ∀ i ∈ {1, 2, . . . , N∓
z }. (20)

Moreover, the constraints T∓
z,i,max(t), Ṫ∓

z,i,min(t), and Ṫ∓
z,i,max(t) protect the furnace against thermal or

thermomechanical damages.
Most of the time, T∓

z,i,min(t), T
∓
z,i,max(t), Ṫ

∓
z,i,min(t), and Ṫ∓

z,i,max(t) can be assumed as constant, which,
however, neglects the influence of the slabs on the zone temperatures. For trajectory planning, time-variant
design of the limits (cf. (14)) is a flexible and ‘safe’ way of user intervention into the control algorithm. For
instance, it allows prescribing the temperature in some zones and may be used for manual shut down, start
up, or production halts of the furnace. User interventions generally force the planning algorithm to deviate
from the optimal trajectories, which can affect the reheating quality of the slabs. The next subsection
outlines how the reheating quality may be defined.

B.2. Constraints on the slab temperatures

Only a single slab j is considered in this subsection. The high-priority objective that each slab reaches its
desired final temperature is supplemented by restrictions on the slab temperature profile. For convenience,
these restrictions will be expressed in terms of the state xj(t).

B.2.1. Operators

Let the binary operator 4 (<) : R3 ×R3 → {0, 1} be defined as

x1

(<)
4 x2 ⇔

[
1 η η2 − 1/3

]
(x2 − x1)

(≤)
≥ 0 ∀ η ∈ (−1, 1)

with some arbitrary states x1 and x2. This operator evaluates whether a temperature profile defined by x1

does not exceed (does not fall below) a temperature profile defined by x2. Thus, x2 and the operators 4,
< separate the space of possible states R3 into closed sets X+

x2
= {x1 ∈ R3|x1 < x2} and X−

x2
= {x1 ∈R3|x1 4 x2} and the remaining open set X∼

x2
= R3\(X+

x2
∪X−

x2
).

X+
0

X∼
0

X−
0

x2/K
x3/K

x1/K

Figure 9: Partitioned space of possible temperature states (axes equally scaled).

Figure 9 shows these sets for x2 = 0. The corresponding sets for x2 6= 0 are found if the surface in
Figure 9 is shifted by x2. Both X+

x2
and X−

x2
are convex sets.
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Moreover, a unary operator ∆(·) : R3 → R+ is introduced as

∆(x) = max
η∈(−1,1)

{[
1 η η2 − 1/3

]
x
}
− min

η∈(−1,1)

{[
1 η η2 − 1/3

]
x
}

with some state x. It returns the maximum temperature difference within a slab.

B.2.2. Hard and soft constraints on the slab temperature trajectories

Slab temperatures are subject to a number of hard and soft constraints. Violating a soft constraint
is only permitted if otherwise a solution is not feasible (cf. Subsections 4.3.2 and 4.3.4). The constraints
may be attributed to metallurgical requirements, limited thermomechanical strength of the material, and
requirements of downstream process steps.

Clearly, the final state xj,end should conform to its desired value x̃j,end as accurately as possible. More-
over, there is a soft lower (upper) limit Tj,end,min (Tj,end,max) on the final slab temperature profile, i. e.,

[
Tj,end,min 0 0

]T 4 xj,end 4
[
Tj,end,max 0 0

]T
. (21a)

In order to avoid waste of energy as well as damage and loss of slab material, the slab temperature must
obey the constant, hard upper constraint

xj(t) 4
[
Tj,abs,max 0 0

]T ∀ t ∈ [tj,0, tj,exit]. (21b)

The constant, soft lower constraint

xj(t) <
[
Tj,homo,min 0 0

]T ∀ t ∈ [tj,exit − tj,homo, tj,exit] (21c)

allows for quality standards and associated phase transitions of the material.
Large temperature differences within a slab can cause undesirable deformations, i. e., bending, or even

stresses in excess of the yield strength, which itself is temperature-dependent. Therefore, the temperature
inhomogeneity is subject to the constant, hard constraint

∆(xj(t)) ≤ ∆Tj,max ∀ t ∈ [tj,0, tj,exit]. (22a)

-1 -1/2 0 1/2 1
-1/2

0

1/2

xj,2/∆Tj,max

xj,3/∆Tj,max

Figure 10: Constraint to avoid excessive temperature differences within a slab (axes normalized and equally scaled).

Compliance with (22a) is independent of xj,1(t). Hence, in the state space, the constraint spans an
infinitely long cylinder centered at the axis xj,1 (top view shown in Figure 10).

The final temperature inhomogeneity is subject to the soft constraint

∆(xj,end) ≤ ∆Tj,end,max, (22b)

where ∆Tj,end,max ≪ ∆Tj,max. The shape defined by (22b) is similar to the cylinder shown in Figure 10.
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B.2.3. Merging and reformulation of constraints on the slab temperature trajectories

The above constraints can be merged for further simplification. The hard restrictions (21b) and (22a)
constitute a unique, closed set

XH
j = {x ∈ X−

[Tj,abs,max 0 0]T
| ∆(x) ≤ ∆Tj,max }

of admissible states. Since XH
j represents an intersection of a cone-like body as outlined in Figure 9 and a

cylindrical body as outlined in Figure 10, it is convex.
A similar but time-dependent set XS

j (t) combines the soft constraints. It also accounts for the constraint
(20) on the furnace temperatures T∓

z,i(t). Moreover, XS
j (t) depends on the slab surface temperatures in the

neighborhood of the slab j. Therefore, strictly speaking, the sets XS
j (t) should be computed for all slabs

simultaneously.
However, the following approximation is made: Consider first that the heat flux densities q∓j (t) are

limited because of restrictions on the slab surface temperatures and the constraints (20). Based on (3) (see
also the remarks given in Appendix A) and realistic extremal slab surface temperatures, it is possible to
compute non-conservative estimates q∓j (t) and q∓j (t) such that

q∓j (t) ≤ q∓j (t) ≤ q∓j (t) ∀ t ∈ [tj,0, tj,exit]. (23)

The term non-conservative means that (23) defines a large yet realistic range for q∓j (t). The limits q∓j (t)

and q∓j (t) are computed individually for each slab and each instant t ∈ [tj,0, tj,exit].

With q∓j (t), q
∓
j (t), and (1), the future restrictions (21a) and (21c) on xj(t) can be extended backward.

They are classified as future restrictions, because (21a) is defined at tj,exit and (21c) in the interval [tj,exit−
tj,homo, tj,exit]. Moreover, the constraints (21) are expressed as unique trajectories xj(t) and xj(t) such that
for any t0 ∈ [tj,0, tj,exit]

xj(t0) 4 xj(t0) 4 xj(t0) ⇔ ∃ (xj(t), q
∓
j (t)) ( (1) ∧ (21) ∧ (23) ) ∀ t ∈ [t0, tj,exit]. (24)

The equivalence sign (⇔) ensures the uniqueness of xj(t) and xj(t).
For the constraints (22), which limit temperature inhomogeneities, a unique function ∆j(t) : [tj,0, tj,exit] →R+ is defined such that for any t0 ∈ [tj,0, tj,exit]

∆j(t0) = max
{
η ∈ R+ | ∆(xj(t0)) ≤ η ∧ xj(t0) 4 xj(t0) 4 xj(t0) ⇒

∃ (xj(t), q
∓
j (t)) ( (1) ∧ (22) ∧ (23) ) ∀ t ∈ [t0, tj,exit]

}
.

Finally, xj(t), xj(t), and ∆j(t) yield the time-dependent set

XS
j (t) = {x ∈ XH

j ∩X+
xj(t)

∩X−
xj(t)

| ∆(x) ≤ ∆j(t) } (25)

of feasible and allowed states.
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tj,0 tj,exit−tj,homo tj,exit

xj,0

Tj,abs,max

xj

xj

xj/K

t/h

Tj,homo,min

Tj,end,min

Tj,end,max

XS
j (t)

Figure 11: Set of feasible and allowed states for scalar temperature state.

For a formulation with a scalar temperature state xj(t) only, a straightforward graphical interpretation of

XS
j (t) is shown in Figure 11. For a 3-dimensional state xj(t), X

S
j (t) is generated by time-variant intersections

of shapes like those outlined in Figures 9 and 10.
The constraints XH

j and XS
j (t) are global in the sense that they span the whole residence period

[tj,0, tj,exit] of a slab inside the furnace. They are computed individually for each slab and prior to the
actual trajectory planning process.
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