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Dynamic Optimization of a Slab Reheating Furne
with Consistent Approximation of Control Variable

Andreas Steinboeck, Knut Graichddember, IEEE and Andreas KugiMember, IEEE

Abstract—A dynamic optimization method is developed for
temperature control of steel slabs in a continuous reheatig
furnace. The work was stimulated by the need for furnace
control concepts that are computationally undemanding, rbust,
accurate, and capable of non-steady-state operating scemas,
where the properties and the temperature goals of slabs may
vary significantly. The proposed hierarchical control structure is
based on a continuous-time switched nonlinear model and use
the furnace zone temperatures as intermediate control vadbles.
Consistent approximation is applied to obtain a parametric
optimization problem that can be efficiently solved with the
quasi-Newton method. Constraints on system states and cont
variables are considered by penalty terms in the cost funatin and
saturation functions, respectively. The optimization mehod plans
temperature trajectories for both the furnace and the slabswhich
may be useful for open-loop control and feedforward branche
of two-degrees-of-freedom control structures. The capabties of
the method are demonstrated in an example problem.

Index Terms—Consistent approximation, dynamic optimiza-
tion, non-steady-state operation, open-loop control, ojnal con-
trol, receding horizon optimization, reheating furnace fa steel
slabs, switched nonlinear system, trajectory planning.

I. INTRODUCTION

outlines the motivation for developing a new control schen
based on dynamic optimization. A mathematical model of
representative slab reheating furnace is briefly introduce
Section I, followed by a cascaded furnace control system
Section lll. Section 1V, which can be considered as the maj
contribution of this paper, describes an optimal tempeeaty
control method that is used as a part of the cascaded con
scheme. The paper is concluded with an example problem
Section V, which demonstrates the feasibility of the praubs
method. Generally, an attempt is made to present at least
basic formulae and algorithms necessary to review andeitili
the control approach.

A. Temperature Control of a Slab Reheating Furnace

Continuous reheating furnaces are used in the steel irydus
for heat treatment or reheating of slabs, billets, or simil:
products before they can undergo mechanical working, & g.|
a hot rolling mill. The terncontinuousmeans that the semifin-
ished products are gradually conveyed through the lonigisid
interior of the furnace, which is equipped with gas- or aiédi
burners. The wordontinuouss somewhat misleading becausg

ONTINUOUS reheating furnaces heat up steel slabs tae slab movementitself is usually discontinuous. lpuaher-
temperatures required for hot working processes. Thgeslab reheating furnace, for instance, the slabs are ardan

control of these slab reheating furnaces is a challengisg tdn one or several parallel rows and pushed through the ferna
because the system dynamics is often nonlinear, switcinedd, &s indicated in Fig. 1. The slabs slide on skids such that th
unknown in advance. Moreover, the number of controllabfn absorb heat at both the bottom and the top side. In
inputs is usually small compared to the multitude of contreilledwalking-beanfurnaces, the skids are replaced by bean
objectives, and there are several restrictions on both tit alternately carry the slabs while slowly moving back ar|
inputs and the system states. Since, the control algorithfasth.

have to be executed in real-time, the available computation

power may be a limiting factor. These challenges motivated T, LJop T, Top, zogg?\ﬂr
the development of a tailored, model-basgatimal control Refractory LLUISNSSSSNS\ LR
methodfor the temperature of slabs that are processed in a wall y Slabj <W, > Slab j ;g
reheating furnace. The method is expound in this paper. Z}y end Ala | slaby start 7

The treatise first describes the process of reheating st =] =] ] ’ | T 1
. cppe . . L X p— T — T <~
slab_s and the assougted difficulties in t_er_ms of (_:ontrob(Su Pusher % T., 2 q SKids §
section I-A). Subsection I-B refers to existing optimal toh Svst < > N
Strategles for Slab reheatlng furnaCES, and Subsectlon I%O{I?]gary \\Ki\iﬁi\i@?/7/i/7 A, 7<\<\7\<\§ \i\i\\f\i\i\\i\i\i\i\<\i\i\\\
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Fig. 1. Pusher-type slab reheating furnace (not to scatebeis explained
in Section I1).

The control of continuous reheating furnaces is an intere;
ing yet challenging field. Importaqgerformance characteris-
tics of furnace control systems are processing costs, ene

ulm.de).

consumption, throughput of reheated material, and acgura
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of the controlled temperatures. Some points that may renderdiscussion of the rich literature on optimal control ani
temperature control of a slab reheating furnace an in&icaiptimization of slab reheating furnaces would exceed tbpec

task are: of this paper. In general, however, two practical optiniaat
« The temperature distribution inside the slabs cannot B#Fategies can be distinguished:
measured. (a) A given (dynamic) optimization problem may be dis

« Slab reheating furnaces are nonlinear multiple-input-  cretized, e.g., by direct transcription [13] or multiple
multiple-output systems and exhibit a switched dynamic  shooting [14]. Then, the obtained parametric optimiz:
behavior, i. e., the governing differential equations aepe tion problem can be solved by standard methods
discontinuously on the time. numerical optimization. This strategy is used for sla|

« There may be interdependencies of physical quantities furnace controlin [2], [11] (linear programming, simplex
which are too complex or too uncertain to be adequately  algorithm) and [1], [15] (quadratic programming).

reflected in a mathematical model. (b) Utilizing the calculus of variations or Pontryagin’s raa
« Both the slab and the furnace temperatures are subject to imum principle [16], a dynamic optimization problem
constraints. may be rewritten as a two-point boundary value proble

« The control inputs are constrained, because the burners representing the necessary optimality conditions. A
are located at certain points in the furnace and the fuel  application in furnace control is described in [17].
supply rates to the burners are limited. In either case, an efficient implementation of the utilize

« Depending on the process operation strategy, the slaigimization algorithm is especially important for closledp
may considerably vary in size, material properties, avaitontrol, e. g. in the context ahodel predictive contra(cf. [1],
able reheating time, initial temperature, desired final-terfil5], [18] for applications in slab furnace control).
perature, monetary value, etc. In fact, there are operatingThe dynamic optimization scheme presented in [15] perm
scenarios where each slab inside the furnace is a one-affefficient implementation because the algorithm is spii i
product. two steps: First, a low-dimensional optimization problesn i

« When the slabs are withdrawn from the furnace, bosplved to design piecewise polynomial trajectories as st
their mean temperature and their temperature profi@ints for slab temperatures. Second, a linearized model
may have to satisfy certain requirements. Frequently,used by a model predictive controller to compute fuel floy
homogeneous final temperature profile is desired. rates to the burners such that the slab temperatures fdileww t

« Metal forming processes are usually batch processest-point trajectories. The (1-dimensional) heat coridoct
Moreover, there may occur unscheduled standstills or dgroblem inside the slabs is efficiently solved by the methc
lays of the workflow caused by upstream or downstreagi weighted residuals (collocation method).
process steps. Therefore, the slab movement is generall cascaded control structure that utilizes model predictiy
discontinuous and sometimes unforeseeable. control in either loop is suggested in [1]. The outer loo

Most temperature control systems for slab reheating fiesacCOMputes optimal furnace temperatures based on a stez
e.g., [1]-[12] are realized as hierarchical or modular caint State furnace model. The optimal set-point values are pas;
structures, which may significantly reduce the complexity ®" t0 the inner loop, which utilizes a linear model predietiv
the control task. In cascaded control structures, the iluagrs controller for both the slab movement and the fuel flow rate
are usually controlling the furnace temperatures [3], [90)], The control system presented in [18] is similar but assum

[12]. Thus set-point values of furnace temperatures haweto that the slab movement is unalterable. .
selected by some high-level controllers. Another control algorithm described in [6] derives heg

inputs for each slab to reach predefined temperatures aircer
. . . control points in the furnace. In a second step, a quadrg
B. Optimal Control Strategies for Slab Reheating Fumacesoptimization problem selects the local furnace tempeestu

Optimal control may be suitable for targeting the aboveych that the deviations between the derived and expecsad |
mentioned challenges in slab reheating processes. ThexeXgnputs into the slabs are minimized. Effectively, there & n
tation is supported by the following reasons: optimization horizon like in model predictive control.

« The nature and the slow dynamics of the slab reheatingAn alternative strategy to reduce the computational reguir
process call for a control strategy that utilizegure ments is to assume steady-state operating conditions.eln
information about the configuration of the plant andcase of continuous slab reheating furnaces, steady-stat® ¢
the performance objectives—a strategy that is nicetyot mean that all time derivatives vanish, but that all skeépge
implemented by dynamic optimization. equal properties including equidistant entry and exit §me

« Optimization is the first choice if a proper formal considWith these assumptions, even accurate nonlinear models
eration of ‘higher’ or integral control objectives like min be used to find optimum slab reheating trajectories [2]
imum total energy consumption or maximum throughpitonstant) optimum set-points of furnace temperature$, [1
is desired. [19].

« In slab reheating furnaces the number of controlled o
variables (slab temperatures) usually significantly esseeC- Motivation
the number of controllable inputs (temperatures of the Most published optimal control algorithms for large-scal
furnace interior being separated into zones). slab furnaces, including the aforementioned, have eiteenb
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developed for steady-state operation or are based onvediati because some constraints are realized by penalty ter
simple models—sometimes even linearized models—which only. This ensures that a feasible solution is always foun
may limit the performance of the control system in terms « The algorithm accounts for the transient dynamic b¢

of accuracy. This is particularly relevant for model préidie havior of the system. Hence, the method is capable
control. Clearly, the longer an optimization horizon, therm optimizing the furnace operation even if the temperatu
important is the accuracy of the model used. goals and other properties of the slabs vary considerak

Thus, there is a need for accurate dynamic optimizatione. The algorithm is systematically developed, exhibits line:
methods based on furnace models that account for nonlinear time complexity, and can be easily implemented in ar|

effects like radiative heat transfer and dynamic inteoacti standard high-level language.
between the various sections of a furnace. The methodsahoul
be capable of optimizingon-steady-statéransient) furnace Il. MATHEMATICAL MODEL

operation for frequentlyaryingproduct types and they should
account for relevant constraints on both system states ang,
inputs. Moreover, the optimization methods should enshae t
the desired final temperature distributions inside thesskaie
realized.

These goals stimulated the development of a tailored, co
putationally inexpensive optimization approach for contius
slab reheating furnaces, that is presented in this paper.
method builds on optimal control theory [16], [20] ardn- in controllers or optimization algorithms.

si_stent_approxima_tio_rmf i_nput variables [21]-[24] in_ order to Therefore, simplified mathematical furnace models are pr
d's‘:jrel“ze the OP:'r:“'tZ";‘;'Or: p“l’bf'em- Th‘:‘ ””de”{'“g fum@a ,\sed for instance in [3], [8]-[10], [19], [29], [30]. In the
modet assumes that the local furnace temperatures Serv ar?glyzes, it is assumed that the furnace temperatures asrv

pc:ntrol L;\.p?ts. Ttlertleforg,glwe furfnace temé)e(;atureis zlﬂt;dlras system inputs, which can be independently chosen. Temp
intermediate control variables of a cascaded CONOI8IAC 4y o5 of the furnace interior are usually measured by thi

The propos_ed method is_reat_:iily suitable for open-loop mntrmocouples and controlled by low-level feedback contropo
and for trajectory planning in the feedforward branch of ?cf. Section Ill). Therefore, some of the nonlinear dynami
:wo-detg);re?s-or—freegolm C%r]trtpl struc;[urle .ZI; m?é allio s phenomena that influence the local furnace temperature, (e
or (gu o_p.|ma) modet predictive contro [25], [26]. Hoves, the combustion process or the mass flow of the flue gases)
for simplicity and in order to demonstrate the accuracy ef t ompensated by low-level control loops

approach, this paper is focussed on open-loop control. Jin [ The mathematical model used in this paper was propos
[3], it is shown that open-loop control of slab temperatures

; . 30]. Its accuracy has been verified by temperature me
is safe and feasible as long as the furnace temperatures &[e, o with instrumented test slabs that were proces
feedback controlled or at least monitored.

in a real furnace [28]. Comparisons with the measured sl|
Compared to the furnace control methods referenced .| [28] P

Subsection I-B, the proposed optimization approach has tﬁg peratures showed that the accuracy achieved by the mg
: ’ p P P PP is “absolutely sufficient for the considered optimizatiord an
following advantages:

ili f del th local f control task [30].
« It utilizes a furnace model that uses local furnace tem- 1o model is outlined in the following. It accounts for

peratures as inputs. Therefore, the model adequ_atF%iative heat transfer in the furnace and heat conducti
accounts for those nonlinear phenomena (€. 9., radiatiy@ije the slabs. After introducing some nomenclature
heat transfer) that are not compensated by some low-leg|hqection II-A, the dynamics of a single slab is analyze
fegdbagk control Ioops_ ) ) The equations thus obtained are then assembled for the wh
- Itis swtablg for switched dynamical systems like thg, nace and interlinked by radiative boundary conditions |
slab reheating fumacg. The' number of system states "Ybsection II-C. Finally, the model is summarized takintg in
change _at _the_swnchmg points. ) . __account also slabs that are outside the furnace. Since tbelmc
« The optimization algorithm permits an |mplementat|ori‘;5 intended for optimization and control applications, ajre

that is efficient in terms of both memory requirement§y, e \as set by keeping the mathematical complexity at
and computational load (see also Remark 14). modest level

« In particular, it is capable of optimizing high-dimensibna
dynamical systems. The furnace system can have signifi- N
cantly more than 100 state variables. The number deperitisS/ab Management, Geometry, and Position
on the current stock of slabs inside the furnace. Consider a reheating furnace as shown in Fig. 1, and
« The furnace control problem is restricted by sever#ihe indicesj € N uniquely identify all slabs. Moreover, let
constraints on both the system states and the inputsjjf,,, designate the next slab to leave the furnace ang
all restrictions were implemented as hard constraints, ttige last slab that was pushed in. That means, the glabs
control problem might be not feasible—a worst case thdt = {j,1qrt Jstart + 1s---»Jeng) @re currently reheated in
is not acceptable for real control applications. In thithe furnace. The slap is pushed into the furnace at the time
respect, the proposed optimization method is favorablg,,, and it is removed at; ;. At the timest; ., , and

eveloping a model of a slab reheating furnace involv¢
ade-off between accuracy and mathematical complexi
A first important question concerns the system inputs. F
a continuous slab reheating furnace, the fuel flow rates
the burners can be considered as primary physical inpu
@6mprehensive furnace models, e. g., [1], [2], [12], [13B]}

_|[%7], [28], indeed use the fuel flow rates as system input
However, these models are usually too complex as to be us
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ti  ewits Jstart @NdJ,,, are updated according tQ,,,. = an extension to temperature-dependent material parasne
end’ o . . e . . . .
Jstare F 1 @ndj,., = j..q + 1, respectively. Likewise, the is possible (cf. [30], [31]) and would not alter or limit the
number of slabsV, = |J| inside the furnace is updated afpresented optimization method. Subsection [I-C will réve
these times. Typical furnaces may contain more th@aslabs, that the favorable property of linearity is lost as soon as tk
i.e., many more slabs than shown in the schematic diagr:iamputSqf (t) are further specified.

of Fig. 1. . o In light of the intended control application, the Galerkif

In theyz-coordinate system defined in Fig. 1, slabs can only,oroximation proved useful, because it holds a direct phy
move in posnlvez-dlrectu_)n. Thusy;, i.e., thez-position of_ ical interpretation ofz;(t): «;,(t) is the mean temperature,
the center of the slalj, is a monotonously non-decreasmgcﬂ(t) defines the asymmetry of the temperature profile, al
function of timet. Moreover, there is docal vertical coor- l'j’g(t) corresponds to the symmetric temperature inhom
(jmatey, which is 0 at the mid-plane of the respective slalyeneity. Therefore, the chosen formulation facilitategetive
J- ) ) ‘homogenization of the slab temperature profile towards ft|
In _thls paper, a furnace with only one row of slabs ignq of the respective reheating periogly, ¢, .,;]. Moreover,
considered. If a furnace accommodates two or more paraligh formulation allows a reasonable approximation of th
rows, averaging t_echniques are recon_wr_nended to ObFai”slébsurfacetemperatures a8, (F0;/2,t) = [1, F1, %s]a; (1),
single representative slab at each positign Generally, it \hich is important for radiation boundary conditions (cf
is advisable to plan the reheating schedule such that oRfypsection 1I-C). In [31] and [30], it is demonstrated tHa t
slabs with similar or equal properties (thicknés width W;,  5ccyracy achieved by the Galerkin approximation is abetylut
material, desired final temperature, etc.) are placed ialigdr g fficient for the intended application.

If the states and the heat inputs of all slgbs J are assem-

B. Heat Conduction Problem bled asX (t) = [z] (t),z] 4(t),...,z] d(t)]T and
The temperature field inside the slabs can be described(t) = [¢] (1), ¢, .1(t),....qf (t)]", respectively,

by the heat conduction equation, which constitutes anainiti the dynamics of the whole furnace System can be descri
boundary value problem. The Galerkin method was employ&y thelinear system
in [30] to solve the 1-dimensional heat conduction problem .

[ ]aT o7 P X(t)=AX({t)+B q (t)+BTq"(t) (2a)

. ()\la_y]> y€(=D;/2,D;/2),t>t;6  (cf. [30]) with the sparse matrices

Pi%t = oy
for asingleslabj with the mass density;, the specific heat A= [5i,j“j]i=j P ; (2b)
capacityc;, the thermal conductivity,;, and initial conditions BT — 5 bT srartend T star T end 5
- [ e }i:jsta'r‘t"'jen,de:jstaTt"'jen,d’ ( C)

T;(y,t;0) = T;0(y). The slab is subject to Neumann bound-
ary conditionsy;"(t) = FA;07;/0yly=+p,/2 With the heat 4 e Kronecker deltd, . Note that the components as
flux densitiesy; (¢) into the bottom and the top slab surfaceye|| as the dimensiongA}i and N, of X(t) and g¥(t),
Throughout this paper, quantities bglonging to the bottooh respectively, may vary at the times, and¢; ;. At first
the top half of the furnace are designated by the superscrigfance, (2) is a decoupled model. However, this is actual
~ and™, respectively. not the case, becaugé (¢) do not constitute truly independent

Applying the Galerkin method, the tempere#ture field insystem inputs, as figured out in the following.

side the slab is approximated &5(y,t) = x;(t)h;(y),

where the state vectar, (t) = [xj,l(t),wj72(t),xj73(t)]T con- o

tains the so-called Galerkin coefficients. As in [30], th&. Radiative Heat Transfer

orthogonal polynomialsh;,(y) = 1, h;,(y) = 2y/D;,  As the analysis is extended from the level of slabs to tf

and h;4(y) = (2y/D;)* — 1/3 are used as Galerkinwhole furnace system, the local furnace zone temperatu

ansatz functions, which are summarized in the VeCtQrT (1) = [TF,(t), TF,(1), ... ,T¥N¥(t)]T (cf. Fig. 1) are

hj(y) = [h;1(y): h;2(y), hys(y)]T- Then, the system dynam-introduced as new system inputs. Therefore, the furnace]

ics follows as divided into NI volume sections, each consisting of a bottor
&.(t) = a;@;(t) + by q; (t) + b;rq;r (t) t>t, (la) and a tpp zone separated by the slabs. Usually, the numbg

slabs significantly exceeds the number of furnace zones, i.
(cf. [30], [31]) with the initial valuex,(t;,) = x;, corre- N, > NF. The temperature®’T (), which are assumed to
sponding to the initial temperature profil(y,t; ,) = 7} ,(y) be homogeneously distributed within each zone, represen

and the vectorial coefficients combination of local flue gas temperatures and wall surfa
12 temperatures. In this paper, the inpdg (¢) are designed,
a; == p.c.D? diag{0 1 5} (1b)  meaning that they serve as optimization variables. Thisdgem
A realistic than controllingg™ (¢), because in the real furnace
bl = 1 3 15/2]T. (1c) systemT'[(t) can be measured and controlled by some loy
Pi¢iD; level feedback control loops, which is not possible §d(t).

Remarkl. Throughout this paper, it is assumed thatandc; Assuming gray-body radiation and applying the Stefal
are constant. Hence, the model (1) is, so liagar. However, Boltzmann law with the net radiation method [32]-[35] to thi
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multisurface enclosure formed by the furnace yield thecstat  1ll. OPEN-LOOP TEMPERATURECONTROL SYSTEM
radiative heat transfer model [30] This section briefly describes the temperature controlstag

T\ _ DF Fr) 4 T T 4 associated with a continuous slab reheating furnace.dteth
a" () =PI (TI(0) +PI#) (MTX®). @) fore, builds a framework that accommodates the dynanm
This expression is separately evaluated for the bottom laad pptimization approach developed in Section 1V. Considgrir
top half of the furnace. Thepower terms are characteristicthe multiple inputs and control parameters of a slab rehgati
for radiative heat exchange; thé"4powers are applied to furnace, it is reasonable to split up the task into hieraahi
each component of the respective vector. TNe x 3N, levels as indicated in Fig. 2.
sparse matrixM ¥ = (6, ;[1,F1,%/3]],_y y ;_1..n Maps

X (t) to the bottom and top slab surface temperatures. The plant Furnace| & Alr, T}
matricesP¥ (t) and P () straightforwardly follow from the | controller] | controller] | Zone | fuel FurnaceT
net radiation method and depend on the geometry of the rcontrollers T»

furnace as well as the radiative properties of the partitiga
Surface_s’ €9, thelr emlttances._ A de_nvatlonmf () and Fig. 2. Hierarchical open-loop control of a slab reheatingéce.
PT(t) is presented in [30]. The discontinuous slab movemen
causes these matrices to be piecewise constant with chang

occuring only if the slabs are pushed forward. q-‘?oughly speaking, the (supervisorglant controller pro-

vides the (high-level¥urnace controllerwith any informa-
tion required to govern the furnace operation. The furna
D. Continuous-time Switched Dynamic Model controller designs set-point valuegt) for the furnace zone
: R i iHemperaturesu(t) = [(T; ()7, (T7(t))"]". Finally, the
Consider that the furnace operation is to be analyzed wit z) P\ 2 N ’
the time intervallry, r,]. Then, joining (2) and (3) fumishes(low-levgl)zone controllersum.to realizeu(t) = u(t) as good
the continuous-time model as possible. The latter constitutes a standard requirefoent

. cascaded control loops. The main contribution of this pap
X(t)=F(X(t),u(t),t) (4) concerns the design of the high-level furnace controller.

with the initial state X (r)) = X, and the inputu(t) = s ) lant C I
(T (6)T,(TH)T]T. A. Supervisory Plant Controller

z

Recall thatX () may change its components and dimen- Supervisory plant control is not only concerned with th
sion. Therefore, to bring (4) into line with the standarfurnace but coordinates the whole production line. Thus,
notation, the state vector may be conceptually extendetidy tinks the furnace operation with upstream and downstrez
temperature states of slabs outside the furnace.[), namely, process steps like slab handling devices, scale breakdlisgr

x(t) = [..,a] _,(#),X"(t),z] ,(t),...]T. For the mills,orcooling units. In this paper, it is assumed thatpent
start “end . 1
additional slabs, ‘the trivial differéntial equatiah;(t) = controller sets at least the parameters shown in Table I.
0V j¢Jis used. Hence,
TABLE |
0 SOME PARAMETERS OF SLABj SPECIFIED BY THE PLANT CONTROLLER
(t) = fla(t), u(t),t) = | F(X(t), u(t),t) ©) : —
0 Variables Description
big sreeenees Time when the slab enters the furnace
with the initial statex(ry) = x,. The discontinuous time  Yjeeit ==+ Time when the slab is withdrawn from the furnace

.......... Temperature state @t

....... Desired temperature statetat, ,
Upper bound of slab temperature
Lower bound of slab temperature tat

dependence of the non-autonomous system (5) reflects that’i.0
the furnace exhibits a switched dynamic structure. It is em- ?’e”d
phasized that the number of inputgt) falls significantly jZZZ’ZfZ
belowthe number of current (active) statés(¢), which may T’ end.maz -~ UPPEr bound of slab temperaturetat, , ;,
limit control possibilities. For computer implementatjahe Cin Aj e Specific heat capacity and thermal conductivity
continuous-time model can be integrated using any standard”i* W5 -+ Thickness and width of the slab

solver algorithm. A simple and numerically robust discrete Wy e Weighting factor reflecting the monetary value

time representation is suggested, for instance, in [30]. [3

Remark2. For a brief discussion on open-loop stability of The values giv_en in T?b'e ! _implicitly define the sequenc
the system, let the trajectorieé(¢) and(t) be a solution of of slabs and their path-time diagrams. Note that the desir

(4). Consider, moreover, that the furnace system exhibitses final slab tertnperaturte Stawjf.@lnd mha_lyhcall f%r some _mhfo I 1
initial state X, # X (7,) and that its inputs take the formM09ENEOUS lemperature profiie, which can be meaningiu

u(t) = a(t). Then, the control erroX (f) — X (f) decreases subsequent production steps. However, for the majority

exponentially in the sense of some norm. The correspondiﬂ&bs’ the desired final temperature profile is homogeneou;

proof is based on Lyapunov’s direct method [36], [37] and can

be found in [30]. This is the essential justification for omtérg  B. High-level Furnace Controller

the furnace system with open-loop control, as outlined & th The task of the high-level furnace controller is to provid
following. set-point valuesi(t) for the furnace zone temperaturegt)

exit
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such that the slab temperatures best reach their desiredsvatonsidered furnace control problem. In view of the intende
(cf. 2, ., in Table I). For this purpose, a tailored optimal conapplication in furnace control, it is particularly impontato
trol method is suggested in Section IV. It may be consider&dep the computational requirements small because maal-ti
as thecore of the furnace temperature control system. execution of the control algorithm is desired.

Several constraints limit the slab reheating process and,
therefore, have to be allowed for when designing). First, A Optimal Control Problem

there are individual constraints Consider a non-autonomous systeift) = f(x(t), u(t),t)

T;(y: 1) < T} abs,maa (6a) (e.g., (5)) with states:(t) € R", initial statese(r,) = x,, and
VjEN, ye[=Dif2,Dif2], t € [t; 0.t cnit] inputsu(t) € R™. The functionf : R™ x R™ X [ry, 1] —
STyt ns) < T R™ may discontinuously depend on the time(switched
= T3\ Yeait/ = 7 jend,maz (6b) system), but local Lipschitz continuity with respect 4dt)
Vi eN y&[=Pif2Pif, and continuity with respect ta(t) are required. The system
on the slab temperatures, as defined in Table I. While (6a@gy be controlled by solving the optimal control problem
should avoid overheating of the slab material, (6b) specdie _ _ T
quality limit for the final slab temperature profile. Thereynma Minimize S(u) = L(x(r)) +/ (), u(t),t)dt (8a)
be many more restrictions on the slab temperature trajgctor wed T

T,

j,end,min

However, since they can be incorporated in a way analogoudUPiect to &(t) = f(x(t),u(t),t) Vit & (r,71)  (8b)
to (6), they are omitted in this paper. (1) = @, (8c)
Second, the zone temperatures as well as their slopes are u(t) <wu(t) <ult) Ve, ] (8d)
limited by at) < alt) <Tt) Ve (rm) (8e)
TT,in(t) <TI(t) <TT,0(t) Vie[n,n]  (7a) c(t) < e(x(t) <e(t) Vitel[r, ] (8f)
T i) <TL() <TT 0(t) Vi€ (r,m).  (7b) C <C(z(n) <C. (89)

t of bounded continuous functiol

Here, the inequality signs are to be applied to corresporfdere, U denotes the se : :
ing components of the respective vectors. These congtraifigfined in the intervalr, 7,]. At points ¢ where u(t) is
materialize safety measures as well as physical limitatioin discontinuous, (8e) is applied to both limitan, ;- u(r)
the burner equipment and the inner control loop. In mar@nd lim,_,;+ @(r). Note that the constrainta(¢) andu(t)
casesT¥ . (1), TF.  (t), 7T (t), and T () are are independent ok (t) andu(t), respectively.

constant. However, a tailored time-variant design of tese O the time being, the length of the user-defined optimiz
tion interval [y, 7] is arbitrary yet finite. A discussion about

straints allows pursuing special control strategies, til@ual AL i g )
start up or shut down of the furnace, temporary productigiPlimization intervals is postponed until Subsection LVike
interruption, and direct setting of desired zone tempeeatu COSt functionals: &/ — R consists of some terminal cost
Although adjusting the constraints is a ‘safe’ way of manudnd some integral cost They will be further specified in the
intervention, it forces the control algorithm to deviaterfr its following. . -
optimal solution and may thus diminish the reheating qualit DU€ t© the complexity and switching structure of (8b) an
of slabs. the (so far) arbitrary constraints (8d)—(8g), an applaratof

If (6) and (7) are implemented &sard constraints, the con- standard results about existence and uniqueness of optil
trol problem defined by the supervisory plant controller rhay con'FroI proble'n?s. [38], [3,9,] Is difficult. In fact, speglflc o
unsolvable. Therefore, the following section adopts a femb straints and initial conditions that render a solution of (&
formulation with mainlysoftconstraints. The advantage of thiénfea&b_le can be eaS|Iy_ found. To overcome this issue, sol
approach is that a solution of the problemaisvaysfeasible. constraints are relaxed in the next section.

Remark3. The above formulation is applicable to the furnac

control system, since (8b) refers to (5), (8d) to (7a), (&) |

. (7b), (8f) to (6a), and (8g) to (6b).
Now that the furnace model and a possible temperature con-

trol system have been outlined, the focus is shifted to ai opt
mization method that serves as a high-level furnace cdetrol B.
Subsection IV-A states a constrained optimal control mot)l  First, the restrictions (8e)—(8g) are approximately reprs
which is converted into an unconstrained optimization fewb duced by additional exterior penalty terms in the cost fun
in Subsections IV-B and IV-C. The method of consisterftonal S, i.e., the restrictions are implemented as soft col
approximation of inputs is employed in Subsection IV-[straints. Although the conversion of hard constraints st
to obtain a parametric optimization problem that is solve@nes is only an approximation, there are good reasons
by means of the quasi-Newton method in Subsection Iv-Ellowing this approach:

Subsection IV-F touches upon the selection of appropriatee Enforcing the restrictions (8e)—(8g) as hard constrain
optimization intervals. Throughout the section, an attemmp might entail an unfeasible optimization problem (8)
made to provide a reasonably general derivation, excephéor However, the difficulty can be easily resolved if hare
final Subsection IV-G, where the method is specialized ferth  constraints are replaced by soft ones.

IV. DYNAMIC OPTIMIZATION

Introduction of Soft Constraints
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« Any terminal constraint (cf.
additional cost terms inS. The absence of terminal

OVEMBER 2011

(89)) is converted intoin (9¢). The term can also be conceptualized as an inter

barrier function in the original optimal control problemh&

constraints—as will be seen later—facilitates an urconvergence properties fer— 0 are investigated in [41].
complicated and efficient solution of the optimization cgnsider thatp is applied to vectors by individual evalua-

problem.

Consider the norm||¢|,, = &'WE, where ¢ and W

tion of each vector component. Hence, (8d) is tantamount
u(t) = (U (t),u(t),u(t)) with the unconstrainecbptimiza-

are some vector and positive semi-definite weighting matrigon variableU < U. For consistency, the bold characteris

respectively. Then, the cost functionflfrom (8a) is replaced
by

1

S(u) = L(z(1y)) +/ l(x(t), u(t), t)dt

To

(92)

with

L(z(ry)) =

+ Hmln

L(z(r))

,C(x(ry)) — C) + max (O,C(:L'(Tl)) —

O)llw.

Ll
(9b)

I(=(1),
c(z(t)) —

(a(t), u(t),t) =
+Hm1n(

u(t), t)
c(t)) + max (0, c(x(t)) — €t
ll
— 4(t)) + max (0, u(t) — u(t)
l

.

+ || min (0, u(t) M,

(9c)
and positive semi-definite matrice® ¢, W., and W,,
containing penalty coefficientd¥ . and W,, may be time-
dependent. The fact that the chosexterior penalty terms
cannot ensure precise compliance with the restrictiony-(8

design ofC, C

a(t), u(t), c(t), ande(t).

C. Incorporation of Input Constraints

used for the vector function. Thus, (8) can be reformulated
an unconstrainedptimal control problem

mgimzilze S(e(U, u,u)) (10a)

€

subject to &(t) = f(x(t), p(U(t),u(t),u(t)),t) (10b)
(1) = (10c)

with S from (9a). If an iterative solution method is adopted, &
initial guess forU is easily found, becausanyinputU € U
yields a feasible solution. The method of consistent agpro;
mation is utilized in the following. It allows condensingO(L
to a parametricoptimization problem.

D. Consistent Approximation of Input Variables

Consider that the optimization variablé is restricted to
some finite dimensional function space, allowihg to be
defined by the expansion

kl
Ult) = Z N Px(t)
k=k,

(11)

Svith bounded R™ and bounded continuous functions
(8g) may be pract|cally accounted for by a more conservatiy, M ©

% © [79,m] — R. The method is known asonsistent
approximationof input variables [21]-[24]. The valueg,
serve as new optimization parameters and can be summari
in the parameter vecton = [17,C ,nk +1:---:’7k T € RM

Because of the foregoing considerations, the input cowith M = m(k; — ky + 1). Consequently, the orlglnal cost

straints (8d) are the only inequality constraints that afeih
(8). This type of restrictions can be readily incorporatethe

inputs are transformed according to a monotonous satuoratio

functionu = p(U, u, @) € [u, u] with the originalconstrained
input u € [u,a] and a newunconstrainednput U € R. An
example foro(U, u,w) is shown in Fig. 3.

U

Fig. 3. Monotonous saturation function to account for inpomstraints.

Remark4. The use of saturation functions for handling |npu%.h

constraints is presented in more detail in [40], [41]. Intjgar
ular, it is shown in [40] that a constrained interya) u] of the

original inputw corresponds to a singular arc of the uncon-
strained inputJ in the transformed optimal control problem.

To account for this problem, a so-called regularizatiomter
eU? with some smalle € R* is added to the integrand

functional S from (9a) becomes a cofinctionin terms ofr.
For a concise notation, the function

Pln.tu(t) w@(t) = ¢ (Tily, me(t) u(®), @) (12)

is introduced. Thus, the dynamic optimal control probler
(10) can be transcribed as a simple unconstrained parame
optimization problem

minimize  S(¢(n,t,w,w)) (13a)

neRM

subject to (t) = f(x(t), p(n, t,u(t),u(t)),t) (13b)
x(7) = . (13c)

Consider a discrete-time domain with sampling poit)ts
€ {ko, ko +1,....k }) ranging fromt;, =7y to ¢, =m.

e sampling perlodF,C =1, —t_ does not need to be
constant over time. The triangular shape function

e [yt
t —t .

Uy (t) = kﬁﬁ if £ € (tytyl (14)
0 else

Post-print version of the article:

A. Steinboeck, K. Graichen, and A. Kugi, “Dynamic optimization of a slab reheating furnace with

consistent approximation of control variables”, IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp. 1444-1456, 2011.

por: 10.1109/TCST.2010.2087379

The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1109/TCST.2010.2087379

AIC|IIN

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19,0N 6, NOVEMBER 2011 8

proved suitable and is used throughout this paper. With trasly requires integration fromt, , to t,,,, because
choice,U from (11) is a linear interpolation of the nodaldg(n,t,w(t),w(t))/dn, =0Vt & [t,_,,t,.,] (cf. [24]).
valuesn,.. Thus,U € U. Remark?. In a similar way as (16e), (16c) is readily obtaine
Remark5. Considering the piecewise linear shapevgf, it from &7(t) = 0H (x(t), p, p(n,t,u(t), w(t)), t)/Op.

may be advantageous to replace (12) by Remark8. For the optimization problem (13),

k — T
_ : _ dS(e(n,t,u,u
o tu(t). w(0) = 3 @ (. ulte). T1,) (1), (15) oty = (LT 0 a7a
k=k
’ d2S(p(n, t,u,
This alternative formulation of. facilitates the definition of (d)(gZdn_/ ) >0 (17b)

the constrainta, andw in the discrete-time domain, i.e., the o . ]
introduction of saturation functions (cf. Fig. 3) merelyteaf 2'€ nNecessary optimality conditions of first and secondrord
applying the method of consistent approximation. AlthougfifSPectively. The condition (17b) means that thessianis
(12) and (15) are not equivalent, both formulations adegjyat POSitive semi-definite. For simplicity, however, the cdiufi
realize the input constraints (8d) in practical terms. Faz t (17P) is frequently not explicitly verified. Therefore, tex-
remaining theoretical discussion, it does not matter wdretrCt) computation of the Hessian is not further discussetig t
(12) or (15) is used, and the example problem in Section RAPET:

will be solved based on (15). Remark9. Using g(n) = 0 in (16) furnishes a two-point
boundary value problem that allows—in principle—the direc
computation of the optimal value ef (and the corresponding
trajectoriesx(t) and p(t)). Since an analytical solution is

The parametric optimization problem (13) can be straightardly feasible, approximate techniques like seeep method

forwardly solved by various numeric methods, e.g., gn@ or the shooting method16], [20] are commonly applied.
dient method(method of the steepest descent), t@nju- However, a different numerical approach that does nottlstric
gate gradient methgdand the quasi-Newton methodvith  require g(n) = 0 is used in this paper as outlined in the
the Davidon-Fletcher-Powell (DFP) formula or the Broyderfoliowing.
Fletcher-Goldfarb-Shanno (BFGS) formula [16], [20], [42]
[43]. In terms of convergence, the conjugate gradient nteth
and the quasi-Newton method are usually super-line
whereas the gradient method exhibits a linear convergextee
[43], [44].

All these methods have in common that they require the
gradientg(n) = (dS(¢(n,t, u,w))/dn)T of the cost function
in (13a) (cf. Algorithm | further down). A convenient way of
calculatingg(n) is the adjoint-based approach

E. Finding an Optimum Solution

Based on (16a), the quasi-Newton method may serve as
Rerative solution technique for the optimization probléh3).
Fhe corresponding algorithm is the main result of this secti
fand proceeds as follows:

ALGORITHM |
ADJOINT-BASED QUASI-NEWTON METHOD

(a) Provide an initial guess foj and set ! = 1I.
(b) Integrate (16c) in forward direction, evaluate (16f); i

g(n) = /Tl 3H($(t)7p(t)>u-,t)‘ tegrate (16e) in backward direction, and compgite)
. ou u=(n,t,u(t),a(t)) (162) from (16a).
_ T a (c) Compute a new search direction = —H 'g(n),
d¢(n’t’§7§t)’u(t))> dt determine the optimal step length
H(z(t),p(t), u(t),t) = (16b) and apply the updatg « n + as.
Lz(t), u(t),t) +p' () f(x(t), u(t),t) (d) Integrate (l_6c) in forward direction. o
(4 — " (). T, L 16 (e) Stop if a suitable solution has been found (termination
&(t) = f(2(t), $(n. t,u(®) (1)), ) (16c) criterion of the iterative optimization).
(1) = @y (16d) 5y compute (16f) and integrate (16e) in backward dire
ox @=a(t) (g) Setg = g(n) and compute the new valug(n) from
OL(x 16a).
pT(r) = 22 (160) Evat

0x le=a(r) (h) Evaluatey = g(n) — g as well as

H is known as theHamiltonianand p(¢) are adjoint states
The proof of (16) is straightforward and can be found, for
instance, in [24].

Remark6. An advantage of the choice (14) is that the inte-
gration interval[r,, 7,] in (16a) reduces for many componentdd ~! is an approximation of the inverse of the Hessian (c
of g(n). For instance, the subvectdS(¢(n,t,u,@))/dn, (17b)), which is recurrently updated according to the BFG

sy’ sT ssT
H ' (I - %) H! (I - %) ot (19)

(cf. [42], [43]) and restart at (c).
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formula (19). The user-defined termination criterion irpste) F. Finite Optimization Horizon

may, for instance, utilize some norify(n)|| or the decrement  Aigorithm | computes an (approximately) optimal value fo
of 5._If the algorithm attains the c_)ptlmal solution, (17a) IS, ¢ RM, i.e., it solves a finite-dimensional optimization
satisfied, and the decrement $fvanishes. problem. Since the computational effort of the algorithees
Remark10. The differential equation (16€) for the adjointwhereas its convergence behavior deteriorates as the siiomen
statesp(t) is often unstable, which makes its integration i®f the optimization problem increases, it is important tefxe
backward direction numerically advantageous. The effesy mthe number of optimization variables, i. &4 = m(k; — kq +
be of particular interest if the optimization problem is td). at @ moderate level. The number of controllable inputs
be repeatedly solved within a receding horizon scheme igsmore or less unalterable, wheregs— k, + 1 depends on

suggested in Section IV-F. the length of the optimization horizdm,, 7;] and the chosen
o sampling periodd’,.
Remark1l. It follows from (16e) that the adjoint states) If for the considered furnace system the optimization hor

are continuous, even at switching times of the system. Thgy - - s long enough, it happens that the optimal trajeq
reason for this favorablc_e fact is that the switching times Afory u(t) at the beginning of the horizon is almost independe
predefined and, hence, independent of the system St&tes f the optimal trajectory(t) towards the end of the horizon.

Note that (16c) and (16e) can be integrated with arfyere, the termong enoughmeans approximately/s of the
standard ODE-solver. The advantage that (16c) and (16e) ¢gfidence time of an average slab. This special trait of t
be integratecsuccessivelysteps (b), (d) and (f)) is essentiallyfumace process is the justification for slicing the time @im
based on the structure of the optimization problem (13)pésd into severabverlapping intervalsand for applying Algorithm

not contain any terminal constraints but only some terminhindividually to each interval. The approach is often dexbt
cost functionL(z(r,)). as receding horizon control.

. . ) Hence, several low-dimensional optimization problems a
Remark12. The selection of the initial guess fof in Step gq|yed rather than a single high-dimensional one. In géne
(@) of Algorithm 1 is not critical in terms of the quality of ihe receding horizon approach furnishes satisfactoryltesy
the optimized solution or the convergence behavior. Géigerajs the optimization intervals are scheduled to have sufficie
n = 0 works well. Alternatively, previous optimization resultsove”ap_
may be utilized as new initial guesses, as will be described i

Subsection IV-F. 10 Too Ts0 Ti1 Ta0 To1 )
The subsidiary optimization problem (18) of Algorithm | is o ' o '4 T

particularly simple, because it is only 1-dimensional. fEhe Optimization 5 3 —

fore, it is often calledine searchproblem. In this paper, it is horizons 1 T

realized as a point-by-point search proceeding in theviofig

way: === Optimal solution applied to system

—= Optimal solution used as initial guess for next horizor

ALGORITHM Il

Fig. 4. Receding horizon approach with overlapping timervls.
LINE SEARCH 9 9 PP pping

Fig. 4 outlines the strategy of finite optimization horizons
The horizon1 ranging fromr, to 7;; is computed first,
and the solution valid in the intervéd,,, 7,,] is accepted as
final optimal value. The solution in the overlapping intdrve
4720,711] is generally discarded, but may be utilized as
good initial guess for the optimization horiz@ Subsequent
optimization horizons are treated in the same manner.

. . . Remark14. The suggested optimization algorithm can als
Remark13. In Algorithm |, the quasi-Newton method is out-pq ,5eq in a suboptimal way by executing a fixed number
lined with the BFGS formula (19). Essgnnallws computed iterations in each sampling step. Stability propertiesuzthsa

as a furjct|on. ofg(n) as well as previous values @f(n), suboptimal strategy in the context of model predictive point
s, and a. This straightforward method proved convenient.e gy gied for instance in [25], [26]. Moreover, the gradie
for the considered problem and, hence, is used through@ti o4 can be implemented with modest requirements

the paper. Many other numeric solution techniques like thg. o of memory and computing power, as is demonstrat
gradient method, the conjugate gradient method, or theiquza}gr fast mechatronic systems in [45], [46]
Newton method with the DFP formula operate in almost the ' '

same way as Algorithm | (cf. [43]). Only, the computation of o
the search directios may differ. For instance, the gradient®: Parameterization for Furnace Control System

(a) Use the initial guessx = 1 and computeS(¢(n +
as,t,u,u)).

(b) Reducen until the corresponding is increasing.

(c) Use the last three values of and S, fit a quadratic
polynomial, and return the position of its minimum a
the optimal valuex.

method is simply realized by = —g(n) and omitting step  Thus far, the section described a solution technique for t
(h), meaning that the direction of the steepest descen@sergeneral optimization problem (8). The following speciaz
as a new search directian the technique to suit to the requirements of a slab reheati
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furnace and in particular to the high-level furnace comrol of the type (8e) is merely implemented as a soft constrail
outlined in Subsection 1lI-B. Note that Remark 3 at the entlhe pattern (9c) is adopted by adding the penalty function
of Subsection IV-A has already established a link between th
optimal control problem and the considered furnace control ly(u(t), t) = lle(u(t),t)]ly (22)
task.

The design of the cost functiondl(u) = L(x(r,)) + With the vector
f:l I(x(t), u(t), t)dt (cf. (9a)) belonging to some optimization
horizon [19,71] is @ crucial point for the performance of the e(u(t),t) = min (O’ﬁ(t) _ [ 2omin(t } >
high-level furnace controller. The design should allow for
both the pertinent control objectives and a number of (soft)

constraints. In the sequdl(x(r,)) andl(x(t), u(t), t) will be u(t) o
composed according to (9b) and (9¢) in the fornLof L+L, + max (0 alt) — T, 1az(t) )
and! = [+, + Iy, respectively. However, is not required ’ T:mx(t
and therefore set tb= 0. —_—
The basic function u(t)
E(m(Tl)) = Z Hm] () — i’j,endHW w; (20a) and some positive semi-definite weighting mat¥iX, to the
GENIE, o0srElorm] erd integral costl.

implements the fundamental control objective that each, si&kmark15. Finally, it is worth considering the role of slabs
which leaves the furnace within the optimization intervdhat are currently outside the furnace, i.e., slabs havimg
(70,71, reaches its desired final state. Recall thatt) = 0 mdex:y ¢ .J. These slabs are governed by the t'r|V|aI differentis
vt > t._. was assumed in Subsection II-D (cf. (5))§quat|onwj(t) = 0 (cf. (5)) and, hence, are independent 0

j,ext

W,,, € R3*3 is a constant positive semi-definite matrixthe current controk(t). Therefore, it seems very reasonabl|

which penalizes the final control deviation in terms of slaffat the integrand does not containe,(t) vj ¢ J (cf.

temperature states. The weighting factgr reflects the mon- (20b) and (22)). Based on this assumption, it follows from tf
etary value of the slab (cf. Table I). differential equation (16e) that adjoint states (compdsierfi

Next, consider the upper bourd, ;. ... on the slab p(t)) are constant whenever the corresponding slab is outs
temperature trajectories according to (6a). It is of theetyghe furnace. This may cut short the integration of (16e).
(8f) and can be implemented by adding Remarkl16. The cost terms (20) and (22) satisfy the differer

L (x(t), 1) = tiability requirements imposed by (16a), (16e), and (16f).
2 (20b) Remark17. The cost terms (20) and (22) do not explicitly
Wi Y max (07m3X(Tj(y7t)) — T} abs,maz) W; take the energy or fuel consumption into account, becau
i€ ‘ neither of these quantities is available in the underlyirgglai.
to the integral costl. W, € R* is some constant Therefore, the proposed method is not capable of system;

weighting factor. In a similar way, the terminal constraintcally minimizing the energy consumption. Utilizing a more

Tyt eeit) € [Tjendmin Tjendmas) frOM (6b) can be sophisticated model that uses the fuel flow rates as inpfits {

considered: The penalty term (1], [2], [12], [15], [18], [28]) would significantly comptiate
the optimization routine. However, if a term likeu(t)||
L (m(T )) =W ; . " . .. T,
1 1 end,lim with some positive semi-definite matr#d . were added to
Z max (O,rgax(Tj(y,rl)) _ Mnd’mw)? the integral cost, the lowest possible zone temperature lev

JENTt, 2 melrom] (20c) would be maintained along thedirection of the furnace. As

. ) demonstrated in [2], [47]-[50], this approach minimizee th
+ min (O»IT{in(Tj(y’Tl)) — T} end,min) )wj energy consumption, because the bulk heat input is shiff
Y towards the end of the furnace meaning that the flue gas

Withh the co?stant Weigpti(rég )faCtgnZSSl)’)m" € R* is added gjven more time to transfer thermal energy to the slabs.
to the cost functionl. (cf. (8g) an . . . .
It remains to incorporate the restrictions (7), which Iimi}e As suggested in Subsection IV-F, the optimal control prof

the zone temperaturéET (1) as well as their slopes. Since, m is consecutively solved for overlapping finite horizons

the constraint (7a) is of the sort (8d), it can be implementécz?olr the considered furnace system, it is recommendable

following the lines of Subsection IV-C. Thus, the transfarm oose |nterv_als oBh to 4h. IT longer intervals are used,
tion the computational effort may increase and the converger

3 B rate may suffer. The time offset between neighboring irgtksrv
£ — ¢ T in®] T2 mas(t) 21) Should not exceed h. These empirically found values can beg
u() (vb n,t, T+ t T+ t ( ) . . .
(t) 2 maz(t) motivated by the dynamics of the system. The input valug
u(t) applied at the instant have a great influence on the
system in the near future. Clearly, their influence decays
(cf. (12) or (15)) ensures that the optimized trajectoi€gt) time goes on, and in practical terms the influenceu6f) is
strictly adhere to (7a). In contrast, the restriction (7B)nlg negligible aftert + 3 h.

zZ,min

u(t) u(t)
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V. EXAMPLE PROBLEM example. In reality, most temperature tolerance bands :

The optimization method worked out in the previous se@-"?_ir' idered planning hori from — 01
tions is now applied to an example problem of a continuous € considered planning horizon ranges rog = 0 '
reheating furnace withVI = 5 zones. The sequence oﬁo 7, = 10h and is separated into 20 shorter opurr_uzatlo
slabs and some of the parameters of Table | were randorfl} rval_s (Ie_ngth3.5h, _overlap3_h, cf. Flg' 4). The consistent
generated. This can be interpreted as a worst case sceoarid* prommgtlon of the input varlablqs(t) 'S r.eallzed by means
testing the performance of the proposed dynamic optinumati©! (1) With (14), (15), and sampling period§, < 2min. If

scheme. A good supervisory plant controller may schedulé were increased, the compu'tational .Ioad would significgm
the slabs in a better order, which then permits more accur crease, although the reheating quality of slabs wouldsti

reheating of slabs. In practice, however, the productian pir acceptable. Notable accuracy problems occur only if therorc

other process steps often force the supervisory plant aibertr of mggnl_tude OfT), approached.5h, i.e., the length of the
to arrange slabs with little consideration of the slab réhga pushing intervals.
process. Thus, the following scenario is realistic.

B. Simulation Results

A. Problem Formulation The limits specifying the constraints (7) are chosen {

The considered furnace 3 m long and is assumed to havebe constan_t with respect to depe_ndlng on the capacity
. ; S of burners installed in the respective zone. Fig. 6a) sho\
the same properties and input capabilities in the bottom apd

L s .
the top half. Therefore, the equivalen@® (t) — T (t) is at the optimized temperatuf&’, of zone 4 strictly obeys

} - 7 )
introduced to halve the number of optimization variables. Athe constraintsT’y ,;, and I.7, ... HOwever, since the

. _ . - restriction (7b) is implemented as a soft constraint only (g
slabs have the widthV; = 3m such that, = 12. Since the (22)), the time derivativel 7, may sometimes fall slightly
slabs are withdrawn from the furnace @b h intervals, they & i 2,4 A e o
stay inside the furnace fdh, i.e., t t;o+6h. The Outside the permissible rand@’’y i, T’ J, which is

z,4,max
indicated in Fig. 6a) by the thin inclined lines. In practica
terms, this is acceptable, particularly becadsg, ,,,;, and

TF may be nominally shifted. Similar conclusions cal

z,4,max

be drawn from Fig. 6b) for the remaining zones.

jexit —

resulting path-time diagram is given in Fig. 5a).

Tj:4/K - Tj;l’””" e Tj,:4,7na:1; T Tz:,F4,min’ Tj;l,mam
t 1600
1500
O ——
) 1 g 10 15 20 Slab; 1400
T /K T ij,end,ma,x a)
! ',end_
1450 - J T, endmin K
513(5) g Jig=" Ajjgiu, SERE 1500
1375 | | N
o L 5 10 15 20 Slabj 40

Fig. 5. Overview of slab properties, a) path-time diagrajnslab thickness, 1400
c) desired final slab temperature.

1350

The slab thicknesses (cf. Fig. 5b)) vary in the rangém b) 0 2 4 6 8 10 t/h
to 0.44m, whereas the weighting factar; was set to a
constant value, i.e., all slabs are considered equallyatddu ¢
In this example it is assumed that each slab should attain a

homogeneous final temperature profile, specifiedchy, ; = In addition to the planned zone temperatures, the algorith
[T} end> 0. 0] The randomly chosen valués .., are shown cajculates the expected slab temperature trajectoriesien

in Fig. 5c) together with the constraint§; . ;,..,, @d representative slaljs= 15 and; = 16, the temperature curves
T} end,mas- 1O demonstrate the performance of the methogre shown in Figs. 7a) and b), respectively. The thick ling
the restrictive constraintd’; ., ; i, = Tc.a — 15K and  correspond to the mean temperatures, whereas the thin |i

T eng + 15K are used in this refer to the minimum and the maximum slab temperatur

jabs,mazx T1j,end,maac = 4

Fig. 6. Planned furnace zone temperatures, a) zone 4, by Zgrig 3, and
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The temperature of slap = 15 is bumping up against the under non-steady-state operating conditions. The appro:
limit T 4 mar» Mainly because the subsequent slabs amses consistent approximation of inputs to obtain a parme;
significantly thicker (see Fig. 5b)), implying that they v optimization problem. The simple algorithm is geared to th
more heat input. Briefly before the slgb= 15 leaves the specific needs of controlling slab reheating furnaces. Hewe
furnace, the temperature in the last zone is reduced suth tie principle can be readily transferred to other nonline|
the slab temperature reaches its desired final vﬂTHg;ld. systems being similar in the sense of restrictions on inpd
Moreover, this reduction of the furnace temperature causamsd system states, switched dynamics, and multiple cont
the mean temperature of slgb= 16 to temporarily halt at objectives paired with only few inputs.
approximately1388 K (cf. the zoomed region in Fig. 7b)). The proposed approach essentially builds on the stipu
Once more, it is emphasized that only the restriction (7a) tisn that the low-level controllers succeed in realizing th
implemented as a hard constraint. All other restrictions aoptimized furnace zone temperatures. If, for instance due
realized by penalty terms in the cost function and, theesfolimited burner capacity, the inner control loop cannot Sfuti
may be violated if otherwise a solution of the optimizatiothis assumption, the reheating quality of the slabs mayridete
problem is unfeasible. orate. Another potential drawback is that some computatig
It can be concluded from Figs. 7a) and b) that a reheatiing Algorithm | are formulated in the continuous-time domail
time of 6 h is needlessly long for thin slabs like= 15. How- (cf. 16), which requires a numeric integration scheme fon€o
ever, it is appropriate for thicker slabs like= 16. Fig. 7¢c) puter implementation. The choice of the integration akiyoni
shows that the final temperature profile is well homogenize@rtainly has an influence on the numerical accuracy and {
for the majority of the slabs. Noticeable inhomogeneitiesuw required CPU time. For the considered furnace system (w
just with slabs that significantly differ from their neighisdn slow dynamics), the accuracy achieved by a quasi-contisug
terms of thickness or desired final temperature. All slabshie implementation and standard ODE-solvers proved sufficien
their desired final temperature rangje The proposed method is suitable for trajectory plannir
in open-loop or two-degrees-of-freedom control structuie

end,min’ Tj,cnd,maz]'

—xz;4(t) _Inyin{Tj(yv )}, mgx{Tj(y»t)} furnishes two main results: set-point trajectories of tmaéce
T;/K T. ‘ ' Slabj =15  zone temperatures and expected slab temperatures. Hay
1400 . 4 ————— both types of trajectories at hand gives more flexibility fior
1200 ther control methods, particularly for two-degrees-afefiom
1000 *‘A - control. The principle may also be adopted in model pregcti
control schemes, but there the optimization routine haseto
8001 A 00l NN \ carried out repeatedly, meaning that a computationallgiefft
60014 ol Y W implementation is more important.
400 The structure of the employed nonlinear dynamic mod

turned out to be beneficial for both the convergence rate a

a) to Ujewit T . ) . )
the computational load of the iterative algorithm. Moremve
T;/K the chosen Galerkin approximation of the slab temperatt
1400 proved useful in so far as it facilitates the active homogani
1200 tion of the final slab temperature profile by the controlldreT
1000 fact that the considered system is switched does not ham
800 the optimization approach, because the adjoint variakies |

continuous throughout. Moreover, the computational éffg

600 of the algorithm is rather moderate such that trajectorif

400 can be planned in real-time. By virtue of separating th
b) o teait optimization holrizo.n into_ several ove.rlapping intervatllse
’ ' algorithm exhibits linear time complexity. Another advage

) T} end.max 1n3x{Tj(y7 tiewit)} of the devgloped optimization r_nethod is that a feasibletgmiu
T,/K T onat xjjl(tj,e,rit always exists and can be easily found. N
1450 jyend,min nbm{Tj (Yt ewit)} The presented example problem demonstrates the feasibi
1495 EEB ‘ 1] of the approach. Constraints on the temperatures of thao‘,er.n
1400 u -.-"'_0_ '9'..._._'8""_.__‘_ ER and the slabs are adequately reflected, and the achie

reheating quality of the slabs is acceptable. The meth
1375 scales well to larger problems where the furnace may conti

©) 1 5 10 15 20 Slabj more than 30 slabs. Encouraged by the obtained nume
Fig. 7. Slab temperatures, a) temperature trajectory df gla= 15, b) results, It. is pIann_ed to deV(_anp a_S|m|Iar optimizationestle

temperature trajectory of slab= 16, c) final slab temperatures. for the discrete-time domain, which may further reduce tf
computational load. After additional verification of the tmed

VI. CONCLUSION by means of the sophisticated furnace model developed |n [2

The presented straightforward optimization method plaitsis intended to utilize the approach for trajectory plargin
temperature trajectories of a continuous slab reheatingfie the high-level controller of a real furnace system.
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