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Nonlinear model predictive control of a continuous slab reheating furnace✩

A. Steinboecka,∗, D. Wildb, A. Kugia

aAutomation and Control Institute, Vienna University of Technology, Gußhausstraße 27–29, 1040 Wien, Austria
bAktiengesellschaft der Dillinger Hüttenwerke, Werkstrasse 1, 66763 Dillingen/Saar, Germany

Abstract

A nonlinear model predictive controller is designed for a continuous reheating furnace for steel slabs. Based on a first-
principles mathematical model, the controller defines local furnace temperatures so that the slabs reach their desired
final temperatures. The controller is suitable for non-steady-state operating situations and reaching user-defined desired
slab temperature profiles. In the control algorithm, a nonlinear unconstrained dynamic optimization problem is solved
by the quasi-Newton method. The design of the controller exploits the fact that the considered slab reheating furnace
is a continuous production process. Long-term measurement results from an industrial application of the controller
demonstrate its reliability and accuracy.

Keywords: Nonlinear model predictive control, Continuous slab reheating furnace, Nonlinear switched MIMO system,
Unconstrained optimization, Quasi-Newton method

1. Introduction

1.1. Furnace control problem

Slab furnaces are used for heat treatment of steel slabs or
for reheating them before they undergo some hot working
process. Continuous slab furnaces, like the one considered
in this paper (cf. Fig. 1), operate in a continuous manner
in the sense that slabs are charged into the furnace at one
side, are moved through the furnace while being heated,
and are discharged at the opposite side. Despite the name
continuous slab furnace, the slab movement itself may be
discontinuous. In the furnace considered in this work (cf.
Fig. 1), an electromechanical charging ram pushes the row
of slabs through the furnace. The furnace is used in a
heavy-plate rolling mill, can process slabs with a maximum
thickness of 0.45m, and has a maximum throughput rate
of steel slabs of 280 t/h. The heat is supplied by gas- and
oil-fired burners, which have a total capacity of 185MW.

Temperature control of slab furnaces is of crucial impor-
tance to safety, product quality, the achievable throughput
rate, and the energy consumption. However, temperature
control is a challenging task for the following reasons: The
slab temperatures, i. e., the most relevant process vari-
ables, cannot be measured. The thermal behavior of the
system is rather slow because both the slabs and the fur-
nace enclosure are characterized by high thermal inertia.
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The observed time constants are of the same order of mag-
nitude as the reheating times of slabs. A slab reheating
furnace is essentially a multi-input multi-output (MIMO)
distributed parameter system with nonlinear physical in-
teractions like thermal radiation. The heat flows supplied
by the burners serve as control variables. Clearly, they are
bounded above and below. The slab temperature depends
significantly on the feed rate of the slabs, which is generally
governed by up- or downstream process steps. The range
of products (dimensions, steel grade, target temperature,
reheating time) is continuously increasing and changes of
product types are frequent. In some cases, the furnace
may even contain one-off products. Therefore, the heating
process is characterized by non-steady-state operation.
Due to the large time constants, pure feedback control

may fail to meet the stringent accuracy requirements in
terms of slab temperatures. Therefore, a feedforward or
predictive control approach seems best suited for this task.
The known future production plan including all relevant
parameters of the slabs should be utilized in the control law
as early as possible. In the current paper, the suitability of
model predictive control for the considered furnace control
problem is explored.

1.2. Existing solutions

Model predictive control (cf. Camacho and Bordons,
2004; Findeisen et al., 2007; Grüne and Pannek, 2011) is
a versatile optimization-based control method, which has
significantly benefited from soaring computing power dur-
ing the last few years. While the application of model pre-
dictive control to continuous furnace processes (cf. Stadler
et al., 2011), especially slab furnace control problems (cf.
Nederkoorn et al., 2011), is a rather recent research topic,
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Figure 1: Pusher-type slab reheating furnace (not to scale).

optimization methods have been used in this field already
in the 1970s (Pike and Citron, 1970; Wörk, 1971). For
brevity, the following brief literature review is restricted
to model-based dynamic optimization applied to continu-
ous reheating furnaces for steel slabs.

Two categories of optimal furnace controllers may be
distinguished: First, the heat input through the burners—
or their fuel flow rates—can be directly optimized. This
approach requires a detailed mathematical model which
must capture the nexus between the heat supplied by the
burners and the furnace temperatures. Second, the op-
timization algorithm may generate optimum furnace tem-
peratures, which are then used in subordinate control loops
for the burners.

The work of Pike and Citron (1970) belongs to the first
category. They used both static and dynamic optimiza-
tion for offline preplanning of fuel flow rates of a continu-
ous slab reheating furnace. In their model, the slabs are
represented by mean temperatures only. The same is true
for the models presented by Balbis et al. (2008) and Fujii
et al. (2010), who optimized fuel flow rates and the fur-
nace production schedule at the same time. Fujii et al.
(2010) used mixed integer linear programming in a linear
model predictive controller. Balbis et al. (2008) optimized
steady-state furnace temperatures based on a nonlinear
model and a linear cost function. In a subordinate control
loop, a linear model predictive controller regulates the fuel
supplies and the movement of the slabs.

The real-time control strategy developed by Yoshitani
et al. (1994) belongs also to the first category. They solved
the heat conduction problem in the slabs by means of the
Galerkin method and formulated a nonlinear optimization
problem for generating reference trajectories of slab tem-
peratures. Finally, the fuel flow rates are obtained by a
linear model predictive control algorithm.

Using feedback linearization, a linear model of the gas
temperatures in a continuous billet furnace was derived by
Choi et al. (2001). Based on this model, they developed a
linear model predictive controller for the fuel supplies to
the burners. Ko et al. (2000) used the same furnace model
as Choi et al. (2001) and proposed a system identification
algorithm and a linear model predictive controller for the
fuel flow rates.

The nonlinear model predictive controller developed by
Nederkoorn et al. (2011) governs local furnace tempera-

tures and the throughput rate of slabs. Thus the method
belongs to the second category of slab furnace controllers.
The model used in the controller assumes a homogeneous
slab temperature, which is justifiable for the rather thin
products reheated in the concerned furnace. Nederkoorn
et al. (2011) reported that their controller can save up
to 10% of the primary energy consumption compared to
manually controlling the furnace.
The predictive control scheme proposed by Icev et al.

(2004) belongs also to the second category. A linear sys-
tem model, which was identified from step response mea-
surements, serves as constraint of a quadratic optimization
problem. A real-time generalized predictive controller (cf.
Camacho and Bordons, 2004) yields optimal local furnace
temperatures.
The real-time algorithms developed in (Marino et al.,

2004; Steinboeck et al., 2011c; Sugiyama et al., 1999)
use simple predictive optimization routines for trajectory
planning and furnace control. At each sampling point, a
minimization problem is solved for finding optimum set-
point values of local furnace temperatures. The quadratic
cost functions depend mainly on the deviations between
the expected and the desired heat inputs into the slabs.
Marino et al. (2004) and Sugiyama et al. (1999) compute
the desired heat inputs based on target temperatures of
the slabs at the end of each furnace section. Steinboeck
et al. (2011c) used a simple state feedback controller for
this purpose. These algorithms lack optimization hori-
zons, which limits their performance compared to model
predictive control.

1.3. Motivation and objectives

Most existing furnace control systems that use dynamic
optimization are based on linear system models or the
assumption of homogeneous slab temperatures or both.
Notwithstanding that these modeling approaches simplify
the design of the controller, they may limit the scope and
the accuracy of the obtained controllers.
Continuous slab reheating furnaces are complex dynam-

ical systems, which vary significantly with regards to de-
sign and product properties. Hardly any industrial slab
furnace is a duplicate, implying that the control solutions
proposed in the literature naturally cannot cater for the
great variety of custom-made and individually operated
reheating furnaces. Each slab furnace design requires a
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tailored control system and provides ample scope for re-
search and development.

All these facts induced the motivation to develop a new
furnace temperature control strategy that harnesses the
power of nonlinear model predictive control (Findeisen
et al., 2007; Grüne and Pannek, 2011) for non-steady-state
furnace operation. The current work aims at:
• Accurate control of slab temperatures
• Maximum throughput of reheated material
• Optimum product quality and minimum loss of ma-
terial through scale formation

Control design for slab reheating furnaces has to respect
several constrains:

• Bounds on the temperatures of the furnace interior
and the furnace walls (damage and wear prevention)
• Safety regulations
• Limitations of the control inputs
• Metallurgical requirements for the slab reheating pro-
cess (Chen, 2009)
• Process times prescribed by supervisory plant con-
trollers that coordinate all production steps

Moreover, there are some recent trends in furnace opera-
tion, which call for advanced control strategies. Though
the approach pursued in this paper will not cater for all
these trends, some pertinent drivers of improved control
design are:

• Increasing diversity of products and materials, e. g.,
increasing slab thickness and layered slabs
• Reduction of energy consumption and CO2 emissions
• Hot charging (Chen, 2009)
• Furnace control based on a unified mathematical
model that covers all operating situations
• Automatic handling of start up, shut down, and (un-
foreseen) production halts (Nederkoorn et al., 2011)
• Recuperative or regenerative burners (Wuenning,
2007)

Given the many aspects and requirements of slab fur-
nace operation, the control of these systems is challenging
for theorists and practitioners alike. This paper is ad-
dressed to both of them. Engineers and operators should
find the fundamental ingredients for developing a nonlin-
ear model predictive controller for their specific system.
Moreover, theorists may find in this paper an industrial
application of nonlinear model predictive control that is
beyond the laboratory level.

1.4. Structure

The paper is organized as follows: Based on first princi-
ples, a mathematical model of the considered slab reheat-
ing furnace is developed in Section 2. In Section 3, the
cascade structure of a furnace control system is explained
and the control objectives are formally specified. A model
predictive controller is developed in Section 4 and tested
in a simulated example problem in Section 5. In Section
6, long-term results from an industrial application of the
controller are presented.

2. Mathematical model

For control design, a model that was originally published
by Steinboeck et al. (2010) is used. In the current paper,
a discrete-time version of the model is described and con-
vection is considered as an additional mode of heat trans-
fer (cf. Steinboeck et al., 2011b). The essential features
of the models presented by Steinboeck et al. (2011b, 2010)
are briefly repeated to ensure a self-contained presentation
and a solid basis for control design in subsequent sections.
The controller is developed and tested in a simulation

environment where the real furnace is emulated by the
elaborate model of Wild et al. (2009). This model is based
on heat and mass balances for discrete volume elements of
the furnace interior. Heat is exchanged between the burn-
ers, the bulk flow of flue gas, the refractory furnace walls,
and the slabs. The 1-dimensional temperature profile in-
side the slabs is computed by means of the finite difference
method with radiation boundary conditions.
The low-dimensional and computationally undemanding

model used in the current paper is simpler than the model
of Wild et al. (2009) and was tailor-made for model-based
control design. The inputs of the model are the local fur-
nace temperatures, which are continuously measured in
the real plant. On a standard personal computer (2.4GHz
dual core, 2GB RAM), the model requires less than 1 s
CPU time for simulating one full week of furnace opera-
tion. This is three orders of magnitudes faster than the
model of Wild et al. (2009) and thus suitable for repeated
evaluation in some optimization-based control algorithm.

2.1. Notation and geometry

Consider the furnace shown in Fig. 1. Each slab is
identified by a constant index j ∈ N and the slabs
j ∈ {jstart, . . . , jend} are currently inside the furnace.
They are sorted in ascending order. The abbreviation
J̄ = jstart, . . . , jend is used, i. e., j = J̄ is tantamount to
j = jstart, . . . , jend. Let the slab j be reheated during the
interval [tj,0, tj,1]. At the charging and discharging times
tj,0 and tj,1, the indices jstart and jend are appropriately
incremented. All times when slabs change their position
shall be summarized in the sequence (tsK) with K ∈ N.
As indicated in Fig. 1, Dj is the thickness of the slab

j along the direction y. Moreover, the abbreviations Ω =
(−Dj/2, Dj/2) and Ω̄ = [−Dj/2, Dj/2] are used. The

local coordinate y ∈ Ω̄ is individually defined for each slab
such that y = 0 holds at the slab mid-plane.

2.2. Heat conduction equation

For computing the temperature profile Tj(y, t) of the
slab j along the direction y (vertical direction in Fig. 1),
consider the 1-dimensional heat conduction equation

ρjcj(Tj)
∂Tj

∂t
=

∂

∂y

(
λj(Tj)

∂Tj

∂y

)
y ∈ Ω, t > tj,0 (1)

with Neumann boundary conditions q∓j (t) =
∓λj(Tj)∂Tj/∂y|y=∓Dj/2

(cf. Fig. 1) and the initial
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condition Tj(y, tj,0) = Tj,0(y). Henceforth, variables
belonging to the bottom or top half of the furnace shall
be labeled with the superscripts − or +, respectively.
The mass density ρj is considered to be constant. The
specific heat capacity cj and the thermal conductivity λj ,
however, depend on the local temperature Tj (BISRA,
1953).
The Galerkin weighted residual method with orthog-

onal trial functions hj,1(y) = 1, hj,2(y) = 2y/Dj, and

hj,3(y) = (2y/Dj)
2 − 1/3 is used for solving the problem

(1). The approximate temperature field thus takes the
form Tj(y, t) = [hj,1(y), hj,2(y), hj,3(y)]xj(t), where the
vector xj(t) contains the Galerkin states xj,1(t), xj,2(t),
and xj,3(t). Their time evolution follows the system

ẋj(t) = ajxj(t) + b−j q
−
j (t) + b+j q

+
j (t) t > tj,0 (2)

with

aj = −
12λ̄j

ρj c̄jD
2
j



0 0 0
0 1 0
0 0 5


 , b∓j =

1

ρj c̄jDj




1
∓3
15/2


 .

The initial state corresponding to Tj,0(y) is defined as
xj(tj,0) = xj,0 and the variables

λ̄j =
1

2xj,2

∫

Ω̄

λj

∂Tj

∂y
dy, c̄j =

1

xj,1Dj

∫

Ω̄

cjTj dy

represent weighted mean values (cf. Steinboeck et al.,
2010). If λj and cj were constant, (2) would be linear.
The chosen parameterization of the temperature pro-

file facilitates a straightforward physical interpretation:
The Galerkin coefficient xj,1(t) is the mean temperature of
the slab, xj,2(t) defines the asymmetric inhomogeneity of
Tj(y, t), and xj,3(t) represents the transient, symmetric in-
homogeneity. This conception will be helpful when formu-
lating an optimization-based control law. Moreover, this
parameterization yields a sufficiently accurate approxima-
tion of the slab surface temperature, i. e., Tj(∓Dj/2, t) =
[1,∓1, 2/3]xj(t). It will be used for evaluating boundary
conditions in Section 2.5.

2.3. Switched system

The states and surface heat fluxes of all slabs j ∈ J are
summarized in the vectors X(t) = [xj(t)]j=J̄

and q∓(t) =

[q∓j (t)]
j=J̄

so that the state-space system reads as

Ẋ(t) = AX(t) +B−q−(t) +B+q+(t) (3)

with the sparse matrices A =
[
δi,jaj

]
i=J̄ ,j=J̄

and

B∓ =
[
δi,jb

∓
j

]
i=J̄ ,j=J̄

, the initial state X0 = X(t0) =

[xj(t0)]j=J̄
, and the Kronecker delta δi,j . The dimensions

and components of X(t), A, B∓, and q∓(t) may change
at the times tsK . Therefore, (3) constitutes a switched
system, which is taken into account when discretizing the
system in the next step.

2.4. Discrete-time system

As suggested by Steinboeck et al. (2010), a generally
non-uniform time grid tk, tk+1, . . . with k ∈ N and the
sampling period ∆tk = tk+1 − tk is used. The switching
times tsK serve as seed nodes and additional grid points are
generated in the intervals (tsK , tsK+1) upon demand. For
discretizing the model, the material parameters cj and λj

are assumed to change their values only at sampling points
tk and that the heat fluxes q∓(t) are piecewise linear, i. e.,

q∓(t) = q∓
k,+

tk+1 − t

∆tk
+ q∓

k+1,−
t− tk
∆tk

∀ t ∈ [tk, tk+1)

with the nodal values q∓
k,+ = limτ→0+ q∓(tk + τ) and

q∓
k,− = limτ→0− q∓(tk + τ). By means of these reason-

able approximations, the discrete-time system reads as

Xk+1 = AkXk +B−
k,+q

−
k,+ +B+

k,+q
+
k,+

+ B−
k+1,−q

−
k+1,− +B+

k+1,−q
+
k+1,− k ≥ 0

(4)

with the initial state X0 = [xj,0]j=J̄
and the sparse ma-

trices

Ak = exp((tk+1 − tk)A)

B∓
k,+ = B∓

∫ tk+1

tk

exp((tk+1 − τ)A)
tk+1 − τ

∆tk
dτ

B∓
k+1,− = B∓

∫ tk+1

tk

exp((tk+1 − τ)A)
τ − tk
∆tk

dτ .

2.5. Nonlinear boundary conditions

Note that (4) is a decoupled system, suggesting that it
could be evaluated individually for each slab. However,
the heat fluxes q∓(t) at the slab surfaces depend on the
heat transfer mechanisms inside the furnace and couple the
temperature evolution of all slabs. The radiative and con-
vective heat exchange is considered, which can be included
in the form (cf. Steinboeck et al., 2011b)

q∓(t) = q∓
R(t) + q∓

C (t). (5a)

As indicated in Fig. 1, the furnace is partitioned into Nz =
5 volume zones below and Nz = 5 zones above the slabs.
Let T∓

z,i(t) with i ∈ {1, . . . , Nz} be a representative combi-
nation of the local gas temperature and the local surface
temperatures of the furnace walls. These temperatures are
summarized in the vectors T∓

z (t) = [T∓
z,i(t)]i=1,...,Nz

and
serve as model inputs.
Based on the net radiation method (Modest, 2003; Siegel

and Howell, 2002) with the assumption of gray-body radi-
ation, constant emissivities, and negligible radiative inter-
action with the flue gas, the radiative heat flux densities
q∓
R(t) into the slab surfaces can be computed as

q∓
R(t) = P∓

s (t)(M∓X(t))4 + P∓
z (t)(T∓

z (t))4, (5b)

whereM∓ = [δi,j [1,∓1, 2/3]]i=J̄ ,j=J̄
mapsX(t) to the slab

surface temperatures. The matrices P∓
s (t) and P∓

z (t) are
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constant within each interval [tk, tk+1), i. e., they are piece-
wise constant. They depend on the radiative properties
and the geometry of the furnace interior, which generally
changes at the times tsK due to slab movements. The prop-
erties of P∓

s (t) and P∓
z (t) are discussed in more detail in

(Steinboeck et al., 2010). The computation of P∓
s (t) and

P∓
z (t) involves higher integrals but can be simplified if the

geometry is approximated by a 2-dimensional scenario (cf.
Steinboeck et al., 2010). The fourth power in (5b) is a
heritage of the Stefan-Boltzmann law of radiation (Mod-
est, 2003). The operation is to be applied individually to
each component of the respective vector.

Due to the high temperatures in the furnace, thermal ra-
diation is the dominant mode of heat exchange (Ko et al.,
2000; Nederkoorn et al., 2011; Wild et al., 2009). Convec-
tive heat transfer (Kays et al., 2005), which can be consid-
ered as the second most important heat transfer effect in
a slab furnace (Han et al., 2010; Kim et al., 2000), is mod-
eled in the conventional way by the term (cf. Steinboeck
et al., 2011b)

q∓
C (t) = α(NT∓

z (t)−M∓X(t)). (5c)

Here, α is a diagonal matrix containing convective heat
transfer coefficients for all slabs inside the furnace (cf. Kays
et al., 2005). N is a sparse matrix that maps the zone tem-
peratures to all slabs that are currently in the respective
zone. Interpolation is used for slabs that reside at the in-
terface between two furnace zones. The sums of column
elements of N are 1. Convective heat exchange is a lin-
ear phenomenon and proportional to the local temperature
difference only. Radiative heat transfer, on the contrary,
involves a fourth-power nonlinearity and depends on the
temperature of all participating volumes and surfaces, not
just the local ones.

The nonlinear mapping (5) captures the most relevant
modes of heat exchange inside the furnace. They are the
essential reason for the dynamic interaction between the
slabs and also between the slabs and their environment.
Therefore, the model represents a MIMO system. Relation
(5) is evaluated at each sampling point tk—strictly speak-
ing, the left- and right-hand-side limits are computed—to
obtain q∓

k,+ and q∓
k+1,−, which are required in (4).

2.6. Parameterizing and assembling the model

In principle, all parameters used in the model are known
from design drawings or material handbooks. Hence, the
model could be used as is (cf. Steinboeck et al., 2010).
More accurate results are, however, achieved if parame-
ters are tuned. The emissivities occurring in P∓

s (t) and
P∓

z (t) and the convection coefficients in α are good choices
for parameter identification. For this purpose, a test slab
equipped with thermocouples and a water-cooled data
recorder is reheated in the furnace. Then, the simulated
temperature trajectory of the test slab is fitted to the mea-
sured curve by parameter tuning.

The discrete-time state-space model (4) with (5) being
evaluated at the sampling points is rewritten as

0 = Fk(Xk+1,Xk,uk+1,uk) k ≥ 0 (6)

with the initial state X0 and the input uk =
[(T−

z (tk))
T , (T+

z (tk))
T ]T . Because of the boundary condi-

tions, the model is implicit. It contains states of all slabs
that are currently inside the furnace. States enter and exit
the model synchronous with slab charging and discharging
events.
Finally, the model is recast into a format that is

compatible with standard notation of state-space sys-
tems. Consider that the furnace should be analyzed
during a certain time interval [tk0

, tk1
] and let zk =

[. . . ,xT
jstart−1,k,X

T
k ,x

T
jend+1,k, . . .]

T contain the states of
all slabs that are in the furnace sometimes during this in-
terval. For slabs outside the furnace (j 6∈ J), the trivial
assumption of a steady state is imposed, i. e., xj,k+1 =
xj,k ∀ j 6∈ J . The complete state-space model thus follows
in the form

0 = fk(zk+1, zk,uk+1,uk)

=

[
Fk(Xk+1,Xk,uk+1,uk)
xj,k+1 − xj,k ∀ j 6∈ J

]
k = k0, . . . , k1 − 1

(7)

with the appropriately assembled initial state zk0
= z0.

This system can be easily integrated, e. g., by means of
the Newton-Raphson method. The fact that it is an im-
plicit model is beneficial for numerical stability. The sys-
tem serves as a basis for developing a model predictive
controller in Section 4.

3. Furnace temperature control system

The primary physical inputs of the continuous slab re-
heating furnace are the path-time diagrams of the slabs,
their properties (geometry, steel grade, initial tempera-
ture), and the fuel and air supplies to the burners. In
the current section, it is briefly explained why defining all
these inputs by a single control algorithm would be in-
ordinately complex and how cascade control reduces this
complexity. Fig. 2 shows the hierarchical control structure
proposed for the considered furnace.
The principal control objective is that the slabs accu-

rately reach their desired final temperature within the
available reheating time. This objective is complemented

Figure 2: Cascade control structure.
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by safety requirements, limitations of the control inputs,
various metallurgical requirements as regards slab temper-
ature development, and the desire for optimum product
quality and maximum output. How do these multiple con-
trol objectives and constraints materialize in the choice of
the primary control inputs? This challenging question is
greatly simplified if the control task is split into several
hierarchical layers.

Another reason why a hierarchical control structure, es-
pecially cascade control, caters well for continuous slab
reheating furnaces is the coincidence of very different re-
sponse times in these systems. Typical time constants
range from fractions of a second for burner valves up to
several hours associated with the thermal inertia of furnace
brickwork. Indeed, cascade control is quite commonly used
for such furnaces, e. g., by Balbis et al. (2008); Icev et al.
(2004); Ko et al. (2000); Marino et al. (2004); Nederkoorn
et al. (2011); and Wang et al. (2003, 2004).

3.1. Three hierarchical control layers

Fig. 2 indicates three layers of the hierarchical control
system. At the topmost level, a process controller sched-
ules all production steps of the rolling mill including the
reheating procedure. The process controller defines the
sequence of slabs, their reheating times, their target tem-
peratures, and metallurgical constraints on their temper-
atures. These variables, which are referred to as process
data, are summarized in Table 1. Many of them are chosen
depending on the subsequent rolling step. The discharging
time tj,1, which is also chosen by the process controller,
directly influences the throughput rate. Maximizing the
throughput is thus a control objective associated with the
topmost layer; the second control layer has no influence on
the furnace speed.

In the second control layer, a model predictive controller
selects reference values ũk for the furnace zone temper-
atures so that the slabs are reheated as desired. This
model predictive controller is the centerpiece of this pa-
per. The task of this controller is described at the end
of this section and in more detail in Section 4.4. Alter-
natively, open-loop control (cf. Steinboeck et al., 2011a,c)
or two-degrees-of-freedom control with a Lyapunov-based
feedback law (cf. Steinboeck et al., 2011d) could be used.
Steinboeck et al. (2011c) developed an open-loop ad-hoc
iterative planning algorithm for the furnace zone temper-
atures. A similar open-loop planning problem was solved
by Steinboeck et al. (2011a) using dynamic optimization
based on a continuous-time model.

The slab temperatures, which are required as initial
states of the model predictive controller, i. e., as feedback,
cannot be measured in the real system. Even radiation
pyrometry does not achieve sufficient accuracy because of
the rough conditions in the furnace interior and uncertain
radiation properties of the oxidized surfaces. Therefore,
the slab temperatures are estimated using an extended
Kalman filter developed byWild (2010); Wild et al. (2007).

Variable Description
tj,0 . . . . . . . . . Charging time
tj,1 . . . . . . . . . Discharging time
xj,0 . . . . . . . . . Temperature state at tj,0
x̃j,end . . . . . . . Desired final temperature state (at tj,1)

Tj,abs,max . . . Upper bound on slab temperature

Tj,hom . . . . . . Minimum temperature during soaking
period

tkj,hom
. . . . . . Beginning of soaking period

Tj,end,max . . . Upper bound on final slab temperature
profile

Tj,end,min . . . Lower bound on final slab temperature
profile

ρj . . . . . . . . . . Mass density
cj(Tj) . . . . . . . Specific heat capacity
λj(Tj) . . . . . . Thermal conductivity
Dj . . . . . . . . . . Thickness of the slab
wj . . . . . . . . . . Weighting factor reflecting the economic

value of the slab

Table 1: Some parameters of the slab j specified by the process
controller.

In the third layer, decentralized single-input single-
output (SISO) controllers regulate the fuel and air sup-
plies to the burners. Typically, PI- or PID-control is used
at this level (cf. Icev et al., 2004; Nederkoorn et al., 2011).
The PI controllers implemented in the furnace under con-
sideration use the local furnace zone temperatures, which
are measured by thermocouples, as feedback. Moreover,
the measured zone temperatures serve as initial values in
the model predictive controller. For designing this con-
troller, ũk = uk = [(T−

z (tk))
T , (T+

z (tk))
T ]T is assumed,

i. e., the inner control loop is considered ideal.

3.2. Control task

Starting with the slab temperature, a formal descrip-
tion of the control objectives and constraints is given.
For convenience, these constraints are formulated for the
discrete-time domain only. Consider that the slab j is in-
side the furnace during the sampling points kj,0, . . . , kj,1,
that means tj,0 = tkj,0

and tj,1 = tkj,1
.

Fig. 3 shows constraints relevant for the temperature
trajectory of slab j. To avoid creep or damage by over-

tj,0 tkj,hom
tj,1

Tj(y, t)

t

Tj,end,min

Tj,end,max

Tj,hom

Tj,abs,max

Figure 3: Constraints on slab temperature trajectory.
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heating, the slab temperature is constrained by

Tj(y, tk) ≤ Tj,abs,max y ∈ Ω̄, k = kj,0, . . . , kj,1. (8a)

Moreover, the slab temperature should obey

Tj,hom ≤ Tj(y, tk) y ∈ Ω̄, k = kj,hom, . . . , kj,1 (8b)

with kj,0 ≪ kj,hom < kj,1. The interval [tkj,hom
, tj,1] is

referred to as soaking period. The constraint (8b) ensures
that metallurgical phase change and temperature equaliza-
tion can take place. When the slab j is finally discharged
from the furnace, i. e., at the time tj,1, it should have the
desired final temperature state x̃j,end. Moreover, its final
temperature profile is constrained by

Tj,end,min ≤ Tj(y, tj,1) ≤ Tj,end,max y ∈ Ω̄. (8c)

At first glance, the definition of both x̃j,end and the
allowed interval [Tj,end,min, Tj,end,max] seems redundant.
However, Section 6 will reveal that the limits Tj,end,min

and Tj,end,max provide useful guidance for the controller
if—for whatever reason—the desired state x̃j,end cannot be
reached. Further constraints, for instance, on the temper-
ature asymmetry or inhomogeneity can be readily devised
upon demand. In the current paper, the set of parameters
given in Table 1 is used.
The furnace zone temperatures, i. e., the control inputs,

are constrained in terms of both their absolute value and
their slopes. Hence,

uk ≤ uk ≤ uk ∀ k (9a)

u̇k ≤
uk − uk−1

∆tk−1

≤ u̇k ∀ k, (9b)

must be satisfied in the discrete-time domain. Here, the
inequality signs are applied to corresponding components
of the respective vectors. Note that uk, uk, u̇k, and u̇k

are generally independent. These constraints reflect that
the furnace zone temperatures cannot change at arbitrary
rates, e. g., due to limited burner capacity, the absence
of cooling devices, and the risk of damaging the furnace
walls. As long as ũk satisfies (9), the assumption ũk = uk

seems justified.
The control objectives and constraints stated in this sec-

tion correspond to those given in Section 1.3. Accurate
control of the slab temperatures is the main objective and
is directly related to the objective of optimum product
quality and minimum loss of material through scale for-
mation. Though the objective of maximum throughput of
reheated material is associated with the topmost control
level, the model predictive controller can help to improve
the throughput rate by accurate slab temperature control
and by fully utilizing the available reheating power of the
furnace.

4. Model predictive controller

This section is devoted to the development of a nonlin-
ear model predictive controller (cf. Findeisen et al., 2007;

Grüne and Pannek, 2011) for a discrete-time system where
state variables enter and leave the system in the course of
time. It will be explored how this special model structure
of a continuous production process complicates or eases
the control problem. Finally, the control method is ap-
plied to the furnace control problem and augmented by an
on-line adaptation strategy of the constraints.
The fundamental idea of model predictive control is that

a finite-time dynamic optimization problem is recurrently
solved based on a sufficiently accurate dynamic model.
The current system state, which serves as feedback, en-
ters the initial state of the optimization problem at the
beginning of every optimization horizon. The following
sections concentrate on the formulation and solution of
the dynamic optimization problem.
Proving closed-loop stability of nonlinear model predic-

tive control schemes is a rather challenging task, especially
for high-dimensional, time-varying, switched systems like
the one considered in this paper. Some results on the sta-
bility of nonlinear model predictive controllers have been
published, for instance, in (Giselsson, 2010; Graichen and
Kugi, 2010; Grüne, 2009; Grüne and Pannek, 2011; Pan-
nek and Worthmann, 2011; Reble and Allgöwer, 2012).
Many assumptions used in these works are not satisfied by
the considered system, e. g., a constant number of states,
absence of disturbances and model uncertainties, a steady-
state operating point that is to be stabilized, knowledge of
a suitable Lyapunov function, the existence of a terminal
set or useful terminal equality constraints, or the exact so-
lution of the underlying optimization problem. In view of
these difficulties, a rigorous proof of closed-loop stability
is a rather formidable task and thus beyond the scope of
this paper.
From a practical point of view, the absence of a stability

proof is acceptable. Steinboeck et al. (2010) proved that
the open-loop controlled system is uniformly stable. More-
over, it is input-to-state stable, which is conforming to the
second law of thermodynamics. Operation of the closed-
loop controlled furnace system is thus safe as long as the
inputs uk are bounded—a requirement that is satisfied in
this paper. The feedback controller just has to avoid the
destabilization of an essentially good-natured plant.

4.1. Constrained optimization problem

For the finite optimization horizon (tk0
, tk1

], consider
the constrained nonlinear programming problem

minimize
uk ∈ Rn

k = K̄

∑

k=K̄

lk(zk,uk) (10a)

subject to 0 = fk−1(zk, zk−1,uk,uk−1), k = K̄ (10b)

zk0
= z0, uk0

= u0 (10c)

uk ≤ uk ≤ uk, k = K̄ (10d)

u̇k ≤
uk − uk−1

∆tk−1

≤ u̇k, k = K̄ (10e)

ck(zk) ≤ 0, k = K̄ (10f)
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with the abbreviation K̄ = k0 + 1, . . . , k1 and the given
initial values zk0

and uk0
. The optimization problem (10)

has (k1−k0)n optimization variables, where n is the num-
ber of controllable inputs.

The cost function lk is to be chosen depending on the re-
spective control objectives. Terminal costs can be included
in lk1

. Constraints on the system states zk are captured
by the function ck. Let lk, fk, and ck be continuous in
their respective arguments. For the time being, zk, fk,
and ck are supposed to have a fixed dimension. Later,
these vectors will be dynamically truncated to make use
of the special switching structure of the system.

Without further assumptions, it is generally not sure
whether a solution of (10) does exist and whether it is
unique (cf. Keerthi and Gilbert, 1985, for a similar infinite-
horizon problem). Apart from the switching character
of the nonlinear system, the main challenges are the in-
equality constraints (10d), (10e), and (10f). These deli-
cate issues are evaded by transforming (10) into an uncon-
strained representation. The approximation error entailed
by this step is perfectly acceptable for the system consid-
ered in this paper. However, the following transformation
is clearly not a panacea for any inequality constraint of a
dynamic programming problem.

4.2. Conversion to an unconstrained optimization problem

In lieu of the box constraints (10d), the nonlinear map

uk = ϕk(vk) =
uk + uk

2
+

uk − uk

2
tanh

( 2vk

uk − uk

)
(11)

is used with a new unconstrained input vk. Here, the
mathematical operations are meant to be individually ap-
plied to the respective vector element. The sigmoid satu-
ration function (11) (cf. Fig. 4 for a scalar illustration) en-
sures exact compliance with the original constraint (10d).

As shown by Graichen and Petit (2008), the formulation
(11) has a significant drawback: It may cause singular arcs
during those time intervals where the original constraint
would be active, i. e., where at least one element of vk

approaches infinity. Graichen and Petit (2008) circum-
vented this problem by adding the positive definite term
1/2εvT

k vk to the cost function lk. Here, ε > 0 is a small
penalty value. It can be shown that this formulation is
comparable to using interior barrier functions and that it

vk0

uk

uk

uk

Figure 4: Saturation function for implementing box constraints
(shown for a scalar input only).

would yield exactly the same results as the original box
constraints if ε→ 0 (Graichen and Petit, 2009).
Instead of the remaining inequality constraints (10e) and

(10f), the exterior penalty terms

lu̇k (uk,uk−1) = η
∥∥max(0,uk−1 − uk +∆tk−1u̇k,

uk − uk−1 −∆tk−1u̇k)
∥∥
W u̇

k

(12a)

lzk(zk) = η
∥∥max(0, ck(zk))

∥∥
W z

k

(12b)

are added to lk. ‖ξ‖W = 1/2ξTWξ defines a quadratic
form and W u̇

k and W z
k are positive semi-definite weight-

ing matrices. Effectively, (10e) and (10f) are implemented
as soft constraints only and their rigidity is tuned by W u̇

k ,
W z

k , and the penalty parameter η ≫ 0. During the solu-
tion process, η is kept constant. Implementing constraints
with exterior penalty terms may cause minor violations
of the original constraints. It should thus be decided on a
case-by-case basis whether the entailed inaccuracy is toler-
able. In this respect, it is recommendable that constraints
are designed slightly more conservative, i. e., shifted in-
ward. As an alternative, η could be continuously increased
during the iterative numerical solution procedure (cf. No-
cedal and Wright, 2006). In the limit case as η →∞, (12)
has the same effect as (10e) and (10f) (cf. Wills and Heath,
2003).
Based on (11) and (12), (10) is transformed into the

unconstrained problem

minimize
v ∈ RN

C(v) =
∑

k=K̄

lk(zk,ϕk(vk)) +
1

2
εvT

k vk

+ lu̇k (ϕk(vk),ϕk−1(vk−1))+lzk(zk)

(13a)

subject to 0 = fk−1(zk, zk−1,ϕk(vk),ϕk−1(vk−1)),

k = K̄
(13b)

zk0
= z0, ϕk0

(vk0
) = u0, (13c)

with N = (k1 − k0)n, the assembled input vector v =
[vk]k=K̄

, and K̄ = k0+1, . . . , k1. In contrast to the original
formulation (10), there are no inequality constraints and
a solution of (13) does always exist.

4.3. Numerical solution of the optimization problem

A great number of solution techniques for (13) are
known (see, for instance, Bertsekas, 1999 and Polak, 1971).
Among these techniques are steepest descend methods
(Nocedal and Wright, 2006), conjugate gradient meth-
ods (Polak, 1971), quasi-Newton methods (Kelley and
Sachs, 1987), Newton methods (Bertsekas, 1999), and
trust-region methods (Nocedal and Wright, 2006). Here,
the quasi-Newton method is chosen because it exhibits
superlinear convergence (cf. Nocedal and Wright, 2006)
and requires only the cost function C(v) and its gradi-
ent (dC(v)/dv)T given that (13b) and (13c) hold. For-
tunately, the considered system facilitates an analytical
computation of this gradient, which will be discussed next.
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Based on the Lagrange function

L(v) = µT (ϕk0
(vk0

)− u0) + λT
k0
(zk0

− z0)

+
∑

k=K̄

Hk(zk, zk−1,vk,vk−1,λk)

with the abbreviation

Hk(zk,zk−1,vk,vk−1,λk)

= lk(zk,ϕk(vk)) +
1

2
εvT

k vk

+ lu̇k (ϕk(vk),ϕk−1(vk−1)) + lzk(zk)

+ λT
k fk−1(zk, zk−1,ϕk(vk),ϕk−1(vk−1))

and the Lagrange multipliers µ and λk (k = k0, . . . , k1),
the gradient can be calculated in the form

(dC(v)

dv

)T

= ∇L(v) =
(∂L(v)

∂v

)T

= [gk]k=K̄ (14a)

with

gk =
(∂Hk

∂vk

)T

+
(∂Hk+1

∂vk

)T

,

k = k0 + 1, . . . , k1 − 1

(14b)

gk1
=

(∂Hk1

∂vk1

)T

(14c)

0 =
(∂Hk

∂λk

)T

= fk−1(zk, zk−1,ϕk(vk),ϕk−1(vk−1)), k = K̄

(14d)

0 = zk0
− z0, 0 = ϕk0

(vk0
)− u0 (14e)

0 =
(∂Hk

∂zk

)T

+
(∂Hk+1

∂zk

)T

,

k = k0 + 1, . . . , k1 − 1

(14f)

0 =
(∂Hk1

∂zk1

)T

. (14g)

The computation of the gradient according to (14) pro-
ceeds as follows: The state trajectory zk is solved in the
conventional way in forward direction (ascending time in-
dex k) using (14d) with the initial values (14e). Then,
λk1

is computed from (14g) and the values λk for k ∈
{k0 + 1, . . . , k1 − 1} are obtained in backward direction
(descending time index k) from (14f). These computa-
tions are particularly simple because both (14f) and (14g)
are linear equations in λk. The variables λk0

and µ do
not need to be explicitly computed. Finally, an evaluation
of (14a), (14b), and (14c) yields the gradient.
Both the memory requirements and the computational

load associated with (14) can be reduced if the special
structure of the continuous process is utilized (cf. (7) for
the system considered in this paper). Fig. 5 indicates the
behavior of the continuous process by highlighting those
states that are active at some sampling point k. The cor-
responding overall state vector is outlined as a box on the

Figure 5: Active and inactive states of a continuous process.

left-hand side of the figure. In reality, many more state
variables and sampling points may be required for an op-
timization horizon (tk0

, tk1
]. The time grid in Fig. 5 is not

to scale and may be irregular.

If a state variable zi,k is inactive at the time tk, it is
assumed that it is in a steady state, i. e., zi,k = zi,k−1 and
that it has no influence on lk and lzk. It thus follows from
(14f) that λi,k = λi,k−1 holds for the corresponding La-
grange multiplier. Moreover, (14g) shows that λi,k1

= 0
for all states i that are inactive at k1. This shows that it
suffices to compute and store zi,k and λi,k only at those
sampling points k where the respective state is active. Ef-
fectively, a sparse structure like that indicated by the black
dots in Fig. 5 is required for the states zi,k. For an efficient
implementation, pointers should be used which demarcate
the range of active states and which are appropriately in-
creased upon incrementation of k. The same sparse mem-
ory structure is needed a second time for the Lagrange
multipliers λi,k. Recall that the values λi,k corresponding
to active states are required when evaluating (14b) and
(14c).
Note that Hk is not a Hamiltonian function and λk

are not adjoint variables, which both would occur in a
continuous-time formulation (cf. Steinboeck et al., 2011a).
In the discrete-time domain, the Lagrange multipliers µ
and λk characterize the sensitivity of C(v) with respect
to violations of the constraints (14d) and (14e). Following
this strand of thought, it is clear that λi,k1

= 0 holds for
all states i that are inactive at k1.
The necessary first-order optimality condition for the

unconstrained optimization problem (13) reads as

∇L(v) = 0 (15)

(cf. Nocedal and Wright, 2006). Any input v that satis-
fies (15) is a candidate for the optimum solution. Positive
definiteness of the Hessian ∇2L(v) would serve as a suffi-
cient second-order condition for a local optimum, but the
analytical computation of ∇2L(v), which is in principle
feasible, is a rather laborious task. It will be avoided be-
cause the quasi-Newton method yields an estimate H of
the Hessian ∇2L(v) as a by-product anyway. It will be
shown how positive definiteness of H can be enforced.

9

Post-print version of the article: A. Steinboeck, D. Wild, and A. Kugi, “Nonlinear model predictive control of a continuous slab reheating
furnace”, Control Engineering Practice, vol. 21, no. 4, pp. 495–508, 2013. doi: 10.1016/j.conengprac.2012.11.012
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.conengprac.2012.11.012


For the considered scenario, the quasi-Newton method
works as follows:
1) Set the initial values H−1 = I and v = 0 and com-

pute ∇L(v) based on (14).
2) Save g = ∇L(v) and compute a new search direction

s = H−1g.
3) Consider the abbreviations C̄(α) = C(v + αs) and

C̄′(α) = dC(v + αs)/dα and determine the optimum
step size

α∗ = arg min
α∈R+

C̄(α) (16a)

subject to C̄(α) ≤ C̄(0) + r1C̄
′(α)α (16b)

C̄′(α) ≥ r2C̄
′(0) (16c)

with constant parameters r1 and r2 that satisfy 0 <
r1 < r2 < 1.

4) Apply the update v ← v + α∗s.
5) Terminate if the current solution v is acceptable.
6) Compute the new gradient ∇L(v) based on (14) and

set d = ∇L(v)− g.
7) Apply the BFGS update

H−1 ←
(
I − sdT

κ

)
H−1

(
I − dsT

κ

)
+ α∗ ss

T

κ

(cf. Nocedal and Wright, 2006) with κ = dTs and
restart at step 2).

The initial valueH−1 = I suggested in step 1) of the above
algorithm proved useful for the considered application.
However, depending on the scaling of variables, assigning
some other positive definite diagonal matrix to H−1 may
give better results (cf. Nocedal and Wright, 2006). For the
initial guess v, practically any finite value can be chosen. If
available at the respective sampling point, previously opti-
mized values, e. g., from the previous optimization horizon,
should be reused.
In step 5), various termination criteria can be imple-

mented: The total number of iteration loops or the con-
sumed computing time can be limited, C(v) may be re-
quired to decrease by less than a certain (relative) value,
or C(v) or some norm of α∗s may be required to fall be-
low a threshold. For the problem considered in this paper,
executing the algorithm for a fixed number of iteration
loops proved simple and most useful. Then, the available
computation time, i. e., the sampling period of the model
predictive controller, is well utilized.
Step 3) of the algorithm, which yields the optimum step

size α∗, is known as line search (Bertsekas, 1999; No-
cedal and Wright, 2006). Typically, this subordinate, 1-
dimensional optimization problem is only approximately
solved, e. g., by a point-by-point search or by fitting a
quadratic polynomial. The inequality constraints (16b)
and (16c) are known as Wolfe conditions. They ensure
that the so-called curvature condition

dTs > 0 (17)

(cf. Nocedal and Wright, 2006) is satisfied in each itera-
tion loop, which implies positive definiteness ofH−1. Note

that κ/α∗ is (approximately) the curvature of C̄(α). Since
H is a local approximation of ∇2L(v), it is plausible—
though not guaranteed—that enforcing (17) will steer the
algorithm to a minimum where the sufficient second-order
optimality condition (positive definiteness of ∇2L(v)) is
satisfied. Conditions for the optimization problem that
would guarantee the BFGS method to converge to such a
minimum are given, for instance, in (Fletcher, 1984; No-
cedal and Wright, 2006).
The quasi-Newton method was chosen for solving the

dynamic optimization problem (13) because it is easily
implemented, ensures frugal memory usage, and achieves
superlinear convergence. In the following section, the opti-
mization problem is further tailored to the furnace control
scenario.

4.4. Parameterization for the furnace control problem

The objectives and constraints of the furnace control
problem from Section 3.2 are reformulated such that they
are compatible with the optimization problem (10). The
main control objective is to reheat the slabs to their desired
final temperature profiles. It is implemented by means of
the cost function

lk(xk,uk) =
∑

j

δk,kj,1

∥∥xj,k − x̃j,end

∥∥
W xend

wj . (18)

W xend is a (usually diagonal) positive definite weighting
matrix that penalizes the final control error of the slab
temperature profiles. The weighting factor wj was defined
in Table 1 and may, for instance, depend on the economic
value of the slab. The cost function lk could also depend
on the input uk but in the current analysis this option is
not used.
Since the slab temperature profile Tj(y, t) is a function of

the state xj,k, the constraints (8) (see also Fig. 3) can be
realized by means of (10f), which is finally implemented
in the penalty term (12b). Again, the weighting factor
wj may enter this expression. The remaining input con-
straints (9) are directly compatible with (10d) and (10e),
which are considered by the nonlinear map (11) and by
the penalty term (12a), respectively.
At any sampling point k, the cost function (cf. (13a))

depends, apart from the inputs vk and vk−1, only on the
states of those slabs that are currently inside the furnace.
The state-space system (7) has already the same format
as (10b); effectively, only the subsystem (6) relevant for
active states has to be implemented. Hence, the problem
formulation results indeed in a structure of a continuous
process and the sparse implementation indicated in Fig. 5
can be employed.
The weighting matrices W u̇

k , W
z
k , and W xend are em-

pirically found. Finally, the time grid for executing the
controller has to be defined. For the furnace control prob-
lem, the overlapping optimization horizons should be at
least 3 h long. This lower bound value for the horizon
length corresponds to the system dynamics insofar as the
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influence of an input uk applied at the time tk decreases
to a practically negligible level before tk + 3h. The sam-
pling period of the model predictive controller should not
be longer than 5min. The same applies to sampling pe-
riods used for integrating the system, i. e., ∆tk ≤ 5min.
Clearly, these are crucial design parameters which have an
impact on both control accuracy and computational load.

4.5. On-line adaptation of constraints
Strictly speaking, the inputs uk, i. e., the zone tempera-

tures, are system states themselves, which is, for instance,
reflected in the more sophisticated furnace models of Ko
et al. (2000); Wild et al. (2009); and Yoshitani et al. (1994).
However, this fact is neglected in the considered furnace
and uk is used as input. This simplification helps to min-
imize the complexity of the control concept. In fact, the
assumption ũk = uk is supposed to hold as long as the
constraints (9) are satisfied. The validity of this assump-
tion is now explored in more depth and harmonized with
theoretical considerations.
It is plausible that the constraint values uk, uk, u̇k,

and u̇k depend on the heating capacity of the furnace and
the current operational situation, especially the current
stock of slabs inside the furnace. Measurement results
from the real system confirmed this expectation. They
showed that nominal constraint values accurately define
the performance frontiers of the system only if all subor-
dinate control loops (PI zone controllers in Fig. 2) work
properly, i. e., if their respective constraints are inactive.
On the contrary, if subordinate control loops are saturated,
e. g., if constraints on the fuel flow rates to the burners are
active, the nominal bounds uk, uk, u̇k, and u̇k are effec-
tively too lax.
These observations sparked the idea of making the con-

straints uk, uk, u̇k, and u̇k adaptive depending on the
current state of subordinate control loops. The constraints
are adapted right at the beginning of each call of the
model predictive control algorithm, i. e., at each sampling
point and before solving the dynamic optimization prob-
lem. This heuristic adaptation method is individually ap-
plied to each furnace zone. In an exemplary fashion, the
algorithm is outlined for zone i in the top half of the fur-
nace at the sampling point k0, i. e., at the beginning of an
optimization horizon:
1) Measure the current real furnace zone temperature

T+
z,i(tk0

) by means of thermocouples installed inside

the furnace and compute the control error T+
z,i(tk0

)−
T̃+
z,i(tk0

) of the subordinate PI control loop.

2) If |T+
z,i(tk0

) − T̃+
z,i(tk0

)| < ∆T+
z,i,sat, set T+

z,i,k, T
+
z,i,k,

Ṫ+
z,i,k, and Ṫ+

z,i,k to their nominal values and continue
with step 4).

3) Otherwise, set the constraints T+
z,i,k, T+

z,i,k, Ṫ+
z,i,k,

and Ṫ+
z,i,k to more restrictive values depending on

the sign and magnitude of T+
z,i(tk0

) − T̃+
z,i(tk0

). Con-
sider, for instance, that the fuel supply suffers upper-
bound saturation, which causes T̃+

z,i(tk0
)−T+

z,i(tk0
) >

∆T+
z,i,sat. Then, T+

z,i,k and Ṫ+
z,i,k should be reduced

whereas T+
z,i,k and Ṫ+

z,i,k should be assigned their
nominal values.

4) Based on T+
z,i(tk0

) and the updated parameters T+
z,i,k,

T+
z,i,k, Ṫ+

z,i,k, and Ṫ+
z,i,k, compute new effective

bounds T+
z,i,k and T+

z,i,k as indicated in Fig. 6.

T+
z,i(tk0

)

T+
z,i

t

T+
z,i,k

T
+

z,i,k

tk1
tk0

Figure 6: On-line adaptation of input constraints.

In step 2) of the algorithm, the observed control er-
ror T+

z,i(tk0
) − T̃+

z,i(tk0
) and a system-specific threshold

∆T+
z,i,sat are used to assess the current condition of the

subordinate control loop. As an alternative, this infor-
mation could be directly obtained from the respective PI
controller. Step 4) describes the computation of effective
constraints shown in Fig. 6. The sloping sections of these
constrains are defined according to Ṫ+

z,i,k and Ṫ+
z,i,k.

The proposed method has another significant advan-
tage: It ensures the initial slope of the optimized input
to be exactly within the allowed range [u̇k, u̇k]. Thus, the
adaptation algorithm can restore exact compliance with
the constraints (9b), despite their implementation as soft
constraints.

5. Example problem

In the following simulation study, the mathematical
model of Wild et al. (2009) is used to simulate the real
furnace. Measurement results validating this model and
comparing it to the model developed in Section 2 are pre-
sented in (Steinboeck et al., 2010).
The simulations are required for several reasons: First,

not all interesting features and capabilities of the con-
trol algorithm can actually be tested in a real plant (cf.
Section 6), e. g., due to operational constraints. Second,
the simulations had been extensively used for testing, tun-
ing, and verifying the model predictive controller before it
was commissioned. Therefore, the simulation environment
contains an implementation of the developed model pre-
dictive controller and emulators of the process controller
and the PI zone controllers shown in Fig. 2.
In the current section, two simulated steady-state sce-

narios with the desired final temperature profiles shown
in Fig. 7 are analyzed. In a steady-state scenario, all
slabs have the same material, the same size (thickness
Dj = 0.35m), the same initial temperature (homogenous
profile Tj,0(y) = 330K), the same desired final tempera-
ture, and the same reheating time (tj,1 − tj,0 = 6h). The
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Figure 7: Final slab temperature profile (from simulation), a) sym-
metric, b) asymmetric.

furnace contains 18 slabs at a time and the slabs are dis-
charged at 0.33h intervals. The system states are not con-
stant but the furnace operation is periodic with the period
0.33 h, i. e., the period is equivalent to the time between
two slab discharging events.

The desired temperature profiles in Fig. 7 are purely
user-defined. On the contrary, the corresponding reheating
trajectories, which are shown in Fig. 8, are a result of the
optimization-based controller.

In the first scenario (Figs. 7a and 8a), the slabs are re-
heated to a symmetric temperature profile T̃j,end(y) de-

fined by x̃j,end = [1423K, 0K, 25K]T . That is a non-
stationary temperature profile, where the surface tempera-
ture should be 25K higher than the core temperature and
2/3 25K higher than the slab mean temperature. Hence,
the mean temperature is rising, which is corroborated by
Fig. 8a.

In the second scenario (Figs. 7b and 8b), the
slabs should be reheated to an asymmetric, inhomoge-
neous temperature profile T̃j,end(y) defined by x̃j,end =

[1423K, 15K, 0K]T . This means that the top slab surface
temperature should be 30K higher than the bottom slab
surface temperature. All other parameters are the same
as before. The final temperature profile of the second sce-
nario is stationary, which implies that the final slab mean
temperature is constant. This is confirmed by the horizon-
tal tangent at the end of the trajectory shown in Fig. 8b.

As can be inferred from Figs. 7 and 8, the slabs are accu-
rately reheated and no constraints are violated. In none of
the two scenarios, the subordinate PI zone controllers are
saturated. Saturation of subordinate control loops could
limit the control performance. Such problems would, for
instance, occur if the desired final slab temperature pro-

tj,0 tkj,hom
tj,1

500

1000

1500

Tj(y, t) (K)

ta)

miny{Tj(y, t)}, maxy{Tj(y, t)}
meany{Tj(y, t)}

Constraint

Tj,hom

Tj,abs,max

tj,0 tkj,hom
tj,1

500

1000

1500

Tj(y, t) (K)

tb)

Tj,hom

Tj,abs,max

Figure 8: Slab temperature trajectories (from simulation), a) sym-
metric final slab temperature profile, b) asymmetric final slab tem-
perature profile.

file were concave (surface temperature below core temper-
ature), instead of convex like in the first scenario. The
reason for this limitation is that the furnace does not have
any cooling facilities. The current simulation study shows
that the proposed model predictive controller can reheat
slabs accurately and without violation of constraints.

6. Measurement results

The control system shown in Fig. 2 belongs to an in-
dustrial slab reheating furnace of Aktiengesellschaft der
Dillinger Hüttenwerke. There, the model predictive con-
troller from Section 4 has been implemented as a C++
program. It was commissioned in February 2011 and has
been in permanent operation since then.
The current section summarizes measurement results

from the real furnace system. There, a Kalman filter devel-
oped by Wild (2010); Wild et al. (2007) is used as a state
observer (cf. Fig. 2) for non-measurable quantities. The
high accuracy of this observer was validated by means of
a test slab that was instrumented with thermocouples and
reheated in the considered furnace. Among the estimated
quantities are the slab temperatures presented in the fol-
lowing.
The considered furnace operates usually under non-

steady-state conditions because the slabs vary in terms
of geometry, material, reheating time, initial tempera-
ture Tj,0(y), and desired final temperature T̃j,end. The
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slabs should finally reach a temperature profile defined
by x̃j,end = [T̃j,end, 0, 0]

T , i. e., a homogeneous temper-
ature profile. For the model predictive controller, rela-
tively conservative constraint values Tj,hom = Tj,end,min =

T̃j,end − 15K and Tj,end,max = T̃j,end + 15K are used.
In reality, the subsequent rolling process does not require
such restrictive constraints. The reasons for the conserva-
tive choices are that the real slab temperatures are not
exactly uniform along the width and the length of the
slabs (directions orthogonal to y) and that the Kalman
filter may entail inaccuracies of the estimated slab tem-
peratures. Potential causes of these generally small inac-
curacies (cf. Wild, 2010; Wild et al., 2007) are model mis-
matches and uncertain material parameters.

The considered furnace is 35.1m long, 12.5m wide, and
up to 7.5m high. It can reheat slabs with thicknesses
ranging from 0.15m to 0.45m. Depending on the product
dimensions, the furnace is typically charged with 30 to 60
slabs at a time. Though, the furnace normally reheats two
parallel rows of slabs, they are conceptually aggregated for
control purposes to a single row of representative slabs.
This seems justified because of the absence of control fa-
cilities for each individual row. An alternative concept
that can individually control parallel rows was reported
by Shenvar (1994).

The analysis starts with a brief look on the furnace zone
temperatures. For a representative period, Fig. 9 shows
these temperatures for zone 3. Since the graph contains
both the reference signals and the measured values, it re-
veals the control accuracy achieved by the subordinate PI
zone controllers. As can be seen from Fig. 9, the con-
straints on T∓

z,3(t) and Ṫ∓
z,3(t) are sufficiently respected.

The signals for the other furnace zones exhibit a similar
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Figure 9: Furnace temperatures in zone 3, a) top half of furnace, b)
bottom half of furnace.
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Figure 10: Trajectories of a typical slab (index j = 77), a) path-time
diagram, b) reheating trajectory, c) final temperature profile.

behavior.

Next, the results of a single slab with the index j = 77
are studied. This typical slab was reheated exactly during
the period covered by Fig. 9. Fig. 10 shows the path-time
diagram, the reheating trajectory, and the final temper-
ature profile of the slab. It is Dj = 0.39m thick and
was reheated for 6.7 h. Fig. 10a indicates that the path-
time diagrams of slabs can be fairly irregular. Stopping
the reheating process for a time of 1 h or more, is not an
uncommon event. These interruptions are usually caused
by up- or downstream process steps and have some in-
fluence on the slab reheating trajectories (cf. Fig. 10b).
Fig. 10 shows that the considered slab satisfies all relevant
constraints (Tj,abs,max, Tj,hom, Tj,end,min, and Tj,end,max),

accurately reaches its desired final temperature T̃j,end, and
has a sufficiently homogeneous final temperature profile.

In a further step, it is analyzed whether the high con-
trol accuracy observed in Fig. 10 is consistently achieved.
Therefore, the final slab temperatures, their desired val-
ues, and their allowed ranges are shown in Fig. 11 for slabs
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Figure 11: Final temperature ranges of slabs.

that are successively discharged from the furnace. It can
be inferred from this figure that the control performance
in terms of the final slab temperatures is satisfactory. The
majority of slabs are reheated without any violations of the
constraints Tj,abs,min and Tj,abs,max. If such violations oc-
cur like for the slabs j = 20, j = 37, as well as j = 60 and
its neighbors (cf. Fig. 11), there may be three main causes:
The allocated reheating time may be inappropriate for the
respective thickness of the slabs, the allowed temperature
ranges of neighboring slabs do not sufficiently overlap, or
the supervisory process controller modified the production
schedule at too short notice, e. g., due to unforeseen events
in other process steps.

The results are further consolidated by studying the fre-
quency distributions of control errors. A sample of 7025
slabs reheated by the new model predictive controller is
compared with a sample of 5278 slabs processed during the
last months of the previous controller. The latter material-
ized a zone-based PI control concept similar to those pro-
posed by Ditzhuijzen et al. (2002); Fontana et al. (1983);
and Shenvar (1994).

Fig. 12 shows the frequency density of the mean final
slab temperature error meany{Tj(y, tj,1)} − T̃j,end. Some
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meany{Tj(y, tj,1)} − T̃j,end

Figure 12: Frequency density of control errors in terms of final slab
mean temperatures.

Table 2: Comparison of control performance in terms of the final
control error Tj(y, tj,1)− T̃j,end.

Aggregate error
quantity

Previous
controller

New model
predictive
controller

Mean 13.0K 0.9K
Standard deviation 12.3K 9.4K
Median 13.2K −0.6K

statistical key figures of this error are given in Tab. 2.
Clearly, the previous controller reheated the slabs too
much.

The distribution of the control error of the previous con-
troller (white bars in Fig. 12) is similar to a normal dis-
tribution, which hints at a random control error. On the
contrary, the corresponding distribution for the new model
predictive controller (black bars in Fig. 12) is relatively
narrow and asymmetric, which can be attributed to the su-
perior accuracy and the systematic objectives of this con-
troller. The distribution is asymmetric because violations
of the lower bounds Tj,hom and Tj,end,min are more heav-
ily punished than violations of the upper bound Tj,end,max

(Tj,abs,max is practically never violated). This strategy is
tailored to the requirements of the subsequent rolling pro-
cess. The asymmetry of the distribution obtained with the
new controller is underlined by the large difference between
mean and median values given in Tab. 2.

The previous controller reheated slabs to a temperature
that exceeded the target value on average by 13.0K. With
the new controller, this mean error has been reduced to
0.9K. The standard deviation of the error has also been
reduced (cf. Tab. 2). This indicates that the new controller
achieves a higher accuracy and that it facilitates smaller
safety margins for the final slab temperature. In fact, over-
heating of slabs in exchange for less frequent violations of
the lower bounds Tj,hom and Tj,abs,max, which was often
used with the previous controller, is no longer required
with the new one. The new controller improves the prod-
uct quality in two respects: reduced scale formation and
less frequent overheating.

Fig. 13 shows the frequency distribution of violations
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Figure 13: Frequency density of control errors in terms of bounds on
final slab temperature profiles.
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of the bounds Tj,end,min and Tj,end,max. This figure con-
firms the good results of the new controller. On aver-
age, 88% of the slabs leave the furnace with a temper-
ature profile that is completely within the desired range
[Tj,end,min, Tj,end,max]. That is, the error rate is as low as
12%. The previous controller had an error rate of 59%.
However, these numbers are not representative for the real
reject rates because Tj,end,min and Tj,end,max were chosen
overly conservative. In Figs. 12, 13, and 14, the left-most
and right-most histogram bins may have different widths
than the other bins.
The frequency distribution of the inhomogeneities

maxy{Tj(y, tj,1)}−miny{Tj(y, tj,1)} of the final slab tem-
perature profiles is shown in Fig. 14. Clearly, a distri-
bution that tends more towards the left is preferable be-
cause the final slab temperature profiles should be uni-
form. The new model predictive controller incorporates
this objective by the cost term (18), which minimizes the
second and the third component of xj,kj,1

(recall that

x̃j,end = [T̃j,end, 0, 0]
T ). In fact, the new controller actively

homogenizes the final slab temperature profiles, which is
supported by Fig. 14. These results confirm once more
that the new model predictive controller performs better
than its predecessor.

7. Conclusions

A nonlinear model predictive controller for a continuous
slab reheating furnace was designed. A tailored math-
ematical model and an efficient time-integration method
turned out to be mandatory to ensure that the dynamic
optimization problem can be (iteratively) solved in real
time. These requirements can be achieved by means of the
Galerkin weighted residual method for the heat conduction
problem, a tractable formulation of radiative and convec-
tive heat transfer, and an implicit time integration assum-
ing piecewise linear heat flows into the slabs. With the
Galerkin method, both active homogenization and reach-
ing desired final slab temperature profiles is feasible.
A finite-time constrained optimization problem was for-

mulated based on control objectives, operational con-
straints, and knowledge of future events. Incorporating

such future knowledge is particularly important for sys-
tems with large time constants like a slab reheating fur-
nace. Generally, the existence of a solution of the original
constrained optimization problem cannot be guaranteed,
which is why it was reformulated as an unconstrained op-
timization problem. It is efficiently solved by means of the
quasi-Newton method with the BFGS update formula.
The special structure of the continuous process was sys-

tematically exploited to keep the computational load and
memory requirements of the optimization problem at mod-
erate levels. This methodology is transferable to many
other continuous production processes.
The achieved control accuracy benefits significantly

from an on-line adaptation of input constraints depend-
ing on the current state of the subordinate control loops.
This approach facilitates that subordinate control loops
are operated at their effective performance frontiers. It
does not require an extension of the model or additional
computational resources. Moreover, the approach allows
the model predictive controller to cope with non-ideal sub-
ordinate control loops in a cascade structure.
Results from a full-scale industrial application of the

controller have demonstrated that the achieved control ac-
curacy is significantly higher than with the previous zone-
based PI control concept. The good control performance
has been evidenced both at the level of individual slabs
and at an aggregate level with a sample size of more than
7000 slabs. Encouraged by these results, the control sys-
tem has also been installed on two other continuous slab
reheating furnaces in the same plant.
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Grüne, L. and Pannek, J. (2011). Nonlinear Model Predictive Con-
trol. Springer, London.

Han, S., Chang, D., and Kim, C. (2010). A numerical analysis of slab
heating characteristics in a walking beam type reheating furnace.
International Journal of Heat and Mass Transfer, 53, 3855–3861.

Icev, Z., Zhao, J., Stankovski, M., Kolemisevska-Gugulovska, T., and
Dimirovski, G. (2004). Supervisory-plus-regulatory control design
for efficient operation of industrial furnaces. Journal of Electrical
& Electronics Engineering, 4(2), 1199–1218.

Kays, W., Crawford, M., and Weigand, B. (2005). Convective Heat
and Mass Transfer. McGraw Hill, New York, 4th edition.

Keerthi, S. and Gilbert, E. (1985). An existence theorem for discrete-
time infinite-horizon optimal control problems. IEEE Transac-
tions on Automatic Control, 30(9), 907–909.

Kelley, C. and Sachs, E. (1987). Quasi-newton methods and uncon-
strained optimal control problems. SIAM Journal on Control and
Optimization, 25, 1503–1516.

Kim, J., Huh, K., and Kim, I. (2000). Three-dimensional analysis of
the walking-beam-type slab reheating furnace in hot strip mills.
Numerical Heat Transfer, Part A, 38, 589–609.

Ko, H., Kim, J., Yoon, T., Lim, M., Yang, D., and Jun, I. (2000).
Modeling and predictive control of a reheating furnace. In Pro-
ceedings of the American Control Conference, Chicago, Illinois,
USA, volume 4, 2725–2729.

Marino, P., Pignotti, A., and Solis, D. (2004). Control of pusher
furnaces for steel slab reheating using a numerical model. Latin
Amercian Applied Research, 34(4), 249–255.

Modest, M. (2003). Radiative Heat Transfer. Academic Press, New
York, 2nd edition.

Nederkoorn, E., Wilgen, P., and Schuurmans, J. (2011). Nonlinear
model predictive control of walking beam furnaces. In Proceed-
ings of the 1st International Conference on Energy Efficiency and
CO2 Reduction in the Steel Industry, EECR STEEL, Düsseldorf,
Germany.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer
Series in Operations Research. Springer, New York, 2nd edition.

Pannek, J. and Worthmann, K. (2011). Reducing the prediction
horizon in NMPC: An algorithm based approach. In Proceedings
of the 18th World Congress of the International Federation of

Automatic Control (IFAC), Milan, Italy, 7969–7974.
Pike, H. and Citron, S. (1970). Optimization studies of a slab re-

heating furnace. Automatica, 6, 41–50.
Polak, E. (1971). Computational Methods in Optimization: A Uni-

fied Approach, volume 77 of Mathematics in Science and Engi-
neering. Academic Press, New York.
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