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Energy-consistent shear coefficients for beams with
circular cross sections and radially inhomogeneous materials

A. Steinboecka,∗, A. Kugia, H.A. Mangb

aAutomation and Control Institute, Vienna University of Technology, Gußhausstraße 27–29, 1040 Vienna, Austria
bInstitute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria

Abstract

An exact computational method for the shear stiffness of beams with circular cross sections and arbitrarily radially
inhomogeneous Young’s modulus is presented. We derive the displacement and stress field of a cantilever beam according
to 3D theory of elasticity, which requires to solve just a 1D linear boundary value problem. The shear stiffness is obtained
by setting the shear strain energy from the exact solution equal to that from technical beam theory. Results and closed
analytical formulae are given for several functionally graded and layered cross sections.

Keywords: Shear correction factor, Shear stiffness, Shear deformation, Functionally graded materials, Circular cross
section, Radial inhomogeneity, Saint-Venant solution, Analytical solutions, Timoshenko beam

1. Introduction

If beams with a low slenderness ratio are loaded by
transverse forces, shear deformations may significantly
contribute to their overall flexure. Such structures and
load cases can be analyzed by means of Timoshenko’s
beam theory (Timoshenko, 1921, 1922), which requires the
computation of shear coefficients. Various computational
methods have been proposed for this purpose. However,
there is still no consensus on the most accurate way of
computing shear coefficients, especially if the beams are
made of inhomogeneous materials.
The use of the finite element method to compute shear

coefficients of general arbitrarily shaped or inhomoge-
neous cross sections is common practice (cf. the literature
overview given in Section 2). The finite element method
is a general numerical approach and its far-reaching ap-
plicability is unquestioned but for specific cross sections it
may be possible and reasonable to use alternative meth-
ods. In the following, four good reasons are given why
it is desirable to compute shear coefficients by means of
either analytical methods or numerical approaches that
are computationally less expensive than the finite element
method:
• Closed-form analytical solutions can be used as bench-
mark results, e. g., for verifying finite element codes.

• Analytical solution methods do not require meshing
and analysis of the discretization error that may reveal
the need for grid refinement.
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• An analytical solution process usually provides deeper
insight into the nature of the respective problem than
application of black-box numerical methods.

• In real-time applications like control, computer power
may still be a limiting factor, which requires the appli-
cation of tailored, highly efficient mathematical mod-
els.

In the current paper, we explore whether circular cross
sections allow a closed-form or at least a simplified solution
for the computation of the shear stiffness. Our aims are
as follows:
• A tractable general method to compute the shear stiff-
ness of circular cross sections is to be developed.

• The method should be applicable to cross sections
with arbitrarily radially inhomogeneous isotropic ma-
terials.

• It should be applicable to both solid and hollow cross
sections.

• The method should not rely on first-order beam the-
ory, the computation of mean displacements, the as-
sumption that certain components of the stress ten-
sor vanish, or other restrictive assumptions concern-
ing the deformation of cross sections.

• The method is to be verified by comparing the results
with shear coefficients available in the literature.

Our research is motivated by an application in shape
control of rolling mills (Ginzburg, 2009). The deflection
of the rolls can be conveniently computed based on Timo-
shenko’s beam theory. Typical rolls, especially the back-up
rolls of four-high mills, have a layered circular cross sec-
tion. As indicated in Fig. 1, the core is rather soft whereas
the shell is made of hard and wear-resistant steel. The
diameter of the rolls decreases over the time because of
wear and regular machining with grinding wheels. More-
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Nomenclature

Latin symbols

A area, usually cross-sectional area (m2)
B(r) function that adds to the warping displacement

along the direction x3 (m2)
b0, b1 vectors used to map between boundary values
b0, b1 integration constants in an expression for B(r)
C0 space of continuous functions
E(r) Young’s modulus (N/m2)
Ē reference value of Young’s modulus used for nor-

malization (N/m2)
Ei homogeneous Young’s modulus of layer i in the

range (ri−1, ri) (N/m
2)

e0, e1 parameters used for defining the shape of E(r)
F force at the end of the beam along the direction

x1 (N)
G(r) shear modulus (N/m2)
i index, either in the range 1, 2, 3 or 1, . . . , N (−)
j index, usually in the range 1, 2, 3 (−)
KB bending stiffness (Nm2)
KS shear stiffness (N)
K̄S reference value of shear stiffness (N)
k0, k1 constants used for defining the characteristic

structure of KS (−)
m, m0, m1 ratios of radii (−)
N number of layers (−)

n ratio of Young’s moduli (−)
r radius (m)
r0 inner radius of a hollow cross section (m)
ri outer radius of layer i (m)
rN outer radius of a cross section (m)
r, θ, x3 cylindrical coordinates
t thickness of a thin-walled annular beam (m)
ui displacement along the Cartesian direction xi

(m)
x1, x2, x3 Cartesian coordinates (m)

Greek symbols

εij strain with i, j = 1, 2, 3 or i, j = r, θ, 3 (−)
θ angle (rad)
ν Poisson’s ratio (−)
σij stress with i, j = 1, 2, 3 or i, j = r, θ, 3 (N/m2)
Ω cross section
ξ(r) abbreviation for E′(r)/E(r) (1/m)

Operators

(•)′ total derivative with respect to r (1/m)
(•),i partial derivative with respect to a spatial direc-

tion i with i = 1, 2, 3 or i = r, θ, 3

Superscripts
+ short notation for a right-hand limit
− short notation for a left-hand limit

over, the temperature distribution in the roll is generally
inhomogeneous (Guerrero et al., 1999), which may also
influence the local material parameters.

Figure 1: Back-up roll of a rolling mill.

This paper is organized as follows: Section 2 provides
a brief literature overview. In Section 3, the 3D Saint-
Venant flexure problem is solved for cylindrical beams of
radially inhomogeneous circular cross sections. In Section
4, we describe the analysis of shear coefficients based on
equal strain energies and apply the method to various cross
sections.

2. Background

Due to the large number of existing publications in the
field, a comprehensive overview of the relevant literature
would exceed the scope of this paper. Hence, the following
outline of the extensive body of available knowledge should
merely be viewed as a possible starting point for further
exploration.
The basic beam theory that takes into account shear de-

formations is attributed to Timoshenko (1921, 1922). Ac-
cording to this theory, the shear deformation can be char-
acterized by an angular rotation of the cross section and
so-called shear coefficients, which are also referred to as
shear correction or shear deformation factors. Meanwhile,
many refinements of Timoshenko’s shear deformation the-
ory have been published, e. g., the consideration of out-of-
plane displacements (warping) in addition to a rotation of
the cross section. However, there is still no consensus in
the literature on the most appropriate calculation method
of shear coefficients (cf. for instance, Kaneko, 1975; Ren-
ton, 1991; Hutchinson, 2001; Stephen, 2001; Dong et al.,
2010; Kennedy et al., 2011; Mentrasti, 2012). As outlined
in the following, there are several methods of computing
such coefficients. Some definitions of shear coefficients in-
herently depend on the specific problem formulation (Men-
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trasti, 2012), e. g., whether a static or a dynamic problem
is considered (Dong et al., 2010).
In technical beam theory, a beam is formulated as a 1D

Cosserat continuum (Cosserat and Cosserat, 1909), i. e.,
each point of the continuum is characterized by transla-
tional degrees of freedom and it may have additional (ag-
gregate) degrees of freedom like rotation or warping of the
local cross section. Most authors use shear coefficients to
reconcile results from technical beam theory, often first-
order beam theory, with full 3D theory-of-elasticity solu-
tions. The derivation of shear coefficients thus requires
to match in terms of some gross response characteristics
the solution from technical beam theory with the solution
from the theory of elasticity. Typically matching criteria
are
• equal average displacement values (Cowper, 1966;
Stephen and Levinson, 1979),

• equal natural frequencies (Timoshenko, 1922; Kaneko,
1975; Hutchinson, 1981), or

• equal shear strain energies (Bach and Baumann, 1924;
Renton, 1991; Pilkey, 2002; Mentrasti, 2012).

Cowper (1966) solved the 3D theory-of-elasticity prob-
lem for a homogenous, isotropic, tip-loaded or uniformly
loaded cantilever. To describe the out-of-plane displace-
ment of a shear-loaded cross section, Cowper (1966) used
classical flexure functions reported for standard cross sec-
tions, for instance, in (Love, 1944; Sokolnikoff, 1956).
As most authors in this field, (Cowper, 1966) assumed
that the shear force varies only continuously along the
beam. Cowper (1966) derived a shear coefficient by
matching shear rotation angles from displacement aver-
ages with shear rotation angles from technical beam the-
ory. For rectangular cross sections, this approach yields
a shear coefficient that is independent of the aspect ratio
of the rectangle. Dharmarajan and McCutchen Jr. (1973)
extended Cowper’s (1966) method for homogeneous or-
thotropic beams.
Based on a second-order beam theory and average

displacement values, Stephen and Levinson (1979) de-
rived two analytical shear coefficients. In their analysis,
Stephen and Levinson (1979) considered gravity loading
and stresses from classical flexure problems solved by Love
(1944). Stephen and Levinson (1979) also computed nat-
ural frequencies and argued that a good agreement of fre-
quencies does not automatically ensure accurate displace-
ment and stress values. Therefore, Stephen and Levin-
son (1979) suggested further analyses based on the use of
average displacements. Stephen (1980) computed shear
coefficients by comparing the curvature of the average dis-
placements of a gravity-loaded beam with the center-line
curvature according to Timoshenko’s beam theory. For a
circular cross section, Stephen (1980) obtained the same
shear coefficient as Timoshenko (1922), which was exper-
imentally identified by Kaneko (1975) to be the most ac-
curate expression for shear coefficients.
Hutchinson (1981) computed shear coefficients for a cir-

cular cross section by means of a series solution and the

frequency matching approach. From a comparison with
other published shear coefficients, Hutchinson (1981) in-
ferred that Timoshenko’s (1921) shear coefficient is usually
the most accurate.

Based on stress functions from classical flexure prob-
lems, Renton (1991) computed a 3D theory-of-elasticity
solution for homogeneous isotropic beams. To compute
shear coefficients, he matched the shear strain energy with
the work done by the shear force according to techni-
cal beam theory. For some typical cross sections, Ren-
ton (1991) derived analytical solutions for the shear coeffi-
cient. From the structure of the attained solutions, Renton
(1991) concluded that the shear stiffness KS of homoge-
neous isotropic cross sections based on equal strain ener-
gies has the general form

KS =
GA

k0 + k1

( ν

1 + ν

)2 =
1

2

EA(1 + ν)

k0 + 2k0ν + (k0 + k1)ν
2
,

(1)
where G = E/(2(1 + ν)) is the shear modulus, E denotes
Young’s modulus, A is the cross-sectional area, ν is Pois-
son’s ratio, and the constants k0 ≥ 1 and k1 ≥ 0 depend on
the shape of the cross section. Renton (1997) proved this
result for simply connected homogeneous cross sections.

Pai and Schulz (1999) argued that the physical mean-
ing of both shear rotation angles and shear coefficients are
not well defined in the literature. They derived shear co-
efficients for homogeneous isotropic beams analytically by
explicit computation of shear warping functions and by
introduction of four different shear rotation angles: one
defined at the centroid of the cross-sectional area, one as-
sociated with displacement averages of shear strains, an-
other one with energy averages of shear strains, and yet an-
other one associated with coupled energy averages of shear
strains. Pai and Schulz (1999) calculated shear coefficients
by matching the shear strain energy from exact theory-of-
elasticity solutions with the shear strain energy from tech-
nical beam theory. Therefore, Pai and Schulz (1999) con-
sidered their shear coefficients as energy-consistent. Apart
from a more general formulation, the approach of Pai and
Schulz (1999) is the same as that of Renton (1991). For
circular cross sections, they obtained the same results for
the shear coefficient.

Hutchinson (2001) assumed a displacement field where
the cross sections of the beam remain plane. He used
stresses from the classical flexure solutions of Love (1944)
and employed the dynamic form of the Hellinger-Reissner
principle (Reissner, 1950) to overcome the incompatibility
of the assumed displacements and the stress field. Finally,
Hutchinson (2001) computed a shear deflection coefficient
by matching the vibration frequencies with that of Timo-
shenko’s formulation. Stephen (2001) demonstrated that
Hutchinson’s (2001) shear coefficient is equivalent to that
of Stephen (1980).

Egretzberger et al. (2007) used average displacement
values for computing shear coefficients of a rectangular
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beam made of a homogeneous, orthotropic material. They
computed the stress field based on classical flexure func-
tions reported in (Love, 1944).
Based on first-order beam theory and the equivalence

of shear strain energies, Madabhusi-Raman and Davalos
(1996) analytically computed shear coefficients for lay-
ered orthotropic beams with rectangular cross sections.
They neglected the transverse shear stress σ23 (cf. Fig. 1).
In the tradition of laminar plates and shells, Noor and
Peters (1989) analyzed laminated orthotropic cylindrical
shells. They estimated shear coefficients for multilay-
ered cylindrical shells by means of first-order theory, a
predictor-corrector approach, and equivalent shear strain
energies. The accuracy of these estimates depends also on
the thickness-to-radius ratio of the hollow cylinder.
Li (2008) analyzed functionally graded and layered

isotropic beams of rectangular cross section. Li (2008)
assumed that beam cross sections remain plane and ne-
glected displacements, strains, and stresses along the di-
rection x2 (cf. Fig. 1). That is, Li (2008) conducted a 2D
analysis in the x1x3-plane. Consequently, the obtained re-
sults do not depend on Poisson’s ratio and are invariant
with respect to the width of the beam along the direction
x2.
Reddy (2011) developed a theory for bending, vibration,

and buckling of inhomogeneous rectangular beams with
a through-thickness power-law variation of the material.
By means of a modified couple-stress theory, the method
takes into consideration microstructural effects, i. e., size
effects of the material. Reddy (2011) also neglected the
displacements along the direction x2 (cf. Fig. 1).
Chan et al. (2011) reported a frequency matching

method for computing shear coefficients of homogeneous
isotropic beams with arbitrary cross sections. They as-
sumed that beam cross sections always remain plane, de-
rived a truncated series solution of the elastodynamics
equations, and computed natural frequencies based on the
Rayleigh quotient.
Favata et al. (2010) proved that 1 is a strict upper bound

for shear coefficients of homogeneous isotropic cross sec-
tions. Mentrasti (2012) confirmed this result and added
a rather conservative lower bound based on the notion of
a residual stress field. For solid circular cross sections,
Mentrasti (2012) suggested 1/2 as the lower bound.
By matching average displacement values, Kennedy

et al. (2011) computed analytical shear coefficients for or-
thotropic layered beams of rectangular cross section. They
used average displacement quantities and, similar to Li
(2008), they considered a plane-stress state with stresses
occurring only in the x1x3-plane. It is not clear how the
implicit assumption σ23 = 0 influences the accuracy of the
computed shear coefficient. Using the 2D finite element
method, Kennedy and Martins (2012) abandoned the as-
sumption of a plane-stress state and numerically computed
shear coefficients for anisotropic layered beams.
A host of publications show how finite element anal-

yses can serve as numerical vehicles for computing

shear coefficients. The references (Schramm et al.,
1994; Pilkey, 2002; Dong et al., 2010) and the refer-
ences given therein are potential points of departure
for further exploring this strand of research. Wörndle
(1982); Wörndle and Mang (1984); Gruttmann and Wag-
ner (2001); Dong et al. (2001); Kosmatka et al. (2001);
and Dong et al. (2010) used 2D finite element methods
for computing out-of-plane displacements (warping func-
tions) along the axis of arbitrarily shaped cross sections.
Gruttmann and Wagner (2001) considered homogeneous
isotropic beams and computed shear coefficients based on
equal strain energies. Dong et al. (2010) also analyzed
homogeneous isotropic beams but computed the shear co-
efficients based on average displacements. Wörndle (1982)
and Wörndle and Mang (1984) developed a method that
works for inhomogeneous orthotropic beams; it is also
based on average displacements. Dong et al. (2001) an-
alyzed inhomogeneous, anisotropic beams and computed
cross-sectional stiffness matrices (Dong et al., 2001) and
properties (Kosmatka et al., 2001). Liu and Taciroglu
(2008) extended these results to piezoelectric materials and
used a meshfree discretization scheme based on shape func-
tions spanning the whole cross section.
Schramm et al. (1994) demonstrated that for non-

symmetrical cross sections the computation of shear coef-
ficients based on average displacement values can result in
a non-symmetrical matrix of shear coefficients. This prob-
lem does not occur if the shear strain energy is used as a
matching criterion. Therefore, Schramm et al. (1994) and
Pilkey (2002) advocated this approach and used it in 2D
finite element analyses of homogeneous isotropic beams.
Later, Dong et al. (2010) made the following recommen-
dations for a correct computation of shear coefficients of
non-symmetrical cross sections: First, a coordinate sys-
tem that corresponds to the principal bending directions
should be used. Second, two individual calculations, each
with a single transverse force along a principal bending
direction, should be performed to compute shear coeffi-
cients associated with the principal bending directions.
The shear coefficients obtained in this manner have the
properties of a second-rank tensor and can thus be easily
transformed to other coordinate systems.

3. Flexure problem for radially inhomogeneous
circular cross sections

The 3D flexure problem of the tip-loaded, circular cylin-
drical, radially inhomogeneous cantilever beam shown in
Fig. 2 will be treated. We consider a static scenario with-
out body forces and without surface tractions along the
radial surface. Young’s modulus E(r) may be radially in-
homogeneous whereas Poisson’s ratio ν is taken as con-
stant, which is a reasonable assumption for most metallic
materials. The cross section Ω may be hollow and its cen-
troid defines the beam axis. The length of the beam is
not relevant for the present investigation. We make use
of Saint-Venant’s principle, i. e., the boundary conditions
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at the ends of the beam are satisfied in an integral sense
rather than point by point.

Figure 2: Cantilever beam.

We will use Cartesian coordinates x1, x2, and x3 as well
as cylindrical coordinates r, θ, and x3. Obviously, the
axes x1 and x2 are principal bending and principal shear
axes. Because of rotational symmetry, it suffices to study
the case of a single transversal load F passing through the
centroid of the cross section along the direction x1. Non-
centered loads would additionally induce torsion, which is
trivial for the considered circular cross sections.

3.1. Displacements and equilibrium conditions

Inspired by the classical solution of the Saint-Venant
flexure problem (cf. Love, 1944; Sokolnikoff, 1956; Ieşan,
2009), the displacements of the tip-loaded beam along the
directions x1, x2, and x3 can be formulated as

u1 =
Fx3

2KB

(x2
3

3
+ ν(x2

1 − x2
2)
)
− Fx3

KS

(2a)

u2 =
F

KB

νx1x2x3 (2b)

u3 =
Fx1

2KB

(x2
1 + x2

2

2
− x2

3 +
(3
2
+ ν

)
B(r)

)
+

Fx1

KS

, (2c)

respectively, with the unknown expression B(r) ∈ C0,
which generally has negative values, the radius r =√
x2
1 + x2

2, the bending stiffness

KB =

∫

Ω

E(r)x2
1dA, (3)

and the yet unknown shear stiffness KS of the cross sec-
tion. Equ. (2) defines the displacements modulo some rigid
body motions, which are irrelevant for the current analy-
sis. The following derivation will show, as a byproduct,
that (2) is indeed a solution of the flexure problem.

Specialization of (2) for x1 = x2 = 0 gives the displace-
ments of the beam axis. B(r) adds to the warping displace-
ment along the direction x3. Later, we will see that B(r)
depends only on the cross section and the distribution of
E(r) but neither on the load F nor on Poisson’s ratio ν. To
find B(r), we first compute the strains εij = 1/2(ui,j+uj,i)

with i, j = 1, 2, 3 and (•),i = ∂(•)/∂xi. They follow as

ε11 = ε22 =
F

KB

νx1x3

ε33 = − F

KB

x1x3

ε23 =
F

2KB

x1x2

(
1

2
+ ν +

(3
2
+ ν

)B′(r)
2r

)

ε13 =
F

4KB

((1
2
− ν

)
x2
2

+
(3
2
+ ν

)(
x2
1 +B(r) +

B′(r)
r

x2
1

))

ε12 = 0,

where (•)′ = d(•)/dr, and their transformation to cylindri-
cal coordinates yields

εrr = εθθ =
F

KB

νr cos(θ)x3 (4a)

ε33 = − F

KB

r cos(θ)x3 (4b)

εθ3 = −F sin(θ)

4KB

((1
2
− ν

)
r2 +

(3
2
+ ν

)
B(r)

)
(4c)

εr3 =
F cos(θ)

4KB

(3
2
+ ν

)
(r2 +B′(r)r +B(r)) (4d)

εrθ = 0. (4e)

As this strain field has been derived from the displace-
ments (2), it satisfies the compatibility conditions. With
Hooke’s law for isotropic material, the stresses follow as

σrr = σθθ = σrθ = 0 (5a)

σ33 = −E(r)F

KB

r cos(θ)x3 (5b)

σθ3 = −E(r)F sin(θ)

4KB(1 + ν)

((1
2
− ν

)
r2 +

(3
2
+ ν

)
B(r)

)
(5c)

σr3 =
E(r)F cos(θ)

4KB(1 + ν)

(3
2
+ ν

)
(r2 +B′(r)r +B(r)). (5d)

This stress field trivially satisfies the equilibrium condi-
tions along the directions r and θ. It remains to be shown
that the equilibrium condition along the direction x3, i. e.,

σr3,r +
σr3

r
+

σθ3,θ

r
+ σ33,3 = 0, (6)

is also satisfied and that surface tractions vanish. These
conditions will determine the unknown function B(r).

Assuming for the time being that E(r) ∈ C0, i. e., that
Young’s modulus is continuous, and substituting (5) into
(6) yields

r2ξ(r) + ξ(r)B(r) + (3 + rξ(r))B′(r) + rB′′(r) = 0 (7)
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with the abbreviation

ξ(r) =
E′(r)
E(r)

=
d

dr
ln(E(r)).

In Sections 3.2 to 3.4, we supplement this linear ordinary
differential equation with boundary conditions.
It is not obvious and it is one of the key findings of this

work that the 3D flexure problem of a beam with an inho-
mogeneous cross section reduces to a 1D linear boundary
value problem. The reason for this remarkable reduction
of the number of dimensions is that we have considered in-
homogeneities only in radial direction. In the case of more
general inhomogeneities, the Saint-Venant flexure problem
results in a 2D boundary value problem (cf. Wörndle, 1982;
Ieşan and Quintanilla, 2007), which is considerably more
difficult to solve than (7).
In Section 4, we will explore various scenarios where

(7) can be analytically solved. At the end of the current
section, we will show that general scenarios which do not
permit an analytical solution of (7) can easily be treated
numerically.

3.2. Free surface

Consider that the circular cross section has a free surface
at the radius r = rs. No matter whether this is an inner or
an outer surface, the surface tractions must vanish, which
implies

σrr|r=rs = 0

σrθ|r=rs = 0

σr3|r=rs = 0.

Based on (5d), we thus get

r2s +B′(rs)rs + B(rs) = 0 (8a)

for any free surface.

3.3. Center

In case of a solid cross section, (8a) is only applicable at
the outer surface and generally σr3|r=0 6= 0. The required
additional boundary condition is found by evaluating (7)
for r = 0. This yields

ξ(0)B(0) + 3B′(0) = 0. (8b)

3.4. Discontinuous Young’s modulus

Finally, we abandon the assumption E(r) ∈ C0 and al-
low for discontinuities of E(r). Consider that E(r) is dis-
continuous at r = ri, i. e., E(r−i ) 6= E(r+i ) with the short
notation E(r±i ) = limρ→0+ E(ri ± ρ). We may think of ri
as a perfectly bonded material interface.
Because of (2c) and the condition B(r) ∈ C0, we get

the continuity condition

B(r−i ) = B(r+i ) = B(ri). (8c)

The second required boundary condition is found from the
continuity conditions of the stress field. They imply

limr→r−i
σrr = limr→r+i

σrr

limr→r−i
σrθ = limr→r+i

σrθ

limr→r−i
σr3 = limr→r+i

σr3.

Based on (5d), we thus get

E(r−i )((ri)
2 +B′(r−i )ri +B(ri))

= E(r+i )((ri)
2 +B′(r+i )ri +B(ri)).

(8d)

The same result is obtained if (7) is multiplied by E(r)
and integrated in the range (ri − ρ, ri + ρ) with ρ → 0+.

3.5. Solution of the boundary value problem

We can now solve (7) with the appropriate boundary
conditions (8) depending on the respective cross section.
As expected, (7) and (8) are independent of the load F
and of Poisson’s ratio ν. Consider a scenario as shown in
Fig. 3. E(r) is arbitrarily inhomogeneous and has several
discontinuities at the radii ri with i = 1, . . . , N − 1. The
inner and the outer radius of the cross section is r0 and
rN , respectively. In case of a solid cross section, r0 = 0.

Figure 3: Inhomogeneous circular cross section.

To compute the unknown function B(r) ∈ C0 from the
linear multi-point boundary value problem (7) and (8), we
can conveniently use the single shooting method (cf. Stoer
and Bulirsch, 2002). The calculation proceeds as follows:

a) Make an arbitrary initial guess B(r0) and compute

B′(r0) =

{
−r0 − B(r0)

r0
if r0 > 0

− ξ(r0)
3 B(r0) if r0 = 0

according to (8a) and (8b).
b) With known values B(r0) and B′(r0), (7) constitutes

an initial value problem. Integrate it, e. g., numeri-
cally, and use

B(r−i ) = B(r+i ) = B(ri)
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B′(r+i ) =
E(r−i )

E(r+i )
B′(r−i ) +

(E(r−i )

E(r+i )
− 1

)(
ri +

B(ri)

ri

)

according to (8c) and (8d) at the interface positions
ri with i = 1, . . . , N − 1.

c) Repeat steps a) and b) for a different arbitrary ini-
tial guess B(r0) and from the resulting two triplets
(B(r0), B(rN ), B′(rN )) compute the vectors b1 and
b0 of the affine function

[
B(rN )
B′(rN )

]
= b1B(r0) + b0. (9)

d) Compute the correct values B(r0), B(rN ), andB′(rN )
from the linear system (9) and the boundary condition

r2N +B′(rN )rN +B(rN ) = 0

(cf. (8a)). With the correct initial value B(r0), repeat
steps a) and b) once more to compute the solution
B(r).

This procedure yields B(r) for general cross sections with
arbitrarily varying E(r). Therefore, the 3D flexure prob-
lem is solved. The result B(r) is exact up to numerical
accuracy, which may, for instance, be limited when solv-
ing (7) by some numerical integrator.

4. Shear stiffness of radially inhomogeneous circu-
lar cross sections

We compute the shear stiffness KS for an inhomoge-
neous cross section like that shown in Fig. 3. For homoge-
neous cross sections, the calculation of KS is tantamount
to the computation of a shear coefficient KS/(GA). As
mentioned in Section 2, there are several possible criteria
for matching the gross response characteristics according
to technical beam theory with 3D theory-of-elasticity so-
lutions like the one computed in the previous section. In
this paper, we adopt the idea of equal shear strain en-
ergies (Bach and Baumann 1924; Renton 1991; Schramm
et al. 1994; Madabhusi-Raman and Davalos 1996; Pai and
Schulz 1999; Gruttmann and Wagner 2001; Pilkey 2002;
Favata et al. 2010; Mentrasti 2012). The motivation for
this choice is that we consider a static problem, where it is
known that the exact solution of the Saint-Venant flexure
problem minimizes the total strain energy (Sternberg and
Knowles, 1966; Ericksen, 1980; Ieşan, 2009). It is thus a
reasonable conjecture that parameterizing the shear stiff-
ness such that the same total strain energy is obtained will
result in an accurate technical beam formulation.
Implicit to this conjecture is the assumption of inde-

pendence of the strain energies from bending and torsion.
This assumption is attributed to Trefftz (1935), and it is
naturally satisfied for symmetrical cross sections.
Another assumption of our approach is that the shear

stiffness obtained for the cross section of a tip-loaded can-

tilever remains valid also for other load cases, e. g., dis-
tributed loads in the form of body forces or surface trac-
tions. This assumption rests on the observation that the
distribution of the shear stresses within the cross section
is the same for a tip-loaded beam and a beam with uni-
formly distributed load (Love, 1944). The tenability of this
assumption was, for instance, discussed by Cowper (1966);
Stephen and Levinson (1979); Stephen (1980); and Dong
et al. (2010).

4.1. Arbitrary radial inhomogeneity

In Timoshenko’s beam theory, the elastic deformation
energy per unit length x3 caused by the shear force F is

F 2

2KS

. (10)

This follows directly from (2a) because the extra displace-
ment along the direction x1 per unit length x3 induced
by shear is F/KS. The shear strain energy from the 3D
theory-of-elasticity solution is

∫

Ω

(σθ3εθ3 + σr3εr3)dA. (11)

Setting (10) equal to (11) and using (4), (5), (7), and (8a)
yields

KS =
− 4

π
K2

B(1 + ν)
∫ rN

r0

E(r)r3
(
(1 + 2ν)r2 +

(
3 + 6ν +

8

3
ν2

)
B(r)

)
dr

(12)
with

KB = π

∫ rN

r0

E(r)r3dr (13)

according to (3). The derivation of (12) is described in
more detail in the Appendix.
KS according to (12) has the structure given by (1), i. e.,

in the denominator, the coefficient of ν is twice as large as
the coefficient of ν0. This shows that the shear stiffness of
an isotropic, radially inhomogeneous circular cross section
as shown in Fig. 3 has always the characteristic form (1),
which was found by Renton (1991, 1997) for homogeneous
cross sections.
This concludes the computation of the shear stiffness

of a general circular cross section. In the following, we
analyze some special cross sections.

4.2. Several homogeneous layers

Consider a circular cross section with layers of homo-
geneous materials. Fig. 3 is still applicable but Young’s
modulus has a constant value E(r) = Ei in each layer
(ri−1, ri) with i = 1, . . . , N . According to (13), we thus
get

KB =
π

4

N∑

i=1

Ei(r
4
i − r4i−1).
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Moreover, (7) can be analytically integrated, which gives

B(r) = B(ri−1) +
ri−1

2

(
1− r2i−1

r2

)
B′(r+i−1) (14a)

B′(r) =
r3i−1

r3
B′(r+i−1) (14b)

for the layer i, i. e., for r ∈ (ri−1, ri). If ri−1 = 0 (in-
nermost layer of a solid cross section), the second term in
(14a) vanishes and B′(r) = 0 holds for this layer. Hence,
the integration in step b) of the algorithm given in Sec-
tion 3.5 can be carried out analytically. Finally, evalua-
tion of (14) for r = ri with i = 1, . . . , N and consideration
of (8) yields a linear equation for all unknown boundary
values.
To compute the shear stiffness KS , note that the in-

tegral in (12) can be evaluated separately for each layer
i = 1, . . . , N . Substitution of (14a) into (12) yields

KS = − 4

π
K2

B(1+ ν)

( N∑

i=1

Ei

(
(1+ 2ν)

r6i − r6i−1

6
+
(
3+ 6ν

+
8

3
ν2

)
(B(ri−1)r

2
i−1 +B(ri)r

2
i )
r2i − r2i−1

4

))−1

.

(15)

4.3. Other cross sections permitting an analytical solution

By analogy to the previous section, closed-form analyti-
cal expressions for the shear stiffness of cross sections with
inhomogeneous layers can be computed if an analytical so-
lution of (7) is available for each individual layer. That is,
the inhomogeneity may be different in each layer, which
implies that the integrals in (12) and (13) are evaluated
separately for each layer. As the principle is analogous to
what was shown in the previous section, we omit the ex-
pressions for KS and KB and discuss just two simple types
of inhomogeneities.
Consider that Young’s modulus of a layer is

E(r) = e0e
r
1,

where e0 > 0 and e1 > 0 are arbitrary constants. Such
an exponential inhomogeneity has also been studied by
Lekhnitskii (1981) and Ieşan and Quintanilla (2007). If
e1 = 1, we have the situation analyzed in Section 4.2 with
the solution (14a). For e1 6= 1, since ξ(r) = ln(e1), (7) has
the straightforward solution

B(r) = b0
r ln(e1)− 1

r2
+ b1

1

er1r
2
− 8

r2 ln(e1)
4

+
8

r ln(e1)
3
− 4r

ln(e1)
2
+

4

3 ln(e1)
− r2

3
.

(16)

The integration constants b0 and b1 are determined by
the boundary conditions of the respective layer. If the
inner boundary of the layer is r = 0, there are additional
constraints on b0 and b1 to avoid singularities.

As a second example of an inhomogeneity allowing an
analytical solution, consider that Young’s modulus of a
layer is

E(r) = e0r
e1 ,

where e0 > 0 and e1 are arbitrary constants. Clearly, for
e1 > 0, the inner boundary of the layer cannot be r = 0.
Since ξ(r) = e1/r, (7) has the straightforward solution

B(r) =
b0r

−
√

1/4e21+1 + b1r
√

1/4e21+1

r1/2e1+1
− e1r

2

8 + 3e1
, (17)

where b0 and b1 are again determined by boundary con-
ditions. The solution for a homogeneous layer is obtained
by setting e1 = 0. Note that both (16) and (17) are in-
dependent of e0 because only the ratio ξ(r) = E′(r)/E(r)
enters (7). We may generally infer that B(r) depends only
on the shape of E(r) but not its absolute value.

4.4. Homogeneous circle

If we apply the method described in Section 4.2 to a
homogeneous solid circular cross section with the radius
r1 (N = 1, r0 = 0), we obtain

B(r) = −r21

and

KS =
3AE(1 + ν)

7 + 14ν + 8ν2
(18)

with the cross sectional area A = r21π. This result was also
reported by Renton (1991) and Pai and Schulz (1999).

4.5. Homogeneous annulus

If we apply the method outlined in Section 4.2 to a ho-
mogeneous annular cross section with the inner radius r0
and the outer radius r1 (N = 1, r0 > 0), we obtain

B(r) = −r20 − r21 −
r20r

2
1

r2

and thus

KS =
3AE(1 + ν)(1 +m2)2

(1 +m2)2(7 + 14ν + 8ν2) + 4m2(5 + 10ν + 4ν2)
(19)

with the cross sectional area A = (r21−r20)π and m = r1/r0
or m = r0/r1. This result was also reported by Renton
(1997) and Ladevèze et al. (2002). Evaluation of (19) for
m = 0 or m → ∞ yields (18).

4.6. Circle with two homogeneous layers

If we apply the method outlined in Section 4.2 to a solid
circular cross section with two homogeneous layers (N = 2,
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r0 = 0), we obtain

KS = 3AE2(1 + ν)(n(1 +m2) + 1−m2)((n− 1)m4 + 1)
2

(
(n2m6(1 +m2) + n(1 + 2m4 −m6 − 2m8) + (1

− m4)2)(7 + 14ν + 8ν2) + 4(1− n)m2(1−m2)2

(5 + 10ν + 4ν2)
)−1

(20)

with the cross sectional area A = r22π and the ratios m =
r1/r2 and n = E1/E2. For n = 0, we recover (19). For
n = 1, n → ∞, m = 0, and also for m = 1, we recover
(18).

4.7. Annulus with two homogeneous layers

If we apply the method outlined in Section 4.2 to an
annular cross section with two homogeneous layers (N = 2,
r0 > 0), we obtain

KS =
3AE2(1 + ν)

1−m2
0

(n(m2
1 −m2

0)(1 +m2
1) + (m2

0 +m2
1)

(1−m2
1))(n(m

4
1 −m4

0) + 1−m4
1)

2
(
(n2(m4

0 −m4
1)

2

(1 +m2
1) + n(m2

0 −m2
1)(m

2
1 − 1)(m6

0 +m4
0m

2
1

+ 4m2
0m

2
1 + 3m2

0m
4
1 + 1 +m2

1 + 3m4
1 + 2m6

1)

+ (m2
0 +m2

1)(1−m4
1)

2)(7 + 14ν + 8ν2)

+ 4(n2m2
0m

2
1(m

2
0 −m2

1)
2(1 +m2

1) + nm2
1(m

2
0

−m2
1)(1 −m2

1)(m
4
0 − 4m2

0 −m2
0m

2
1 −m2

1 + 1)

+m2
1(m

2
0 +m2

1)(1−m2
1)

2)(5 + 10ν + 4ν2)
)−1

with the cross sectional area A = (r22 − r20)π and the ratios
m0 = r0/r2, m1 = r1/r2, and n = E1/E2. For m0 = 0, we
recover (20). For n = 0, n = 1, n → ∞, m0 = m1, and
also for m1 = 1, we recover (19).

4.8. Circle with linear inhomogeneity

Consider a solid circular cross section with radius r1 and
Young’s modulus

E(r) = e0 + e1r (21)

with the constants e0 > 0 and e1. We will study the
influence of the slope e1 on the shear stiffness. To make
the results comparable, we choose e0 such that the bending
stiffness has always the value KB = Ēr41π/4, where Ē > 0
is a constant.
In case of a linear inhomogeneity like (21), the boundary

value problem (7) and (8) does not have a concise analyt-
ical solution; in fact, the solution would involve hyperge-
ometric series. Therefore, we solve the problem numeri-
cally as described in Section 3.5. The results are shown
in Fig. 4, where the range of profiles E(r) plotted in the
left part of the figure corresponds to the range along the

abscissa of the right plot. In Fig. 4, the shear stiffness KS

is normalized with respect to

K̄S =
3r21πĒ(1 + ν)

7 + 14ν + 8ν2
. (22)

Therefore, the presented results are independent of the
actual values of Ē and r1.

0 r1
0

1

2

3

4

E/Ē

r
0.2 0.7 1 1.2

0.6
0.8
1

1.2
1.4
1.6

KS/K̄S

E(r1)/Ē

Figure 4: Shear stiffness of a circle with linear inhomogeneity.

The results indicate that for solid circular cross sections
with equal bending stiffness, the shear stiffness increases if
Young’s modulus is increasing in the core and decreasing
at the surface. The main reason for this effect is that the
core contributes relatively more to the shear stiffness than
to the bending stiffness (cf. the third power in (13)). As a
consequence of this effect, the shear deformation of circu-
lar cylindrical beams with a soft core is higher than that
of homogeneous beams with the same radius and equal
bending stiffness. For our example of back-up rolls for
rolling mills in Section 1, this implies that consideration
of shear deformations and accurate computation of shear
coefficients is all the more important.

4.9. Circle with parabolic inhomogeneity

We repeat this numerical experiment for a solid circular
cross section with radius r1 and Young’s modulus

E(r) = e0 + e1

(
r − r1

2

)2

,

i. e., a parabolic inhomogeneity where E(0) = E(r1).
Again the parameters e0 and e1 are chosen such that the
bending stiffness has the value KB = Ēr41π/4 with Ē > 0.
An analytical solution of the boundary value problem (7)
and (8) would involve a series of Heun’s equations. Hence,
the boundary value problem is numerically solved.

0 r1
0.4

1

1.6

E/Ē

r
0.4 1 1.6

0.7

0.8

0.9

1

1.1

KS/K̄S

E(r1)/Ē

Figure 5: Shear stiffness of a circle with parabolic inhomogeneity.
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The results are shown in Fig. 5, where KS is again
normalized with respect to K̄S from (22). Like in the
previous example, transferring stiffness from the surface
towards the core of the cross section increases the shear
stiffness. However, the sensitivity of KS/K̄S with respect
to E(r1)/Ē is now smaller because the center (r = 0) is
forced to have the same Young’s modulus as the surface.

4.10. Annulus with linear inhomogeneity

Consider an annular cross section with the inner radius
r0, the outer radius r1 = 2r0, and Young’s modulus

E(r) = e0 + e1r,

where the parameters e0 and e1 are tuned such that the
bending stiffness has always the value KB = Ē(r41−r40)π/4
with Ē > 0. The numerically obtained solution for this
scenario is shown in Fig. 6, where KS is normalized with
respect to

K̄S =
3(r21 − r20)πĒ(1 + ν)(1 +m2)2

(1 +m2)2(7 + 14ν + 8ν2) + 4m2(5 + 10ν + 4ν2)
(23)

with m = r0/r1 = 1/2.

r0 = 1/2r1 r1

0.2

1

1.8

E/Ē

r
0.5 1 1.5

0.8

0.9

1

1.1

KS/K̄S

E(r1)/Ē

Figure 6: Shear stiffness of an annulus with linear inhomogeneity.

The principal observation that transferring stiffness
from the outer surface towards the inner surface (towards
the core) increases the shear stiffness is in line with the
previous two examples. A comparison of Fig. 4 and
Fig. 6 shows that the sensitivity of KS/K̄S with respect
to E(r1)/Ē is now smaller. We may conceive of the hol-
low cross sections as a solid one having a core with zero
stiffness.

4.11. Annulus with parabolic inhomogeneity

At first sight, it may seem uninteresting to repeat the
previous numerical exercise also for an annular cross sec-
tion with a quadratically distributed Young’s modulus.
However, the following will reveal that there is a qualita-
tive difference compared to the previous three examples.
Consider an annular cross section with the inner radius r0,
the outer radius r1 = 2r0, and Young’s modulus

E(r) = e0 + e1

(
r − r0 + r1

2

)2

,

where the parameters e0 and e1 are tuned such that KB =
Ē(r41 − r40)π/4 with Ē > 0. Fig. 7 shows the numerically
obtained value KS normalized with respect to K̄S from
(23).

r0 = 1/2r1 r1
0.4

1

1.6

E/Ē

r
0.4 1 1.6

0.99

0.995

1

1.005

KS/K̄S

E(r1)/Ē

Figure 7: Shear stiffness of an annulus with parabolic inhomogeneity.

In contrast to the previous results, KS/K̄S is now in-
creasing for growing values of E(r1)/Ē. Fig. 7 indicates
only a weak dependence but this is merely a question of
the ratio m = r0/r1. For decreasing m, the curve in the
right plot of Fig. 7 rotates clockwise. For increasing m, it
rotates moderately counterclockwise. Therefore, the shear
stiffness of (thin) annular cross sections increases if stiff-
ness is symmetrically transferred towards the near-surface
region. This result may also be interesting as regards
sandwich structures of circular shells, where layers with
larger Young’s modulus are typically arranged closer to
the surfaces of the beam, whereas softer material, e. g.,
low-density foam, is concentrated in the core.
Generally, the slope of KS/K̄S will remain rather small,

especially if m approaches its maximum value 1. We may
conclude that for thin circular shells the distribution of
E(r) has a smaller influence on both the bending and the
shear stiffness than for thick shells and solid cross sections.

4.12. Annulus with thin wall

Consider an annular beam with the mean radius r > 0
and a thin wall that has the thickness t ≪ r. Based on (7)
and (8a), it is easy to show that in this case

B = −3r2 (24)

and thus

KS =
AE

4(1 + ν)
(25)

with the cross sectional area A = 2rtπ. KS from (25)
is identical to the result of Ligarò and Barsotti (2012)
and corresponds to the lower bound given by Mentrasti
(2012) for thin-walled circular cross sections. The stress
field according to (5) with B from (24) is equivalent to the
standard textbook result in form of Jourawski’s formula
(Jourawski, 1856; Beer et al., 2011).

5. Conclusions

The original results and findings of this work are the
following:
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1. A 3D flexure problem of a beam with a circular
cross section and arbitrarily radially inhomogeneous
Young’s modulus reduces in the most general case to
a 1D linear multi-point boundary value problem. Its
exact solution is straightforward.

2. Based on this solution, a simple general algorithm
for computing the energy-consistent shear stiffness of
such cross sections has been proposed. Closed-form
analytical expressions for the shear stiffness are avail-
able for layered cross sections where Young’s modulus
of each layer is a power or an exponential function of
the radius.

3. The shear stiffness of circular cross sections with ra-
dially inhomogeneous Young’s modulus has the same
characteristic form that was found by Renton (1991,
1997) for homogeneous cross sections. A plausible
conjecture is that functionally graded non-circular
cross sections also have this characteristic form.

4. For radially inhomogeneous circular cross sections
with equal bending stiffness, the shear stiffness in-
creases if stiffness is transferred from the outer sur-
face towards the core. For thin annular cross sections
of equal bending stiffness, the shear stiffness can also
be raised by simultaneously increasing Young’s mod-
ulus at the inner and the outer surface. However, this
effect is weak.

5. For thin circular shells, the influence of the distri-
bution of Young’s modulus on the shear stiffness is
smaller than for thick shells and solid cross sections.
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Ligarò, S.S., Barsotti, R., 2012. Shear deformations in inflated cylin-
drical beams: An old model revisited. Thin-Walled Structures 60,
137–144.

Liu, C.W., Taciroglu, E., 2008. A semi-analytic meshfree method for
Almansi-Michell problems of piezoelectric cylinders. International
Journal of Solids and Structures 45 (9), 2379–2398.

Love, A.E.H., 1944. A Treatise on the Mathematical Theory of Elas-
ticity, 4th Edition. Dover Books on Engineering and Engineering
Physics. Dover, New York.

Madabhusi-Raman, P., Davalos, J.F., 1996. Static shear correction
factor for laminated rectangular beams. Composites Part B: En-
gineering 27 (3-4), 285–293.

Mentrasti, L., 2012. Bilateral bounds for the shear and torsion
factors: comments on elementary derivations. Acta Mechanica

11

Post-print version of the article: A. Steinboeck, A. Kugi, and H. Mang, “Energy-consistent shear coefficients for beams with circular cross
sections and radially inhomogeneous materials”, International Journal of Solids and Structures, vol. 50, no. 11-12, pp. 1859–1868, 2013.
doi: 10.1016/j.ijsolstr.2013.01.030
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.ijsolstr.2013.01.030


223 (4), 721–733.
Noor, A.K., Peters, J.M., 1989. Posteriori estimates for shear correc-

tion factors in multilayered composite cylinders. Journal of Engi-
neering Mechanics 115 (6), 1225–1244.

Pai, P.F., Schulz, M.J., 1999. Shear correction factors and an energy-
consistent beam theory. International Journal of Solids and Struc-
tures 36 (10), 1523–1540.

Pilkey, W.D., 2002. Analysis and Design of Elastic Beams: Compu-
tational Methods. John Wiley & Sons, New York.

Reddy, J.N., 2011. Microstructure-dependent couple stress theo-
ries of functionally graded beams. Journal of the Mechanics and
Physics of Solids 59 (11), 2382–2399.

Reissner, E., 1950. On a variational theorem in elasticity. Journal of
Mathematical Physics 29 (1), 90–95.

Renton, J.D., 1991. Generalized beam theory applied to shear stiff-
ness. International Journal of Solids and Structures 27 (15), 1955–
1967.

Renton, J.D., 1997. A note on the form of the shear coefficient. In-
ternational Journal of Solids and Structures 34 (14), 1681–1685.

Schramm, U., Kitis, L., Kang, W., Pilkey, W.D., 1994. On the shear
deformation coefficient in beam theory. Finite Elements in Anal-
ysis and Design 16 (2), 141–162.

Sokolnikoff, I.S., 1956. Mathematical Theory of Elasticity. McGraw-
Hill, New York.

Stephen, N.G., 1980. Timoshenko’s shear coefficient from a beam
subjected to gravity loading. Journal of Applied Mechanics 47 (1),
121–127.

Stephen, N.G., 2001. Discussion: Shear coefficients for Timoshenko
beam theory. Journal of Applied Mechanics 68 (6), 959–961.

Stephen, N.G., Levinson, M., 1979. A second order beam theory.
Journal of Sound and Vibration 67 (3), 293–305.

Sternberg, E., Knowles, J. K., 1966. Minimum energy characteriza-
tions of Saint-Venant’s solution to the relaxed Saint-Venant prob-
lem. Archive for Rational Mechanics and Analysis 21 (2), 89–107.

Stoer, J., Bulirsch, R., 2002. Introduction to numerical analysis, 3rd

Edition. No. 12 in Texts in Applied Mathematics. Springer-Verlag,
New York, Berlin.

Timoshenko, S.P., 1921. On the correction for shear of the differential
equation for transverse vibrations of prismatic bars. Philosophical
Magazine 41 (245), 744–746.

Timoshenko, S.P., 1922. On the transverse vibrations of bars of uni-
form cross-section. Philosophical Magazine 43, 125–131.
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Appendix

We derive the expression (12) for the shear stiffness KS .
Setting (10) equal to (11) and using (4) and (5) yields

KS = −4K2
B(1 + ν)

πD

with the abbreviation

(A.1)
D = −1

8

∫ rN

r0

E(r)r
(
((1− 2ν)r2 + (3 + 2ν)B(r))

2

+ (3 + 2ν)2(r2 +B′(r)r +B(r))2
)
dr.

We will now show that D is indeed the denominator of
(12). Rearranging some terms in (A.1) gives

(A.2)
D =

∫ rN

r0

E(r)r3
(
(1 + 2ν)r2 +

(
3 + 6ν

+
8

3
ν2

)
B(r)

)
dr − (3 + 2ν)2

8
R

with the abbreviation

R =

∫ rN

r0

E(r)r
(
2r4 + 2B′(r)r3 + (B′(r))2r2

+
16

3
B(r)r2 + 2B′(r)B(r)r + 2B2(r)

)
dr

=

∫ rN

r0

E(r)r3
(2
3
r2 +

2

3
B′(r)r + (B′(r))2 + 2B(r)

)
dr

+

∫ rN

r0

2E(r)r
(2
3
r2 +B(r)

)
(r2 +B′(r)r +B(r))dr.

Integration by parts of the last integral and consideration
of (8a) for both r0 and rN (hollow cross section) or consid-
eration of r0 = 0 and (8a) only for rN (solid cross section)
yields

R =

∫ rN

r0

E(r)r3
(2
3
r2 +

2

3
B′(r)r + (B′(r))2 + 2B(r)

)
dr

+
[
E(r)r2

(1
3
r2 +B(r)

)
(r2 +B′(r)r +B(r))

]rN
r0︸ ︷︷ ︸

= 0

−
∫ rN

r0

r2
(1
3
r2 +B(r)

)
{E′(r)(r2 +B′(r)r

+B(r)) + E(r)(2r + 2B′(r) +B′′(r)r)}
+ E(r)B′(r)r2(r2 +B′(r)r +B(r))dr.

Substitution of (7) into the curly brackets gives

R =

∫ rN

r0

E(r)r3
(2
3
r2 +

2

3
B′(r)r + (B′(r))2 + 2B(r)

)
dr

−
∫ rN

r0

r2
(1
3
r2 +B(r)

)
{E(r)(2r −B′(r))}

+ E(r)B′(r)r2(r2 +B′(r)r +B(r))dr

= 0.

Using this result in (A.2) concludes the derivation of (12).
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