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In this study, a sampled-data nonlinear model predictive control scheme is developed. The control algo-
rithm uses a prediction horizon with variable length, a terminal constraint set, and a feedback controller
defined on this set. Following a suboptimal solution strategy, a defined number of steps of an itera-
tive optimization routine improve the current input trajectory at each sampling point. The value of the
objective function monotonically decreases and the state converges to a target set. A discrete-time for-
mulation of the algorithm and a discrete-time design model ensure high computational efficiency and
avoid an ad-hoc quasi-continuous implementation. This design technique for a fast sampled-data non-
linear model predictive control algorithm is the main contribution of the paper. Based on a benchmark
control problem, the performance of the developed control algorithm is assessed against state-of-the-art
nonlinear model predictive control methods available in the literature. This assessment demonstrates
that the developed control algorithm stabilizes the system with very low computational effort. Hence,
the algorithm is suitable for real-time control of fast dynamical systems.

Keywords: Nonlinear model predictive control, receding horizon control, real-time optimization,
sampled-data control, dynamic optimization

1. Introduction

High computational load is still a challenge for real-time nonlinear model predictive control
(NMPC) of fast dynamical systems. There are two strategies of overcoming this problem. One
can use powerful hardware (which may not yet be available at cost-effective prices). Alternatively,
one can improve the controller software to reduce the computational effort. One common strategy
to improve the computational requirements of NMPC is to compute approximate solutions of the
dynamic optimization problem. Such algorithmic strategies (e.g., Diehl et al., 2011; Gros et al.,
2016; Zanelli et al., 2016) are typically referred to as suboptimal NMPC techniques.
Given the complexity of solving nonlinear dynamic optimization problems in real-time, as re-

quired in NMPC, suboptimal strategies form the basis of virtually all existing NMPC techniques.
In (Michalska and Mayne, 1993), a dual-mode receding horizon controller (RHC) with a terminal
constraint set is proposed. As soon as the state trajectory enters this set, a continuous-time linear
feedback control law is used and the RHC is switched off. Michalska and Mayne (1993) were among
the first to recognize that the use of a terminal constraint set permits a suboptimal solution of the
corresponding optimization problem.
A real-time NMPC scheme for discrete-time systems is presented in (Diehl et al., 2005). In this

technique, the computational load is minimized by performing just a single Newton-type iteration

∗Corresponding author: andreas.steinboeck@tuwien.ac.at

Post-print version of the article: A. Steinboeck, M. Guay, and A. Kugi, “A design technique for fast sampled-data nonlinear model predictive
control with convergence and stability results”, International Journal of Control, vol. 93, no. 1, pp. 81–97, 2020. doi: 10.1080/00207179.
2017.1346299
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1080/00207179.2017.1346299
https://doi.org/10.1080/00207179.2017.1346299


July 6, 2017 International Journal of Control A26

at each sampling point. Nominal stability of the scheme applied to discrete-time systems can be
proven based on the assumption that the disturbance of the optimization routine due to the shift of
the receding horizon is sufficiently small. Then, the objective function exhibits the descend property
required by Lyapunov stability theory. To ensure that this disturbance is small for fast systems,
one has to rely on short sampling times and hence, a large number of predicted input values are
required in the dynamic optimization problem. The similarities and differences of the method and
linear MPC as well as details of the implementation like discretization methods are discussed in
(Gros et al., 2016).
Zanelli et al. (2016) proposed a discrete-time NMPC scheme that is suboptimal in the sense that

the approximation based on a linear time-invariant system representation is (numerically exactly)
solved rather than the original nonlinear optimization problem. Nominal local stability of the
control scheme is proven and the values of the objective function evaluated with both the optimal
and the suboptimal (approximate) solution are compared.
In (Nešić and Grüne, 2006), an unconstrained MPC is used to minimize the mismatch between

the solutions of a sampled-data controlled system and a continuous-time closed-loop reference
system. The approach requires a stabilizing continuous-time feedback control law to be known for
the whole state space.
For a linear time-invariant discrete-time system with polytopic input and state constraints,

Zeilinger et al. (2011) developed a suboptimal MPC strategy that combines ideas from explicit
MPC and online optimization. A piecewise affine approximation of the optimal solution is com-
puted offline, stored, and then used as warm-start solution of an online executed active set linear
programming procedure. Zeilinger et al. (2011) also analyzed the trade-off between the accuracy
of the piecewise affine approximation calculated offline and the online computational effort.
Adetola and Guay (2010) proposed a combined real-time optimization and MPC system to sta-

bilize a constrained nonlinear system with unknown parameters. These parameters are found by
an adaptive estimation technique. An optimum setpoint in terms of an economic objective func-
tion is computed by extremum seeking using barrier functions to incorporate state constraints. To
stabilize the system at the (continuously) optimized setpoint, a nonlinear optimization problem is
solved in an MPC framework. The method shows advantages in terms of robustness but entails a
high computational effort.
A real-time NMPC framework was developed in (DeHaan and Guay, 2007) for continuous-time

systems using a terminal constraint set with a stabilizing feedback controller and a suboptimal so-
lution of the optimization problem was considered. With an extra differential equation, the param-
eters defining the system input are ensured to evolve along a direction that decreases the objective
value. The descent direction of the objective function is computed using sensitivity equations.
Feller and Ebenbauer (2013) proposed a continuous-time linear MPC method with convex bar-

rier functions (cf. Wills and Heath, 2004) and ellipsoidal terminal constraint sets. Similar to
(DeHaan and Guay, 2007), parameters that define the piecewise constant system input evolve
according to an extra differential equation that ensures a continuous decrease of the objective
function based on a Newton-type descent direction. Feller and Ebenbauer (2014a) showed that
using the same idea with polytopic terminal constraint sets can considerably extend the region
of attraction of the controller. The problem of (intermediate) infeasibility of the continuous-time
trajectory between two sampling points of the discrete-time system is solved by means of relaxed
barrier functions in (Feller and Ebenbauer, 2014b).
Since barrier functions can shift the position of the optimal solution of the underlying opti-

mization problem, gradient-recentered barrier functions are used in (DeHaan and Guay, 2007;
Feller and Ebenbauer, 2013, 2014a,b; Wills and Heath, 2004). In contrast, Feller and Ebenbauer
(2015) recenter their barrier functions by multiplication with weighting factors that are computed
by a tailored quadratic program.
A continuous-time suboptimal NMPC scheme without any terminal constraints was designed by

Graichen and Kugi (2010). They computed the minimum number of iterations of the underlying
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optimization algorithm required to ensure exponential stability. In (Graichen, 2012b), this idea was
used in an iterative optimization algorithm for affine-input systems without state constraints. In
each iteration, the optimal control is computed based on Pontryagin’s maximum principle. The
same strategy was used in (Graichen, 2012a) to control a general nonlinear system with input box
constraints and without state constraints.
An unconstrained suboptimal discrete-time NMPC scheme was proposed in (Grüne and Pannek,

2010). To ensure stability based on a Lyapunov-type inequality, a customized termination criterion
of the optimization algorithm was used. However, the number of necessary iterations is not known
a priori. It is worth noting that the studies (Graichen and Kugi, 2010) and (Grüne and Pannek,
2010) are among the first to provide the stability properties of suboptimal NMPC without terminal
constraints.
Worthmann et al. (2014) analyzed the influence of the sampling time in a sampled-data NMPC

scheme without terminal constraints and terminal costs on stability and performance of the closed-
loop system. Based on the NMPC objective function value and the theoretically achievable objective
function value, the degree of suboptimality entailed by sampling is analyzed. The results allow the
determination of a minimum required sampling rate to reach a defined performance bound, i. e., a
trade-off between sampling time and performance can be specified.
In the literature, so-called fast NMPC is often confused with suboptimal NMPC. The

studies cited above focus on the latter. Fast NMPC techniques (like that presented in
(Biegler et al., 2015; Zavala et al., 2008)) are tailored optimization algorithms that are ap-
plied to the solution of NMPC-inspired optimization problems. The techniques proposed in
(Biegler et al., 2015; Zavala et al., 2008) use intermittent full solutions of a dynamic optimization
problem along with fast sensitivity updates. Biegler et al. (2015) solve interior-point nonlinear pro-
gramming problems based on predicted system states and perform a fast sensitivity update of the
solution based on a local linearization and the estimated actual system state at the respective
sampling point. If the optimal solution of the nonlinear programming problem cannot be com-
puted within one sampling interval, multi-step NMPC strategies (Yang and Biegler, 2013) can be
used, where sensitivity updates are also performed at intermediate sampling points when the op-
timization algorithm is still running. Generally, such fast NMPC techniques can be classified as
control-inspired optimization approaches. It is clear that tailored powerful dynamic optimization
code can provide advantages in terms of computational effort if optimality is required.
Given the extensive literature on both continuous-time and discrete-time MPC algorithms, it is

interesting that little has been published on suboptimal real-time NMPC in a sampled-data context.
We believe that this category of MPC algorithms is highly relevant in practical applications. This
motivates our work and this was also the motivation for DeHaan and Guay (2007), who formulated
a continuous-time control algorithm. However, any computer implementation requires some sort
of time-discretization and allows thus only a quasi-continuous realization of the algorithm. In this
article, we explore how the idea of DeHaan and Guay (2007) can be algorithmically extended and
improved using a systematic discrete-time design. In Section 7, we summarize why this algorithmic
extension from continuous-time to discrete-time control design is not obvious and why it is beneficial
for control performance and computational demands. The main contributions of this work are as
follows:

• The developed design method systematically considers the discrete-time character of the
control concept. This concerns a tailored input parametrization, a terminal set feedback
controller (sampled-data LQR design), the prediction model, and the NMPC calculations
themselves.

• Compared to existing continuous-time approaches, the proposed discrete-time algorithm ex-
hibits benign numerical properties, requires less restrictive assumptions, and entails a signif-
icantly reduced computational effort.

• The low computational effort is achieved mainly because of a tailored low-dimensional prob-
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lem formulation, an efficient gradient calculation, and the use of a suboptimal solution strat-
egy of the corresponding optimization problem.

• The low computational effort, which is verified in a benchmark example problem, renders the
method suitable for real-time NMPC of systems with fast dynamics.

The paper is organized as follows: In Section 2, we develop a sampled-data nonlinear RHC
algorithm with (variable) finite horizon length and a terminal constraint set. We start with a
description of the considered plant and control problem, describe control update functions, and
finally formulate a discrete-time problem statement. In Section 3, we describe fundamental update
functions, where the time grid defining the system input changes. Incremental update functions,
which do not change this time grid and which follow a suboptimal solution strategy, are outlined
in Section 4. In Section 5, we describe the design of a feedback control law for extending the
prediction horizon into the future. The proposed control algorithm is validated and compared to
existing NMPC approaches based on a benchmark example problem in Section 6. Conclusions are
drawn in Section 7. In Appendix A, we describe the required assumptions of the controller and
discuss the convergence properties of the control scheme. In Appendix B, we propose an alternative
update strategy for the time grid defining the system input.
In this paper, the following notations are used: For an arbitrary set S, S̊ is the open interior of

S and ∂S is its boundary. Whenever confusion is ruled out, we will omit the argument t denoting
the time variable.

2. Receding horizon control considered as a sampled-data scheme

In this section, we develop a general NMPC formulation with variable horizon length and a terminal
constraint set.
Similar to Chen and Allgöwer (1998b), we utilize a feedback control law defined on the terminal

constraint set as a vehicle for proving closed-loop stability and for extending the prediction horizon
into the future.

2.1 Continuous-time problem statement

Consider the nonlinear continuous-time dynamical system

ẋ(t) = f(x(t),u(t)) ∀ t ≥ 0 (1)

with the state

x ∈ X ⊆ Rn, (2a)

the input

u ∈ U ⊆ Rm, (2b)

and the initial state x(0) = x0 ∈ X̊ . The states and inputs are constrained to the closed and simply

connected sets X and U , respectively, with nonempty interiors containing the origin, i. e., {0} ⊂ X̊
and {0} ⊂ Ů . We assume that f : X × U → Rn is sufficiently often differentiable for the methods
used in this paper and satisfies 0 = f(0,0).

The objective is to stabilize the system to a closed and simply connected target set Xd ⊂ X̊ .
The target set Xd satisfies 0 ∈ Xd and, depending on the problem, may be Xd = {0}. To solve this
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control problem, we first introduce an additional closed and simply connected set Xf satisfying
Xd ⊂ Xf ⊆ X . Xf is also referred to as terminal set (Alamir, 2006).
We introduce a time grid T0, T1, . . . , TN for a horizon [T0, TN ). If not stated otherwise, TN < ∞

and N < ∞. This time grid may change over time and may have non-uniform step sizes. Based on
this time grid, the continuous-time input u(t) is defined over the horizon [T0, TN ) as follows

u(t) = w̄(t, Tk−1, Tk,ϑk)

∀ t ∈ [Tk−1, Tk), k = 1, 2, . . . , N
(3)

with w̄ : R×R×R×Rnϑ → Rm and parameters assembled in the vectors ϑk ∈ Rnϑ (k = 1, 2, . . . , N).
We assume that w̄ is a vector-valued function that is sufficiently often differentiable for the methods
used in this paper.
The main motivation for the parameterization (3) is to have a low-dimensional discrete-time

input definition, which is tailored to the respective application and useful for the control problem.
The choice of the time grid T0, T1, . . . , TN directly influences the dimension of the control problem
associated with the horizon [T0, TN ). This choice requires a compromise between the achievable
control accuracy and the computational complexity.
We assume that the parameterization of u(t) can always be mapped to a finer time grid without

loss of accuracy. That is, if the interval [Tk−1, Tk) is split into subintervals [Tk−1, Tk′) and [Tk′ , Tk)
with some Tk′ that satisfies Tk−1 < Tk′ < Tk, there always exist new parameter vectors ϑ′

k and ϑ′
k′

so that

w̄(t, Tk−1, Tk,ϑk)

=

{
w̄(t, Tk−1, Tk′ ,ϑ′

k′) if t ∈ [Tk−1, Tk′)

w̄(t, Tk′ , Tk,ϑ
′
k) if t ∈ [Tk′ , Tk)

.

For a compact notation, we consider the vectors T = [T0, T1, . . . , TN ] and θ = [ϑT
1 , . . . ,ϑ

T
N ]T , and

provide a joint definition of w̄ from (3) for the whole horizon [T0, TN ) in the form

u(t) = w(t,T ,θ) ∀ t ∈ [T0, TN ). (4)

Given this input parameterization, the search space of the optimal control problem is finite-
dimensional. To ensure satisfaction of (2b), we introduce the closed set

T (T ) = {θ ∈ RNnϑ |w(t,T ,θ) ∈ U ∀ t ∈ [T0, TN )}.

That is, the set of admissible parameterized continuous-time inputs w(t,T ,θ) is converted into a
set T (T ) of admissible input parameters θ for a time grid defined by T . We denote by x̂t(τ) the
trajectory of (1) in the horizon τ ∈ [t, TN ] with initial condition x̂t(t) = x(t) and the input u(τ).
In many cases, x̂t(τ) will be a predicted trajectory. If the input is given by (4), we shall write

x̂T ,θ
t (τ).
To solve the stated control problem, we pose the objective function

J(x̂t( · ),u( · ), t,T ) = V (x̂t(TN )) +

∫ TN

t
v(x̂t(τ),u(τ))dτ (5)

defined on some horizon [t, TN ] and subject to (2b). The design of J and the cost functions V and v
depends on the primary control objective of reaching the target set Xd. However, it may also reflect
some secondary control objectives, like minimum consumption of resources. We assume that V and
v are barrier functions, which ensure x̂t(TN ) ∈ X̊f and x̂t(τ) ∈ X̊ ∀ τ ∈ [t, TN ], respectively (see
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also Appendix A.1). These assumptions and terminal feedback control laws that will be introduced
in Section 3.1 facilitate a proof of the closed-loop stability in the form of a descent condition of J
(Lyapunov-type inequality), which is shown in Appendix A. If T were chosen beforehand, θ could
be found by solving the optimal control problem

min
θ∈T (T )

J(x̂T ,θ
t ( · ),w( · ,T ,θ), t,T ). (6)

Let us assume that the functions V : Xf → R≥0, v : X×U → R≥0, and w : R×RN+1×RNnϑ → Rm

are sufficiently often differentiable for the method used for solving (6). For instance, they have to
belong to the class C1 for gradient based iterative search methods or to the class C2 if the Hessian
is also used.

2.2 Control update function

The input defined by the pair (T ,θ) can be used in the interval [T0, TN ). That is, a new set of
parameters (T ,θ) has to be found at least at the point t = TN . However, as usual in RHC, a set
of input parameters is typically only used during a small control horizon and the update of (T ,θ)
occurs much earlier, say at the point t = τi ∈ [T0, TN ). The update times τi define a time grid
τ0 = 0, τ1, τ2, . . . with the step sizes ∆τi = τi+1 − τi, which may be non-uniform. The step size is
required to satisfy ∆τi > ∆τmin with some strictly positive constant ∆τmin > 0. This requirement
implies limi→∞ τi = ∞. By Ti+1 = [Ti+1|0, Ti+1|1, . . . , Ti+1|Ni+1

] and θi+1 = [ϑT
i+1|1, . . . ,ϑ

T
i+1|Ni+1

]T ,

we denote the parameters generated at τi and used in the control horizon [τi, τi+1). Let an update
of the input at τi be done by the control update function

(Ti+1,θi+1) = U(τi,x(τi), (Ti,θi)).

In many cases, the computation of U involves the solution of an optimal control problem, in which
case the approach can be classified as NMPC. Note that U may also involve the suboptimal solution
of an optimal control problem.
Appendix A.2 describes properties of the recurrently applied function U that are sufficient to

achieve the stated control objective and to ensure closed-loop stability. At some update time
τi, finding an update function U that has these properties is trivial if Ti+1|Ni+1

= Ti|Ni
or if

Ti+1|Ni+1
< Ti|Ni

and x̂Ti,θi
τi−1 (Ti+1|Ni+1

) ∈ X̊f . In these special cases, the previous solution could be
used at the current step. Nevertheless, even in these cases, the available computational resources
should be utilized to search for a solution of the optimal control problem that is better than the
previous solution. This will improve the performance of the closed-loop control system and will be
the focus of Section 4. The essential difficulty in the design of U occurs when Ti+1|Ni+1

> Ti|Ni
,

i. e., when the prediction horizon grows. This situation will be treated in detail in Section 3. We
will call an update function incremental if Ti+1 = Ti and fundamental otherwise. Fundamental
and incremental update functions will thus be discussed in Sections 3 and 4, respectively.
In the control update function U , a feasible and in many cases very reasonable initial guess for

those components of Ti+1 and θi+1 that concern the (overlapping) interval [τi,min{Ti|Ni
, Ti+1|Ni+1

})
is found by adopting the previous control w(t,Ti,θi). According to the assumptions concerning the
parametrization of u(t) stipulated in Section 2.1, this can always be done exactly, i. e., without any
approximation. With this consideration in mind, we will suggest a set of possible update functions
in the following sections. At any update time τi, they can be combined at will as long as

Ti+1|0 ≤ τi < τi+1 < Ti+1|Ni+1
(7)

is satisfied. For instance, an update function U can also be repeated in the form (Ti+1,θi+1) =

6
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U(τi,x(τi),U(τi,x(τi), (Ti,θi))) or two update functions U and U ′ can be concatenated so that
(Ti+1,θi+1) = U ′(τi,x(τi),U(τi,x(τi), (Ti,θi))) at the time τi.

2.3 Discrete-time problem statement

The methodology proposed in this paper is a sampled-data scheme in two respects. First, the
update function U , which can be interpreted as a control law, is executed at discrete times τi.

Second, in a computer implementation, the calculation of x̂T ,θ
t , J(x̂T ,θ

t ( · ),w( · ,T ,θ), t,T ) from
(5), and the derivatives of J inevitably requires a discrete-time formulation. Such calculations may
be needed in U to ensure a decrease of J required for closed-loop stability (cf. Appendix A.2).
Because these calculations have to be done in real time, i. e., with high computational efficiency,
we revisit the problem statement from Section 2.1 for the sampled-data case.
Consider a time grid with grid points tk, k = 0, 1, 2, . . .. This grid is independent of the generally

coarser grid defined by T . The discrete-time version of (1) with u(t) from (4) can be written in
the form

0 = Fk(xk+1,xk,T ,θ), (8)

where xk ∈ Rn is the discrete-time approximation of x(tk). Fk : Rn×Rn×RN+1×RNnϑ → Rn can
be chosen from any (explicit or implicit) integration scheme for ordinary differential equations, e. g.,
Fk can be a Runge-Kutta method (Hairer et al., 1993; Stoer and Bulirsch, 2002). We assume that
the discrete-time approximation (8) of (1) is sufficiently accurate in the sense of (Nešić and Teel,
2004; Nešić et al., 1999), i. e., the sampling periods tk+1 − tk are sufficiently small to satisfy the
conditions given in (Nešić and Teel, 2004; Nešić et al., 1999). This assumption implies that the
closed-loop stability properties obtained for (8) are also valid for the continuous-time plant (1).
Consider that t = tk0

and TN = tk1
, i. e., the considered receding horizon is [tk0

, tk1
]. We denote

by (x̂k0,k) the discrete-time trajectory of (8) during the receding horizon [tk0
, tk1

] with the initial
condition x̂k0,k0

= xk0
. Note that (x̂k0,k) is a series of discrete-time values whereas x̂k0,k denotes a

single element of this series associated with the time tk. If the input is defined by the pair T and

θ, we shall write (x̂T ,θ
k0,k

).

The integral in the objective function (5) is approximated by some numerical quadrature formula
(Stoer and Bulirsch, 2002), which will typically use the states x̂k0,k and the sampled input values
w(tk,T ,θ). We can thus approximate (5) in the form

Jd((x̂k0,k),T ,θ, k0, k1)

= V (x̂k0,k1
) +

k1−1∑

k=k0

vk(x̂k0,k+1, x̂k0,k,T ,θ),
(9)

with the time-dependent objective function vk : Rn × Rn × RN+1 × RNnϑ → R≥0. For instance, if
the trapezoidal rule is used, vk reads as

vk(x̂k0,k+1, x̂k0,k,T ,θ) =
tk+1 − tk

2
(v(x̂k0,k+1,w(tk+1,T ,θ)) + v(x̂k0,k,w(tk,T ,θ))) .

Finally, (6) can be rewritten in the discrete-time form

min
θ∈T (T )

Jd((x̂
T ,θ
k0,k

),T ,θ, k0, k1) (10)
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3. Fundamental update function

We consider fundamental updates U that do not change w(t,Ti,θi) ∀ t ∈ [τi,min{Ti|Ni
, Ti+1|Ni+1

}).
That is, the previous control is preserved in the overlapping time interval.

3.1 Basic types of fundamental updates

We suggest three basic types of fundamental updates:

• The update function Delete shortens the horizon by one elapsed time interval, i. e.,

Ni+1 = Ni − 1

Ti+1|j = Ti|j+1 ∀ j = 0, . . . , Ni − 1

ϑi+1|j = ϑi|j+1 ∀ j = 1, . . . , Ni − 1.

Clearly, this update function can only be applied if τi ≥ Ti|1. By full analogy, a similar update
function may be devised that shortens the horizon at its end.

• The update function Divide splits a time interval (Ti,k−1, Ti,k) with 1 ≤ k ≤ Ni into two
intervals, i. e.,

Ni+1 = Ni + 1

Ti+1|j = Ti|j ∀ j = 0, . . . , k − 1

Ti+1|j = Ti|j−1 ∀ j = k + 1, . . . , Ni + 1

ϑi+1|j = ϑi|j ∀ j = 1, . . . , k − 1

ϑi+1|j = ϑi|j−1 ∀ j = k + 2, . . . , Ni + 1.

The new grid point Ti+1|k satisfying Ti|k−1 < Ti+1|k < Ti|k can be chosen at will. The
parameter vectors ϑi+1|k and ϑi+1,k+1 have to be chosen so that

w̄(t, Ti|k−1, Ti|k,ϑi|k)

=





w̄(t, Ti+1|k−1, Ti+1|k,ϑi+1|k)
if t ∈ [Ti+1|k−1, Ti+1|k)

w̄(t, Ti+1|k, Ti+1|k+1,ϑi+1|k+1)

if t ∈ [Ti+1|k, Ti+1|k+1)

holds exactly. Based on the assumptions stated in Section 2.1, this is always possible.
• The update function Append enlarges the horizon by appending one time interval in the

form

Ni+1 = Ni + 1

Ti+1|j = Ti|j ∀ j = 0, . . . , Ni

Ti+1|Ni+1
= Ti|Ni

+ κT

ϑi+1|j = ϑi|j ∀ j = 1, . . . , Ni

ϑi+1|Ni+1
= κ(x̂Ti,θi

τi (Ti|Ni
)).

Here, κ : X̊f → Rnϑ is a state feedback function applied on a uniform time grid with the
sampling period κT ∈ R≥0. This function must decrease J to ensure closed-loop stability (cf.
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Appendix A.2). Extending the theory and results presented in this paper to cases where κT
is also a state feedback function, i. e., κT : X̊f → R≥0 is straightforward.

Fundamental update functions that are more sophisticated than those given here are possible but
not needed in this paper. For the update functions Delete and Divide, the choice of θi+1 is unique
and straightforward and it is easy to show that they decrease J or keep it constant as required
for closed-loop stability (cf. Appendix A.2). This is not the case for the update function Append,
where the choice of κT and the synthesis of κ are crucial design decisions. They will be addressed
in Section 5.

3.2 Update strategy for the time grid

The following update strategy for the time grid defined by Ti is a combination of the proposed
basic fundamental updates. Consider that fundamental updates are made at τi = Ti|1 and that

∆Ti|j = Ti|j+1 − Ti|j ∀ j = 0, . . . , Ni − 1.

We use a constant value ∆Ti|j = ∆T = κT /NT with some integer NT ≥ 1. Moreover, we allow
that Ni varies between Nmin and Nmin+NT −1. At any update point τi = Ti|1, we apply the update
Delete. If additionally Ni = Nmin, we apply also the updates Append and in case of NT > 1 also
Divide. Figure 1 shows an example of prediction horizons (1, 2, 3, . . .) generated using this strategy
with NT = 2 and Nmin = 4. For clarity of presentation, the time grid τi is given for fundamental
updates only (incremental updates are not considered).

τ0 τ1 τ2 τ3 τ4 τ5

T1|0 T1|1 T1|N1

T2|0 T2|1 T2|N2

T3|0 T3|1 T3|N3

T4|0 T4|1 T4|N4

T5|0 T5|1 T5|N5

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

. . .
. . .

...

tHorizon

1

2

3

4

5

Fundamental update Delete, Append and Divide

Fundamental update Delete

Figure 1. Prediction horizons obtained by the update strategy for the time grid if NT = 2 and Nmin = 4 (time grid τi only
shown for fundamental updates).

In order to achieve low-dimensional optimization problems, it may be desirable in RHC concepts
to use non-uniform time grids where ∆Ti|j is small at the beginning of the horizon and larger
towards its end. An alternative update strategy for the time grid that realizes this idea is presented
in Appendix B.

4. Incremental update function

An update function U applied at some time τi = tk0
is referred to as incremental if Ti+1 = Ti,

i. e., if the time grid defining the input remains unchanged. The value θi may be improved to
θi+1. The absence of a structural change of the input parameterization allows the interpretation
of incremental updates as steps of a primal iterative optimization algorithm solving (6) or its
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discrete-time companion (10). Examples for such primal iterative solution processes are the steepest
descent method, the conjugate gradient method, the quasi-Newton method, the Gauss-Newton
method, and the Newton method (Bertsekas, 1999; Griva et al., 2009; Luenberger and Ye, 2008;
Nocedal and Wright, 2006). It is clear that the assumptions and conditions that ensure closed-loop
stability (cf. Appendix A) do not require the optimal solution of (6) or (10). Just a simple search
along a local descent direction of J or Jd suffices to strictly satisfy Lyapunov-like inequalities unless
x(τi) ∈ Xd (cf. Appendix A.2). In this respect, the proposed NMPC scheme is suboptimal, which
facilitates extremely fast computation of U and its use for real-time control of fast dynamical
systems.
In this section, an incremental update function is designed based on the discrete-time formulation

(10), i. e., a direct method is used. The incremental update function U can be a single iteration of
a dynamic programming algorithm. This iteration typically involves the computation of a search
direction s, which must be a descent direction of Jd, a decision about the step size σ along this
direction, and a projection of the result into the set T (Ti+1). If the available computation time

suffices, U can involve several of these iterations so that the decrease from Jd((x̂
Ti,θi

k0,k
),Ti,θi, k0, k1)

to Jd((x̂
Ti+1,θi+1

k0,k
),Ti+1,θi+1, k0, k1) is larger. In fact, the balance between computational effort and

improvement of Jd can be analyzed and monitored (Alamir, 2014) and the optimal number of
iterations may be determined as proposed by Alamir (2013). On a theoretical level, such an analysis
is beyond the scope of this paper. On a practical level, the influence of the number of iterations
executed at each sampling point is studied in an example problem in Section 6. The number of
iterations executed at each sampling point is a design parameter of the proposed control approach.
We use a gradient-based dynamic programming algorithm. The discrete-time problem for-

mulation from Section 2.3 facilitates an efficient analytical computation of the gradient g =

dJd((x̂
Ti,θi

k0,k
),Ti,θi, k0, k1)/dθi. Consider the Lagrangian

L = Jd((x̂k0,k),Ti,θi, k0, k1) +

k1−1∑

k=k0

λT
kFk(x̂k0,k+1, x̂k0,k,Ti,θi)

with Lagrangian multipliers (adjoint variables) λk ∈ Rn. The gradient follows in the form

g =
∂L

∂θi
(11a)

given that the equalities

∂L

∂x̂k0,k
= 0 ∀ k = k0+1, . . . , k1 (11b)

∂L

∂λk
= 0 ∀ k = k0, . . . , k1 − 1 (11c)

are satisfied. Eq. (11c) is equivalent to (8). The computation proceeds as follows: a) Compute x̂k0,k

by solving (11c) in forward direction, i. e., for k = k0, . . . , k1 − 1. b) Compute λk by solving the
linear Eqs. (11b) in backward direction, i. e., for k = k1, . . . , k0+1. c) Insert the results (x̂k0,k) and
(λk) into (11a). The matrices occurring in these computations are sparse, which should be utilized
in computer implementations. Next, the search direction is computed in the form

s = −B−1g,

where B is the Hessian or an approximation of it.
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We can now find θi+1 by searching for a minimum along the direction s. To ensure that θi+1 ∈
T (Ti+1), we use the projection function

p(T ,θ) = arg min
θ̃∈T (T )

||θ̃ − θ|| (12)

with some norm || · ||. This function returns a point from the set T (T ) which is closest to θ.

Remark 1: The projection function p from (12) constitutes an optimization problem. Existence
of its solution is guaranteed if T (T ) is non-empty. If T (T ) is a strictly convex set, the solution
of this problem is ensured to be unique. If θ ∈ T (T ), p simply returns θ. If T (T ) is defined by
box constraints, a solution of (12) is found by elementwise saturation (cf. Bazaraa et al., 2006).
Generally, there is no need for an exact (optimal) solution of (12). However, p(T ,θ) ∈ T (T ) must
be ensured.

The step size σ along the direction s is chosen by solving the 1-dimensional optimization problem

σ = arg min
σ̃∈R≥0

Jd((x̂
Ti+1,θ
k0,k

),Ti+1,θ, k0, k1) (13a)

s. t. θ = p(Ti+1,θi + σ̃s) (13b)

which is often called line search. Finally, θi+1 is computed in the form θi+1 = p(Ti+1,θi + σs).
Generally, there is no need for an exact (optimal) solution of (13).

Remark 2: In (DeHaan and Guay, 2007), incremental updates were realized by means of an ordi-
nary differential equation for θ. These updates require extra integration effort and a special Lipschitz
projection algorithm arising from nonlinear adaptive control techniques. These updates only allow
continuous changes of θ(t). If fast changes of θ(t) should be achieved, this may require steep gradi-
ents, which can render the closed-loop dynamical system stiff. The method proposed here does not
have these shortcomings because it is a true sampled-data formulation and allows arbitrarily large
discontinuous changes.

5. Feedback law for update function Append

The choice of κT and κ used in the update function Append (cf. Section 3.1) is by
no means unique. This gives freedom in its design. The value of κT and the function
κ depend on each other in the sense that they generally cannot be arbitrarily com-
bined. Based on the assumption that the Jacobian linearization of (1) is stabilizable in
Xd, we now present a constructive design method for κ, which yields appropriate objec-
tive functions V and v as a byproduct. However, other nonlinear control design methods
(see e. g., Khalil, 2002; Kristić et al., 1995; Sastry, 1999) that satisfy the requirements for closed-
loop stability (cf. Appendix A) could equally be used. If the Jacobian linearization of (1) is not
stabilizable in Xd, methods like those presented in (Chen and Allgöwer, 1998a; Fontes, 2001) may
be applied. This problem occurs for non-holonomic systems, for which tailored NMPC schemes
were developed in (Fontes et al., 2007; Worthmann et al., 2016).
We consider a piecewise constant input parameterization of the form

u(t) = w̄(t, Tk−1, Tk,ϑk) = ϑk

∀ t ∈ [Tk−1, Tk), k = 1, 2, . . . , N .
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This means that κ can be designed using a zero-order hold. We use the linear feedback law

ϑk+1 = κ(xk) = −Kxk (14)

with the constant gain K. Here, xk = x(Tk) and k is the index of the time grid Tk. Inspired by
the approach reported in (Chen and Allgöwer, 1998b) for continuous-time NMPC, we suggest a
different systematic sampled-data control design based on the locally linearized system. Consider
the Jacobian linearization

ẋ(t) = Acx(t) +Bcu(t) (15)

of (1) with Ac = ∂f/∂x|x=0,u=0, and Bc = ∂f/∂u|x=0,u=0. Its discrete-time counterpart found
by zero-order hold reads as

xk+1 = Axk +Bϑk+1

with A = exp(κTAc) and B =
∫ κT

0 exp(tAc)dtBc and is assumed to be stabilizable in Xd. Using
the steady-state LQR design method with the positive definite objective function

Ṽ (xk) =

∞∑

i=k

[
xT
k ϑT

k+1

] [ Q N
NT R

]

︸ ︷︷ ︸
= Γ

[
xk

ϑk+1

]
= xT

kPxk

and the solution P of the corresponding algebraic Riccati equation, we obtain

K = (BTPB +R)−1(BTPA+NT ). (16)

Based on the correspondence

[
−ΦT

c Γc

0 Φc

]
=

1

κT
ln

([
Φ−T Φ−TΓ
0 Φ

])
(17)

with

Φc =

[
Ac Bc

0 0

]
, Γc =

[
Qc Nc

NT
c Rc

]
, Φ =

[
A B
0 I

]

(Franklin et al., 1997; Van Loan, 1978), the equivalent objective function of the sampled-data LQR
design problem reads as

Ṽ (x(Tk)) =

∫ ∞

Tk

[
xT (t) uT (t)

]
Γc

[
x(t)
u(t)

]
dt.

In (17), ln( · ) returns the logarithm of a matrix. This operation is only defined for invertible
matrices.
The functions

Ṽ (x) = xTPx, ṽ(x,u) =
[
xT uT

]
Γc

[
x
u

]
(18)
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are reasonable starting points for choosing the objective functions V and v, respectively, in (5).
However, Ṽ and ṽ do not satisfy all requirements to ensure closed-loop stability (cf. Appendix A),
e. g., because they are neither barrier functions nor do they necessarily vanish for all (x,u) ∈ Xd×U .
Therefore Ṽ and ṽ are supplemented in the form

V (x) = C(x)(Ṽ (x) + µB(x)) (19a)

v(x,u) = C(x)(ζṽ(x,u) + ηb(x)) (19b)

with constant design parameters µ > 0, ζ ∈ (0, 1], η > 0, barrier functions B and b, and an indicator
function C. We assume that B, b, and C are sufficiently often differentiable for the methods used
in this paper. The barrier functions have to satisfy limx→∂Xf

B(x) = ∞ and limx→∂X b(x) = ∞
(DeHaan and Guay, 2007; Wills and Heath, 2004). The indicator function has to satisfy C(x) = 0
∀x ∈ Xd and ∞ > C(x) > 0 ∀x ∈ X\Xd (DeHaan and Guay, 2007). Because of these properties
of C(x), we do not require the barrier functions B(x) and b(x) to be centered.
The choice of B(x), b(x), C(x), µ, ζ, and η has to ensure that V and v from (19) satisfy conditions

that ensure closed-loop stability (cf. Appendix A). If Xd and Xf are chosen to be level sets of Ṽ , i. e.,

if there exist constants γ and β so that Xd = {x ∈ Rn | Ṽ (x) ≤ γ} and Xf = {x ∈ Rn | Ṽ (x) ≤ β},
then

C(x) = r

(
Ṽ (x)− γ

β − γ

)
(20)

with

r(ξ) =





0 if ξ ≤ 0

1 if ξ ≥ 1

3ξ2 − 2ξ3 otherwise

and

B(x) =
1

max{0, β − Ṽ (x)}
− 1

β
(21)

are reasonable formulations. Depending on X , a function analogous to B(x) can be used for b(x).
Using V and v from (19) and κ according to (14) and (16), it is plausible that the update function

Append can satisfy requirements necessary for closed-loop stability (cf. Appendix A). However, for
two reasons, it has to be tested on a case-by-case basis whether V and v from (19) and κ from (14)
and (16) indeed satisfy these requirements: First, the original objective functions (18) obtained
from the LQR design have been supplemented. Second, the controller is designed for the linearized
system (15) but used for the original nonlinear system (1). This test can be done, for instance, by
exhaustive simulation. The factors µ, η, and ζ are user-defined design parameters which may need
to be tuned for the test to be positive. The smaller the mismatch between (1) and (15), the higher
ζ can be. Since only the mismatch in the region Xf (domain of κ) is relevant, ζ also depends on
the size of Xf .
This section showed that the design of κT , κ, and the corresponding Lyapunov function essentially

influences the NMPC optimization problem, especially the objective functions V and v. Using the
LQR design approach, usually either Γ or Γc is chosen and the other one is computed based on
(17). Then P , which determines Ṽ , follows from the corresponding discrete-time algebraic Riccati
equation. In some cases, it can be useful to choose P as a diagonal matrix or even the identity
matrix. This is possible if other entries of Γ, e. g., Q, are left undetermined and then computed
based on the Riccati equation.
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6. Example problem

To demonstrate the feasibility of the proposed sampled-data NMPC design method and to com-
pare it with existing NMPC schemes, an example problem from (Chen and Allgöwer, 1998b;
DeHaan and Guay, 2007) is solved. The system

ẋ(t) =

[
0 1
1 0

]
x(t) +

1

2

[
1 0
0 −4

]
x(t)u(t) +

1

2

[
1
1

]
u(t)

with an initial state x0 = [−0.683,−0.864]T should be stabilized at the origin (Xd = {0}). The
scalar input u(t) is constrained to the set U = [−2, 2]. The state x(t) is unconstrained (X = R2).
For the proposed sampled-data NMPC, we first design a feedback control law κ(x) according to

Section 5. We use P = I, N = 0, R = 0.01, and κT = 0.5 s. This yields

Qc =

[
1.510 −0.490
−0.490 1.510

]
, Nc =

[
−0.165
−0.165

]
,

and Rc = 0.055. Moreover, we use µ = 0.003, ζ = 1, Xd = {0}, and Xf = {x ∈ Rn | Ṽ (x) ≤ 0.06}. C
and B are chosen according to (20) and (21), respectively. As the state x(t) is unconstrained, b(x)
is not needed. This concludes the definition of the objective functions V and v. Without modifying
these functions, a second sampled-data LQR-feedback control law is designed for κT = 0.1 s. For
both designs of κ(x), it can be shown by straightforward simulations that the update function
Append meets the requirements necessary for closed-loop stability (cf. Appendix A). This would
not be true if C(x) = 1 and B(x) = 0, and this shows that the controller in combination with

the objective function Ṽ (x̂t(TN )) +
∫ TN

t ṽ(x̂(τ),u(τ))dτ would not satisfy the overly restrictive
requirements stipulated in Assumption A1.5 of (DeHaan and Guay, 2007).
The time grids of the sampled-data NMPC are updated as described in Section 3.2. Incremental

updates are implemented on time grids with uniform step sizes ∆τi = ∆τ . Fundamental updates
are implemented on time grids with uniform step sizes ∆T = κT /NT . These are also the time grids
where the piecewise constant input u(t) is defined.
For the proposed sampled-data NMPC scheme, we use the objective function Jd from (9) with V

and v from (19) and a prediction horizon with a maximum length of 1.5 s. The initial solution during
the first horizon [0, T0|N0

) with T0|N0
= 1.5 s is simply u(t) = 2 and ensures that x̂0(T0|N0

) ∈ Xf . If
such an initial guess were unknown, it could be computed off-line using an optimal control problem
with the terminal constraint x̂0(T0|N0

) ∈ Xf .
For comparison, the considered example problem is solved with the following controllers:

• Sampled-data 1: sampled-data real-time NMPC scheme as proposed in this paper with single
iteration step of the dynamic programming algorithm, implemented in Matlabr

• Sampled-data 2: sampled-data real-time NMPC scheme as proposed in this paper with 2
iteration steps of the dynamic programming algorithm, implemented in Matlabr

• IPOPT: standard NMPC scheme using IPOPT (Wächter and Biegler, 2006) for solving the
optimal control problem, implemented in Python/CasADi (Andersson, 2013)

• Suboptimal SQP: real-time NMPC scheme using 2 SQP steps with warm start at each
sampling point for solving the optimal control problem, implemented in Python/CasADi
(Andersson, 2013)

• RT-3 from (DeHaan and Guay, 2007): continuous-time real-time NMPC scheme as proposed
in (DeHaan and Guay, 2007), implemented in Matlabr

The controllers IPOPT and Suboptimal SQP are implemented in Python/CasADi (Andersson,

2013). These controllers use the objective function Ṽ (x̂t(TN )) +
∫ TN

t ṽ(x̂t(τ),u(τ))dτ and a pre-
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diction horizon spanning 1.5 s. In Python/CasADi (Andersson, 2013), equality and inequality con-
straints can be directly implemented, i. e., without barrier or penalty functions. For the controllers
IPOPT and Suboptimal SQP, both the prediction model and the objective function are integrated
using the trapezoidal rule and the uniform step size ∆τ .
The controller RT-3 from (DeHaan and Guay, 2007) does not use the step size ∆τ . Moreover,

it uses the objective function J from (5) with V and v from (19). All other parameters and
formulations are equal to those of the proposed sampled-data NMPC scheme.
The above controllers are designed with the step sizes ∆τ and ∆T specified in Table 1. The

corresponding simulation results are shown in Figs. 2–5. For the simulations in Python/CasADi
(Andersson, 2013), the plant model was integrated using an explicit fourth-order Runge-Kutta
method with the uniform step size ∆τ/100. For the simulations in Matlabr, the plant model was
integrated using the Dormand-Prince method, which features adaptive step size control (Matlabr

command ode45).

Table 1. Parameters and performance results of various NMPC designs.

Controller ∆τ ∆T κT J5 CPU time

Sampled-data 1

0.1 s 0.5 s 0.5 s 1.840 0.09%
0.01 s 0.5 s 0.5 s 1.841 0.54%
0.01 s 0.1 s 0.1 s 1.833 0.58%
0.01 s 0.02 s 0.1 s 1.833 0.62%

Sampled-data 2

0.1 s 0.5 s 0.5 s 1.839 0.10%
0.01 s 0.5 s 0.5 s 1.841 0.77%
0.01 s 0.1 s 0.1 s 1.833 0.80%
0.01 s 0.02 s 0.1 s 1.833 0.83%

IPOPT

0.1 s 0.5 s - 1.842 0.22%
0.01 s 0.5 s - 1.842 3.6%
0.01 s 0.1 s - 1.833 23%
0.01 s 0.02 s - 1.833 234%

Suboptimal SQP

0.1 s 0.5 s - 1.869 0.07%
0.01 s 0.5 s - 1.866 0.38%
0.01 s 0.1 s - 1.834 1.4%
0.01 s 0.02 s - 1.833 5.5%

RT-3 from (DeHaan
and Guay, 2007)

- 0.5 s 0.5 s 1.845 100%

For performance assessment, the accumulated objective value J5 = Ṽ (x(5)) +
∫ 5
0 ṽ(x(t), u(t))dt

and the CPU time normalized with respect to the value of the controller RT-3 from
(DeHaan and Guay, 2007) are also given in Table 1. The values J5 exhibit only moderate differ-
ences because most of the cost is incurred during the period where u(t) attains its maximum value,
i. e., where a constraint is active. The results show that the proposed sampled-data NMPC scheme
is effective at stabilizing the system. The proposed control scheme requires significantly less CPU
time than the continuous-time controller RT-3 defined in (DeHaan and Guay, 2007) and generally
also less than the standard NMPC approaches based on IPOPT or SQP optimization routines.
The CPU time required by these existing NMPC approaches grows significantly if the sampling
period ∆T is reduced. The CPU time required by the proposed sampled-data NMPC scheme is less
sensitive to changes of ∆T . In terms of the objective value J5, the proposed sampled-data NMPC
scheme also outperforms all other implemented controllers.
A comparison between the controllers Sampled-data 1 and Sampled-data 2 reveals that there

is neither a significant difference in terms of control performance nor in terms of the obtained
trajectories nor in terms of the computational effort. Hence, using just a single or two iteration
steps of the dynamic programming algorithm described in Section 4 at every sampling point does
not entail significant differences. Further simulations (results not given here) showed that the
control performance and the trajectories also remain effectively the same if five iteration steps are
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Figure 2. Input and state trajectories of closed-loop NMPC systems for ∆τ = 0.1 s and ∆T = 0.5 s.
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Figure 3. Input and state trajectories of closed-loop NMPC systems for ∆τ = 0.01 s and ∆T = 0.5 s.

executed whereas the computational effort does increase with the number of iteration steps.
Compared to standard NMPC formulations, the proposed control scheme clearly benefits from

the incremental updates, which facilitate a modification of the control input on a time grid with
the typically small step sizes ∆τi. This capability is independent from the time-discretization of
the control input with the typically larger step size ∆Ti|j.
We emphasize that these conclusions are based on the results from the considered example

problem and an implementation of the proposed controller in Matlabr. Other problem scenarios
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Figure 4. Input and state trajectories of closed-loop NMPC systems for ∆τ = 0.01 s and ∆T = 0.1 s.
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Figure 5. Input and state trajectories of closed-loop NMPC systems for ∆τ = 0.01 s and ∆T = 0.02 s.

or software implementations could lead to different conclusions.

7. Conclusions

In this paper, we developed a sampled-data scheme for real-time NMPC with finite horizon and
a terminal constraint set. Rather than using an ad-hoc emulation design, which works best for
sampling times being as small as possible, we systematically consider the discrete-time character of
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the design system in two respects: First, the input parameterization and the terminal set feedback
controller (sampled-data LQR design) are defined on discrete time grids. Second, the prediction
model and the NMPC calculations use a discrete time grid.
Compared to the earliest available NMPC schemes (e. g., Chen and Allgöwer, 1998b) which were

usually formulated as continuous-time control systems, the proposed method follows a sampled-
data strategy. This is advantageous in terms of the computational load. Compared to (Diehl et al.,
2005), the proposed method has the advantage that it does not require assumptions concerning
the disturbance caused by the shift of the receding horizon. Some ideas of the developed real-time
NMPC method were adopted from DeHaan and Guay (2007). Compared to their approach, the
developed method has the advantage that the gradient ∂J/∂u, which is a function of time, is not
required and that the line search facilitates arbitrarily large immediate changes of the control in-
put. In the suboptimal NMPC solutions proposed in (Graichen, 2012b; Graichen and Kugi, 2010;
Grüne and Pannek, 2010), the minimum number of required iterations of the underlying optimiza-
tion problem is a key parameter. This number is a priori unknown for the method described in
(Grüne and Pannek, 2010). However, this method does not require terminal costs. In contrast, a
single iteration suffices in the method proposed here. In fact, this guarantees a limited execution
time of the proposed algorithm, which renders the proposed scheme suitable for real-time control.
The following additional conclusions can be drawn based on the theory and the example problem

presented in this work:

• Compared to existing NMPC approaches, the closed-loop performance of the controller pro-
posed in this paper is only moderately better. However, it generally requires significantly less
CPU time, especially if the control input is discretized with small time steps. The comparison
with existing NMPC approaches shows that the systematic discrete-time design proposed in
this paper significantly reduces the computational effort.

• The proposed NMPC method rests on a tailored design of the objective functions, which have
to satisfy certain monotonicity relations. Lyapunov-type inequalities are sufficient to prove
convergence of the proposed NMPC approach.

• The ongoing reduction of the predicted objective value is due to a shrinking horizon length
and a change of the input following a descent direction. These two effects are decoupled and we
essentially focused on the second effect by a gradient-based descent method. This is because
the contribution of the shrinking horizon is not valuable in terms of control performance.

• Thanks to its high computational efficiency, the proposed scheme can be used for systems
with fast dynamics.

• Controlling the system just with the state feedback functions κT and κ ensures local, practical,
asymptotic stability of the set Xd with a region of attraction containing X̊f . The proposed

NMPC approach enlarges this region of attraction so that it contains X̊ . In many cases X̊ is
significantly larger than X̊f .
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Chen, H. and Allgöwer, F. (1998a). Nonlinear Model Based Process Control, chapter Nonlinear Model

Predictive Control Schemes with Guaranteed Stability, pages 465–494. Springer, Dordrecht.
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Appendix A. Stability analysis

This appendix contains the proof of convergence and asymptotic stability of the developed control
scheme.
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A.1 Assumptions

We state three key assumptions that influence the choice of V and v. Let Vf (α) with arbitrary
α ∈ [0,∞) be a level set of V (x) in the form Vf (α) = {x ∈ Xf |V (x) ≤ α}. Similarly, let V(α) with
arbitrary α ∈ [0,∞) be a level set of v(x,u) in the form V(α) = {(x,u) ∈ X × U | v(x,u) ≤ α}.

Assumption 1: For arbitrary scalar values 0 < α1 < α2 < ∞, the objective functions V : Xf →
R≥0 and v : X × U → R≥0 satisfy the strict set inclusions

Xd = Vf (0) ⊂ Vf (α1) ⊂ Vf (α2) ⊂ lim
α→∞

Vf (α) = Xf

Xd × U = V(0) ⊂ V(α1) ⊂ V(α2) ⊂ lim
α→∞

V(α) = X × U .

Remark 3: Because the set inclusions in Assumption 1 are strict, V and v are barrier functions,
which ensure satisfaction of x̂t(TN ) ∈ X̊f and x̂t(τ) ∈ X̊ ∀ τ ∈ [t, TN ], respectively.

Assumption 2: For any x0 ∈ X̊ , there exists an input parameterization defined by the pair T and

θ ∈ T (T ) with T0 = 0 and sufficiently large values TN < ∞ and N < ∞ so that x̂T ,θ
0 is bounded

and satisfies

x̂T ,θ
0 (t) ∈ X̊ , ∀ t ∈ [0, TN )

x̂T ,θ
0 (TN ) ∈ X̊f .

Assumption 2 is also used in (Alamir, 2006; Michalska and Mayne, 1993; Rawlings and Mayne,
2009; Scokaert et al., 1999; Streif et al., 2014; Yu et al., 2009). It guarantees the existence of a
feasible solution of (6) at any time. Clearly, in practice, finding this solution can be a laborious
task, which may, for instance, involve nonlinear programming (Bertsekas, 1999; Griva et al., 2009;
Luenberger and Ye, 2008; Nocedal and Wright, 2006).

Assumption 3: The solutions of (6) constitute a simply connected set. Outside this set, J does
not have any local minima or stationary points.

The existence of a feasible initial solution of (6) is guaranteed by Assumption 2. If such an ini-
tial solution is known, Assumption 3 ensures that a global optimal solution of (6) within the set
T (T ) can always be found by a simple search along the local descent direction of J . Because of
Assumption 3, minimizers are generally nonstrict and constitute a simply connected set. Assump-
tion 3 avoids the problem of being caught in a local optimum that is not a global optimum. This
assumption simplifies the analysis in this paper and may be relaxed in practical applications.

Assumption 4: For any x(t) ∈ X̊f , there exists an input parameterization defined by T and

θ ∈ T (T ) with T0 = t, TN → ∞ and N → ∞ so that x̂T ,θ
t is bounded and satisfies

x̂T ,θ
t (τ) ∈ X̊ ∀ τ ≥ t

x̂T ,θ
t (Tj) ∈ X̊f ∀ j = 0, 1, 2, . . .

lim
τ→∞

x̂T ,θ
t (τ) ∈ Xd.

To actually compute the entries of T and θ from Assumption 4, we may use the following
approach. We set T0 = t, consider the initial value x(t), use the sampling period κT ∈ R≥0, and

recursively apply the state feedback function κ : X̊f → Rnϑ so that

Tk+1 = Tk + κT ∀ k = 0, 1, 2, . . . (A1a)
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ϑk+1 = κ(x̂T ,θ
t (Tk)) ∀ k = 0, 1, 2, . . . (A1b)

and

w̄(t, Tk, Tk+1,ϑk+1) ∈ U ∀ t ∈ [Tk, Tk+1), k = 0, 1, 2, . . .

It is assumed that the resulting values T and θ satisfy the requirements of Assumption 4. Clearly,
X̊f is a positive control invariant set of the system (1) with sampled-data control defined by the
feedback function κ. The existence of such a feedback function is sufficient though not necessary
for Assumption 4.
For the discrete-time implementation of the control algorithm, we assume that the discrete-time

optimal control problem (10) satisfies the discrete-time companions of all assumptions made in this
Section.

A.2 Convergence of receding horizon control

The following theorem describes properties of the recurrently applied function U that are sufficient
to achieve the stated control objective.

Theorem 1: Given that Assumptions 1–4 hold, that an initially feasible solution (T0,θ0) satisfying
θ0 ∈ T (T0) is known, that the update function U is applied at discrete times τi (i = 0, 1, 2, . . .),
and that U always ensures (7), θi+1 ∈ T (Ti+1), and

J(x̂Ti+1,θi+1

τi ( · ),w( · ,Ti+1,θi+1), τi,Ti+1){
= 0 if x(τi) ∈ Xd

≤ J(x̂Ti,θi
τi ( · ),w( · ,Ti,θi), τi,Ti) otherwise,

(A2)

then, in the absence of disturbances and for any initial state x0 ∈ X̊ , the state x of the closed-loop
system

• converges to the set Vf (α) for any constant value α ∈ (0,∞) within finite time,
• asymptotically converges to the set Xd, and
• satisfies the constraints (2a).

Proof:
Assumptions 2 and 4 ensure the existence of a pair (T ,θ) with TN → ∞ that asymptotically

brings x from any x0 ∈ X̊ to the set Xd. Feasibility of the known initial solution (T0,θ0) with

T0|N0
< ∞ implies J(x̂T0,θ0

0 ( · ),w( · ,T0,θ0), τ0,T0) < ∞. Hence, (A2) ensures that the constraints
(2a) are satisfied. By Assumption 1, it follows that J = 0 ⇔ x(τ) ∈ Xd ∀ τ ∈ [τi, TN ]. We distinguish
between the two cases used in (A2):

• If the initial state x(τi) satisfies x(τi) ∈ Xd, J(x̂
Ti+1,θi+1
τi ( · ),w( · ,Ti+1,θi+1), τi,Ti+1) = 0

ensures that the state will remain in Xd during the new horizon [τi, τi+1). Hence, it will
remain there forever.

• If x(τi) 6∈ Xd, initial feasibility and the inequality in (A2) ensure that x(τi) ∈ X . Because
x(τi) 6∈ Xd and ∆τi > ∆τmin > 0, the following difference, i. e., the change of J over the

22

Post-print version of the article: A. Steinboeck, M. Guay, and A. Kugi, “A design technique for fast sampled-data nonlinear model predictive
control with convergence and stability results”, International Journal of Control, vol. 93, no. 1, pp. 81–97, 2020. doi: 10.1080/00207179.
2017.1346299
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1080/00207179.2017.1346299
https://doi.org/10.1080/00207179.2017.1346299


July 6, 2017 International Journal of Control A26

interval (τi, τi+1), is strictly negative and does not converge to 0 unless x(τi) ∈ Xd:

J(x̂Ti+1,θi+1

τi+1
( · ),w( · ,Ti+1,θi+1), τi+1,Ti+1)

− J(x̂Ti+1,θi+1

τi ( · ),w( · ,Ti+1,θi+1), τi,Ti+1)

= −
∫ τi+1

τi

v(x̂Ti+1,θi+1

τi (t),w(t,Ti+1,θi+1))dt

≤ −∆J(x(τi),∆τi) ≤ −δ(α) ≤ 0

(A3)

Here, ∆J(x(τi),∆τi) is the result of the dynamic optimization problem

∆J(x(τi),∆τi) = min
u( · )∈U

∫ ∆τi

0
v(x̂(t),u(t))dt

s. t. ˙̂x = f(x̂,u)

x̂(0) = x(τi)

x̂ ∈ X .

This shows that x(τi) 6∈ Xd ⇒ ∆J(x(τi),∆τi) > 0, which implies together with (A2) that
limt→∞ x(t) ∈ Xd, i. e., the state x of the closed-loop system asymptocially converges to the
set Xd (Khalil, 2002). Moreover, δ(α) is the result of the minimization problem

δ(α) = inf
x∈X\Vf (α)

∆J(x,min
i

∆τi).

This shows that during any interval (τi, τi+1) the cost function J decreases at least by δ(α)
for any α ∈ (0,∞) as long as x(τi) 6∈ Vf (α). Therefore, if (A2) is satisfied and x(τi) ∈ Vf (α0)
with some α0 ∈ (0,∞), the state x of the closed-loop system converges to the set Vf (α) for
any constant value α ∈ (0, α0] at least within the finite time τi+⌈(α0−α)/δ(α)⌉ − τi, where ⌈ · ⌉
represents the ceiling function.

Remark 4: Based on Lyapunov-type inequalities, Theorem 1 guarantees convergence of the nom-
inal, undisturbed system. For this system, the change of J during the interval (τi, τi+1) is strictly
negative (cf. (A3)), which is a source of robustness against model errors and disturbances. As
demonstrated by Michalska and Mayne (1993), additional robustness can also be achieved by con-
servative design of the constraint sets. An analysis of robustness against model mismatch can be
done also for the design proposed in this paper by full analogy to (Michalska and Mayne, 1993).

Appendix B. Alternative update strategy for the time grid

In Section 3.2, we proposed an update strategy for the time grid with a uniform step size ∆Ti|j.
In order to achieve low-dimensional optimization problems, it may however be desirable to define
control inputs u on non-uniform time grids where the step sizes ∆Ti|j are as large as possible.
Generally, ∆Ti|j should be small at the beginning of the horizon and may be larger towards its end
because the discretization error of an RHC input u should be small at the beginning of the horizon
and may be larger towards its end. An update strategy that resembles this idea is known as move-
blocking strategy (Cagienard et al., 2007; Yu and Biegler, 2016). We present a similar strategy as
an alternative to the approach defined in Section 3.2.
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We require ∆Ti|j+1 to be an integer multiple of ∆Ti|j. The strategy is uniquely defined in the
following way: For each horizon i (i. e., at the update point τi−1), ensure that Ti|Ni

and Ni are
minimum and that

∆Ti|0 =
κT

(NT )Nmin−1
∧ ∆Ti|Ni−1 = κT ∧

(∆Ti|j = ∆Ti|j−1 ∨ ∆Ti|j = NT∆Ti|j−1

∀ j = 1, . . . , Ni − 1) ∧
(Ti−1|j < Ti|0 ∨ ∃ j̄ : Ti|j̄ = Ti−1|j

∀ j = 1, . . . , Ni−1).

Therefore, Ni varies between Nmin and NT (Nmin − 1) + 1. The above conditions ensure that the
step size of the grid defined by Ti grows from κT /(NT )

Nmin−1 at the beginning of the horizon
to κT at the end of the horizon. Step sizes of neighboring sampling intervals are either equal or
grow by the factor NT . Moreover, these conditions ensure that sampling points defined in Ti−1 are
reused if they are inside the interval [Ti|0, Ti|Ni

]. Figure B1 shows an example of prediction horizons
generated using this strategy with NT = 2 and Nmin = 3. For clarity of presentation, the time grid
τi is given for fundamental updates only (incremental updates are not considered).

τ0 τ1 τ2 τ3 τ4 τ5

T1|0 T1|N1

T2|0 T2|N2

T3|0 T3|N3

T4|0 T4|N4

T5|0

|1

T5|N5

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

. . .
. . .

...

tHorizon

1

2

3

4

5

Fundamental update Delete, Append and Divide

Fundamental update Delete and Divide

Fundamental update Delete

Figure B1. Prediction horizons of the alternative update strategy for NT = 2 and Nmin = 3 (time grid τi only for fundamental
updates).
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