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The standard form of Hamilton’s principle is only applica-

ble to material control volumes. There exist specialized for-

mulations of Hamilton’s principle that are tailored to non-

material (open) control volumes. In case of continuous me-

chanical systems, these formulations contain extra terms for

the virtual shift of kinetic energy and the net transport of

a product of the virtual displacement and the momentum

across the system boundaries. This raises the theoretically

and practically relevant question whether there is also a vir-

tual shift of potential energy across the boundary of open

systems.

To answer this question from a theoretical perspective,

we derive various formulations of Hamilton’s principle ap-

plicable to material and non-material control volumes. We

explore the roots and consequences of (virtual) transport

terms if non-material control volumes are considered and

show that these transport terms can be derived by Reynold’s

transport theorem. The equations are deduced for both the

Lagrangian and the Eulerian description of the particle mo-

tion. This reveals that the (virtual) transport terms have a

different form depending on the respective description of the

particle motion. To demonstrate the practical relevance of

these results, we solve an example problem where the ob-

∗Address all correspondence to this author.

tained formulations of Hamilton’s principle are used to de-

duce the equations of motion of an axially moving elastic

tension bar.

Keywords

Hamilton’s principle, principle of virtual work, non-material

control volume, open system, (virtual) transport terms, La-

grangian and Eulerian description of motion
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1 Introduction

In continuum mechanics, Hamilton’s principle is com-

monly used with a Lagrangian description of the motion of

the particles, i. e., with material coordinates. Moreover, in

its standard form, Hamilton’s principle is only applicable

to material control volumes, i. e., the control volume must

move with the material or (equivalently) material particles

must not enter or leave the control volume [1]. However, the

use of an Eulerian description of the particle motion [2, 3] or

the consideration of different control volumes (arbitrary non-

material control volumes, i. e., systems with changing mass

and open systems) [4, 5] can be useful in many applications.

Countless examples for such systems can be found, e. g., in

fluid dynamics, where generally an Eulerian description of

the particle motion is preferred, or in continuous production

processes where material continuously enters and leaves the

control volume.

Dost and Tabarrok [6] demonstrated that Hamilton’s

principle can be applied using both a Lagrangian and an Eu-

lerian description of the particle motion. For this purpose,

Dost and Tabarrok [6] distinguished between Lagrangian and

Eulerian variations of the particle position. However, they

consistently used a control volume that is material, i. e., they

considered a fixed aggregate of particles and allowed only

variations that hold the mass in the control volume constant.

They argued that Hamilton’s principle is essentially con-

cerned with the motion and configuration of material points

and concluded that Hamilton’s principle is Lagrangian in

character. Similarly, Penfield [7] claimed that the variational

expressions in Hamilton’s principle vanish on the surface of

the control volume.

Bampi and Morro [8] elaborated on the nexus be-

tween Lagrangians formulated with the Eulerian and the La-

grangian description of the particle motion. Their results are

also applicable to Hamilton’s principle. Their main finding is

that Lagrangians do exist and can be equivalently formulated

in both the Eulerian and the Lagrangian description when-

ever there exists a homeomorphic transformation between

these two descriptions. Bampi and Morro [8] tacitly assumed

a material control volume. They qualified boundary terms

that emerge in variational expressions as a consequence of

Reynold’s transport theorem [3] as inessential. In contrast,

these boundary terms (transport terms) will be of central in-

terest in the current paper.

Benjamin [9] and McIver [10] realized that the stan-

dard form of Hamilton’s principle cannot be used for systems

with non-material control volumes. They were among the

first who extended the standard form of Hamilton’s principle

to scenarios with non-material control volumes by adding

a term that accounts for the (virtual) momentum transport

across open surfaces. They used essentially an Eulerian de-

scription of the particle motion.

Irschik and Holl [11] used the notion of fictitious par-

ticles introduced by Trusdell and Toupin [1] to derive the

equations of Lagrange for systems that can be defined by
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a finite number of generalized coordinates. Irschik and Holl

[11] formulated the equations of Lagrange for a non-material

volume using an Eulerian description of the particle motion.

In [12], they extended these results to a Lagrangian descrip-

tion of the particle motion.

Casetta and Pesce [13] derived a generalized version

of Hamilton’s principle where additionally the flux of ki-

netic energy associated with relative virtual displacements

between the material particles and the control volume are

included. They considered non-material control volumes

and tacitly used an Eulerian description of the particle mo-

tion. Moreover, they considered a finite number of general-

ized coordinates and demonstrated that Lagrange’s equation

for a non-material volume as reported in [11] follow from

their version of Hamilton’s principle. Casetta and Pesce [13]

showed that the formulation of Hamilton’s principle as pre-

sented by McIver [10] is a special case of their results. In

fact, the difference between these two versions of Hamilton’s

principle for non-material volumes vanishes if the local sur-

face normal of the control volume is orthogonal to the local

difference between the virtual displacement of the surface of

the considered control volume and the virtual displacement

of the local material particles. This was demonstrated by

Kheiri and Païdoussis [14], who analyzed a flexible pipe that

conveys a fluid.

In essence, the state of the art is that Hamilton’s prin-

ciple for non-material control volumes contains two extra

transport terms compared to the standard form of Hamilton’s

principle. These two terms capture the transport of the prod-

uct of the virtual displacement and the momentum as well

as the virtual shift of the kinetic energy across the system

boundary. Typically, Hamilton’s principle for non-material

control volumes is formulated using an Eulerian description

of the particle motion. This state of the art raises the follow-

ing research questions:

• Can virtual displacements of the material and the con-

trol volume also entail a virtual shift of potential energy

across system boundaries? How can Hamilton’s princi-

ple be formulated to capture such virtual shifts of poten-

tial energy across system boundaries?

• How can Hamilton’s principle for non-material control

volumes be formulated using a Lagrangian description

of the particle motion? How does this differ from Hamil-

ton’s principle for non-material control volumes formu-

lated using an Eulerian description of the particle mo-

tion?

The central objective of this paper is to answer these the-

oretically and practically relevant questions. The paper is

organized as follows: In Section 2, we briefly reiterate the

derivation of Hamilton’s principle for a material control vol-

ume based on the balance of linear momentum formulated

with a Lagrangian description of motion. We repeat this

derivation with an Eulerian description of motion in Section

3. In Section 4, we use Reynold’s transport theorem to derive

Hamilton’s principle for a non-material volume based on the

Lagrangian description of motion. We repeat this derivation

with an Eulerian description of motion in Section 5. Table

1 gives an overview of the formulations of Hamilton’s prin-

ciple derived in this paper. Section 6 contains a discussion

of the theoretical findings of this paper. To demonstrate the

practical relevance of the above stated questions, we apply

these findings to derive the equations of motion of an axi-

ally moving elastic tension bar in Section 7. Conclusions are

drawn in Section 8.

Table 1. Formulations of Hamilton’s principle derived in this

paper

Control

volume

Lagrangian

description

Eulerian

description

material Section 2, eq. (14) Section 3, eq. (24)

arbitrary

non-material
Section 4, eq. (30) Section 5, eq. (40)

In this paper, we consider only holonomic systems.1

Moreover, we concentrate the discussion on continuum and

fluid mechanics problems. Generally, we consider the three-

dimensional Euclidean space with Cartesian coordinates

only. Hence, there is no need to distinguish between co-

and contravariant tensors. For matrices and vectors, we use

boldface letters. In favor of a compact notation, arguments

like the spatial coordinates x or X and the time t are omitted

whenever confusion is ruled out.

A word of caution concerning the terminology con-

cludes this introduction. McIver [10] denoted his results as

an extended form of Hamilton’s principle. This is however

different to Hamilton’s extended principle. The latter term

is described in [16] and refers to a form of Hamilton’s prin-

ciple which contains the virtual work associated with non-

conservative fields or thermal effects. Meirovitch [15] also

denoted a form of Hamilton’s principle containing the vir-

tual work of external forces as extended Hamilton’s princi-

ple. Atanacković et al. [17] formulated Hamilton’s principle

with a Lagrangian that can contain fractional derivatives and

called it generalized Hamilton’s principle. Although dealing

with a completely different problem, i. e., the application of

Hamilton’s principle to a non-material volume, Casetta and

Pesce [13] reported their findings also by using the expres-

sion generalized Hamilton’s principle. To avoid further con-

fusion, we simply use the name Hamilton’s principle in this

paper.

2 Relations for a Material Control Volume Using La-

grangian Spatial Coordinates

As a preparation, we briefly summarize the derivation

of Hamilton’s principle for a material control volume using

a Lagrangian description of the particle motion and based on

the local balance of linear momentum. Let Vm0 be the consid-

ered material control volume in the reference configuration.

1See [15] for an explanation why the restriction to holonomic systems is

reasonable.
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Assume that the configuration (e. g., position, velocity,

acceleration) of all particles in the control volume is uniquely

defined by generalized coordinates q and their time deriva-

tives. The coordinates q (or some of them) may be dis-

tributed parameters, i. e., they may be functions of the time

t and the spatial coordinates x or X. The main purpose of

Hamilton’s principle is the derivation of a differential equa-

tion (maybe including spatial boundary conditions) for q,

which uniquely defines the dynamical behavior of the sys-

tem. Insofar, Hamilton’s principle is a tool to formulate the

problems of mechanics based on the variation of a scalar in-

tegral rather than a solution method for these problems [15].

2.1 Balance of Linear Momentum

The local balance of linear momentum can be formu-

lated as

ρ0a − ∇X · (TPI)T − ρ0 f = 0 (1)

[2, 18–20] for an infinitesimal material particle at the current

position p(X, t), where X is its position in the reference con-

figuration (Lagrangian representation). Generally, X are La-

grangian spatial coordinates. Moreover, a(X, t) is the accel-

eration of a material particle (second material derivative), ρ0

is the mass density in the reference configuration, ∇X gives

the spatial derivative with respect to Lagrangian spatial coor-

dinates X, TPI is the first Piola-Kirchhoff stress tensor (force

per unit area defined in the reference configuration), and f is

a specific volume force (external load, force per unit mass).

The operator · represents the inner product and is defined in

Appendix A.1.

Let

u(X, t) = p(X, t) − X

be the total displacement of a material particle (Lagrangian

representation). Then we obtain

v(X, t) =
∂p
∂t
=
∂u
∂t

for its velocity and

a(X, t) =
∂v
∂t
=
∂2 p
∂t2
=
∂2u
∂t2

for its acceleration.

Remark The quantities u, v, and a can be expressed as func-

tions of the generalized coordinates q and their time deriva-

tives. This is why the coordinates q are just tacitly used but

do generally not explicitly appear in the following deriva-

tions.

Multiplying (1) by an arbitrary admissible virtual dis-

placement δu yields

δu · (ρ0a − ∇X · (TPI)T − ρ0 f ) = 0. (2)

This may be interpreted as virtual work expression (work

density, work per unit reference volume) for a specific mate-

rial particle [cf. 15]. It is emphasized that the variation δ is

defined as a material (Lagrangian) variation throughout this

paper2. This implies that the reference position X of a ma-

terial particle does not change if the particle undergoes the

virtual displacement δu, i. e., δX = 0 and δu = δp. The first

two terms of (2) can be rewritten in the form

ρ0δu · a = ρ0δu · ∂v
∂t
= ρ0

(
∂(δu · v)

∂t
− ∂δu

∂t
· v

)

= ρ0

(
∂(δu · v)

∂t
− δv · v

)

= ρ0

(
∂(δu · v)

∂t
− 1

2
δ(v · v)

)
(3)

and

δu · (∇X·(TPI)T )

= ∇X · ((TPI)T · δu) − (∇Xδu) : (TPI)T

= ∇X · ((TPI)T · δu) − δF : TPI .

(4)

Here, we used the identity

δF = (∇Xδu)T = (∇Xδp)T , (5)

which follows from the definition of the deformation gradi-

ent F = (∇X p)T . The operator : represents the double inner

product and is defined in Appendix A.1. Insertion of (3) and

(4) into (2) and integration over the considered control vol-

ume, i. e., the material volume Vm0 in the reference configu-

ration, give

∫

Vm0

ρ0

[ (
∂(δu · v)

∂t
− 1

2
δ(v · v)

)
− ∇X · ((TPI)T · δu)

+ δF : TPI − ρ0δu · f
]
dV0 = 0.

(6)

The term δF : TPI represents the variation of the strain

energy density (strain energy per unit reference volume)

[2, 19]. However, it is more convenient to use the expres-

sion

δπ =
1

ρ0

δF : TPI (7)

2The distinction between Lagrangian and Eulerian variations is dis-

cussed and utilized in [6].
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for the variation of the specific strain energy (per unit mass)

[2, 19]. This is because δπ is independent of the considered

coordinate system (Eulerian or Lagrangian description). Ap-

pendix A.2 shows how the general variation δπ can be formu-

lated using various deformation (strain) and stress tensors.

For the special case of a conservative elastic material behav-

ior (cf. Appendix A.3), there exists a scalar-valued function

π representing the specific potential strain energy (per unit

mass).

2.2 Time Derivative and Variation of Specific Quanti-

ties

Consider that χ(X, t) is a specific quantity (per unit

mass). The time derivative of its integral over the mass con-

tained in the control volume Vm0 follows in the form

d

dt

∫

Vm0

ρ0χdV0 =

∫

Vm0

ρ0

∂χ

∂t
dV0 (8)

because Vm0 and ρ0 do not depend on t. In a similar way, we

obtain the identity

δ

∫

Vm0

ρ0χdV0 =

∫

Vm0

ρ0δχdV0. (9)

Because the variation δ is to be understood as material, nei-

ther Vm0 nor ρ0 changes upon virtual displacements δu of the

material particles in the current configuration.

2.3 Hamilton’s Principle for a Material Control Volume

Using (7), (8), (9), and the divergence theorem, (6) can

be rewritten in the form

d

dt

∫

Vm0

ρ0δu · vdV0 − δ
∫

Vm0

ρ0

1

2
v · vdV0

︸ ︷︷ ︸
= T

+

∫

Vm0

ρ0δπdV0

︸ ︷︷ ︸
= δΠ

−
(∫

∂Vm0

δu · TPI · n0dA0 +

∫

Vm0

ρ0δu · fdV0

)

︸ ︷︷ ︸
= δWe

= 0.

(10)

Here, T is the total kinetic energy, δΠ is the variation of the

total strain energy, ∂Vm0 is the bounding surface of Vm0 in

the reference configuration, n0 is the outward unit normal

vector on ∂Vm0 in the reference configuration, and δWe is

the virtual work performed by external forces acting on the

material in the control volume Vm0 or on its bounding surface

∂Vm0 (positive if work is supplied to Vm0). The normal vector

n0 is only defined on ∂Vm0.

Henceforth, we assume a conservative elastic material

behavior (cf. Appendix A.3), i. e., π is the specific potential

strain energy (per unit mass) andΠ is the total potential strain

energy. The virtual work expression δWe may contain con-

servative and non-conservative parts. In most formulations

of Hamilton’s principle, the virtual work parts of conserva-

tive and non-conservative (external and internal) forces are

assembled in separate terms. This can simplify the appli-

cation of Hamilton’s principle because the virtual work of

conservative forces is the variation of a typically well known

scalar-valued potential function. This is why we split the

external surface traction (force per unit reference surface,

Piola-Kirchhoff traction vector)

TPI · n0 = tc
0 + tnc

0

into a conservative part tc
0

and a non-conservative part tnc
0

.

These are pseudo traction vectors insofar as they act on the

bounding surface ∂Vm in the current configuration whereas

they are defined on the bounding surface ∂Vm0 in the refer-

ence configuration [2, 19]. Similarly, we split the external

specific volume force in the form

f = f c + f nc, (11)

where f c accommodates the conservative parts and f nc the

non-conservative parts. A typical example for f c is gravity.

Assume that ϕ is the specific potential energy (per unit mass)

associated with f c, i. e., f c = −∂ϕ/∂u and δϕ = −δu · f c.

Using these stipulations and (9), we rewrite (10) in the form

d

dt

∫

Vm0

ρ0δu · vdV0 − δ
∫

Vm0

ρ0

1

2
v · vdV0

︸ ︷︷ ︸
= T

+ δ

∫

Vm0

ρ0 (π + ϕ)︸︷︷︸
= eV

dV0

︸ ︷︷ ︸
= EV

+

∫

∂Vm0

−δu · tc
0dA0

︸ ︷︷ ︸
= δES

−
(∫

∂Vm0

δu · tnc
0 dA0 +

∫

Vm0

ρ0δu · f ncdV0

)

︸ ︷︷ ︸
= δWnc

= 0,

(12)

where eV is the specific potential energy (per unit mass) of

conservative strains and volume forces, EV is the total po-

tential energy of conservative strains and volume forces, and

δES is the variation of the total potential energy of conserva-

tive surface tractions. Hence, −δEV − δES is the virtual work

of all conservative forces. In contrast, δWnc represents the

virtual work of all non-conservative forces (surface tractions

and volume forces).

Consider an arbitrary time interval [t1, t2]. Hamilton’s

principle is a variational tool to derive the equations of mo-

tion for the generalized coordinates q based on a stationarity

condition of a scalar integral [cf. 15], e. g., the integral of

(12) over the time interval [t1, t2], and the assumption of pre-
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scribed configurations q at the times t1 and t2. Among all

possible paths q + δq which are defined on the time interval

[t1, t2] and which transform the system from a prescribed ini-

tial state at the time t1 to a prescribed final state at the time

t2, Hamilton’s principle thus determines the path q (the so-

called true path) that renders a scalar integral extremal. This

explains why the identity

δq|t=t1 = δq|t=t2 = 0

[cf. 15] must be satisfied3. It implies

δu|t=t1 =

(
∂u
∂q
δq

)∣∣∣∣∣∣
t=t1

= 0, δu|t=t2 =

(
∂u
∂q
δq

)∣∣∣∣∣∣
t=t2

= 0

and consequently

∫ t2

t1

(
d

dt

∫

Vm0

ρ0δu · vdV0

)
dt

=

[∫

Vm0

ρ0δu · vdV0

]t2

t1

= 0.

(13)

We integrate (12) along the time interval [t1, t2] and insert

(13) to get

∫ t2

t1

(−δT + δEV + δES − δWnc) dt = 0. (14)

This is a standard form of Hamilton’s principle which uses

a material control volume and a Lagrangian description of

the particle motion. This fact may lead us into thinking that

Hamilton’s principle was Lagrangian in character [cf. 6, 7],

i. e., that it required a material control volume and a La-

grangian description of the particle motion. In the derivation

of (14), the chosen control volume was Vm0 throughout.

3 Relations for a Material Control Volume Using Eule-

rian Spatial Coordinates

Based on the results of Section 2, we briefly summarize

the derivation of Hamilton’s principle for a material control

volume and an Eulerian description of the particle motion.

Let Vm be the considered material control volume in the cur-

rent configuration. Henceforth, the diacritic ¯ marks vari-

ables that depend on x (and t), i. e., variables formulated us-

ing an Eulerian description of the particle motion.

3The equations of motion obtained by Hamilton’s principle contain time

derivatives of q up to the order two and thus require two boundary con-

ditions in the time domain. In this sense, the assumption of a prescribed

configuration at both boundaries t1 and t2 is consistent. A generalization for

situations where this assumption is not made is reported in [21].

3.1 Balance of Linear Momentum

In an Eulerian representation, the counterpart of (2) has

the form

δū · (ρā − ∇x · TC − ρ f ) = 0 (15)

[2, 18–20]. Here, ρ is the mass density in the current con-

figuration, TC is the Cauchy stress tensor (force per unit cur-

rent area), and ∇x gives the spatial derivative with respect to

Eulerian spatial coordinates x. The relation (15) may be in-

terpreted as virtual work expression (work density, work per

unit current volume) for an infinitesimal particle at the cur-

rent position x = p(X, t). Generally, x are Eulerian spatial

coordinates. Moreover, let X = P(x, t) be the reference po-

sition of the material particle that is currently at the spatial

point x. Using an Eulerian description of the particle motion,

we abbreviate the material derivative in the form

D(•)

Dt
=
∂(•)

∂t
+ ∇x(•) · v̄

with the velocity v̄(x, t). Moreover, the quantities that corre-

spond to the total displacement u(X, t), the velocity v(X, t),
and the acceleration a(X, t) are

ū(x, t) = x − P(x, t) = u(P(x, t), t)

v̄(x, t) =
Dū
Dt
= v(P(x, t), t)

and

ā(x, t) =
D2ū
Dt2
=

Dv̄
Dt
= a(P(x, t), t),

respectively. The variables ū, v̄, and ā depend on x (and

t), i. e., they represent an Eulerian description of the parti-

cle motion. The variables u, v, and a have the same values

but depend on X (and t), i. e., they represent a Lagrangian

description of the particle motion.

In this paper, the variation δ is defined as material, even

if an Eulerian description of the particle motion is used.

Therefore, δ commutes with the material derivative D
Dt [cf.

6] and the identity

Dδū
Dt
=
∂δu
∂t
= δ

∂u
∂t
= δv = δv̄ (16)

holds. This relation is used to rewrite the first term of (15) in
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the form

ρδū · ā = ρδū · Dv̄
Dt
= ρ

(
D(δū · v̄)

Dt
− Dδū

Dt
· v̄

)

= ρ

(
D(δū · v̄)

Dt
− δv̄ · v̄

)
= ρ

(
D(δū · v̄)

Dt
− 1

2
δ(v̄ · v̄)

)
.

(17)

Substitution of (17) and

δū · (∇x · TC) = ∇x · (TC · δū) − (∇xδū) : TC

into (15) and integration over the considered control volume,

i. e., the material volume Vm in the current configuration, give

∫

Vm

[
ρ

(
D(δū · v̄)

Dt
− 1

2
δ(v̄ · v̄)

)
− ∇x · (TC · δū)

+ ∇xδū : TC − ρδū · f
]
dV = 0.

(18)

As can be inferred from (71) in Appendix A.2, the term

∇xδū : TC = ρδπ (19)

represents the variation of the potential strain energy density

(per unit current volume).

3.2 Time Derivative and Variation of Specific Quanti-

ties

Consider that χ̄(x, t) is a specific quantity (per unit

mass). Because of

d

dt

∫

M
χ̄dm =

∫

M

Dχ̄

Dt
dm

with the total mass M =
∫

Vm
ρdV inside Vm and the mass

dm = ρdV of the respective infinitesimal particle, we get the

identity

d

dt

∫

Vm

ρχ̄dV =

∫

Vm

ρ
Dχ̄

Dt
dV . (20)

In the same way, the relation

δ

∫

M
χ̄dm =

∫

M
δχ̄dm

yields the identity

δ

∫

Vm

ρχ̄dV =

∫

Vm

ρδχ̄dV . (21)

3.3 Hamilton’s Principle for a Material Control Volume

Using (19), (20), (21), and the divergence theorem, (18)

can be rewritten in the form

d

dt

∫

Vm

ρδū · v̄dV − δ
∫

Vm

ρ
1

2
v̄ · v̄dV

︸ ︷︷ ︸
= T

+

∫

Vm

ρδπdV

︸ ︷︷ ︸
= δΠ

−
(∫

∂Vm

δū · TC · ndA +

∫

Vm

ρδū · fdV

)

︸ ︷︷ ︸
= δWe

= 0.

(22)

Here, ∂Vm is the bounding surface of Vm in the current con-

figuration and n is the outward unit normal vector on ∂Vm

in the current configuration. This vector is only defined on

∂Vm.

We split the external surface traction (force per unit cur-

rent surface, Cauchy traction vector)

TC · n = tc + tnc

into a conservative part tc and a non-conservative part tnc.

Using this splitting together with (11) and (21), we rewrite

(22) in the form

d

dt

∫

Vm

ρδū · v̄dV − δ
∫

Vm

ρ
1

2
v̄ · v̄dV

︸ ︷︷ ︸
= T

+ δ

∫

Vm

ρ (π + ϕ)︸︷︷︸
= eV

dV

︸ ︷︷ ︸
= EV

+

∫

∂Vm

−δū · tcdA

︸ ︷︷ ︸
= δES

−
(∫

∂Vm

δū · tncdA +

∫

Vm

ρδū · f ncdV

)

︸ ︷︷ ︸
= δWnc

= 0.

(23)

The quantities T , eV , EV , δES , and δWnc have the same

meaning as in (12). They have the same value as in (12)

if Vm0 is the material volume in the reference configuration

that corresponds to Vm in the current configuration.

We integrate (23) along the time interval [t1, t2] and con-

sider the identity δū|t=t1 = δū|t=t2 = 0, which implies

∫ t2

t1

(
d

dt

∫

Vm

ρδū · v̄dV

)
dt =

[∫

Vm

ρδū · v̄dV

]t2

t1

= 0,

to get

∫ t2

t1

(−δT + δEV + δES − δWnc) dt = 0. (24)

This is a standard form of Hamilton’s principle which uses
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a material control volume and an Eulerian description of the

particle motion. In the derivation of (24), the chosen control

volume was Vm throughout. Equation (24) looks identical to

(14) because, in this form, it is no longer apparent whether a

Lagrangian or an Eulerian description of the particle motion

is used for the computation of δT , δEV , δES , and δWnc. The

important point is that both (14) and (24) use a material con-

trol volume (Vm0 and Vm, respectively). This simplified the

analysis in Sections 2 and 3 (see especially (8), (9), (20), and

(21)) and will be different in the following sections.

4 Relations for a Non-Material Control Volume Using

Lagrangian Spatial Coordinates

We extend the derivation from Section 2 using an arbi-

trary, generally non-material (open) control volume Vc0 in

the reference configuration. In contrast to Vm0, Vc0 may de-

pend on the time t. Vc0 is assumed to coincide with Vm0 at

the current time t but, because it is non-material, it may be

different from Vm0 at other times. Note that all derivations in

Section 2 require the consideration of Vm0 only. Especially

the steps from (6) to (10) and from (10) to (12) rely on mate-

rial derivatives and variations with respect to Vm0. To obtain a

formulation of Hamilton’s principle suitable for non-material

control volumes like Vc0, we have to correctly replace these

derivatives and variations in the current section.

4.1 Total Time Derivative and Variation of Densities,

Reynold’s Transport Theorem

Consider a quantity ψ0(X, t) defined per unit reference

volume (density in the reference configuration). The time

derivative of its integral over the control volume Vm0 follows

in the form

d

dt

∫

Vm0

ψ0dV0 =

∫

Vm0

∂ψ0

∂t
dV0 (25)

because Vm0 does not depend on t. Reynold’s transport the-

orem [2, 3] applied to the arbitrary control volume Vc0 reads

as

d

dt

∫

Vc0

ψ0dV0 =

∫

Vc0

∂ψ0

∂t
dV0 +

∫

∂Vc0

ψ0vc0 · nc0dA0. (26)

Here, ∂Vc0 is the bounding surface of Vc0, nc0 is the outward

unit normal vector on ∂Vc0, uc0 is the displacement of ∂Vc0,

and vc0 =
∂uc0
∂t is the local velocity of ∂Vc0. All these quan-

tities are defined in the reference configuration. The vectors

nc0, uc0, and vc0 are only defined on ∂Vc0.

Remark ∂Vc0 and thus also nc0, uc0, and vc0 may depend on

the generalized coordinates q. Therefore, in the most general

case, the displacements of both the material and the bound-

ing surface ∂Vc0 depend on q

At the current time t, Vm0 = Vc0 and consequently

∂Vm0 = ∂Vc0 and n0 = nc0 hold. It follows thus from (25)

and (26) that

d

dt

∫

Vm0

ψ0dV0 =

∫

Vm0

∂

∂t
ψ0dV0

=
d

dt

∫

Vc0

ψ0dV0 −
∫

∂Vc0

ψ0vc0 · nc0dA0.

(27)

By the same line of reasoning, we obtain

δ

∫

Vm0

ψ0dV0 =

∫

Vm0

δψ0dV0

= δc

∫

Vc0

ψ0dV0 −
∫

∂Vc0

ψ0δcuc0 · nc0dA0,

(28)

where δcuc0 is the virtual displacement of the bounding sur-

face ∂Vc0 in the reference configuration. The variational op-

erator δc as defined in (28) is to be evaluated with respect

to the arbitrary control volume Vc0 and may thus be non-

material. In contrast, the variation δ is defined as material,

i. e., it concerns the particles in the material control volume

Vm0. The left parts of (27) and (28) are in line with (8) and

(9) because of
∂ρ0

∂t = 0 and δρ0 = 0.

4.2 Hamilton’s Principle for a Non-Material Control

Volume

We can now utilize (27) and (28) in (12) to eliminate

time derivatives and variations, respectively, of integrals over

Vm0. This yields

d

dt

∫

Vc0

ρ0δu · vdV0 −
∫

∂Vc0

ρ0(δu · v)(vc0 · nc0)dA0

− δc

∫

Vc0

ρ0

1

2
v · vdV

︸ ︷︷ ︸
= T

+δc

∫

Vc0

ρ0eVdV0

︸ ︷︷ ︸
= EV

+

∫

∂Vc0

ρ0

(
1

2
v · v − eV

)
δcuc0 · nc0dA0

+

∫

∂Vc0

−δu · tc
0dA0

︸ ︷︷ ︸
= δcES

−
(∫

∂Vc0

δu · tnc
0 dA0 +

∫

Vc0

ρ0δu · f ncdV0

)

︸ ︷︷ ︸
= δcWnc

= 0.

(29)

Integration of (29) along the time interval [t1, t2] and consid-

eration of the identity δu|t=t1 = δu|t=t2 = 0, which implies

∫ t2

t1

(
d

dt

∫

Vc0

ρ0δu · vdV0

)
dt =

[∫

Vc0

ρ0δu · vdV0

]t2

t1

= 0,
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yield Hamilton’s principle for a non-material control volume

∫ t2

t1

[
−

∫

∂Vc0

ρ0(δu · v)(vc0 · nc0)dA0 − δcT + δcEV

+

∫

∂Vc0

ρ0

(
1

2
v · v − eV

)
δcuc0 · nc0dA0

+ δcES − δcWnc

]
dt = 0.

(30)

This form of Hamilton’s principle uses an arbitrary control

volume and a Lagrangian description of the particle motion.

5 Relations for a Non-Material Control Volume Using

Eulerian Spatial Coordinates

Based on the results of Section 3 and similar to Section

4, we briefly summarize the derivation of Hamilton’s princi-

ple for a non-material (open) control volume and an Eulerian

description of the particle motion. Let Vc be the considered

arbitrary, generally non-material control volume in the cur-

rent configuration. Vc is assumed to coincide with Vm at the

current time t but, because it is non-material, it may evolve

differently from Vm.

5.1 Total Time Derivative and Variation of Densities,

Reynold’s Transport Theorem

Considering a specific quantity ψ(x, t) per unit current

volume (density), Reynold’s transport theorem [2, 3] applied

to the material volume Vm reads as

d

dt

∫

Vm

ψdV =

∫

Vm

∂ψ

∂t
dV +

∫

∂Vm

ψv̄ · ndA. (31)

This relation is in line with (20), which can be shown based

on the continuity equation

∂ρ

∂t
+ ∇x · (ρv̄) =

Dρ

Dt
+ ρ∇x · v̄ = 0 (32)

and the divergence theorem. Reynold’s transport theorem

applied to the arbitrary control volume Vc reads as

d

dt

∫

Vc

ψdV =

∫

Vc

∂ψ

∂t
dV +

∫

∂Vc

ψvc · ncdA. (33)

Here, ∂Vc is the bounding surface of Vc, nc is the outward

unit normal vector on ∂Vc, uc is the displacement of ∂Vc, and

vc =
∂uc
∂t is the local velocity of ∂Vc. All these quantities are

defined in the current configuration. The vectors nc, uc, and

vc are only defined on ∂Vc.

Remark ∂Vc and thus also nc, uc, and vc may depend on

q. Therefore, in the most general case, the displacements of

both the material and the bounding surface ∂Vc depend on q
[11, 13].

At the current time t, Vm = Vc and consequently ∂Vm =

∂Vc and n = nc hold. It follows thus from (31) and (33) that

d

dt

∫

Vm

ψdV =

∫

Vm

∂ψ

∂t
dV +

∫

∂Vm

ψv̄ · ndA

=
d

dt

∫

Vc

ψdV +

∫

∂Vc

ψ(v̄ − vc) · ncdA.

(34)

By analogy to (32), conservation of mass implies

δρ + ρ∇x · δū = 0. (35)

Based on (35) and the divergence theorem, we can rewrite

(21) into

δ

∫

Vm

ψdV =

∫

Vm

[
δψ − δū · ∇xψ

]
dV

+

∫

∂Vm

ψδū · ndA,

(36)

which can be considered as a variational form of Reynold’s

transport theorem applied to the material control volume Vm.

The integrand δψ − δū · ∇xψ in (36) represents the Eulerian

(non-material) variation of ψ. Consequently, the variational

form of Reynold’s transport theorem applied to the arbitrary

control volume Vc reads as

δc

∫

Vc

ψdV =

∫

Vc

[
δψ − δū · ∇xψ

]
dV

+

∫

∂Vc

ψδcuc · ncdA.

(37)

where δcuc is the virtual displacement of the bounding sur-

face ∂Vc in the current configuration. The variational oper-

ator δc as defined in (37) (see also [14]) is to be evaluated

with respect to the arbitrary control volume Vc and may thus

be non-material. In contrast, the variation δ is defined as ma-

terial, i. e., it concerns the particles in the material control

volume Vm. We consider again that Vm = Vc, ∂Vm = ∂Vc,

and n = nc hold at the current time t. It follows thus from

(36) and (37) that

δ

∫

Vm

ψdV =

∫

Vm

[
δψ − δū · ∇xψ

]
dV

+

∫

∂Vm

ψδū · ndA

= δc

∫

Vc

ψdV +

∫

∂Vc

ψ(δū − δcuc) · ncdA.

(38)
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5.2 Hamilton’s Principle for a Non-Material Control

Volume

We can now utilize (34) and (38) in (23) to eliminate

total time derivatives and variations, respectively, of integrals

over Vm. This yields

d

dt

∫

Vc

ρδū · v̄dV +

∫

∂Vc

ρ(δū · v̄)(v̄ − vc) · ncdA

− δc

∫

Vc

ρ
1

2
v̄ · v̄dV

︸ ︷︷ ︸
= T

+δc

∫

Vc

ρeVdV

︸ ︷︷ ︸
= EV

−
∫

∂Vc

ρ

(
1

2
v̄ · v̄ − eV

)
(δū − δcuc) · ncdA

+

∫

∂Vc

−δū · tcdA

︸ ︷︷ ︸
= δcES

−
(∫

∂Vc

δū · tncdA +

∫

Vc

ρδū · f ncdV

)

︸ ︷︷ ︸
= δcWnc

= 0.

(39)

Integration of (39) along the time interval [t1, t2] and consid-

eration of the identity δū|t=t1 = δū|t=t2 = 0, which implies

∫ t2

t1

(
d

dt

∫

Vc

ρδū · v̄dV

)
dt =

[∫

Vc

ρδū · v̄dV

]t2

t1

= 0,

yield Hamilton’s principle for a non-material control volume

∫ t2

t1

[ ∫

∂Vc

ρ(δū · v̄)(v̄ − vc) · ncdA − δcT + δcEV

−
∫

∂Vc

ρ

(
1

2
v̄ · v̄ − eV

)
(δū − δcuc) · ncdA

+ δcES − δcWnc

]
dt = 0.

(40)

This form of Hamilton’s principle uses an arbitrary control

volume and an Eulerian description of the particle motion.

6 Discussion

The main results of the Sections 2 through 5 are various

formulations of Hamilton’s principle as indicated in Table 1.

For a material control volume, the standard form of

Hamilton’s principle can be used. It is given in (14) and (24)

for a Lagrangian and an Eulerian description of the parti-

cle motion, respectively. These two equations look identical.

Their difference, however, is that the expressions δT , δEV ,

δES , and δWnc are computed in the reference configuration

(control volume Vm0) and the current configuration (control

volume Vm), respectively.

Hamilton’s principle for an arbitrary control volume and

a Lagrangian description of the particle motion is given in

(30). A comparison of (14) and (30) reveals several differ-

ences:

• The variations of T and EV in (14) are to be evaluated

with respect to the material control volume Vm0 whereas

the variations of T and EV in (30) are to be evaluated

with respect to the arbitrary control volume Vc0. Note

that the expressions δES and δcES are identical and the

subscript c is written here only for notational consis-

tency. The same applies to δWnc and δcWnc.

• Compared to (14), (30) contains the extra term

−
∫
∂Vc0

ρ0(δu · v)(vc0 · nc0)dA0 representing the net trans-

port of the product of the virtual displacement δu and

the momentum ρ0v across the bounding surface ∂Vc0.

• Compared to (14), (30) contains the extra term∫
∂Vc0

ρ0

(
1
2
v · v − eV

)
δcuc0 · nc0dA0 representing the net

virtual shift of kinetic energy minus potential energy

associated with conservative strains and volume forces

across ∂Vc0.

Hamilton’s principle for an arbitrary control volume and an

Eulerian description of the particle motion is given in (40).

A comparison of (24) and (40) reveals several differences:

• The variations of T and EV in (24) are to be evaluated

with respect to the material control volume Vm whereas

the variations of T and EV in (40) are to be evaluated

with respect to the arbitrary control volume Vc. Again,

the expressions δES and δcES as well as δWnc and δcWnc

are identical.

• Compared to (24), (40) contains the extra term
∫
∂Vc

ρ(δū·
v̄)(v̄−vc)·ncdA representing the net transport of the prod-

uct of the virtual displacement δū and the momentum ρv̄
across the bounding surface ∂Vc.

• Compared to (24), (40) contains the extra term

−
∫
∂Vc

ρ
(

1
2
v̄ · v̄ − eV

)
(δū − δcuc) · ncdA representing the

net virtual shift of kinetic energy minus potential energy

associated with conservative strains and volume forces

across ∂Vc.

A comparison of (30) and (40) shows that the extra terms

accounting for the net transport of the product of the virtual

displacement and the momentum as well as the virtual shift

of kinetic minus potential energy across the bounding surface

have a different form in the Lagrangian and Eulerian descrip-

tion of the particle motion. In the current configuration, these

terms contain the relative normal velocity (v̄− vc) · nc and the

relative normal virtual displacement (δū − δcuc) · nc. In the

reference configuration, the material velocity v0 and the vir-

tual displacement δu0 are zero by definition. This explains

why in (30) only the normal velocity −vc0 · nc0 and the nor-

mal virtual displacement −δcuc0 · nc0 of the bounding surface

remain.

How do these results compare to the state of the art?

• The first surface integral in (40) representing the net

transport of the product of the virtual displacement δū
and the momentum ρv̄ across the bounding surface ∂Vc

was introduced in the same form by McIver [10]. How-

ever, he denoted this term as virtual momentum trans-

port and Casetta and Pesce [13] denoted this term as flux
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of momentum.

• The net virtual shift of kinetic energy, i. e., the term

−
∫
∂Vc

ρ 1
2
v̄ · v̄(δū − δcuc) · ncdA in (40) was introduced

in this form by Casetta and Pesce [13]. However, they

denoted this term as flux of kinetic energy.

• An essentially new term found in the current work is

the net virtual shift of potential energy associated with

conservative strains and volume forces, i. e., the term∫
∂Vc

ρeV (δū−δcuc) ·ncdA in (40). Casetta and Pesce [13]

effectively included the terms δcEV+
∫
∂Vc

ρeV (δū−δcuc)·
ncdA+ δcES − δcWnc in a single general virtual work ex-

pression δW. Using this compact notation, it may be

more difficult to correctly capture the virtual work and

net virtual shift of potential energy associated with con-

servative strains and volume forces.

• McIver [10] as well as Casetta and Pesce [13] used an

Eulerian description of the particle motion. Insofar, the

current paper extends the state of the art by stating also

the formulations of Hamilton’s principle applicable if a

Lagrangian description of the particle motion is used.

The derivations in Sections 2 and 3 demonstrate that the stan-

dard form of Hamilton’s principle essentially relies on the

evaluation of total time derivatives and variations with re-

spect to a material control volume Vm0 or Vm. The Sections

4.1 and 5.1 show how Reynold’s transport theorem helps to

replace these total time derivatives and variations by total

time derivatives and variations with respect to an arbitrary

control volume Vc0 or Vc, respectively.

A transfer of the obtained results to other physical do-

mains, e. g., heat transfer, thermodynamics, or chemistry

[7, 16, 22], is possible with moderate effort. That is, by anal-

ogy to the presented approach, it can be shown that other

energy terms (including entropy and chemical potentials) ap-

pearing in the Lagrangian may also be subject to a net virtual

shift across the system boundary.

7 Example Problem: Axially Moving Elastic Tension

Bar

To highlight the practical relevance of the obtained the-

oretical results, we apply them in this example problem to

derive the equations of motion of an axially moving elastic

tension bar for a material and a spatially fixed (non-material)

control volume as shown in Figs. 1 and 2, respectively. We

solve the problem based on Hamilton’s principle using both

the Lagrangian and the Eulerian description of the particle

motion. For validation, we additionally derive the equations

of motion in Appendix B based on the momentum balance

and based on the energy balance. Table 2 gives an overview

of the applied derivation methods and the subsections where

they can be found.

PSfrag replacements

X
X1 X2

N1(t) N2(t)nMaterial control volume

Fig. 1. Axially moving elastic tension bar with a material con-

trol volume

PSfrag replacements

x
x1 x2

N1(t) N2(t)n
Spatially fixed
control volume

Fig. 2. Axially moving elastic tension bar with a spatially fixed

control volume

Table 2. Methods to derive the equations of motion of an axially

moving elastic tension bar

Derivation

method

Control

volume

Lagrangian

description

Eulerian

description

Hamilton’s

principle
material Section 7.1.1 Section 7.2.1

Hamilton’s

principle

spatially

fixed
Section 7.1.2 Section 7.2.2

momentum

balance
- Appendix B.1.1 Appendix B.2.1

energy

balance
material Appendix B.1.2 Appendix B.2.2

energy

balance

spatially

fixed
Appendix B.1.3 Appendix B.2.3

The Eulerian spatial coordinate is x; the Lagrangian spa-

tial coordinate is X. The material of the elastic bar moves

along the direction x with the local velocity v(X, t) = v̄(x, t).
The properties of the bar are uniform along the direction x.

Its mass per unit length is M′
0

in the unloaded state (reference

configuration) and M′(x, t) in the loaded state (current con-

figuration). The tension bar is linear elastic and its uniform

tensional stiffness is K. Let ε be the engineering strain in

the bar along the direction x and N the total cross sectional

tension force. Clearly, ε and N may depend on x (or X) and

t. They are coupled by the constitutive law

N = Kε. (41)
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We consider both a material control volume that ranges

from X = X1 to X = X2 and a spatially fixed (non-material)

control volume that ranges from x = x1 to x = x2. The bar

is loaded by the concentrated generally non-conservative ex-

ternal forces N1(t) and N2(t) at the respective system bound-

aries. Within the control volume, the bar is subject to the

distributed external force n, which is defined per unit cur-

rent length and which may be non-conservative. In case of

the spatially fixed control volume, we assume that the bar

exceeds the control volume. Moreover, we assume in this

case that some external devices (e. g., the driven rolls indi-

cated in Fig. 2) control the total cross sectional forces N1(t)

and N2(t) at the system boundaries. We thus consider pure

force boundary conditions for both types of control volumes

(material and non-material).

Throughout this section, we use the abbreviations

˙(•) =
∂(•)

∂t
, (•)x =

∂(•)

∂x
, (•)X =

∂(•)

∂X

for partial derivatives.

7.1 Lagrangian Description of the Particle Motion

Consider a cross section of the bar characterized by

the Lagrangian spatial coordinate (original position) X =

p(X, 0). Let u(X, t) denote its current total displacement

along the spatial direction x in the Lagrangian representa-

tion. Hence, the cross section has the current position

p(X, t) = X + u(X, t) (42)

measured in Eulerian spatial coordinates. In the Lagrangian

description, the displacement u(X, t) serves as a generalized

coordinate. The (material) velocity of the cross section is

ṗ = v = u̇, (43)

and its acceleration is

p̈ = v̇ = ü. (44)

The differential of (42) follows in the form

dp(X, t) = (1 + uX)dX, (45)

which gives the engineering strain

ε =
dp(X, t)

dX
− 1 = uX . (46)

7.1.1 Hamilton’s Principle for a Material Control Vol-

ume

We consider a material control volume ranging from X1

to X2. The kinetic energy density (kinetic energy per unit

reference length) is

T ′0 = M′0
v2

2
= M′0

u̇2

2
, (47)

which gives the total kinetic energy

T =

∫ X2

X1

M′0
u̇2

2
dX (48)

in the control volume. The strain energy density (strain en-

ergy per unit reference length) is

E′V0 = M′0eV = K
ε2

2
= K

u2
X

2
, (49)

which gives the total strain energy

EV =

∫ X2

X1

K
u2

X

2
dX. (50)

The distributed force n is defined per unit current length.

Based on (45), the corresponding quantity defined per unit

reference length follows in the form n(1 + uX). Hence, the

virtual work of the non-conservative loads reads as

δWnc = δu(X2, t)N2(t) − δu(X1, t)N1(t)

+

∫ X2

X1

δun(1 + uX)dX.
(51)

Insertion of these results into (14) gives

∫ t2

t1

( ∫ X2

X1

(
−M′0u̇δu̇ + KuXδuX

)
dX − δu(X2, t)N2(t)

+ δu(X1, t)N1(t) −
∫ X2

X1

δun(1 + uX)dX

)
dt = 0.

Integration by parts, consideration of δu(X, t1) = δu(X, t2) =

0 and (43), and application of the fundamental lemma of cal-

culus of variations yield the differential equation

M′0ü = KuXX + n(1 + uX) (52a)

and the boundary conditions

N1(t) = N(X1, t) = KuX(X1, t) (52b)

Post-print version of the article: A. Steinboeck, M. Saxinger, and A. Kugi, “Hamilton’s principle for material and nonmaterial control
volumes using Lagrangian and Eulerian description of motion”, Applied Mechanics Reviews, vol. 71, no. 1, pp. 010802-1–010802-14, 2019.
doi: 10.1115/1.4042434
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1115/1.4042434


N2(t) = N(X2, t) = KuX(X2, t). (52c)

This system of equations has to be supplemented by appro-

priate initial conditions.

7.1.2 Hamilton’s Principle for a Spatially Fixed Control

Volume

We consider a spatially fixed (non-material) control vol-

ume ranging from x1 to x2. These points correspond to

X1 = P(x1, t) and X2 = P(x2, t), respectively, in the refer-

ence configuration. Utilization of the identity δcWnc = δWnc,

insertion of (48) through (51) into (30), and consideration of

(9), (28), and (47) give

∫ t2

t1

(
−

[
M′0δuvvc0

]X2

X1
− δcT + δcEV

+

[
M′0

(
v2

2
− eV

)
δcuc0

]X2

X1

− δcWnc

)
dt

=

∫ t2

t1

(
−

[
M′0δuvvc0

]X2

X1
+

∫ X2

X1

δ
(
−T ′0 + E′V0

)
dX

+
[(
−T ′0 + E′V0

)
δcuc0

]X2

X1
+

[
M′0

(
v2

2
− eV

)
δcuc0

]X2

X1︸ ︷︷ ︸
= 0

(53)

− δcWnc

)
dt

=

∫ t2

t1

(
−

[
M′0δuu̇vc0

]X2

X1

+

∫ X2

X1

(−M′0u̇δu̇ + KuXδuX)dX − δu(X2, t)N2(t)

+ δu(X1, t)N1(t) −
∫ X2

X1

δun(1 + uX)dX

)
dt = 0.

For the terms δcT and δcEV in (53), a correct evaluation of

the (generally non-material) variational operator δc accord-

ing to (9) and (28) is essential. Integration by parts converts

(53) into

∫ t2

t1

[
−

[
M′0δuu̇vc0

]X2

X1
−

(
−M′0u̇(X2, t)δu(X2, t)Ẋ2

︸ ︷︷
= 0

+M′0u̇(X1, t)δu(X1, t)Ẋ1

) ]

︸
dt

+

[∫ X2

X1

−M′0u̇δudX

]t2

t1

+

∫ t2

t1

(∫ X2

X1

M′0üδudX

+ [KuXδu]
X2
X1
−

∫ X2

X1

KuXXδudX − δu(X2, t)N2(t)

+ δu(X1, t)N1(t)−
∫ X2

X1

δun(1 + uX)dX

)
dt = 0.

(54)

In this derivation, correct integration by parts with respect to

the time t requires to take into account that X1 and X2 depend

on t. This yields terms which exactly compensate the net

transport of the product of the virtual displacement and the

momentum across the bounding surface. Consequently, the

first line in (54) vanishes. Insertion of δu(X, t1) = δu(X, t2) =

0 into (54), consideration of (43), and application of the fun-

damental lemma of calculus of variations yield again (52).

7.2 Eulerian Description of the Particle Motion

Consider a cross section of the bar that is currently at

the position x = p(X, t). Let ū(x, t) denote its current total

displacement along the direction x in the Eulerian represen-

tation. Hence, we have

x = p(X, t) = X + ū(p(X, t), t). (55)

In the Eulerian description, the displacement ū(x, t) serves as

a generalized coordinate. The (material) velocity of the cross

section is

Dū

Dt
= ṗ = v̄(x, t) = ˙̄u + ūx ṗ =

˙̄u

1 − ūx
, (56)

and its acceleration is

D2ū

Dt2
= p̈ =

Dv̄

Dt
= ¨̄u + 2 ˙̄ux ṗ + ūx p̈ + ūxx ṗ2

=
¨̄u(1 − ūx)2 + 2 ˙̄ux ˙̄u(1 − ūx) + ˙̄u2ūxx

(1 − ūx)3
.

(57)

The differential of (55) follows in the form

dx = dp(X, t) = dX + ūxdp(X, t) =
dX

1 − ūx
, (58)

which gives

ε =
dp(X, t)

dX
− 1 =

ūx

1 − ūx
(59)

for the engineering strain. From (58) and the conservation

of mass written in the form M′
0
dX = M′dx, we obtain the

relation

M′ = (1 − ūx)M′0. (60)

A comparison of (45) and (58) shows that

1 + uX =
1

1 − ūx
. (61)
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7.2.1 Hamilton’s Principle for a Material Control Vol-

ume

We consider a material control volume ranging from X1

to X2. These points correspond to x1 = p(X1, t) and x2 =

p(X2, t), respectively, in the current configuration. Based on

(56) and (60), the kinetic energy density (kinetic energy per

unit current length) is

T ′ = M′
v̄2

2
= M′0

˙̄u2

2(1 − ūx)
, (62)

which gives the total kinetic energy

T =

∫ x2

x1

M′
v̄2

2
dx (63)

in the control volume. Based on (49) and (60), the strain

energy density (strain energy per unit current length) is

E′V = M′eV =
M′

M′
0

K
ε2

2
= K

ū2
x

2(1 − ūx)
, (64)

which gives the total strain energy

EV =

∫ x2

x1

M′

M′
0

K
ε2

2
dx. (65)

The variational operator δ is material by definition, i. e., it is

a Lagrangian variation [cf. 6]. If we use an Eulerian descrip-

tion of the particle motion, the variation δ thus commutes

with the corresponding derivatives D
Dt (see also (16)) and ∂

∂X .

Consequently, these derivative operators themselves are not

subject to the variation δ. For derivatives of the virtual dis-

placement δu = δū, this implies

δv̄ = δv = δu̇ =
∂δu

∂t
=

Dδū

Dt

= δ ˙̄u + v̄δūx = δ ˙̄u +
˙̄u

1 − ūx
δūx

(66a)

δε = δuX =
∂δu

∂X
=

1

1 − ūx

∂δū

∂x
=

δūx

1 − ūx
, (66b)

where the relations (56) and (58) have been used. Based on

(21), (56), (59), (60), and (66), we obtain the variations of

(63) and (65) in the form

δT = δ

∫ x2

x1

M′
v̄2

2
dx =

∫ x2

x1

M′v̄δv̄dx

=

∫ x2

x1

M′0 ˙̄u

(
δ ˙̄u +

˙̄u

1 − ūx
δūx

)
dx

(67a)

and

δEV = δ

∫ x2

x1

M′

M′
0

K
ε2

2
dx =

∫ x2

x1

M′

M′
0

Kεδεdx

=

∫ x2

x1

K
ūx

1 − ūx
δūxdx,

(67b)

respectively. The virtual work of the non-conservative loads

reads as

δWnc = δū(x2, t)N2(t) − δū(x1, t)N1(t) +

∫ x2

x1

δūndx. (68)

Insertion of these results into (24) gives

∫ t2

t1

( ∫ x2

x1

[
− M′0 ˙̄u

(
δ ˙̄u +

˙̄u

1 − ūx
δūx

)
+ K

ūx

1 − ūx
δūx

]
dx

− δū(x2, t)N2(t) + δū(x1, t)N1(t) −
∫ x2

x1

δūndx

)
dt = 0.

Integration by parts yields

−
[∫ x2

x1

M′0 ˙̄uδūdx

]t2

t1

+

∫ t2

t1

[ [
M′0 ˙̄uδūv̄

]x2

x1
+

∫ x2

x1

M′0 ¨̄uδūdx

−
[
M′0 ˙̄u

˙̄u

1 − ūx
δū

]x2

x1

+

∫ x2

x1

M′0

(
2 ˙̄u ˙̄ux

1 − ūx
+

˙̄u2ūxx

(1 − ūx)2

)
δūdx

+

[
K

ūx

1 − ūx
δū

]x2

x1

−
∫ x2

x1

K

(
ūxx

1 − ūx
+

ūxūxx

(1 − ūx)2

)
δūdx

− δū(x2, t)N2(t) + δū(x1, t)N1(t) −
∫ x2

x1

δūndx

]
dt

= −
[∫ x2

x1

M′0 ˙̄uδūdx

]t2

t1

+

∫ t2

t1

(∫ x2

x1

[
M′0

(
¨̄u +

2 ˙̄u ˙̄ux

1 − ūx

+
˙̄u2ūxx

(1 − ūx)2

)
δū − K

ūxx

(1 − ūx)2
δū − nδū

]
dx

+

[
K

ūx

1 − ūx
δū

]x2

x1

− δū(x2, t)N2(t) + δū(x1, t)N1(t)

)
dt = 0.

For correct integration by parts with respect to the time t, we

have to take into account that x1 and x2 depend on t. Inser-

tion of δū(x, t1) = δū(x, t2) = 0, consideration of (56), and

application of the fundamental lemma of calculus of varia-

tions yield the differential equation

M′0

(
¨̄u +

2 ˙̄ux ˙̄u

1 − ūx
+

˙̄u2ūxx

(1 − ūx)2

)
= K

ūxx

(1 − ūx)2
+ n (69a)
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and the boundary conditions

N1(t) = N(x1, t) = K
ūx(x1, t)

1 − ūx(x1, t)
(69b)

N2(t) = N(x2, t) = K
ūx(x2, t)

1 − ūx(x2, t)
. (69c)

This system of equations has to be supplemented by appro-

priate initial conditions. Considering (46), (57), (58), (59),

(61), and

uXX = εX =
1

1 − ūx
εx =

1

1 − ūx

∂

∂x

(
ūx

1 − ūx

)
=

ūxx

(1 − ūx)3
,

it follows that (52) and (69) are equivalent.

7.2.2 Hamilton’s Principle for a Spatially Fixed Control

Volume

We consider a spatially fixed (non-material) control vol-

ume ranging from x1 to x2. Utilization of the identity

δcWnc = δWnc, insertion of (63), (64), (65), and (68) into

(40), and consideration of (21), (38), (60), and (66) give

∫ t2

t1

( [
M′δūv̄2

]x2

x1
− δcT + δcEV

−
[
M′

(
v̄2

2
− eV

)
δū

]x2

x1

− δcWnc

)
dt

=

∫ t2

t1

( [
M′δūv̄2

]x2

x1
+

∫ x2

x1

[
− M′v̄δv̄ +

M′

M′
0

Kεδε

]
dx

− [(−T ′ + E′V
)
δū

]x2
x1
−

[
M′

(
v̄2

2
− eV

)
δū

]x2

x1︸ ︷︷ ︸
= 0

(70)

− δcWnc

)
dt

=

∫ t2

t1

( [
M′0δū ˙̄uv̄

]x2

x1
+

∫ x2

x1

[
− M′0 ˙̄u(δ ˙̄u + v̄δūx)

+Kūx
δūx

1 − ūx

]
dx− δū(x2, t)N2(t) + δū(x1, t)N1(t)

−
∫ x2

x1

δūndx

)
dt = 0.

For the terms δcT and δcEV in (70), a correct evaluation of

the (generally non-material) variational operator δc accord-

ing to (21) and (38) is essential. Integration by parts, inser-

tion of δū(x, t1) = δū(x, t2) = 0, consideration of (56), and

application of the fundamental lemma of calculus of varia-

tions yield again (69).

8 Conclusions

The original results, main findings, and conclusions of

this work are as follows:

• Hamilton’s principle was derived for material and non-

material (open) control volumes using both a La-

grangian and an Eulerian description of the particle mo-

tion. This yielded four different formulations of Hamil-

ton’s principle.

• In Hamilton’s principle, variations of energy and work

terms are to be evaluated with respect to the consid-

ered control volume. Special care must be taken in case

of non-material control volumes because the variational

operator δ is material per definition.

• The standard form of Hamilton’s principle uses a mate-

rial control volume, i. e., total time derivatives and vari-

ations are evaluated with respect to a material control

volume. Reynold’s transport theorem is a helpful tool

to convert them into total time derivatives and variations

with respect to an arbitrary control volume.

• If a non-material control volume is considered, Hamil-

ton’s principle contains an extra term to capture the net

transport of the product of the virtual displacement and

the momentum across the system boundary. This extra

term has a different form for the Lagrangian and the Eu-

lerian description of the particle motion.

• If a non-material control volume is considered, Hamil-

ton’s principle contains an extra term to capture the net

virtual shift of kinetic energy minus potential energy

associated with conservative strains and volume forces

across the system boundary. This extra term has a differ-

ent form for the Lagrangian and the Eulerian description

of the particle motion.

• In an example problem, the equations of motion (includ-

ing boundary conditions) of an axially moving elastic

tension bar were deduced using all four derived formula-

tions of Hamilton’s principle. As shown in Appendix B,

the same equations of motion follow from the momen-

tum balance and the energy balance.

In essence, this work showed how Hamilton’s principle can

be formulated for material and non-material (open) control

volumes using both a Lagrangian and an Eulerian description

of the particle motion. We hope that the obtained results and

findings will be supportive for both theorists and practition-

ers who derive equations of motion by means of Hamilton’s

principle.

A Some Mathematical and Mechanical Relations

This appendix summarizes a few mathematical and me-

chanical relations used in the main part of the paper.

A.1 Inner Products

The operator · represents the inner product (tensor con-

traction) defined in the form

a · b = b · a = aibi
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a · B = BT · a = [aiBi j]

A · b = b · AT = [Ai jb j]

A · B = (BT · AT )T = [Ai jB jk]

for arbitrary vectors a and b (first-order tensors) and arbitrary

matrices A and B (second-order tensors), where the length

of a, the length of b, the number of columns of A, and the

number of rows of B must be equal. The operator : represents

the double inner product defined in the form

A : B = B : A = AT : BT = tr(AT · B) = Ai jBi j

for two arbitrary matrices A and B of equal size. Based on

these definitions, it follows that

A : (B · C) = (BT · A) : C = (A · CT ) : B

holds for arbitrary matrices A, B, and C, where the number

of rows of A must equal the number of rows of B, the number

of columns of A must equal the number of columns of C, and

the number of columns of B must equal the number of rows

of C.

A.2 Variation of Specific Strain Energy

Consider the Eulerian spatial coordinates x, the total dis-

placement ū formulated with an Eulerian description of the

particle motion, the Cauchy stress tensor TC (force per unit

current area), and the mass density ρ in the current config-

uration. Based on the definition TPI = det(F)TC · F−T of

the first Piola-Kirchhoff stress tensor [2, 19], the rules for the

double inner product from Appendix A.1, and the identities

ρ0 = ρ det(F), (5) and ∇X = FT · ∇x, (7) can be rewritten in

the form

δπ =
1

ρ0

δF : (det(F)TC · F−T ) =
1

ρ
(δF · F−1) : TC

=
1

ρ
(∇xδū)T : TC =

1

ρ
(∇xδū) : TC .

(71)

Based on the definition TPII = F−1 · TPI = det(F)F−1 · TC ·
F−T of the second Piola-Kirchhoff stress tensor [2, 19], the

rules for the double inner product from Appendix A.1, and

the definition G = (FT · F − I)/2 of the Green-Lagrangian

strain tensor [2, 19], (7) can be rewritten in the form

δπ =
1

ρ0

δF : (F · TPII ) =
1

ρ0

(FT · δF) : TPII

=
1

2ρ0

(δFT · F + FT · δF) : TPII =
1

ρ0

δG : TPII .

(72)

To summarize, (7), (71), and (72) define the variation of the

specific strain energy (per unit mass)

δπ =
1

ρ0

δF : TPI =
1

ρ
(∇xδū) : TC =

1

ρ0

δG : TPII .

This shows that δπ can be expressed as the double inner prod-

uct of the variation of a deformation (strain) tensor and a

stress tensor. Moreover, this expression shows when the fac-

tor 1/ρ or 1/ρ0 appears in δπ.

A.3 Hyperelastic Material

For materials with conservative elastic behavior, which

are also known as hyperelastic or Green elastic materials [2,

18–20], there exists a scalar-valued specific potential strain

energy π (per unit mass) that has the following properties.

The value of π depends only on the current local deformation

state (strain) defined, e. g., by F or G. The stresses follow

from partial derivatives of π in the form

TPI = ρ0

∂π

∂F
, TC = ρ

∂π

∂F
· FT , TPII = ρ0

∂π

∂G
.

In the context of Hamilton’s principle, the existence of π is of

interest because its integral over the considered mass appears

as potential energy term in the Lagrangian.

B Alternative Solution Methods for the Example Prob-

lem

In this appendix, solution methods other than Hamil-

ton’s principle are used to derive the equations of motion

of the axially moving elastic tension bar considered in Sec-

tion 7. The purpose of this appendix is to validate the results

of the example problem found in Section 7.

B.1 Lagrangian Description of the Particle Motion

B.1.1 Momentum Balance

PSfrag replacements

X
X X +dX

N(X , t) N(X +dX , t)n

Fig. 3. Slice of the axially moving elastic tension bar in the ref-

erence configuration

We formulate the momentum balance for an (infinites-

imal) slice of the considered bar. The slice has the thick-

ness dX along the direction X in the reference configuration

as outlined in Fig. 3. The linear momentum of the slice is

M′
0
vdX and it is loaded by the forces −N(X, t), N(X + dX, t),
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and ndp(X, t). Note that n is a distributed force per unit cur-

rent length. Insertion into the momentum balance and con-

sideration of (45) gives

M′0v̇dX = N(X + dX, t) − N(X, t) + n(1 + uX)dX.

Consideration of (41), (43), (44), and (46), division by dX,

and computation of the limit dX → 0 yield again (52a).

B.1.2 Energy Balance for a Material Control Volume

We consider an arbitrary material control volume rang-

ing from X1 to X2. Adding up (47) and (49), we obtain the

total energy density (total energy per unit reference length)

E′0 = M′0
u̇2

2
+ K

u2
X

2
. (73)

The power of external loads acting on the control volume is

Pex = v(X2, t)N(X2, t) − v(X1, t)N(X1, t)

+

∫ X2

X1

vn(1 + uX)dX.
(74)

Using (41) and (46), the energy balance thus gives

d

dt

∫ X2

X1

E′0dX − Pex =

∫ X2

X1

∂

∂t
E′0dX − Pex

=

∫ X2

X1

(
M′0üu̇ + KuX u̇X

)
dX − [vKuX]

X2
X1

−
∫ X2

X1

vn(1 + uX)dX

=

∫ X2

X1

v
(
M′0ü − KuXX − n(1 + uX)

)
dX = 0,

(75)

where integration by parts was applied. Because (75) must

hold for arbitrary (material) control volumes [X1, X2], we ob-

tain again (52a).

B.1.3 Energy Balance for a Spatially Fixed Control Vol-

ume

We consider an arbitrary spatially fixed (non-material)

control volume ranging from x1 to x2. This corresponds to

the range X1 = P(x1, t) to X2 = P(x2, t) in the reference

configuration. For this scenario, the terms E′
0

and Pex are

identical to (73) and (74), respectively. Using (41), (46),

and Reynold’s transport theorem and considering also the en-

ergy transfer associated with the mass flow across the system

boundary, the energy balance gives

d

dt

∫ X2

X1

E′0dX − E′0(X2, t)Ẋ2 + E′0(X1, t)Ẋ1 − Pex

=

∫ X2

X1

∂

∂t
E′0dX − Pex = 0.

Because this expression is equivalent to (75), we obtain again

(52a).

B.2 Eulerian Description of the Particle Motion

B.2.1 Momentum Balance

PSfrag replacements

x
x x+dx

N(x, t) N(x+dx, t)n

Fig. 4. Slice of the axially moving elastic tension bar in the cur-

rent configuration

We formulate the momentum balance for an (infinitesi-

mal) slice of the considered bar. The slice has the thickness

dx along the direction x in the current configuration as out-

lined in Fig. 4. The linear momentum of the slice is M′v̄dx

and it is loaded by the forces −N(x, t), N(x + dx, t), and ndx.

Insertion into the momentum balance gives

M′
Dv̄

Dt
dx = N(x + dx, t) − N(x, t) + ndx.

Consideration of (41), (56), (57), (59), and (60), division by

dx, and computation of the limit dx→ 0 yield again (69a).

B.2.2 Energy Balance for a Material Control Volume

We consider an arbitrary material control volume rang-

ing from X1 to X2. This corresponds to the range x1 =

p(X1, t) to x2 = p(X2, t) in the current configuration. Adding

up (62) and (64), we obtain the total energy density (total

energy per unit current length)

E′ = M′0
˙̄u2

2(1 − ūx)
+ K

ū2
x

2(1 − ūx)
. (76)

The power of external loads acting on the control volume is

Pex = v̄(x2, t)N(x2, t) − v̄(x1, t)N(x1, t) +

∫ x2

x1

v̄ndx. (77)
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Using (41), (56), (59), and Reynold’s transport theorem, the

energy balance thus gives

d

dt

∫ x2

x1

E′dx − Pex =

∫ x2

x1

∂E′

∂t
dx +

[
E′v̄

]x2
x1
− Pex

=

∫ x2

x1

[
M′0

(
˙̄u ¨̄u

1 − ūx
+

˙̄u2 ˙̄ux

2(1 − ūx)2

)

+K

(
˙̄uxūx

1 − ūx
+

˙̄uxū
2
x

2(1 − ūx)2

) ]
dx+

[(
M′0

˙̄u2

2(1 − ūx)

+ K
ū2

x

2(1 − ūx)

)
v̄

]x2

x1

−
[
v̄K

ūx

1 − ūx

]x2

x1

−
∫ x2

x1

v̄ndx

=

∫ x2

x1

[
M′0

(
˙̄u ¨̄u

1 − ūx
+

˙̄u2 ˙̄ux

2(1 − ūx)2

)

+K

(
˙̄uxūx

1 − ūx
+

˙̄uxū
2
x

2(1 − ūx)2

)

+
∂

∂x

(
M′0

˙̄u2

2(1 − ūx)
v̄ + K

ū2
x − 2ūx

2(1 − ūx)
v̄

)
− v̄n

]
dx

=

∫ x2

x1

v̄

[
M′0

(
¨̄u +

2 ˙̄ux ˙̄u

1 − ūx
+

˙̄u2ūxx

(1 − ūx)2

)

−K
ūxx

(1 − ūx)2
− n

]
dx = 0.

(78)

Because (78) must hold for arbitrary (material) control vol-

umes [x1, x2], we obtain again (69a).

B.2.3 Energy Balance for a Spatially Fixed Control Vol-

ume

We consider an arbitrary spatially fixed (non-material)

control volume ranging from x1 to x2. For this scenario, the

terms E′ and Pex are identical to (76) and (77), respectively.

Using (41) and (59) and considering also the energy transfer

associated with the mass flow across the system boundary,

the energy balance gives

d

dt

∫ x2

x1

E′dx − E′(x2, t)v̄(x2, t) + E′(x1, t)v̄(x1, t) − Pex

=

∫ x2

x1

∂E′

∂t
dx +

[
E′v̄

]x2
x1
− Pex = 0.

Because this expression is equivalent to (78), we obtain again

(69a).
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Nomenclature

A = Area

a = Acceleration, second material derivative

D =Material derivative operator

d = Total derivative operator

∂ = Partial derivative operator, prefix to indicate

boundary of a domain

ES = Potential energy of conservative surface tractions

EV = Potential energy of conservative strains and

volume forces

eV = Specific potential energy (per unit mass) of

conservative strains and volume forces

F = Deformation gradient

f = Specific volume force (per unit mass)

G = Green-Lagrangian strain tensor

K = Tensional stiffness

M = Total mass

m =Mass

N = Tension force

N1, N2 = Boundary values of N

n = Outward unit normal vector

n = Distributed external force (per unit length)

P, P = Position of a material particle in the reference

configuration

Pex = Power of external loads

p, p = Position of a material particle in the current

configuration

q = Generalized coordinates

T = Kinetic energy

TC = Cauchy stress tensor

TPI = First Piola-Kirchhoff stress tensor

TPII = Second Piola-Kirchhoff stress tensor

t = Surface traction

t = Time

t1, t2 = Start and end of considered time interval

u, u = Total displacement

V = Volume

Vc = Arbitrary, generally non-material (open) control

volume

Vm =Material control volume

v, v = Velocity, first material derivative

We =Work performed by external forces

Wnc =Work performed by non-conservative forces

X, X = Position in the reference configuration, Lagrangian

spatial coordinate

X1, X2 = Start and end of the control volume in the

reference configuration

x, x = Position in the current configuration, Eulerian

spatial coordinate

x1, x2 = Start and end of the control volume in the current

configuration

δ = Variational operator, prefix to indicate virtual

expression

ε = Engineering strain

Π = Strain energy

π = Specific strain energy (per unit mass)

ρ =Mass density
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ϕ = Specific potential energy (per unit mass) associated

with conservative external volume forces

∇X = Gradient operator, spatial derivative with respect to

Lagrangian spatial coordinates

∇x = Gradient operator, spatial derivative with respect to

Eulerian spatial coordinates

0 = Subscript to indicate a quantity in the reference

configuration

c = Subscript to indicate a quantity that corresponds to

the arbitrary control volume Vc

X = Subscript to indicate partial derivative with respect

to X

x = Subscript to indicate partial derivative with respect

to x
c = Superscript to indicate conservative quantity

nc = Superscript to indicate non-conservative quantity

¯ = Diacritic to indicate a quantity that depends on

Eulerian spatial coordinates (Eulerian description

of the particle motion)

˙ = Diacritic to indicate partial time derivative
′ =Mark to indicate quantity per unit length
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