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Hierarchical nonlinear optimization-based controller of a continuous strip annealing
furnace

S. Strommera,∗, M. Niederera, A. Steinboeckb, A. Kugia,b

aAIT Austrian Institute of Technology, Center for Vision, Automation and Control, Argentinierstrasse 2/4, 1040 Vienna, Austria
bAutomation and Control Institute, Technische Universität Wien, Gusshausstrasse 27–29, 1040 Vienna, Austria

Abstract

Continuous strip annealing furnaces are complex multi-input multi-output nonlinear distributed-parameter systems.
They are used in industry for heat treatment of steel strips. The product portfolio and different materials to be heat-
treated is steadily increasing and the demands on high throughput, minimum energy consumption, and minimum waste
have gained importance over the last years. Designing a furnace control concept that ensures accurate temperature
tracking under consideration of all input and state constraints in transient operations is a challenging task, in particular
in view of the large thermal inertia of the furnace compared to the strip. The control problem at hand becomes even
more complicated because the burners in the different heating zones of the considered furnace can be individually
switched on and off. In this paper, a real-time capable optimization-based hierarchical control concept is developed,
which consists of a static optimization for the selection of an operating point for each strip, a trajectory generator for
the strip velocity, a dynamic optimization routine using a long prediction horizon to plan reference trajectories for the
strip temperature as well as switching times for heating zones, and a nonlinear model predictive controller with a short
prediction horizon for temperature tracking. The mass flows of fuel and the strip velocity are the basic control inputs.
The underlying optimization problems are transformed to unconstrained problems and solved by the Gauss-Newton
method. The performance of the proposed control concept is demonstrated by an experimentally validated simulation
model of a continuous strip annealing furnace at voestalpine Stahl GmbH, Linz, Austria.

Keywords: Nonlinear model predictive control, direct- and indirect-fired strip annealing furnace, reheating and heat
treatment of metal strips, nonlinear MIMO system, unconstrained optimization, Gauss-Newton method

1. Introduction

Continuous annealing processes are used for heat treat-
ment of steel strips. Controllers should ensure that the
strip temperature follows a set-point temperature trajec-
tory as closely as possible. The set-point trajectories de-
pend on metallurgical requirements and may vary from
strip to strip. Typically, a diverse portfolio of prod-
ucts is heat-treated in continuous strip annealing furnaces
(CSAF). Therefore, a variety of different CSAF can be
found in industry (Mullinger and Jenkins, 2014; Imose,
1985). The CSAF considered in this paper is part of a
hot-dip galvanizing line of voestalpine Stahl GmbH, Linz,
Austria.
The accurate temperature control of a CSAF is essential
to ensure a high product quality. This is in particular chal-
lenging in transient operational situations when a welded
joint moves through the furnace. In this case, the strip
dimensions (thickness, width), the steel grade, the set-
point strip temperature, and the strip velocity may change.

∗Corresponding author. Tel.: +43 50550 6813, fax: +43 50550
2813.
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Since the strip temperature is a distributed process vari-
able, which can only be measured at a very few discrete
points, the control task is further complicated. Moreover,
the thermal inertia of the furnace is rather high compared
to that of the strip. Thus, the response time of the furnace
is also high compared to the processing time of a strip.
The CSAF constitutes a multiple-input multiple-output
nonlinear distributed-parameter system. The main control
inputs are the fuel supplies of the heating zones. They can
be individually switched on/off depending on the required
heat input, which makes the task of finding optimal control
inputs a mixed-integer programming problem (Grossmann
and Kravanja, 1997). The strip velocity serves as an ad-
ditional control input. It is subject to several restrictions
which are mainly defined by downstream process steps.
All control inputs are bounded from above and below. In
this work, a nonlinear optimization-based hierarchical con-
trol strategy for the considered CSAF of voestalpine Stahl
GmbH is presented.

1.1. Continuous strip annealing furnace

Figure 1 shows a schematic of the considered CSAF,
which consists of a direct- and an indirect-fired furnace
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Nomenclature

Latin symbols

b width
c specific heat capacity
D = {hza, hzb, hzc, hzd} set of abbreviations for the

heating zones a–d
d thickness
d search direction
F = {dff, rth, rts} set of abbreviations for furnace sec-

tions
g gradient
Ḣ enthalpy flow
H Hessian
h specific enthalpy
i index
J objective function
k index with respect to time
L vector-valued Lagrange function
l index
Ṁ mass flow
M̄ molar mass
m vector of the mass flows of fuel
ṁ slope of the mass flows of fuel
N number of discretized elements
Q̇ heat flow
q̇ heat flux
R objective function
S surface
s switching state
T temperature
t time
U system input
u optimization variables
vs strip velocity
v̇s slope of the strip velocity

W weighting matrix
x algebraic and state variables
y system outputs
z spatial coordinate

Greek symbols

ε emissivity
Γ system dynamics
Λ Lagrange multiplier
λ air-fuel equivalence ratio
ϕ nonlinear transformation
ρ mass density
τ switching time
υ unconstrained optimization variable
χ stoichiometric coefficient

Subscripts

g flue gas

h roll

r radiant tube

s strip

w wall

Superscripts
+ upper bound
− lower bound
ad adiabatic flame
a air
cb combustion
d set point
f fuel
in incoming
out outgoing
r reference
sp nitrogen flushing
ˆ observer

separated by an air lock. In the considered CSAF, stan-
dard steel for the automotive area (bodywork) is produced.
The strip width varies from 0.8m up to 1.8m, whereas the
strip thickness typically varies from 0.4mm up to 1.2mm
due to the production needs but can accept materials hav-
ing lower thickness. The steel strip, which is conveyed
through the furnace by rolls, couples both parts. This
furnace type is designed for heat treatment of steel strips
in terms of throughput, energy consumption, and product
quality (Imose, 1985).
In the direct-fired furnace (DFF), the strip is heated by
means of hot flue gas, which comes from the combustion
of fuel. The fuel is burnt fuel rich in the four heating zones
(hz a–d) to avoid scale formation of the strip. Thus, the
flue gas contains unburnt products, which are burnt in a

post combustion chamber (PCC) by adding fresh air via
an air intake. The flue gas leaving the PCC contains ex-
cess oxygen and streams into the preheater, where it is
used to preheat the incoming strip. The DFF is a coun-
terflow heat exchanger because the flue gas streams in the
opposite direction of the strip motion.
In the heating zone a and b, an array of burners is used,
where a defined number of burners can be deactivated de-
pending on the width of the strip (narrow, middle, wide).
These heating zones are responsible for the base load. Us-
ing shut-off valves, the fuel supply of the heating zones a–d
can be individually switched on/off. Deactivated burners
are flushed with cold nitrogen to protect the burner noz-
zles from thermal damage (Strommer et al., 2014b). The
media supplies of air and fuel are coupled by the air-fuel
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Figure 1: Combined direct- and indirect-fired strip annealing furnace.

equivalence ratio, which is controlled by a cross-limiting
controller.
The indirect-fired furnace (IFF) is separated into three
sections, the radiant tube heating sections 1 and 2 (rth 1
and 2) and the radiant tube soaking section (rts). Each
of these sections is equipped with W-shaped radiant tubes
and can be separately controlled. The tubes are perma-
nently supplied with fuel and air to avoid flame extinction.
Inside the IFF, an inert gas atmosphere is established to
prevent scale formation of the strip. Due to a controlled
pressure gradient, a gas flow in the direction of the DFF
is always assured.
The strip temperature is measured by three pyrometers
(Pdff , Prth, and Prts), see Fig. 1. Additionally, thermo-
couples, which measure several local flue gas temperatures,
wall temperatures, and radiant tube temperatures, are in-
stalled for safety reasons.

1.2. Existing solutions

Control concepts that can be found in the literature sig-
nificantly differ in their complexity and application. In
CSAFs, simple PID controllers are widespread to control
the heating of the strip. In (Dunoyer et al., 1998; Mar-
tineau et al., 2004), PID controllers based on mathemati-
cal models of the furnace are applied. The PID controller
proposed by Li et al. (2004) is used to control the temper-
ature of a workpiece inside a furnace. The parameters of

this controller were determined by an optimization prob-
lem. In (Kelly et al., 1988), a nonlinear model of an IFF
was introduced. Moreover, a Kalman filter and a linear
quadratic controller were designed based on a linear sys-
tem model.
To support the operators, mathematical models are em-
ployed to calculate optimal process parameters, e.g.,
the strip velocity and the target strip temperature,
see (de Pisón et al., 2011; Yahiro et al., 1993). The op-
erators use this information to adjust the process, in par-
ticular when a welded joint moves through the furnace.
In (Bitschnau et al., 2010), a nonlinear model of an IFF
was derived with a controller consisting of a feedback and
a feedforward part.
In (Norberg, 1997), the challenges of controlling a CSAF
are discussed in more detail, in particular the problems
and the requirements with respect to the strip velocity, the
combustion process, the gas atmosphere, and the scaling
process are considered. As a conclusion, model predictive
control is highly recommended to tackle all these issues.
To control the strip temperature in an IFF, real-time
implementations of linear model predictive controllers
(MPC) are given in (Bitschnau and Kozek, 2009; Lewis
et al., 1994; Wu et al., 2014). For all these approaches,
only the mass flows of fuel serve as control inputs, whereas
the strip velocity and other process parameters are defined
by the operator.
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In (Guo et al., 2009), a particle swarm optimization is pro-
posed to ensure an accurate heating of the strip according
to a desired trajectory. Here, a neural network was used
for modeling the system.
In (Niederer et al., 2016), a nonlinear model predictive
controller for the considered strip annealing furnace was
designed, where the strip velocity can be arbitrarily var-
ied within a permissible range. The control inputs are the
mass flows of fuel and the strip velocity to realize an opti-
mal tracking control of the strip temperature.
In furnace control, hierarchical control structures are quite
common. In (Ming et al., 2008), a control structure with
three layers is used. One layer adapts the weakly known
parameters of the mathematical model based on measure-
ments. The model is used in a second layer to determine
a target trajectory for the strip temperature. Finally, in
a third layer, a nonlinear MPC uses this target trajectory
to calculate the optimal fuel supply. Based on a nonlin-
ear model of an IFF, Ueda et al. (1991) solved an opti-
mal control problem. The control inputs are the adjust-
ment times of the strip velocity and the furnace temper-
ature. A hierarchical structure is also used by Yoshitani
and Hasegawa (1998). First, a reference speed is deter-
mined based on a static model. Then, the optimal time
of the speed change is calculated. Furthermore, a target
trajectory of the strip temperature is specified. Finally, a
tracking controller (MPC) is used to determine the mass
flows of fuel.

1.3. Motivation and objectives

Usually, CSAFs are not equipped with a DFF. How-
ever, the key advantage of a DFF compared to an IFF
is its fast response characteristic. With a DFF, a nearly
instantaneous heating of the strip can be achieved (Delau-
nay, 2007; Imose, 1985; Mould, 1982). Most of the exist-
ing control strategies only concern IFFs and are based on
simple furnace models that capture the heaters and the
strip. Although such models may simplify the overall con-
trol design, this approach often restricts the capabilities
and accuracy of the controlled furnace.
A CSAF is a rather complex dynamical system, where typ-
ically a diverse portfolio of products having a notable va-
riety of steel grades is processed. Moreover, the require-
ments in terms of product quality may vary from applica-
tion to application. This is why a tailored control concept
has to be developed to fully utilize the potential of the
CSAF under consideration.
In this paper, the strip velocity is not allowed to vary in
an arbitrary way due to downstream process steps. More-
over, the heating zones can be switched on/off. This is
a substantial extension to the control strategy proposed
by Niederer et al. (2016).
A control strategy based on predictive control seems
promising for the considered task because the strips are
known in advance (Norberg, 1997). Thus, the require-
ments and the parameters of these strips can be incor-
porated into the design of optimized control inputs at an

early stage. Pure feedback control does not appear to be
suitable for the considered control task because of rapidly
changing operating conditions and the high thermal iner-
tia of the CSAF.
All these aspects motivate the development of a new fur-
nace temperature controller, which utilizes the advantages
of MPC. Moreover, a control structure with several mod-
ules seems to be useful to tackle the challenges associated
with mixed-integer programming, the selection of the strip
velocity, the high thermal inertia of the CSAF, the compu-
tational effort, and the real-time requirements (Ming et al.,
2008; Ueda et al., 1991; Yoshitani and Hasegawa, 1998).
The proposed furnace temperature controller consists of a
nonlinear temperature regulator (TR), an optimization-
based trajectory planner (OTP), a static optimization
module, and a trajectory generator for the strip veloc-
ity. The static optimization chooses an optimal operating
point characterized by the strip velocity and the switch-
ing state of the heating zones (on or off) for each strip.
The optimal strip velocities are used by the trajectory
generator for the strip velocity to design a desired trajec-
tory, which is then utilized by the TR and the OTP. The
OTP calculates an optimized reference trajectory of the
strip temperature and optimized switching times for turn-
ing on/off the heating zones. The OTP uses a long time
horizon (15 min) to take into account the high thermal in-
ertia of the CSAF. The OTP is required to plan ahead for
long-term transient changes of operating situations, e.g.,
when a new strip with other properties than the preced-
ing strip enters the furnace. The TR is based on MPC
technology, uses the fuel supplies as control inputs, and
performs tracking control for the strip temperatures de-
pending on their optimized reference trajectories obtained
from the OTP. The TR uses a short time horizon (3 min).
A detailed description of the choice of the time horizons is
presented in Sec. 4.6.
The main control objectives are:

� Accurate heating of the strip
� Minimum scrap of material
� Maximum throughput of strip
� Minimum energy consumption and CO2 emissions

Clearly, by minimizing the energy consumption also the
CO2 emissions are reduced. In the course of the controller
design, a number of constraints have to be considered in
terms of a reliable and safe operation of a hot-dip galva-
nizing line:

� The temperatures of the gas, the radiant tubes, and
the walls inside the furnace are limited (damage and
wear prevention).

� Limitations of control inputs have to be respected.
� The strip temperature is bounded.

The strip velocity has a significant influence on the evo-
lution of the strip temperature. A change of the speed
causes a much quicker response of the strip temperature
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compared to a change of the fuel supply (Yoshitani and
Hasegawa, 1998). However, the speed is subject to several
restrictions:

� A change of the strip velocity is programmed only
in case a new strip enters the furnace. However, cer-
tain production exceptions might require sudden vari-
ations of the strip velocity, which may be considered
as unforseen disturbances to be compensated by the
temperature control loop.

� A change of the strip velocity should always be
monotonous, i.e., the target acceleration should not
change its sign during coil transition.

� The heat-treatment time of a strip section has to be
limited due to annealing and material aging, which
may reduce the product quality.

� There is a maximum and minimum speed, which are
caused by metallurgical requirements and motor siz-
ing.

� Speed limitations demanded by the operator or due
to downstream process steps have to be respected.

A big difference between the roll and the strip temperature
may cause mechanical tensions in the strip, which result
in a distortion of the strip. Thus, the product quality
suffers and in the worst case, scrap is produced. This phe-
nomenon is called heat buckling (Paulus and Laval, 1985;
Sasaki et al., 1984). Such a temperature difference follows
from a rapid change of the strip velocity as well as a change
of the strip width. A heating zone may be switched on/off
depending on the required heat input. Since the switch-
ing of the burners may cause several disadvantages like
reduced energy efficiency and a high temperature gradient
inside the furnace, the switching should be restricted:

� Ensure a minimum time between two switching cycles.
� Switching of burners is only allowed in the vicinity of
strip transitions.

There exist further control objectives and requirements
which should be incorporated into an advanced model-
based furnace control strategy:

� Consideration of recuperators, heat recircula-
tion (Katsuki and Hasegawa, 1998).

� The mathematical model aims at predicting the pro-
cess behavior in all operating conditions and for all
product types.

� The control concept has to realize a fuel-rich gas at-
mosphere to ensure that the flue gas does not contain
oxygen, which may cause undesirable scale formation
(product quality).

1.4. Contents

This work has the following structure: In Section 2, the
mathematical model of the CSAF is briefly summarized.
The controller is based on a hierarchical structure, which
is outlined in Section 3 together with the control tasks and

objectives. Section 4 is devoted to the formulation and the
numerical solution of the associated unconstrained nonlin-
ear optimization problem. Finally in Section 5, the per-
formance of the proposed control concept is demonstrated
by simulation on an industrially validated model.

2. Mathematical model

The mathematical modeling of the overall process is a
complex task due to the underlying nonlinear physical ef-
fects and the variety of products and materials yielding
to a large range of operating conditions. Nonlinear mod-
els of the DFF and IFF were developed and validated by
measurements in Strommer et al. (2014a) and Niederer
et al. (2014), respectively. Moreover, a combined model of
the DFF and IFF is presented in (Niederer et al., 2015).
It serves as a simulation model, however, it is not suit-
able for control design due to its high system dimension
and complexity. Therefore, a reduced model in terms of
complexity, dimension, and computational effort will be
used for control purposes. This model consists of the sub-
systems flue gas, radiant tube, roll, strip, and wall. The
following reduction steps are performed:

� Coarser spatial discretization of the furnace
� Simplified calculation of the heat transfer coefficient
� Simplified combustion in the DFF
� Simplified model of the radiant tubes

The coarser spatial discretization significantly reduces the
system dimension from 850 for the full simulation model
to 150 for the reduced controller design model. The cal-
culation of the heat transfer coefficient is based on empir-
ical relations, which depend on the properties of the flue
gas (Baehr and Stephan, 2006; Incropera et al., 2007). To
determine these properties for a gaseous mixture, the for-
mula suggested by Buddenberg and Wilke (1949) is typi-
cally applied. This formula is complex and causes a signifi-
cant computational effort. Therefore, the gaseous mixture
is only represented by nitrogen for calculating the heat
transfer coefficient and hence, the complexity can be re-
duced substantially.

2.1. Fuel supplies

Generally, the fuel supply of the four heating zones a–d
of the DFF can be switched off using shut-off valves and
thus, 24 = 16 different possibilities have to be considered.
However, switching off the heating zones a and b is not
useful because they cover the base load. Therefore, only
the heating zones c and d are switched depending on the
required heat input. Based on a thorough energy analy-
sis (Strommer et al., 2013) and the fact that the furnace
operates as a counterflow heat exchanger (Incropera et al.,
2007), it can be shown that it is not useful to fire heating
zone d if heating zone c is off. Thus, only three different
cases can occur, which are indicated by the switching state
s ∈ {1, 2, 3}, see Tab. 1. In case 1 (s = 1), all heating
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s Ṁf
hzc Ṁf

hzd

1
[
Ṁf,min

hzc , Ṁf,max
hzc

] [
Ṁf,min

hzd , Ṁf,max
hzd

]

2
[
Ṁf,min

hzc , Ṁf,max
hzc

]
{0}

3 {0} {0}

Table 1: Different cases and allowed ranges of the mass flows of fuel
to the heating zones c and d.

s Ṁ sp
hzc Ṁ sp

hzd

1 0 0

2 0 Ṁ sp
hzd

3 Ṁ sp
hzc Ṁ sp

hzd

Table 2: Different cases and the corresponding mass flows due to
nitrogen flushing to the heating zones c and d.

zones of the DFF are active, in case 2 (s = 2), heating
zone d is switched off, and in case 3 (s = 3), the heating
zones c and d are switched off. The switching state s also
defines the mass flows Ṁf

α of fuel to the heating zones c
and d, α ∈ {hzc, hzd}, respectively. If a heating zone is
switched off, it is flushed with a constant amount Ṁ sp

α of
nitrogen, see Tab. 2. In the IFF, the radiant tubes are
permanently supplied by fuel and air. Thus, the mass flow
Ṁf

α of fuel to an active heating zone of the DFF and to

the IFF can vary in the range Ṁf
α ∈

[
Ṁf,min

α , Ṁf,max
α

]
,

α ∈ D ∪ {rth1, rth2, rts}, with D = {hza, hzb, hzc, hzd}
and the minimum and maximum mass flow Ṁf,min

α and
Ṁf,max

α of fuel, respectively. The bounds Ṁf,min
α and

Ṁf,max
α , α ∈ {hza, hzb}, depend on the width of the strip.

2.2. Flue gas in the DFF

The DFF is discretized into Ng = 13 volume zones,
where each zone is considered as a well-stirred reactor
with a uniform flue gas temperature Tg,i, i = 1, . . . , Ng.
The volume zones 2–5 correspond to the heating zones
a–d and zone 12 represents the PCC. The flue gas is con-
sidered quasi-stationary due to its fast response charac-
teristic compared to the remaining subsystems (Strommer
et al., 2014a). It is assumed that the combustion occurs
right at the burner nozzle and no further chemical reac-
tions are considered within a volume zone. Furthermore,
it is assumed that natural gas consists only of methane
CH4. The stationary combustion reaction in each heating
zone reads as (Turns, 2006)

CH4 + 2λi (O2 + 3.76N2) −→ χCO2

i CO2 + χCO
i CO

+ χH2O
i H2O+ χH2

i H2 + χO2

i O2 + χN2

i N2

(1)

with i ∈ {2, 3, 4, 5}. Methane is oxidized into carbon diox-
ide CO2, carbon monoxide CO, water H2O, hydrogen H2,

oxygen O2, and nitrogen N2. These reaction products are
summarized in the set G = {CO2,CO,H2O,H2,O2,N2}.
The parameters χν

i denote the stoichiometric coefficients
of the component ν ∈ G and depend on the air-fuel equiva-
lence ratio λi. In the heating zones of the DFF, a fuel-rich
combustion is realized, which implies λi < 1 and χO2

i = 0.
The remaining parameters χν

i , ν ∈ G \ {O2}, are deter-
mined by mole balances and the equilibrium equation

χCO2

i χH2

i

χCO
i χH2O

i

= Kc(T
ad
g ) (2)

of the water-gas-shift reaction (Moe, 1962) with the equi-
librium constant Kc(T

ad
g ). In contrast to Strommer et al.

(2014a), the adiabatic flame temperature T ad
g = const.

is used in (2). This simplification is justified because
Kc(T

ad
g ) ≈ Kc(Tg,i). Thus, the stoichiometric coefficients

χν
i , ν ∈ G, can be determined from mole balances, (1),

and (2) independently of the flue gas temperature.

The mass flow Ṁ cb,ν
i of a combustion product ν ∈ G which

enters the furnace zone i can be calculated by

Ṁ cb,ν
i =

M̄ν

M̄CH4
χν
i Ṁ

f
i ,

with the mass flow Ṁf
i of fuel supplied to this zone and

the molar mass M̄ν of the component ν ∈ B = G ∪{CH4}.
The mass flow of combustion air to the zone i is given by
Ṁa

i = Ṁa,O2

i + Ṁa,N2

i with

Ṁa,κ
i =

M̄κ

M̄CH4
χa,κ
i Ṁf

i ,

κ ∈ A = {O2,N2}, χa,O2

i = 2λi, and χa,N2

i = 7.52λi. The

mass flow Ṁa
12 = Ṁa,O2

12 + Ṁa,N2

12 of air supplied to the
PCC reads as

Ṁa,κ
12 =

M̄κ

M̄CH4

5∑

i=2

(χa,κ
12 − χa,κ

i ) Ṁf
i ,

with κ ∈ A, χa,O2

12 = 2λ12, χ
a,N2

12 = 7.52λ12, and the air-
fuel equivalence ratio λ12 in the PCC.

Remark 1. To ensure that the flue gas which leaves the
furnace contains a desired amount of excess oxygen, λ12 is
feedback-controlled. This ensures a fuel-lean gas mixture,
i.e., λ12 > 1 (Strommer et al., 2017).

The stationary mass balance of each component ν ∈ G
can be utilized to determine the outgoing mass flow Ṁout,ν

i

from an individual volume zone i (Baehr and Stephan,
2006; Incropera et al., 2007)

Ṁout,ν
i = Ṁ in,ν

i + Ṁ cb,ν
i + Ṁ sp,ν

i , (3)

where Ṁ in,ν
i is the incoming mass flow from the upstream

zone, i.e., Ṁ in,ν
i = Ṁout,ν

i−1 . Ṁ sp,ν
i is the mass flow due

to nitrogen flushing, i.e., Ṁ sp,ν
i = 0 for ν 6= N2 and

Ṁ sp,N2

i = Ṁ sp
i , see Tab. 2.
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The flue gas temperature Tg,i of volume zone i is calcu-
lated based on the stationary enthalpy balance (Baehr and
Stephan, 2006; Incropera et al., 2007)

0 = Ḣin
i + Ḣa

i + Ḣf
i + Ḣsp

i − Ḣout
i + Q̇g,i.

Here, Ḣin
i , Ḣa

i , Ḣ
f
i , Ḣ

sp
i , and Ḣout

i correspond to the en-
thalpy flows of the incoming bulk flow, combustion air,
fuel, nitrogen flushing, and the outgoing flue gas stream,
respectively. Q̇g,i is the net heat flow into the flue gas and
includes convection and thermal radiation. An enthalpy
flow can be determined by Ḣ =

∑
ν∈B Ṁνhν(T ) with the

specific enthalpy hν(T ) and the mass flow Ṁν of compo-
nent ν ∈ B (Turns, 2006). This yields a nonlinear equation

0 =
∑

ν∈G
Ṁout,ν

i−1 hν(Tg,i−1) +
∑

κ∈A
Ṁa,κ

i hκ(T a
i )

+ Ṁf
i h

CH4(T f
i ) + Ṁ sp

i hN2(T sp
i )

−
∑

ν∈G
Ṁout,ν

i hν(Tg,i) + Q̇g,i,

(4)

where T a
i , T

f
i , and T sp

i are the temperatures of combus-
tion air, fuel, and nitrogen, respectively. For determining
the flue gas temperatures Tg,i by means of (4), the outgo-

ing mass flows Ṁout,ν
i are required. Since these mass flows

only depend on the mass flows of fuel supplied to the four

heating zones mD =
[
Ṁf

α

]
α∈D

∈ R4, the air-fuel equiva-

lence ratios λ = [λα]α∈D∪{pcc} ∈ R5, and the mass flows

of nitrogen flushing mN =
[
Ṁ sp

α

]
α∈D

∈ R4, they directly

follow from (3).

2.3. W-shaped radiant tube

The Nr W-shaped radiant tubes are equipped with
gas-fired burners and local recuperators, cf. Fig 1. In
the radiant tubes, the combustion is fuel lean, i.e., λ ≥
1. In (Niederer et al., 2014), a semi-empirical nonlin-
ear mapping Ψi depending on the mass flows mI =[
Ṁf

rth1, Ṁ
f
rth2, Ṁ

f
rts

]T
∈ R3 of fuel is suggested to cal-

culate the heat input due to the combustion of fuel in the
form Q̇c,i = Ψi(mI), i = 1, . . . , Nr. Note, the effect of the
recuperator is incorporated into the mapping Ψi.
In (Niederer et al., 2014), a radiant tube is approximated
by four straight pipes each with a thickness dr, a mass
density ρr, and a temperature-dependent specific heat ca-
pacity cr. In the current work, only the temperature Tr,i,1

of the first pipe of the radiant tube i is calculated and the
remaining temperatures are chosen proportional to Tr,i,1.
Starting from the first pipe, a nearly linear temperature
drop over the pipes can be observed (Imose, 1985).
The temperature of the first pipe of the radiant tube i is
based on the heat balance, resulting in

d

dt
Tr,i,1 =

q̇c,i,1 + q̇r,i,1
ρrcr(Tr,i,1)dr

, (5)

with i = 1, . . . , Nr and the radiative heat flux q̇r,i,1 from
the furnace chamber to the first pipe. The heat flux q̇c,i,1 =

wQ̇c,i into the inner surface of the tube is assumed to be
uniform, with a weighting factor w ∈ (0, 1), see (Niederer
et al., 2014) for more details.

2.4. Furnace wall

The layered furnace wall is discretized into Nw wall seg-
ments. The temperature of the outer wall surface is as-
sumed to be equal to the ambient temperature T∞. On
the inner surface, the boundary condition is defined by
the heat flux q̇w due to convection and radiation. The
heat conduction through the wall can be characterized by
the one-dimensional heat conduction equation (Baehr and
Stephan, 2006; Incropera et al., 2007). To obtain a low-
dimensional and computationally undemanding model, the
Galerkin weighted residual method is applied (Fletcher,
1984). Here, the stationary solution of the heat conduc-
tion equation serves as a trial function. Finally, the dy-
namic behavior of the wall temperature can be defined by
a lumped-parameter model

d

dt
Tw,i =

q̇w,i

K1,i
+

K2,i

K1,i
(T∞ − Tw,i) (6)

representing the inner surface temperature Tw,i of the wall
segment i with i = 1, . . . , Nw. The parameters K1,i and
K2,i are defined in (Niederer et al., 2015).

2.5. Roll and strip

The strip enters the furnace at z = 0 (cf. Fig. 1)
with ambient temperature T∞ and moves through the fur-
nace with the velocity vs. The strip is characterized by
the thickness ds, the width bs, the mass density ρs, and
the temperature-dependent specific heat capacity cs. The
dynamic behavior of the strip temperature Ts,i of a dis-
cretized section i is given in the form (Strommer et al.,
2014a)

d

dt
Ts,i =

2q̇s,i
ρscs(Ts,i)ds,i

− vs
Ts,i − Ts,i−1

∆z
, (7)

with the boundary condition Ts,0(t) = T∞ at z = 0 and
the local heat flux to the strip q̇s,i(t), which comprises the
convective, conductive, and radiative heat transfer. In (7),
the backward finite difference formula is used to approxi-
mate the transport term. The strip is discretized into Ns

sections with equidistant length ∆z and locally uniform
temperature Ts,i, i = 1, . . . , Ns.
Thermal conduction occurs if the strip touches one of the
Nh rolls. The temperature Th,i of a single roll i can be
determined based on the heat balance, which gives

d

dt
Th,i =

1

ρhch(Th,i)dh

((
1− Sc

h

Sh

)
q̇h,i +

Sc
h

Sh
q̇ch,i

)
. (8)

Here, dh is the wall thickness of the roll, ρh is its mass
density, ch is its temperature-dependent specific heat ca-
pacity, Sh is the total surface of the roll, and Sc

h is the
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contact area between the strip and the roll. Moreover,
q̇h,i captures the heat flux to the roll by convection and
radiation and q̇ch,i denotes the conductive heat flux.

2.6. Measurement of the strip surface temperature

It is well known that non-contact temperature measure-
ment is a sophisticated task, in particular when the mea-
sured object moves. Typically, a pyrometer is used in such
cases to measure the intensity. In the considered furnace,
three pyrometers are available to measure the intensities
Iα with α ∈ F = {dff, rth, rts} (cf. Fig. 1).
Remark 2. Because the material quality depends on the
temperature but not on the intensity and because it is
difficult for most furnace operators to interpret intensity
values, furnace control systems commonly use the temper-
ature rather than the intensity.

Based on Iα = σεs,αT
4
s,α, the correct strip temperature

is given in the form (Iuchi et al., 2010; Michalski et al.,
2001)

Ts,α =

(
Iα

σεs,α

)1/4

, (9)

with the Stefan-Boltzmann constant σ and the (unknown)
real strip emissivity εs,α at the corresponding pyrometer
position zα. The strip emissivity εs,α can be estimated by
means of a state estimator (Strommer et al., 2016).

2.7. State-space model and discrete-time representation

In the previous sections, the individual subsystems were
presented. Now, these subsystems are assembled in a re-
duced mathematical model of the considered CSAF. The
subsystems (4)–(8) are interconnected via the heat transfer
mechanisms (Niederer et al., 2014, 2015; Strommer et al.,
2014a). The reduced model can be written in state-space
form

d

dt
x1 = f (t,x1,x2,m, vs) (10a)

0 = a (t,x1,x2,m,mN) (10b)

y = bTx1, (10c)

with the state vector x1 ∈ R137, the algebraic variables
x2 ∈ R13, the vector of mass flows mT =

[
mT

D,mT
I

]
∈ R7

of fuel, the mass flows mN of nitrogen, and the initial con-
dition x1(t = t0) = x1,0. The mass flows of fuel, the strip
velocity, and the mass flows of nitrogen are the system in-
puts, where the mass flows of fuel and nitrogen depend on
the switching state s, see Tabs. 1 and 2. Equation (10c)
defines the system output y which corresponds to the strip
temperatures at the pyrometer positions zα, α ∈ F , i.e.,
y = [Ts,α]α∈F . The linear mapping in (10c) is defined by
the vector b. The state vector x1 summarizes the temper-
atures of radiant tubes, rolls, strip, and walls. The flue

gas temperatures are assembled in the vector x2. Equa-
tion (10) is nonlinear and time variant. The steady state
of (10) can be computed from

0 = Π(t,x,U) =

[
f (t,x1,x2,m, vs)

a (t,x1,x2,m,mN)

]
, (11)

with the augmented state vector xT =
[
xT
1 ,x

T
2

]
∈ R150

and the system input UT =
[
mT

D,mT
I ,m

T
N , vs

]
∈ R12.

For computer implementation, (10) has to be integrated
in time. In (Niederer et al., 2014, 2015; Strommer et al.,
2014a), Euler’s explicit method is used with a small sam-
pling time ∆tk. To decrease computational costs, a larger
sampling time is preferable, which can, however, jeopar-
dize the accuracy or even cause numerical instability. Nu-
merical methods of higher order may help to keep the ac-
curacy high even for larger sampling times. In (7), the
Courant-Friedrichs-Lewy (CFL) condition has to be met
for numerical stability (Strikwerda, 2004), i.e., ∆tkvs ≤
∆z with the sampling time ∆tk, the spatial discretization
∆z of the strip, and the strip velocity vs. Hence, a larger
sampling time ∆tk requires an appropriate discretization
∆z. Applying the second-order half-explicit Runge-Kutta
method (Ascher and Petzold, 1998), the discrete-time sys-
tem can be expressed by a predictor step

X1,k+1 = x1,k +∆tkfk (x1,k,x2,k,mk, vs,k) (12a)

0 = ak (X1,k+1,X2,k+1,mk,mN,k) (12b)

and a corrector step

x1,k+1 = x1,k +
∆tk
2

(
fk (x1,k,x2,k,mk, vs,k)

+ fk+1 (X1,k+1,X2,k+1,mk+1, vs,k+1)
) (13a)

0 = ak+1 (x1,k+1,x2,k+1,mk+1,mN,k+1) , (13b)

where X1,k+1 and X2,k+1 are intermediate values and x1,k

and x2,k are the values of x1 and x2 at the grid points

tk = t0 +
∑k

i=1 ∆ti. Inserting (12) into (13), the discrete-
time system can be written as

0 = Γk(xk,xk+1,Uk,Uk+1), (14)

with the initial state xT
0 =

[
xT
1,0,x

T
2,0

]
. Here, the ini-

tial state x2,0 follows from solving (10b) with x1,0, m0 =
m(t = t0), and mN,0 = mN(t = t0).

Remark 3. In the dynamic optimization (cf. Sec. 4), the
system (14) is evaluated recurrently during a particular
time interval

[
tib, t

i
e

]
, i.e., 0 = Γk−1(xk−1,xk,Uk−1,Uk)

with the initial condition xk0 , k ∈ K, and the set K =
{k0 + 1, . . . , k1}, see Fig. 2. The parameters k0, . . . , k1 are
sampling points which correspond to tib = tk0 , . . . , t

i
e =

tk1 . At the beginning of the first optimization horizon,
t1b = tk0 = t0 and the initial condition xk0 = x0.
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1
2

3
4

Optimal solution applied to the furnace
Optimal solution used as initial guess in the next horizon

horizon
Optimization

t1b t2b t3b t4bt1e t2e t3e t4e t

Figure 2: Receding horizon approach.

3. Furnace control system

The mass flow of fuel into each heating zone (hz a, hz b,
hz c, hz d, rth 1, rth 2, and rts), the corresponding air-fuel
equivalence ratios, the switching state, the strip velocity,
and the strip properties (geometry and steel grade) con-
stitute the primary inputs of the CSAF. Next, the control
structure is briefly discussed.
The primary control objective is that the strip tempera-

controller
controller

controller
controller

Process data

Furnace

observer

Temperature

Mass flow

Velocity

x̂, ε̂s

fuel
Air&

Speed
furnace

Supervisory

m

vs
Is

State

Figure 3: Hierarchical control structure of the furnace control sys-
tem.

ture follows a set-point trajectory at the positions zrth and
zrts, where the pyrometers Prth and Prts are installed, see
Fig. 1. These strip temperatures are the most important
temperatures in terms of material properties and control.
Maximization of throughput and minimization of energy
consumption are secondary goals. To cater for all these re-
quirements and constraints, a control structure with sev-
eral hierarchical layers seems appropriate. Additionally,
different response times of certain parts of the plant mo-
tivate the use of a cascaded structure. For instance, the
response time of the control valves of the fuel and air sup-
ply is typically much smaller than the response time of the
temperatures of the furnace wall and the rolls, see Sec. 1.3.

3.1. Hierarchical control layers

Figure 3 shows the hierarchical control system consisting
of three layers, i.e., the supervisory furnace controller, the
temperature controller, and the subordinate controllers for
the mass flow and the strip velocity. The supervisory fur-
nace controller has the highest authority and stipulates all
production steps of the hot-dip galvanizing line. It de-
fines the sequence of strips, their set-point temperatures,
and the corresponding constraints. This information is re-
ferred to as process data. Table 3 shows some process data
specified by the supervisory furnace controller for each
individual strip l. The set-point values of the air-fuel
equivalence ratios λl are chosen depending on the steel

Variable Description

T l,d
s,α Set-point strip temperature at zα

T l,−
s,α Lower bound on strip temperature at zα

T l,+
s,α Upper bound on strip temperature at zα

tl Time when a strip transition takes place

tls Beginning of a change of the strip velocity

λl
β Set-point air-fuel equivalence ratio in hz a–d

λl
pcc Set-point air-fuel equivalence ratio in PCC

ρls Mass density of the strip material

cls Specific heat capacity of the strip material

dls Strip thickness

bls Strip width

Ll
s Length of strip

Table 3: Process data of the strip l defined by the supervisory furnace
controller with α ∈ F and β ∈ D.

grade and metallurgical requirements. The scalar temper-
ature values T l,d

s,α and T l,±
s,α , α ∈ F , are defined at the

positions zα, i.e., the positions of the pyrometers Pα. De-
pending on these scalar values and the position trajectory
of the strip, the supervisory furnace controller generates
piecewise-constant trajectories T d

s,α(t) and T±
s,α(t). In the

same way, the piecewise-constant trajectory λ(t) of the
air-fuel equivalence ratios is designed based on λl.
The second layer (temperature controller) consists of four
modules, see Sec. 4 and Fig. 5. In this layer, optimization-
based methods are applied to determine the mass flows
of fuel and the strip velocity so that a desired heating of
the strip is achieved. This layer is the centerpiece of this
paper and the corresponding control tasks are specified in
Sec. 3.2.
Since the CSAF is only equipped with few measurement
devices, a state observer is employed to provide the tem-
perature controller with estimated system states. In
fact, the observer estimates the augmented state x̂ and
the badly known strip emissivity ε̂s (Strommer et al.,
2016). The observer is an adaptive estimator, which uses
a copy of the system (11) and a heuristic update law
˙̂εs = Wo(Is − Îs). W

o is a positive-definite diagonal ma-
trix, Is are the measured intensities of the strip, see Fig.
3, and Îs are the estimated intensities of the strip at the
pyrometer positions zdff , zrth, and zrts. The estimated

intensities can be computed by Îs =
[
σε̂s,αT̂

4
s,α

]
α∈F

with

the estimated strip emissivity ε̂s,α and temperature T̂s,α,
see Sec. 2.6.
The third layer performs subordinate tracking control
tasks for the mass flows of fuel and air and the strip
velocity. Generally, this layer uses decentralized SISO
PI-controllers. Moreover, cross-limiting controllers en-
sure that the desired air-fuel equivalence ratios are real-
ized (Froehlich et al., 2016; Strommer et al., 2014b, 2017).
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For the design of the superordinate temperature controller,
it is assumed that the subordinate mass flow and strip ve-
locity controllers are ideal.

3.2. Control task of the temperature controller

The strip temperatures yk = y(tk) at the positions
zdff , zrth, and zrts should follow their set-point trajecto-
ries yd

k =
[
T d
s,α(tk)

]
α∈F . If the strip temperatures do not

reach the set-point values, they should be at least within
an admissible range defined by

y−
k ≤ yk ≤ y+

k , (15)

with the vector y±
k =

[
T±
s,α(tk)

]
α∈F of lower and upper

bounds. The constraint (15) ensures that the final steel
product has the desired material properties. In the soak-
ing zone (rts), the strip is held at an elevated tempera-
ture (Trinks et al., 2004). This is why the set-point strip
temperatures T d

s,rth and T d
s,rts are often chosen identical.

Note that for various steel grades this may not be the
case. The exact set-point temperatures are the specific
know-how of the plant operator. Figure 4 shows an exem-
plary heating curve of a strip section in the CSAF at the
grid point tk. Moreover, the set-point strip temperatures

T∞

T d
s,dff (tk)

T d
s,rth(tk)

Ts(z, tk)

Bounds

Set point

0

Soaking section

z

T−
s,dff (tk)

T+
s,dff (tk)

T−
s,rth(tk)

T+
s,rth(tk)

T−
s,rts(tk)

T+
s,rts(tk)

zdff zrth zrts

Figure 4: Typical heating curve of a strip section in the furnace.

yd
k and the corresponding bounds y±

k are indicated in this
figure.
The mass flows m of fuel of the active heating zones, cf.
Tab 1, and the strip velocity vs are constrained in terms
of their absolute values, which can be written in a time-
discrete form as

m−
k ≤mk ≤m+

k , k ∈ K (16a)

v−s,k ≤ vs,k ≤ v+s,k, k ∈ K, (16b)

with the bounds m−, m+, v−s , and v+s . Moreover, the
slopes of the mass flows of fuel and the strip velocity are
also constrained, i.e.,

ṁ−
k ≤

mk −mk−1

∆tk−1
≤ ṁ+

k , k ∈ K (17a)

v̇−s,k ≤
vs,k − vs,k−1

∆tk−1
≤ v̇+s,k, k ∈ K, (17b)

with the bounds ṁ−, ṁ+, v̇−s , and v̇+s . Usually, the
bounds m±

k and ṁ±
k as well as v±s,k and v̇±s,k are inde-

pendent. The constraints (17) take into account that tem-
peratures inside the CSAF and the electrical drives which
convey the strip cannot vary at arbitrary rates due to the
limited valve and drive dynamics, the risk of heat buck-
ling, and the possible damage of devices and of the furnace
interior (Imose, 1985).

Remark 4. Besides the steel grade and product type, also
downstream process steps like the zinc bath may limit the
strip velocity. In some cases, the desired velocity vs,k =
vds,k is prescribed by other process steps, which means that
it is no longer a control input.

If there is a change in the trajectory sk = s(tk) of the
switching state in the heating zones, an optimal switching
time has to be determined by the temperature controller.
The switching time τ l, l ∈ N, is constrained by

τ l,− ≤ τ l ≤ τ l,+ (18)

with the bounds τ l,±. Equation (18) ensures that the
switching occurs in the neighborhood of the corresponding
strip transition. Moreover, a certain time ∆τ must elapse
until a new change of the switching state s is allowed, i.e.,
τ l,+ +∆τ < τ l+1,−.
The control objectives and constraints stated in this sec-
tion correspond to the objectives outlined in Sec. 1.3. The
primary goal is the accurate control of the strip tem-
perature, which is inherently linked to an optimal prod-
uct quality. Moreover, the temperature controller should
also incorporate the secondary objectives, i.e., maximum
throughput and minimum energy consumption. Clearly,
the throughput is proportional to the strip velocity and
the energy consumption is proportional to the mass flows
of fuel.

4. Temperature controller

This section deals with the individual modules of
the temperature controller, i.e., the static optimiza-
tion, the trajectory generator for the strip velocity, the
optimization-based trajectory planner (OTP), and the
temperature regulator (TR), see Fig. 5. First, the struc-
ture of the temperature controller is motivated. Then, the
individual modules will be discussed in more detail. Fi-
nally, a numerical solution of the underlying optimization
problems is presented.

4.1. Structure of the temperature controller

Table 1 indicates that the mass flows of fuel of the
heating zones c and d may vary discontinuously. System-
atic optimization of the mass flows thus involves a time-
consuming mixed-integer programming problem. In this
paper, a static optimization problem is formulated instead,
which determines the optimum switching state sl and an
optimal strip velocity vls for each strip l. Afterwards, the

10

Post-print version of the article: S. Strommer, M. Niederer, A. Steinboeck, and A. Kugi, �Hierarchical nonlinear optimization-based

controller of a continuous strip annealing furnace�, Control Engineering Practice, vol. 73, pp. 40�55, 2018. doi: 10.1016/j.conengprac.

2017.12.005

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.conengprac.2017.12.005
http://dx.doi.org/10.1016/j.conengprac.2017.12.005


Optimization-based

OTP
regulator

Process data

trajectory planner
TR

TemperatureStatic

Temperature controller

ε̂s x̂, ε̂s

31 4

Trajectory generator
2

optimization

for strip velocity

m

vs
vs

yr
sl τ l,

vls

Figure 5: Structure of the temperature controller.

optimal strip velocities vl−1
s and vls of consecutive strips

are used to design an appropriate trajectory vs(t) of the
strip velocity in the transition region.
The optimal mass flows m of fuel are determined by the
TR. It is mandatory that the TR is executed in real time.
Therefore, the time grid and the time horizon [tk0 , tk1 ]
must be adequately chosen. If the time horizon is too
short, a violation of the bounds T±

s,α may occur due to
the high thermal inertia of the CSAF. In case of a bound-
ary violation, the product quality may suffer and in the
worst case, scrap may be produced. Figure 6 gives a
graphical representation of this situation. At time t1, a

T 1,d
s,α

Long horizon

Short horizon
Ts,α

T 2,d
s,α

T lh
s,α

T sh
s,α

t

T 2,−
s,α

T 2,+
s,α

Strip 1 Strip 2

t1

T 1,−
s,α

T 1,+
s,α

Figure 6: Treatment of a change of the set-point strip temperature
in terms of different time horizons, α ∈ F .

strip transition takes place, i.e., the head of the subse-
quent strip enters the furnace and thus the set-point strip
temperature and the corresponding bounds change. Using
a short prediction horizon, the TR is not able to change
from T 1,d

s,α to T 2,d
s,α without a violation of the lower bound

due to the high thermal inertia of the CSAF, see the gray
dash-dotted line T sh

s,α in Fig. 6. Therefore, the OTP uses
a long planning horizon to design reference trajectories
yr(t) =

[
T r
s,α(t)

]
α∈F of the strip temperature which do

not violate the bounds, see the black solid line T lh
s,α in

Fig. 6.
The OTP also determines an optimal switching time τ l if
there is a change of the switching state sl, i.e., if sl 6= sl+1.
As indicated in Fig. 7, the discrete-time trajectory sk de-
pends on the switching time τ l and the switching states sl

τ1

τ1 τ2

Detail

∆τ

s

s

2

1

tk

τ1,−

τ1,− τ1,+ τ2,− τ2,+

Strip 1 Strip 2 Strip 3

Figure 7: Influence of the switching time on the trajectory of the
switching state.

and sl+1 of the current and the subsequent strip, respec-
tively. Moreover, the detail in Fig. 7 shows that τ l is gen-
erally round up to the next sampling point tk (Flasskamp
et al., 2012). Clearly, if sl = sl+1, the variable τ l has no
effect and does not need to be defined.
The trajectories of the reference temperatures yr and the
strip velocity vs, the optimal switching time τ l, and the
process data are used by the TR to determine the optimal
mass flows m of fuel, see Fig. 3. The TR uses a short
prediction horizon to ensure execution in real time.
The tasks and optimization results of the four modules are
listed in Tab. 4 and will be discussed in more detail in the
next sections.

4.2. Static optimization

The module static optimization calculates an optimal
operating point characterized by the strip velocity vls and
the switching state sl for each strip l, see Tab. 4. The cal-
culation of an optimal operating point is based on process
data and the estimated strip emissivity ε̂s provided by the
state observer, see Fig. 3.
As discussed in Sec. 2.1 for switching on/off the heating
zones, only three different cases, given in Tab. 1, can occur.
From this triple, the optimum switching state sl has to be
selected, which can easily be done by complete enumer-
ation. For each strip, the switching state sl that is most
efficient in terms of energy consumption and throughput is
used. In the first iteration (sl = 1), the control inputs u1 of

the static optimization are defined as u1 =
[
mT

D,m
T
I , vs

]T
.

In the second iteration (sl = 2), the mass flow Ṁf
hzd of fuel

to the heating zone d does not constitute a control input
because Ṁf

hzd = 0. In the third iteration (sl = 3), the

mass flows Ṁf
hzc and Ṁf

hzd of fuel to the heating zone c
and d are zero.
The furnace process is represented by the steady-
state model (11) with the system input U =[
mT

D,m
T
I ,m

T
N , vs

]T
.

Remark 5. The system input U depends on the control
input u1 and the switching state sl (see Tab. 1), i.e., U =
U(u1, s

l).
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Module Task and optimization results Description

Static optimization 1 Switching state sl for each strip l Section 4.2

Strip velocity vls for each strip l

Trajectory generator for strip velocity 2 Design of the strip velocity trajectory vs Section 4.3

Optimization-based trajectory planner 3 Target trajectories yr of the strip temperatures Section 4.4

Switching time τ l

Model predictive controller 4 Mass flows m of fuel Section 4.5

Table 4: Control tasks and optimization results of the modules of the temperature controller.

The nonlinear optimization problem of the module static
optimization can be formulated as

minimize
u1∈RN1

J1 =
∥∥y − yl,d

∥∥
Ws +

∥∥u1 − ud
1

∥∥
Wu (19a)

subject to 0 = Π(t,x,U(u1, s
l)) (19b)

u−
1 ≤ u1 ≤ u+

1 (19c)

y− − y ≤ 0 (19d)

y − y+ ≤ 0 (19e)

with the vector yl,d =
[
T l,d
s,α

]
α∈F of set-point strip tem-

peratures, the set-point values ud
1 =

[
(md)T, vds

]T
of the

control inputs, the bounds u±
1 of the control inputs, and

the constraints (15) and (16). The second term in (19a) is
used to weight the energy consumption and the through-
put.

Remark 6. To achieve minimum energy consumption, md

is set to zero. To realize maximum throughput, the desired
strip velocity vds is set to the upper bound v+s of the strip

velocity, i.e., ud
1 =

[
0T, v+s

]T
. Note, the secondary goals

minimum energy consumption and maximum throughput
are antagonistic. By choosing appropriate weighting ma-
trices in (19a), a weighting of these goals can be achieved.

The problem (19) possesses N1 = dim(u1) =
nD + nI + nvs optimization variables with (sl, nD) ∈
{(1, 4), (2, 3), (3, 2)}, nI = dim(mI) = 3, and nvs = 1. The
state constraints (19d) and (19e) ensure that the strip tem-
peratures at zdff , zrth, and zrts remain within the permis-

sible range, cf. (15). In (19a), ‖θ‖W = 1
2θ

TWθ indicates
a quadratic form. W, Ws, and Wu are positive-definite
weighting matrices. J1, Π, and the state constraints (19d)
and (19e) are assumed to be continuous in their arguments
x, m, and vs.
A (unique) solution of (19) cannot be guaranteed with-
out further assumptions (Keerthi and Gilbert, 1985). The
challenges of solving (19) are the inequality constraints
(19c) – (19e). Thus, in the following, (19) will be trans-
formed into an unconstrained optimization problem.
The box constraints (19c) can be eliminated by the non-

linear input transformation (Graichen and Petit, 2008)

u1 = ϕ (υ1) =
u−
1 + u+

1

2
+

u+
1 − u−

1

2
tanh

(
2υ1

u+
1 − u−

1

)
,

(20)

with the new unconstrained optimization variables υ1.
In (20), each mathematical operation is applied to the re-
spective element of the vector. Equation (20) ensures strict
satisfaction of (19c). To avoid singular arcs, which occur
when at least one element of υ1 approaches infinity, a posi-
tive definite term 1

2ηυ
T
1 υ1 with a small positive parameter

η > 0 is added to the objective function J1 (Graichen and
Petit, 2008).
The inequality constraints (19d) and (19e) can be consid-
ered via penalty terms, which are added to the objective
function J1, i.e.,

r−(x) = ‖max
(
0,y− − y

)
‖W− (21a)

r+(x) = ‖max
(
0,y − y+

)
‖W+ . (21b)

W− and W+ are positive-definite weighting matrices. Us-
ing the penalty terms (21), the original constraints (19d) –
(19e) may be violated. Thus, a conservative design of these
constraints is advisable (Nocedal and Wright, 2006; Stein-
boeck et al., 2013).
Using (20) and (21), the original problem (19) can be for-
mulated as an unconstrained optimization problem

minimize
υ1∈RN1

J̄1 =
∥∥y − yl,d

∥∥
Ws +

∥∥ϕ (υ1)− ud
1

∥∥
Wu

+
1

2
ηυT

1 υ1 + r− (x) + r+ (x)

(22a)

subject to 0 = Π
(
t,x,U(ϕ (υ1) , s

l)
)
. (22b)

In contrast to (19), the formulation (22) does not contain
inequality constraints and hence a solution of this opti-
mization problem always exists.
All weighting matrices Ws, Wu, and W± used in (22) are
determined empirically. In case of maximum throughput,
the strip velocity should be as high as possible. Thus, the
corresponding entry in the matrix Wu is chosen higher
than the entries related to the energy consumption, and
vice versa for the case of minimum energy consumption.
The weighting Ws is high compared to Wu and W± to
prioritize the primary control objective.
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4.3. Trajectory generator for strip velocity

Based on process data and the optimal strip velocity vls
obtained from the module static optimization, the module
trajectory generator for strip velocity generates the trajec-
tory

vs(t) =





vls t < tls
θ1 + θ2t+ θ3t

2 + θ4t
3 tls ≤ t ≤ tls +∆tls

vl+1
s t > tls +∆tls

(23)

based on a third-order polynomial with the coefficients
θi, i = 1, 2, 3, 4. The parameters tls and ∆tls define the
beginning and the end of the transition. At the time
tls and tls + ∆tls, the trajectory vs(t) has to be contin-
uous and continuously differentiable, i.e., vs(t

l
s) = vls,

vs(t
l
s + ∆tls) = vl+1

s , v̇s(t
l
s) = 0, and v̇s(t

l
s + ∆tls) = 0.

Based on these conditions, the coefficients θi can be deter-
mined. By means of ∆tls, the slope and the length of the
transition can be adjusted so that the constraint (17b)
is met. The maximum value of the slope v̇s(t) is at
t⋆ = −θ3/3θ4. The value v̇s(t

⋆) has to fulfill the con-
straint (17b). If this condition is violated, the parameter
∆tls has to be adapted accordingly. In Fig. 8, an example
with three different strips is illustrated.

vs(t)

v1s

v2s

v3s

v1,−s

v1,+s

v2,−s

v2,+s

v3,−s

v3,+s

Strip 1 Strip 2 Strip 3

t1 t2

∆t1s ∆t2s

t1s t2s
t

vs

Figure 8: Design of the strip velocity trajectory.

4.4. Optimization-based trajectory planner

The module optimization-based trajectory planner
(OTP) is primarily required to plan ahead for transient op-
erating situations. The OTP determines reference trajec-
tories yr of the strip temperatures and an optimal switch-
ing time τ l based on a long prediction horizon [tk0 , tk1 ],
see Tab. 4. For realizing this task, the module OTP uses
process data, the optimal switching state sl provided by
the static optimization, and the trajectory vs,k obtained
from the trajectory generator for strip velocity. The piece-
wise constant trajectories yd(t) of strip temperatures are
also included in the process data, their values follow from
the set-point temperatures T l,d

s,α for each strip l, α ∈ F ,
and the position trajectory of the strip, see Sec. 3.1. The
initial state of the optimization problem at the beginning

of every optimization horizon is defined by the estimated
current system state x̂0 and the estimated strip emissivity
ε̂s, see Fig. 2. These values are provided by the state ob-
server, see Fig. 3.
Only the mass flows mk of fuel of an active heating zone
constitute control inputs to be manipulated. These mass
flows are summarized in the vector u3,k depending on the
switching state sk. The switching time τ l is also an opti-
mization variable in the OTP.
The furnace is represented by the discrete-time system (14)

with the system input Uk = Uk

(
u3,k, sk|τ l

)
. Based on

the constraints (15), (16a), (17a), and (18), the nonlinear
optimization problem of the OTP can be formulated as

minimize
(u3,τ l)∈RN3×R

J3 =
∑

k∈K

∥∥yk − yd
k

∥∥
Ws

k

+
∥∥u3,k

∥∥
Wu

k
(24a)

subject to 0 = Γk−1

(
xk−1,xk,Uk−1

(
u3,k−1, sk−1|τ l

)
,

Uk

(
u3,k, sk|τ l

))
, k ∈ K

(24b)

xk0 = x̂0, Uk0 = U0 (24c)

u−
3,k ≤ u3,k ≤ u+

3,k, k ∈ K (24d)

u̇−
3,k ≤

u3,k − u3,k−1

∆tk−1
≤ u̇+

3,k, k ∈ K

(24e)

τ l,− ≤ τ l ≤ τ l,+ (24f)

y−
k − yk ≤ 0, k ∈ K (24g)

yk − y+
k ≤ 0, k ∈ K, (24h)

with u3 = [u3,k]k∈K , the specified initial values xk0 and

Uk0 , and the system input U0 =
[
mT

0 , vs,0
]T

at tk0 . The
constrained problem (24) possesses N3 = dim(u3) + 1 =∑

i∈K nD,i + (k1 − k0)nI + 1 optimization variables with
(si, nD,i) ∈ {(1, 4), (2, 3), (3, 2)}. Minimum energy con-
sumption can be ensured by means of the second term in
(24a). Ws

k and Wu
k are positive-definite weighting matri-

ces. J3, Γ, and the state constraints (24g) and (24h) are
assumed to be continuous in their arguments x, m, and
τ l.
Now, the original problem (24) is transformed into an un-
constrained optimization problem similar to Sec. 4.2. The
box constraints (24d) and (24f) can be eliminated by the
nonlinear transformation (20). Thus, the mass flows u3,k

of fuel of an active heating zone and the switching time
τ l follow in the form u3,k = ϕk (υ3,k) and τ l = ϕ (υ̃)
with the new unconstrained optimization variables υ3,k

and υ̃, respectively. It is assumed that only one strip tran-
sition takes place during the prediction horizon [tk0 , tk1 ]
and thus, only one switching time τ l has to be determined.
This assumption is justified because the processing time of
the strips is larger than the length of the horizon of the
OTP. The inequality constraints (24e), (24g), and (24h)
can be considered via penalty terms. The inequality con-
straints of the states (24g) and (24h) can be taken into
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account similar to (21). The slopes of the mass flows of
fuel (24e) can be incorporated in the form

ru̇k (u3,k−1,u3,k) = ‖max
(
0,u3,k−1 − u3,k +∆tk−1u̇

−
3,k,

u3,k − u3,k−1 −∆tk−1u̇
+
3,k

)
‖Wu̇

k
,

(25)

with the positive-definite weighting matrix Wu̇
k . To

avoid singular arcs, again a positive definite term∑
k∈K

1
2ηυ

T
3,kυ3,k +

1
2ηυ̃

2 with a small positive parame-
ter η > 0 is added to the objective function J3 in addition
to the penalty terms. Thus, the original problem of the
OTP (24) can be rewritten as an unconstrained optimiza-
tion problem

minimize
(υ3,υ̃)∈RN3×R

J̄3 =
∑

k∈K

∥∥yk − yd
k

∥∥
Ws

k

+ ‖ϕk(υ3,k)‖Wu
k

+
1

2
ηυT

3,kυ3,k + r−k (xk) + r+k (xk)

+ ru̇k
(
ϕk−1(υ3,k−1),ϕk(υ3,k)

)

+
1

2
ηυ̃2

(26a)

subject to 0 = Γk−1

(
xk−1,xk,

Uk−1

(
ϕk−1(υ3,k−1), sk−1|ϕ(υ̃)

)
,

Uk

(
ϕk(υ3,k), sk|ϕ(υ̃)

))
, k ∈ K

(26b)

0 = xk0 − x̂0, 0 = Uk0 −U0, (26c)

with the assembled unconstrained input vector υ3 =
[υ3,k]k∈K .

All weighting matrices Ws
k, Wu

k , Wu̇
k , and W±

k used
in (26) are determined empirically. Generally, the entries
of the matrix Ws

k of the OTP are chosen to be constant
apart from periods when a strip transition moves through
the furnace. In this case, a modification of the entries
is carried out. Here, four scenarios are distinguished as
indicated in Fig. 9. In scenario I and II, the entries of
the matrix Ws

k of the first strip decrease if a strip transi-
tion enters the furnace. The weighting of the second strip
is designed to be constant and higher. Thus, a change
from T 1,d

s,α to T 2,d
s,α can be realized without a violation of

the bounds. In scenario III and IV, the matrix Ws
k corre-

sponding to the first strip is constant to ensure that the ac-
tual strip temperature matches the desired one. A change
from T 1,d

s,α to T 2,d
s,α is desired as soon as possible. There-

fore, the weighting Ws
k of the second strip is adapted by

increasing the entries as long as a strip transition appears
in the optimization horizon.

4.5. Temperature regulator

The module temperature regulator (TR) is based on
MPC technology and optimizes the mass flows mk of fuel

T 1,d
s,α

T 1,d
s,α

T 1,d
s,α

T 1,d
s,α

Ts,α

Ts,α

Ts,α

Ts,α

Ts,α

Ts,α

Ts,α

Ts,α

T 2,−
s,α

T 2,−
s,α

T 2,−
s,α

T 2,−
s,α

T 2,+
s,α

T 2,+
s,α

T 2,+
s,α

T 2,+
s,α

Strip 1

Strip 1

Strip 1

Strip 1

Strip 2

Strip 2

Strip 2

Strip 2

t1k

T 1,−
s,α

T 1,−
s,α

T 1,+
s,α

T 1,+
s,α

Scenario I

Scenario II

Scenario III

Scenario IV

tk0,2

T 2,d
s,α

T 2,d
s,α

T 2,d
s,α

T 2,d
s,α

tk1,2
tk

tk

tk

tk

Figure 9: Four scenarios during a strip transition, α ∈ F .

to realize an optimal tracking control for the strip tem-
perature based on a short time horizon [tk0 , tk1 ]. The TR
utilizes process data, the strip velocity trajectory vs ob-
tained from the trajectory generator for strip velocity, the
reference trajectories yr of the strip temperature and the
optimal switching time τ l provided by the OTP to calcu-
late the optimal mass flows of fuel. Moreover, the values
x̂0 and ε̂s provided by the state observer are utilized by
the TR to define the initial state of the optimization prob-
lem.
The control inputs of the TR are the mass flows m of fuel
of an active heating zone, which are summarized in the
vector u4. The furnace is modeled by (14) with the sys-
tem input Uk = Uk (u4,k, sk).
The optimization problem of the TR is similar to (24),
where the constraint (24f) is not taken into account. More-
over, the set-point values yd in the objective function J4
of the TR are replaced by the reference trajectories yr .
The constrained problem of the TR is transformed into an
unconstrained problem based on the input transformation
u4,k = ϕk (υ4,k) with the nonlinear mapping ϕk according
to (20) and the new unconstrained optimization variables
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υ4,k and the penalty terms (21) and (25). The uncon-
strained optimization problem of the TR can be written
in the form

minimize
υ4∈RN4

J̄4 =
∑

k∈K

‖yk − yr
k‖Ws

k
+ ‖ϕk(υ4,k)‖Wu

k

+
1

2
ηυT

4,kυ4,k + r−k (xk) + r+k (xk)

+ ru̇k
(
ϕk−1(υ4,k−1),ϕk(υ4,k)

)

(27a)

subject to 0 = Γk−1

(
xk−1,xk,

Uk−1

(
ϕk−1(υ4,k−1), sk−1

)
,

Uk

(
ϕk(υ4,k), sk

))
, k ∈ K

(27b)

0 = xk0 − x̂0, 0 = Uk0 −U0, (27c)

with the assembled unconstrained input vector υ4 =
[υ4,k]k∈K . The optimization problem (27) possesses N4 =
dim(υ4) =

∑
i∈K nD,i+(k1−k0)nI optimization variables.

The second term in (27a) is used to minimize the energy
consumption.
The weighting matrices Ws

k, W
u
k , W

u̇
k , and W±

k in (27)
are determined empirically. In contrast to the OTP, the
entries of the matrix Ws

k are always constant. They are
chosen high to prioritize the primary control objective, see
Sec. 4.2.

4.6. Numerical solution of the optimization problem

For solving an unconstrained optimization problem
like (22), (26), or (27) many different approaches exist,
e.g., steepest descend method, Newton method, Quasi-
Newton method, Gauss-Newton method (Bertsekas, 1999;
Conn et al., 2000; Nocedal and Wright, 2006). In this
paper, the Gauss-Newton method is employed because it
features superlinear convergence. In the following, the ap-
plication of the Gauss-Newton method is demonstrated for
the optimization problem (26) of the OTP. The approach
can be similarly applied to the static optimization and the
TR, which is not further detailed in this paper.
Because (26a) is a quadratic form, (26) can be rewritten
as

minimize
(υ3,υ̃)∈RN3×R

J̄3 =
∑

k∈K

‖Rk (xk,υ3,k−1,υ3,k)‖Wk

+
1

2
ηυ̃2

(28a)

subject to 0 = Γk−1

(
xk−1,xk,

Uk−1

(
ϕk−1(υ3,k−1), sk−1|ϕ(υ̃)

)
,

Uk

(
ϕk(υ3,k), sk|ϕ(υ̃)

))
, k ∈ K

(28b)

0 = xk0 − x̂0, 0 = Uk0 −U0, (28c)

with the weighting matrix Wk including the entries of
Ws

k, Wu
k , W−

k , W+
k , Wu̇

k , and the scaled identity

matrix ηI. The vector Rk(xk,υ3,k−1,υ3,k) is defined

as Rk =
[
(Ry

k)
T, (Ru

k)
T, (R−

k )
T, (R+

k )
T, (Ru̇

k)
T,υT

3,k

]T

with the deviations of the strip temperatures Ry
k =

yk − yd
k, the deviations of the mass flows of fuel

Ru
k = ϕk(υ3,k), the penalty terms of the states

R−
k = max

(
0,y−

k − yk

)
and R+

k = max
(
0,yk − y+

k

)
,

and the penalty term of the slope of the mass

flows of fuel Ru̇
k = max

(
0,u3,k−1 − u3,k +∆tk−1u̇

−
3,k,

u3,k − u3,k−1 −∆tk−1u̇
+
3,k

)
. The Gauss-Newton method

is a gradient-based method, which requires the gradient g
and an approximate Hessian H of the objective function
J̄3, i.e.,

g =

(
dJ̄3
dυ

)T

= RTW
dR

dυ
(29a)

H =
d2J̄3
dυ2

=

(
dR

dυ

)T

W
dR

dυ
+RTW

d2R

dυ2︸ ︷︷ ︸
≈0

, (29b)

with υ =
[
υT
3 , υ̃

]T
, the vector R =

[(
[Rk]k∈K

)T
, υ̃

]T
,

and the weighting matrix W, which includes the entries
of Wk and η. The second term in (29b) is assumed to be
small compared to the first term and is thus neglected in
the Gauss-Newton method (Nocedal and Wright, 2006).
Therefore, only dR/dυ is needed to compute the gradi-
ent and the approximate Hessian. In this work, dR/dυ3

is analytically computed and dR/dυ̃ is numerically cal-
culated. Considering the vector-valued Lagrange func-
tion (Sawaragi et al., 1985)

Lk = Rk (xk,υ3,k−1,υ3,k)+

k∑

j=k0+1

Λk,jΓj−1

(
xj−1,xj ,

Uj−1

(
ϕj−1(υ3,j−1), sj−1|ϕ(υ̃)

)
,

Uj

(
ϕj(υ3,j), sj |ϕ(υ̃)

))

(30)

with the Lagrange multipliers Λk,j and k ∈ K, the deriva-
tive of Rk with respect to the optimization variables υ3

follows in the form

dRk

dυ3
=

∂Lk

∂υ3
=

[
R′

k,k0+1, . . . ,R
′
k,k1

]
(31a)
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with

R′
k,j =





∂Rk

∂υ3,j
+Λk,j

(
∂Γj−1

∂υ3,j

)
+Λk,j+1

(
∂Γj

∂υ3,j

)
j ∈ Ka

∂Rk

∂υ3,j
+Λk,j

(
∂Γj−1

∂υ3,j

)
j = k

0 j ∈ Kc

(31b)

0 = Γj−1

(
xj−1,xj ,Uj−1

(
ϕj−1(υ3,j−1), sj−1|ϕ(υ̃)

)
,

Uj

(
ϕj(υ3,j), sj |ϕ(υ̃)

))
, j ∈ Kb

(31c)

0 = xk0 − x̂0, 0 = Uk0 −U0 (31d)

0 =
∂Lk

∂xj
= Λk,j

∂Γj−1

∂xj
+Λk,j+1

∂Γj

∂xj
, j ∈ Ka (31e)

0 =
∂Lk

∂xk
=

∂Rk

∂xk
+Λk,k

∂Γk−1

∂xk
(31f)

and the sets Ka = {k0 + 1, . . . , k − 1}, Kb =
{k0 + 1, . . . , k}, and Kc = {k + 1, . . . , k1}.
Remark 7. The derivative dR/dυ̃, which corresponds to
the switching time τ l = ϕ(υ̃), is numerically determined
because this gradient cannot be easily calculated by means
of the Gauss-Newton method (Flasskamp et al., 2012;
Kaya and Noakes, 2003). The derivative dR/dυ̃ follows
from a central difference quotient with an appropriate
small step size. This step size is significantly larger than
the sampling time ∆tk of the system and thus, the problem
can be considered as quasi-continuous.

The calculation of dRk/dυ3 can be carried out as fol-
lows: The state xk is determined by solving (31c) in for-
ward direction with increasing time index j and the ini-
tial condition (31d). Using (31f), the value Λk,k can be
calculated. Afterwards, (31e) can be solved in backward
direction with decreasing time index j to obtain the vari-
ables Λk,j , j ∈ Ka. Then, dRk/dυ3 can be determined
according to (31a) and (31b). This procedure has to be
done for all k ∈ K. Thus, dR/dυ can be assembled in the
form

dR

dυ
=

[(
dRk0+1

dυ

)T

, . . . ,
(

dRk1

dυ

)T

,
(
dυ̃
dυ

)T
]T

. (32)

Finally, the gradient and the approximate Hessian of the
unconstrained optimization problem (28) can be deter-
mined by (29).
The Gauss-Newton method is used to iteratively
solve (28), which is defined by the following algorithm.

Algorithm
Gauss-Newton method

(a) Provide an initial guess for υ

(b) Determine dR/dυ, cf. (32).

(c) Calculate the gradient g and the approximate Hessian
H according to (29).

(d) Compute a new search direction d = −H−1g and
calculate the optimal step length

κ̄ =minimize
κ∈R+

{
J̄3(υ + κd)

}
(33a)

subject to 0 = Γk−1 (xk−1,xk,Uk−1,Uk) , k ∈ K
(33b)

0 = xk0 − x̂0, 0 = Uk0 −U0 (33c)

and execute the update υ ← υ + κ̄d.

(e) Stop if a suitable solution υ has been reached and ap-
ply the transformation (20) to obtain the control in-
puts u3 and the switching time τ l. Otherwise restart
at step (b).

In step (e) of this algorithm, a termination criterion is re-
quired. The algorithm can for instance be stopped if J̄3(υ)
or a specified norm of d is below a desired threshold or if
a certain number of iteration loops is exceeded.
In step (d) of the algorithm, the one-dimensional optimiza-
tion problem (33a) (line search problem) has to be solved.
An approximate solution can be obtained by the approach
of Graichen and Käpernick (2012).
For solving the optimization problem (28), the Gauss-
Newton method is utilized because the implementation on
a real-time system can be easily realized, it is character-
ized by superlinear convergence, and the gradient and the
Hessian can be analytically calculated.
Using an optimization-based controller, an appropriate
time grid has to be specified. Approximately 15 min are
required to change between two different stationary op-
erating conditions. Thus, the OTP uses an optimization
horizon of 15 min to capture the thermal inertia of the
furnace and to determine suitable reference trajectories of
the strip temperatures without violating any bounds, cf.
Sec. 3.2. The time horizon of the TR is 3 min to ensure
real-time execution. Furthermore, this time nearly corre-
sponds to the annealing time of a strip section, i.e., during
this time interval, the strip section has to be heated to its
set-point temperature. The sampling times ∆tk ≤ 5 s of
the OTP and the TR are chosen identical to realize the
same degree of accuracy.

5. Simulation results

The mathematical model of the CSAF (Niederer et al.,
2015) was validated by means of measurement data from
the real furnace. Therefore, this model is used as a ref-
erence to verify the proposed control concept by simu-
lations. A simulation scenario is created based on real
measurement data. The considered scenario is representa-
tive insofar as it contains standard and special operating
conditions. There are several changes of the strip proper-
ties, i.e., set-point strip temperatures yd, lower and upper
bounds y±, the thickness ds and the width bs of the strip,
see Fig. 10. Other parameters that are also time-varying
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Figure 10: Thickness and width of the strip.

are the desired air-fuel equivalence ratios λ in the heating
zones a–d and in the PCC.
In the static optimization, the weighting matrices are cho-
sen to achieve a minimum energy consumption. In the
OTP and TR, the weighting matrices are chosen primar-
ily in view of an accurate heating of the strip, a minimum
energy consumption, and acceptable slew rates of the con-
trol inputs m.
Figure 11 shows the actual and the set-point strip tempera-
tures as well as the corresponding lower and upper bounds
at zdff , zrth, and zrts. This demonstrates the good perfor-
mance of the proposed control concept. The controller is
able to fulfill all required demands of the stationary and
transient furnace operations. Between 6 h and 10 h, the
strip thickness varies from 0.6mm up to 0.8mm. Such a
variation causes a significant change of the strip tempera-
ture (cf. Strommer et al. (2014a)). The set-point strip tem-
peratures yd are constant during this interval. Although
the thickness changes significantly, a nearly optimal tem-
perature tracking is achieved, see Fig. 11. Furthermore,
significant changes of the set-point values yl,d occur at ap-
proximately 0.5 h, 3.75 h, 6 h, 10.5h, and 11.75h, which
constitute critical scenarios. However, the proposed con-
trol concept is able to handle all these different operating
conditions. In Fig. 11a), the fast response characteris-
tic of the DFF can be observed, where a nearly instan-
taneous heating of the strip can be realized. This aspect
demonstrates the fast heating of the strip in the consid-
ered CSAF, which is in contrast to a furnace without a
DFF. Generally, the strip temperatures y are within their
admissible range.
Figure 12 shows the mass flows of fuel of the heating zones
a and d as well as the switching state s. Generally, the
mass flow of heating zone a is near the upper bound (base
load) and the mass flow of heating zone d operates close
to the lower bound (energy consumption). Moreover, ac-
ceptable slew rates of the mass flows can be observed. As
mentioned in Sec. 1.1, the mass flow of fuel to the heating
zones a and b depends on the width of the strip. Between
4.25 h and 5.25h, a strip with smaller width is processed
and otherwise, a strip with larger width is considered, see
Fig. 10. Therefore, the boundaries of the mass flow Ṁf,±

α
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Figure 11: Strip temperature at the three pyrometers Pdff , Prth,
and Prts.

vary, α ∈ {hza, hzb}. Figure 12c) shows the switching
state s. When the heating zone d is switched off, the cor-
responding mass flow Ṁf

hzd of fuel is zero, see Fig. 12b).

Figure 13 shows the mass flow Ṁf
rth1 of fuel to the zone

rth 1 and the corresponding bounds. Generally, the mass
flows depend on the set-point strip temperatures yd and
the strip properties. At 0.5 h, for instance, the thickness
ds of the strip decreases (cf. Fig. 10), the set-point strip
temperature T d

s,dff remains constant (cf. Fig. 11a)), and
the mass flows mD of fuel of the DFF decrease. In the
IFF, however, the set-point strip temperatures T d

s,rth and

T d
s,rts increase and thus the mass flows mI of fuel also in-

crease. All mass flows are within their admissible range.
Figure 14 shows the strip velocity trajectory and its lower
bound. As discussed in Sec. 3.2 (cf. Fig. 8), the velocity is
constant during the fillet of the strip and a change occurs
only at the strip transitions.
To demonstrate the necessity of the OTP, which provides
the target trajectories yr of the strip temperature, two
simulation scenarios are considered. In the first scenario,
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Figure 12: Mass flow of fuel of the heating zone a and d as well as
the switching state.

target trajectories are used in the TR. In the second case,
they are not considered and the set-point strip temper-
atures yd are directly fed to the TR. Figure 15 shows a
comparison of these scenarios. Here, the set-point strip
temperatures yd and the bounds y± vary at approximately
10.35h, see Fig. 15. Using the target trajectories yr in the
TR, an optimal tracking of the strip temperature with-
out a violation of the bounds is achieved. In the second
scenario, a violation of the upper bound at zdff and of the
lower bound at zrts cannot be avoided due to the short pre-
diction horizon and the high thermal inertia of the CSAF.
Figure 15a) indicates that the TR in the second scenario
uses the power of the DFF for realizing the desired tem-
perature change, whereas the strip temperature remains
almost constant in the first scenario. This motivates the
use of the OTP.
The stability of the control concept is not explicitly proven
for the system under consideration. In (Graichen and
Kugi, 2010), the stability of a suboptimal model predic-
tive control is shown for a general nonlinear system under
some mild conditions. The considered TR is also based
on a suboptimal approach and issues with the numerical
stability have not been observed during all the extensive
tests.
A standard PC (3.6GHz, 8.0GB Ram) was used for sim-
ulating the proposed control concept. Determining one
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Figure 13: Mass flow of fuel of the heating zone rth 1.
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Figure 14: Strip velocity.

optimal solution in the OTP requires approximately 25 s
CPU-time and for the TR, approximately 4 s CPU-time
is required. If all heating zones are active, the OTP uses
1500 optimization variables and the TR 300 optimization
variables.

6. Conclusions and outlook

A nonlinear optimization-based controller for a contin-
uous strip annealing furnace was developed. It is based on
a tailored mathematical model of the underlying process,
which features both real-time capability and high accu-
racy. The control strategy is based on a hierarchical con-
cept to master the challenges of mixed-integer program-
ming and real-time execution. A static optimization is
used to calculate an optimal operating point for each strip,
where the switching state (on/off) of the heating zones c
and d and the strip velocity are determined. A trajectory
generator calculates the time evolution of the strip velocity
when a new strip enters the furnace. Based on a trajectory
planner, target trajectories of the strip temperature and
the optimal switching times are calculated. Finally, the
mass flow of fuel is optimized by a temperature regulator,
which is based on a model predictive control strategy.
Based on the control objectives, the constraints, and fu-
ture knowledge of material properties, a finite-time opti-
mization problem was defined. Since the existence of a
solution of such a problem generally cannot be guaran-
teed, it was transformed into an unconstrained problem,
which is solved by means of the Gauss-Newton method.
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Figure 15: Strip temperature at the three pyrometers Pdff , Prth and
Prts simulated with and without target trajectories yr.

In a simulation scenario for an experimentally vali-
dated model of a continuous strip annealing furnace at
voestalpine Stahl GmbH, Linz, Austria, the good perfor-
mance of the proposed control concept is demonstrated.
The simulations also illustrate the need of a hierarchical
control strategy.
Due to the encouraging results achieved by the proposed
control concept, an implementation on the real plant is
currently carried out.
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