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Abstract— Learning from demonstration (LfD) has emerged
as a promising approach enabling robots to acquire complex
tasks directly from human demonstrations. However, tasks
involving surface interactions on freeform 3D surfaces present
unique challenges in modeling and execution, especially when
geometric variations exist between demonstrations and robot
execution. This paper proposes a novel framework called prob-
abilistic surface interaction primitives (ProSIP), which systemat-
ically incorporates the surface path and the local surface fea-
tures into the learning procedure. An instrumented tool allows
seamless recording and execution of human demonstrations.
By design, ProSIPs are independent of time, invariant to rigid-
body displacements, and apply to any robotic platform with a
Cartesian controller. The framework is employed for an edge-
cleaning task of bathroom sinks. The generalization capability
to various object geometries and significantly distorted objects
is demonstrated. Simulations and an experimental setup with
a 9-degrees-of-freedom robotic platform confirm the perfor-
mance.

I. INTRODUCTION
Robotic systems are employed to perform numerous dif-

ferent tasks in classical automation. Recently, robots have
become more available in emerging areas where they were
rarely found before, e.g., in industrial high-mix/low-volume
production [1], [2], craftsmanship [3], households [4], and
elderly care [5]. In these areas, the tasks to be performed
are challenging due to the high degree of individualization.
At the same time, robotic systems need to be programmed
without expert robot knowledge. One promising approach
to address these challenges is learning from demonstration
(LfD), a methodology that enables robots to learn and adapt
complex tasks directly from human demonstrations. LfD has
been applied to a variety of tasks ranging from assembly [2],
[6] to dynamically catching a water bottle [7], [8].

Frequent tasks in robotic manufacturing are polishing [9],
[10], sanding [11], and cleaning [12] planar 3D surfaces,
e.g., cleaning ceramic surfaces in the bathroom or even
personal hygiene. In an LfD framework, these tasks are
particularly challenging to model if the geometric shape of
the surface differs between the demonstration and the robotic
execution. Additionally, the temporal alignment of multiple
demonstrations poses another challenge [13], [14] since the
demonstrations may vary in geometric length, instantaneous
execution speed, and total duration. In order to capture the
demonstrated surface process appropriately, the geometry
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Fig. 1: Experimental setup for the edge-cleaning task on
bathroom sinks. The demonstration data is recorded using an
instrumented tool. The trajectories generated by the ProSIP
framework are executed on a 9-DoF robot system. The robot
cleans dirt spots from different edges of different object
geometries.

of the underlying surface and the surface path have to be
systematically considered during learning.

This work proposes an LfD framework for an edge-
cleaning task of bathroom sinks. In this framework, the main
contribution is the probabilistic surface interaction primitives
(ProSIP) approach, which provides key features for learning
processes on freeform 3D surfaces, i.e.,

1) systematically incorporating the underlying surface ge-
ometry into the learning procedure,

2) becoming independent of time by considering the
surface path and the local surface features and

3) describing the tool motion via a projection of the
tool center point (TCP) onto the surface, which makes
the framework independent from the employed robotic
platform.

The human demonstrations are recorded using a so-called
instrumented tool, which is a standard tool equipped with ad-
ditional sensors [15]. Hence, an instrumented tool represents
a demonstration interface with which the record mapping
(for recording the dataset) and the embodiment mapping (for
execution of learned trajectories) become easier [16], [17].
The execution of the edge-cleaning process is performed
using a robotic system with 9 degrees of freedom (DoF)
comprising the 7-DoF collaborative robot KUKA LBR iiwa
14 R820 and two orthogonal linear axes to move the robot



base, see Fig. 1. A video of the demonstration is shown in
www.acin.tuwien.ac.at/a79d.

II. RELATED WORK

Probabilistic motion primitives (ProMPs) [18] are pio-
neering approaches to learn from human demonstrations
and generate desired trajectories or motor skills in various
robotic scenarios using probabilistic models. While ProMPs
are formulated for time-driven trajectories, several exten-
sions have been proposed to apply this concept to other
scenarios. For example, learning from only a few examples
has been addressed in [19], and learning multiple skills by
incorporating task descriptions is proposed in [20]. Condi-
tional neural movement primitives (CNMPs) [21] consider
high-dimensional inputs using encoder-decoder models for
context-based tasks. The paper [22] proposes a Riemannian
formulation for ProMPs to enable encoding and retrieving
of quaternion trajectories, making it a suitable model for
learning complex robot motions in task space. However,
the time information contained in the demonstrations needs
to be handled by complex temporal and spatial alignment
algorithms, e.g., using dynamic time warping (DTW) [23] or
rhythmic motion modulation [24], [25]. The framework [26]
focuses on rapidly sequencing manipulation skills learned
from demonstration, mainly for industrial assembly tasks.
The goal is to reduce manual modeling efforts while ensuring
flexibility and usability of learned skills in a manufacturing
environment. For complex interaction tasks on freeform 3D
surfaces, extensions are needed to adapt to the underlying
surface geometry.

Learning of non-temporal primitives is proposed in [27]
with so-called kernelized motion primitives (KMPs), which
can also apply to local (relative) movements and force-based
trajectory adaption. The KMPs embed data points to create
a reference database involving reference input and latent
space variables. Generating a reference trajectory for new
observations relies on the entire reference database, similar
to Gaussian process regression (GPR). Conditioning new
trajectories on the reference database requires significant
computational and memory effort. The method proposed in
[28] deals with non-temporal constraint primitives for tra-
jectory generation based on geometric constraints. A motion
planner based on Monte Carlo tree search and Bayesian
optimization is employed to compute feasible constraints
in pick-and-place scenarios. Another approach, named arc-
length probabilistic movement primitives (AL-ProMP) [29],
combines the learning of a normal-force distribution and
Cartesian dynamical movement primitives (DMPs) for arc-
length motion trajectories given on the surface of an object.
The nonlinear force term of the DMPs is learned as a
ProMP, while the spatial component is projected onto the
surface. In [30], [31], merely point-wise interaction between
a robot and an object or human using ProMPs has been
introduced for specific sequential interaction goals in the
task space. Interaction with partially unknown surfaces is
shown in [32]. The proposed framework combines adaptive
optimal admittance control with DMP trajectory generation
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Fig. 2: Schematic illustration of a complex interaction task
on a freeform 3D surface.

and demonstrates a wiping task on a balloon surface with
unknown parameters.

The above methods can generate new motions similar
to the demonstrations by sampling the learned representa-
tion. However, the user must explicitly set via-points or
use optimization-based algorithms to obtain via-points for
sampling, and a progress modulation has to be defined during
conditioning. This property limits the ability to generalize
motion primitives concerning an underlying surface. The pro-
posed ProSIPs extend the concept of ProMPs to continuous
interaction tasks with a tool, described in Cartesian space, on
freeform 3D surfaces, which is not possible in state-of-the-art
approaches [27], [31]. This is achieved by relating the tool
motion via a projection to the surface and incorporating local
surface features, e.g., curvatures, into the learning procedure,
see Fig. 2. In this way, a probabilistic model is learned
by capturing the appropriate time-independent tool motions
and uncertainties relative to the projected contact frame. The
Cartesian description of the tool motion leads to a platform-
independent description of the process in the context of the
underlying surface. Finally, new tool motions on objects with
similar geometry are generated by inference on a new contact
point path on the surface.

III. PROBLEM STATEMENT

A complex interaction task on a freeform 3D surface, e.g.,
polishing, sanding, and cleaning, is described by the motion
of the tool’s TCP, the contact point at which the interaction
occurs, the path P along which the contact point moves,
and the underlying surface. An interaction task is assumed to
strongly depend on the shape of the underlying surface, i.e.,
flat areas need to be treated differently than sharp edges. The
geometric relations are schematically illustrated in Fig. 2.
The problem to be solved is developing an LfD framework
that allows non-robot experts to teach such tasks to robotic
systems. The framework should be formulated generally so
that additional signals, e.g., interaction forces and torques,
can be incorporated.

In this framework, a few human demonstrations of the
interaction task are recorded using an instrumented tool,
considered an intuitive interface for humans. The freeform
3D surface is assumed to be known from CAD data or
as a reconstruction. The demonstrations may differ in ge-
ometric shape and length of the surface path, duration,
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Fig. 3: Overview of the ProSIP framework and dataflow.

and execution speed. The additional sensors integrated into
the instrumented tools generate high-quality demonstration
data, which allows learning of very complex, precise, and
delicate surface processes. In contrast, motion tracking of the
human body or hands is insufficient for most processes. The
demonstrations are associated with the surface by projection
of the TCP, which generates the surface path P and local
contact frames C for each demonstration, see Fig. 2. Next,
ProSIPs are learned from the relative poses (i.e., position and
orientation) of the TCP frame T and the corresponding con-
tact frames C, while incorporating the local surface features
of the underlying surface, e.g., the curvature. The ProSIPs are
then used to generate tool motions on new, previously unseen
objects with similar geometry. This is achieved by inference
on a new surface path on the new object, which yields the
desired TCP motion. This new surface path may be generated
by manual annotation or an automatic (coverage) algorithm
[33]. Standard or advanced task-space trajectory planners
[34] or robot controllers [35] are then applied to execute the
computed motion on the robot and perform the interaction
task on the surface. An overview of the framework and the
dataflow is depicted in Fig. 3.

This work considers cleaning the edges of bathroom sinks
as a complex interaction task, see Fig. 1. A household sponge
equipped with tracking markers for an optical tracking sys-
tem serves as an instrumented tool. The bathroom sinks
are reconstructed with high resolution. Cleaning the front
edge of the sink is demonstrated, from which the ProSIPs
for the edge-cleaning task are learned. A suitable projection
algorithm is introduced to account for the fact that the sponge
has a flat interaction region. The learned ProSIPs allow us to
generate the new tool motions based on a surface path on the
edges of a new, previously unseen bathroom sink. Robustness
is shown by executing cleaning motions in simulation on
objects with different geometry, including significantly dis-
torted bathroom sinks. The proposed approach is evaluated
experimentally by cleaning dirt spots on different bathroom
sinks on a 9-DoF robotic system.

IV. EDGE-CLEANING DATASET FOR BATHROOM SINKS

The dataset for learning ProSIPs for the edge-cleaning task
is generated from the recorded measurement signals, i.e.,
the human demonstrations with the instrumented tool, and
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Fig. 4: Scheme for the measurement signals, geometry data,
and dataset generation.

geometrical data, i.e., the object and tool model, see Fig. 4.
In this section, the necessary steps for the generation of the
dataset are explained first (red boxes in Fig. 4), and then the
resulting dataset structure is described in detail. Note that
this section is tailored to the edge-cleaning task for bathroom
sinks but can be adapted straight forward to different tasks
and tools. Additionally, further measurement signals, e.g.,
force/torque (F/T) sensors and IMUs, may be considered in
the dataset.

A. Dataset Generation

1) Filtering, downsampling: The measurement signals are
filtered using a third-order Butterworth filter to reduce noise.
Additionally, the number of samples is reduced appropriately
by performing filter-based downsampling.

2) Transformation: Next, the tool motion is transformed
into the object frame O, see Fig. 2, using the calibration
data, which references the coordinate frame of the optical
tracking system with the object frame.

3) Segmentation: The tool motion of each demonstration
comprises two phases, i.e., a free-moving phase and an
interaction phase with the object. The distinction between
those phases is made by computing the closest plane-to-
plane distance between the planar surface of the sponge and
the freeform 3D surface. To improve robustness, a small
neighborhood is considered on the surface at each time step
instead of a single point.

4) Projection: Next, the tool motion during the interac-
tion phase is projected onto the surface according to the
closest plane-to-plane distance. At each time step, a local
contact frame C on the freeform 3D surface is computed.
The orientation of the contact frame is derived from the
surface normal vector and the tangent of the surface path.
Finally, smoothing is applied to the resulting surface path.



Reprojection guarantees that the surface path lies entirely
inside the freeform 3D surface.

5) Feature calculation: In this step, the pose of the TCP
frame T w.r.t. the contact frame C is computed. Additionally,
normalized local surface features, i.e., the principal curva-
tures, are computed for each time step and are annotated with
the tool motion. The normalization of the surface features
is based on the geometry of the entire object model and
yields an object-independent feature vector. The rotation
angle between the path tangent and the direction of the
principal curvature is calculated as a context variable.

B. Dataset Structure
The dataset generation yields the complete dataset S =

{Sk}Nk=1, which consists of N series Sk of human demon-
strations, see Fig. 4. Each series demonstrates a certain
aspect or variant of a task. In the context of the edge-
cleaning task, a series demonstrates the cleaning of an edge
in a specific way, like from left to right or up and down.
A series Sk = {T k,j}Nk

j=1, k = 1, . . . , N , comprises Nk

trials T k,j . Finally, a trial contains a list of observation
data points T k,j = {Dk,j

i }Nk,j

i=1 , where each data point
Dk,j

i =
〈
ξk,ji ,xk,j

i , ck,ji

〉
contains the following elements:

• The vector
(
ξk,ji

)T
=

[(
dk,j
i

)T (
qk,j
i

)T]
describes

the pose of the TCP frame T w.r.t. the contact frame C
with the relative position dk,j

i ∈ R3 and the relative
orientation qk,j

i ∈ R3 given as vector part of the
corresponding quaternion.

• The normalized local surface feature vector (xk,j
i )T =

[κk,ji,1 , κ
k,j
i,2 ] contains the normalized local mesh principal

curvature values calculated at the contact frame. Nor-
malization is done based on the minimum and maximum
principal curvature values of the 3D object.

• The context vector ck,ji contains information about the
local surface properties and the interaction between the
tool and the surface. For the edge-cleaning task, the
scalar angle φk,j

i between the path tangent and the
maximum direction of the principal curvature is used.

V. PROSIP: MODEL ARCHITECTURE,
TRAINING, AND GENERATION

ProSIPs are novel probabilistic primitives for surface in-
teraction tasks. By systematically incorporating the surface
feature vector xk,j

i and the context vector ck,ji of the dataset
S, a non-temporal primitive is learned, which generalizes to
new, previously unseen surfaces with similar geometry.

First, the model architecture is explained, then the training
procedure is briefly described. Finally, the generation of new
tool motions and the respective trajectories is detailed.

A. Model Architecture
The ProSIP comprises N linear Gaussian sub-models

given by

yk,j
i = Φk(xk,j

i )zk,j + ϵk,ji , (1)

where each sub-model k encodes a series Sk, k = 1, . . . , N ,
of human demonstrations, in which each of the j =

1, . . . , Nk trials comprises i = 1, . . . , Nk,j data points, see
Section IV. In (1), yk,j

i ∈ RNy is the observation vector,
zk,j ∈ RNz is the latent variable, and ϵk,ji ∼ N (0, ϵI), ϵ > 0,
is the entropy. The latent variable zk,j is partitioned into the
vectors zk,jd ∈ RNz,d , d = 1, . . . , Ny, and the total size of
the latent space is Nz =

∑Ny

d=1Nz,d. Similarly, the surface
feature vector xk,j

i is partitioned into sub-feature vectors
xk,j
i,h , h = 1, . . . , Nx.
While the employed structure is similar to the classical

ProMPs [19], the key difference is that the kernel matrix
Φk(xk,j

i ) is a function of the surface feature vector xk,j
i

only and is independent of time or progress. This allows to
learn the appropriate tool pose relative to the surface ξk,ji in
the corresponding context ck,ji only in terms of the surface
features xk,j

i . Both vectors are contained in the observation
vector yk,j

i =
[
ξk,ji , ck,ji

]T
.

The kernel matrix is given by

Φk(xk,j
i ) =

ϕ
k
1(x

k,j
i ) . . . 0

...
. . .

...
0 . . . ϕk

Ny
(xk,j

i )

 (2)

ϕk
d(x

k,j
i ) =

Nx⊗
h=1

ψk
d,h(x

k,j
i,h), d = 1, . . . , Ny . (3)

The elements of the vector basis functions ψk
d,h(x

k,j
i,h) are

chosen as radial basis functions (RBF) [36]

ψk
d,h,g(x) = exp

(
−
∥x− rkd,h,g∥2
2(σk

d,h,g)
2

)
, g = 1, . . . , Nz,d ,

(4)

with the centers rkd,h,g and the widths σk
d,h,g . Hence, each

sub-feature vector xk,j
i,h has its own proper kernel ψk

d,h, which
are combined using the aggregation with the element-wise
multiplication ⊗ [36]. Note that each vector zk,jd is associated
with a single element yk,ji,d of the observation vector yk,j

i ,
d = 1, . . . , Ny, see (1) and (2).

Remark 1: The k = 1, . . . , N Gaussian sub-models in (1)
may differ from each other in terms of the dimension of the
latent space Nz and its partitioning Nz,d, d = 1, . . . , Ny, the
dimension of the feature vector Nx and its partitioning Nx,h,
h = 1, . . . , Nx, and also the size of the observation vector
Ny. Additional design choices are the aggregation operator
⊗ and the basis functions (4). The observation vector yk,j

i

of each model k must describe the pose of the tool relative
to the surface.

The encoding distribution p(zk,j |θkz ) of each sub-model
(1) is assumed to be a Gaussian distribution of the form

p(zk,j |θkz ) =

= N


z

k,j
1
...

zk,jNy


∣∣∣∣∣∣∣
 µ

k
z,1
...

µk
z,Ny

,
 Σk

z,1,1 . . . Σk
z,1,Ny

... . . .
...

Σk
z,Ny,1

. . . Σk
z,Ny,Ny


 ,

and is learned from a single demonstration series Sk. The
parameters θkz = {µk

z ,Σ
k
z} comprise the means µk

z,d, d =

1, . . . , Ny, and the covariance matrices Σk
z,a,b ∈ RNz,a×Nz,b ,



a, b ∈ {1, . . . , Ny}. The probability distribution of the
latent space variable zk for the series Sk is given by the
joint distribution p(zk) of all independent and identically
distributed (i.i.d.) variables zk,j , reading as

p(zk) = p(zk,1, . . . , zk,N
k

) =

Nk∏
j=1

p(zk,j |θkz ) . (5)

Analogous to [19], a regularization in form of a prior
probability distribution p(θkz ) over the model parameters θkz
is used. This distribution is chosen as normal-inverse-Wishart
(NIW), given by

p(θkz ) = NIW(µk
z ,Σ

k
z |k0,mk

0 , v0,S
k
0)

= N
(
µk

z

∣∣∣∣mk
0 ,

1

k0
Σk

z

)
W−1(Σk

z |v0,Sk
0) , (6)

where the inverse-Wishart distribution W−1(·|·) allows
closed-form updates for the training process using an expec-
tation maximization (EM) algorithm. The parameters mk

0 ,
Sk
0 , k0, and v0 in (6) are discussed in the next section. The

NIW distribution is commonly employed when the mean and
covariance matrix of a normal distribution are assumed to be
unknown [37].

The objective target function for training is chosen as
the data likelihood distribution of all trials p(Sk|θkz ) for a
set of parameters θkz which are learned from the series of
demonstrations Sk for sub-model k. This distribution is given
by marginalization over the latent space

p(Sk|θkz ) =
Nk∏
j=0

∫
p(zk,j |θkz )

Nk,j∏
i=0

p(yk,j
i |zk,j ,xk,j

i ) dzk,j ,

(7)

in which the integral can be solved in closed form under the
assumed distributions.
B. Model Training

The parameters θkz are learned using the EM algorithm
proposed in [19]. In the E-step of the algorithm, an estima-
tion of the posterior distribution parameters θkz = {µk

z ,Σ
k
z}

for all trials j = 1, . . . , Nk, of the series k = 1, . . . , N , is
computed. In the M-step, a new estimate θ̂

k

z = {µ̂k
z , Σ̂

k
z}

is found by maximizing the evidence lower bound (ELBO)
of the data log-likelihood distribution log p(Sk|θkz ). This M-
step can be executed using closed-form expressions [19].

In this work, the EM algorithm is initialized by the optimal
parameters without prior knowledge, i.e., k0 = 0, m0 =
µ̂k,∗

z , Σ̂k
z = Σ̂k,∗

z , and Σ̂k
y = Σ̂k,∗

y , where the asterisk (∗)
indicates the maximum likelihood estimate (MLE) of the
respective parameter. The further iterations are performed
by alternating the E- and the M-step using the maximum a
posteriori (MAP) estimate with k0 > 0 and setting v0 =
dim(zk) + 1 and Sk

0 = (v0 +Nz + 1)blockdiag(Σ̂k,∗
z ).

Using the above training procedure, N sub-models are
trained and the parameters θkz , k = 1, . . . , N are computed.
Additionally, a cumulative model with index k = 0 is trained
with the same procedure using the complete dataset S, i.e.,
all available trials T j , j = 1, . . . , Nk, from all series Sk, k =
1, . . . , N . Hence, a total of N + 1 sub-models are available
for the generation of new tool motions.

C. Generation of New Tool Motions
Given a new path P on the surface of a different object

with similar geometry, the ProSIP is utilized in this section
to generate the corresponding tool motion. The path P =
{ηp

i ,x
p
i , c

p
i }

Np

i=1 consists of Np path points, where each point
is described by the pose ηp

i of the contact frame C w.r.t. the
object frame O, see Fig. 2, the surface feature vectors xp

i ,
and the context vectors cpi . The result of the tool motion
generation is the tool path T p = {ξpi }

Np

i=1, consisting of the
poses ξpi of the tool frame T w.r.t. the contact frame C for
all path points contained in P .

First, the N + 1 sub-models (1) are conditioned on the
path’s feature vectors xp

i and the context vectors cpi by
setting unknown tool pose vectors ξpi contained in the
observation vectors yp

i to zero. To this end, a single step
of the EM algorithm [19] is executed to maximize the data
log-likelihood distribution (7), and new parameter estimates
θk,pz = {µk,p

z ,Σk,p
z } of the posterior distributions of the

latent space variable p(zk,p|θk,pz ,P, Σ̂k
y) are obtained.

Next, the decoder distribution

p(yk,p
i |zk,p,xp

i ) = N (yk,p
i |Φk(xk,p

i )zk,p,Σk,p
y,i ) (8)

of all sub-models k = 0, . . . , N in (1) is marginalized, which
yields [19]

µk,p
y,i =

[
µk,p

ξ

µk,p
c

]
= Φk(xp

i )µ
k,p
z (9)

Σk,p
y,i = ϵp(ϵp)T +Φk(xp

i )Σ
k,p
z

(
Φk(xp

i )
)T

=

[
Σk,p

ξ,ξ,i Σk,p
ξ,c,i

Σk,p
c,ξ,i Σk,p

c,c,i

]
(10)

Σk,p
y =

1

Np

Np∑
i=1

Σk,p
y,i , (11)

where µk,p
ξ,i represents the mean tool pose at the path point

i for the conditioned sub-model k, and its uncertainty is
described by the covariance matrix Σk,p

ξ,ξ,i.
Remark 2: The integral marginalization can be calculated

in closed form because of the assumed model structure,
the distribution of the latent space variable zk, and their
prior distribution of the parameters. However, in general
this is not possible. This limitation can be handled by
using a Monte-Carlo method to approximate the distribution
or by learning the decoder distribution directly through a
variational autoencoder (VAE).
The ϵp allows the incorporation of uncertainty along the
conditioned path, e.g., by incorporating allowed process or
measurement uncertainty into the generated tool motion. It
allows for putting more trust into the observation than the
learned models and vice versa.

Finally, based on the mean tool poses µk,p
ξ,i of all

sub-models, the tool motion ξpi is computed as the
weighted aggregation with the data likelihood distributions
(7) p(µk,p

y,i |zk,xp
i ) = p(µk,p

y,i |µ̂k
y,i, Σ̂

k
y,i) in the form

ξpi =

∑N
k=0 p(µ

k,p
y,i |µ̂k

y,i, Σ̂
k
y,i)µ

k,p
ξ,i∑N

k=0 p(µ
k,p
y,i |µ̂k

y,i, Σ̂
k
y,i)

, i = 1, . . . , Np , (12)



Fig. 5: Visualization of the tool paths in the training dataset
on the front edge of a bathroom sink.

where θ̂
k

z are the parameters of the learned N+1 sub-models.
By marginalization of the decoder distributions (8) over zk

of each sub-model, the parameters θky,i = {µ̂k
y,i, Σ̂

k
y,i} are

calculated.

D. Trajectory Generation
The Cartesian motion of the tool frame T w.r.t. the object

frame O is found by composing the two poses ηp
i and ξpi as

homogeneous transformations Hp
i = H(ηp

i )H(ξpi ). Based
on the newly conditioned tool motion and the homogenous
transformation between the robotic platform base R and
object O, the task-space motion for the robotic platform is
computed. For instance, a task-space controller can execute
this task-space motion [38]. Further optimization techniques
can be utilized to generate an optimal joint-space trajectory
for a given robot model. Approaches such as time-optimal
trajectory planning or time-optimal path parametrization
[34], [39]–[41] combined with a computed torque controller
allow the execution of the optimized trajectory.

VI. RESULTS

In this section, the ProSIP framework is applied to an
edge-cleaning task of bathroom sinks. First, the collected
dataset (see Section IV) and trained models (see Section V)
for the trajectory generation of the tool frame T are de-
tailed. Then, the robotic task execution is demonstrated
in simulation and for a real experiment using the 9-DoF
robotic system shown in Fig. 1. A video of the simu-
lations and the experimental demonstrations is found at
www.acin.tuwien.ac.at/a79d.

A. Dataset and Models
The training dataset consists of four series of trials,

S1, . . . ,S4, N = 4, demonstrating the cleaning of the front
edge of a given bathroom sink with left-to-right and right-to-
left motions and different tool orientations. In total, 45 trials
are recorded, see Fig. 5, resulting in 202 306 data points.
For each of the series, Gaussian sub-models (1) with the
indices k = 1, . . . , N are trained. Additionally, the combined
model with the index k = 0 is trained utilizing all trials
in the dataset S, see Section V-B, which is beneficial for
generalization to new, unseen object geometries. In total,
five models are used. The feature vector xk,j

i of the kernel
function ψk

d,h,g(x) in (4) is set to the mean curvature
1
2 (κ

k,j
i,1 + κk,ji,2 ). The centers of the RBF rkd,h,g in (4) are

evenly distributed across the training data Sk, k = 1, . . . , 4.
Additionally, the variances σk

d,h,g are determined based on
the variance of the mean curvature in the training data.

(g) (h)

(e) (f)

(c) (d)

(a) (b)

Fig. 6: Eight examples for the edge-cleaning task using dif-
ferent surface paths on different object geometries. The white
line is the input surface path, while the yellow path with the
sequence of frames illustrates the output tool motion. The
sponge is visualized as green transparent box. The cyan dots
indicate areas that are cleaned during the tool motion.

B. Simulation Results

The ProSIP framework is demonstrated in simulation on
different edges of different bathroom sinks with similar
geometry. To this end, new surface paths on different edges
of the 3D objects are generated by manually picking vertices
of the mesh and connecting them using exact geodesic paths
[42]. These paths are used to generate the tool motions
according to Section V-C and are executed in simulation
using a compliant task-space controller, see Section V-D.
The controller stiffness is specified w.r.t. the tool frame T
[35], allowing compliant behavior along the surface normal
vector. The interaction between the robot and the 3D object
is simulated using the physics simulator Mujoco [43].

1) Bathroom Sinks with Similar Geometry: Figure 6 illus-
trates the result of the ProSIP framework for different paths
on different object geometries. Each image (a)–(h) shows the
input surface path as a white line and the output tool path
as a yellow line. Additionally, the tool frame T is visualized
for multiple points along the path, and the sponge is shown
as a green transparent box for the first point. Cyan dots mark
the areas cleaned by the tool during the cleaning motion.

The different examples in Fig. 6 highlight the ability of
ProSIP to generalize to edges of different curvature on the
outside and the inside of the sink and to paths with a corner.
Different bathroom sinks and a rabbit-shaped object are used
to demonstrate the conditioning on various object geometries
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Fig. 8: Likelihoods p(µk,p
y,i |zk,xp

i ) of the individual models
with the indices k = 0, . . . , 4, which are used in the weighted
aggregation (12).

outside the training dataset distribution. Furthermore, the
generated tool motions ξpi from (12) are smooth regarding
position and orientation; see Fig. 7 for the tool paths of
Fig. 6a and Fig. 6b.

2) Distorted 3D Models of Bathroom Sinks: In this sec-
tion, significantly distorted 3D models of bathroom sinks
with higher geometric complexity are investigated. Each
distorted 3D model is obtained by torsion around the z-
and x-axis by 45◦, see Fig. 6b and Fig. 6d. The surface
paths from the original sink are directly transferred to the
distorted sink via the vertex and face indices of the object
meshes. As an example, the tool paths of Fig. 6a and Fig. 6b
are shown as a function of the path position s ∈ {0, 1} in
Fig. 7. The output path for the transformed object is smooth
and qualitatively similar to the path of the original object.
Additionally, the underlying probabilities p(µk,p

y,i |zk,xp
i ) of

(12) for all model indices k = 0, . . . , 4 are depicted in Fig. 8
as a function of s. The most significant contribution to the
output tool path originates from the combined model with
the index k = 0, which emphasizes the importance of this
model. The second major contribution stems from the model
k = 2, a series of right-to-left edge-cleaning motions. This
corresponds to the input surface path in Fig. 6a and Fig. 6b.

3) Validation in Simulation: In the simulation, the gener-
ated tool motions are validated by evaluating the intersection

between the object mesh and the mesh of the sponge tool,
represented by the red and green boxes in Fig. 6. The centers
of all faces, which are entirely covered by the mesh of the
sponge tool, are marked with a cyan dot. This visualization
determines the cleaned surface by the sponge. It reveals
that the tool stays in good contact with the object’s surface
throughout the motion, i.e., significant intersections with the
green box, while no collisions occur with the mounting plate
of the sponge, i.e., the red box. Additionally, the cleaned
surface area is determined by combining all faces intersecting
with the sponge; see the supplementary video. This result
also confirms that ProSIP implicitly has learned the correct
tool orientation and distance to the surface.

C. Experimental Results
The experimental validation is performed on the 9-DoF

robotic system shown in Fig. 1. Dirt spots on the surface of
the bathroom sink are applied using a whiteboard marker,
which must be cleaned by the robotic system using the tool
motions generated by the ProSIP framework and the com-
pliant task-space controller. The coordinate frame of object
O is calibrated in the robot’s frame using the calibration
method [44]. The experimental results are summarized in the
supplementary video. It is demonstrated that the robot can
execute the generated tool motions and successfully perform
the cleaning task.

VII. CONCLUSIONS

This work proposes the framework probabilistic surface
interaction primitives (ProSIP), which extend probabilistic
motion primitives (ProMP) to continuous interaction tasks
between a tool and a freeform 3D surface. ProSIPs are by
design independent of time and invariant w.r.t. rigid-body
displacements, as they systematically consider the projected
path on the surface and the local surface features during the
learning procedure. Human demonstrations are recorded us-
ing an instrumented tool, i.e., a standard tool with integrated
sensors that allows seamless transfer to any robotic platform.

As an example task, the framework is employed to
clean the edges of bathroom sinks. Demonstration trials
are recorded for cleaning the front edge of the sink using
a simple sponge tool only. Results show that the learned
model can be generalized to different edges on different
object geometries, including corners and significantly dis-
torted objects. The model implicitly learned the correct
tool orientation and position w.r.t. the freeform 3D surface.
The generated tool motions are validated in simulation by
evaluating the mesh intersections between the surface and
the tool and in the experimental setup by cleaning dirt spots
from the surface of the bathroom sinks.

Practically, ProSIPs capture the complex interaction be-
tween a tool and a freeform 3D surface, described by
the contact point moving along a surface path. Therefore,
the framework applies to many different applications, e.g.,
drawing, polishing, and sanding, with a suitable instrumented
tool for recording the demonstrations.

Future works focus on building hierarchical models to sys-
tematically integrate different object geometries, e.g., planar



areas, edges, and corners, and different signals, e.g., forces
and torques. Additionally, developing fully automatic cali-
bration routines utilizing the CAD data of the instrumented
tools and the demonstration environment will allow for easy
adoption of the ProSIP framework in practical applications.
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