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The slab reheating process turns out to play a key role in order to deal with the steadily increasing demands on the quality of hot
rolled steel plates. Improvements both in the throughput of the furnace as well as the accurate realization of reheating paths for the
slabs require to incorporate modern model-based control design techniques into the furnace automation. For this, suitable mathematical
models with manageable dimension and complexity have to be determined for the furnace and slab dynamics. In this contribution, first
principles are applied for the derivation of a physics-based model of the reheating process in a so-called pusher-type reheating furnace.
Thereby, a discontinuous mode of furnace operation is considered, which is characterized by a varying number of slabs with variable
geometry being discontinuously moved through the furnace. This in particular results in a hybrid structure of the mathematical model.
The accuracy of the mathematical model is validated by a comparison with experimental data obtained from a measurement campaign
with a test slab performed at an industrial pusher-type reheating furnace.

Keywords: Pusher-type furnace, slab reheating process, physics-based modelling, combustion modelling, singular perturbation,
experimental validation

1. Introduction

Reheating of slabs from the ambient temperature to their rolling temperature of approximately 1150◦C is
an important step in the heavy plate production in order to prepare the slabs for the subsequent rolling
process. For this, the slabs are normally heated in gas- or oil-fired pusher-type reheating furnaces.
In order to illustrate this, a schematic setup of the furnace, which is considered in the following, is shown

in Figure 1. Depending on the location of the burners, the local temperature range, and the dwell of the
slabs, the furnace can be structurally divided into the convective zone without burners, the pre-heating
zone, the heating zone as well as the pre-soaking and the soaking zone. In the convective zone an initial
heating of the cold slabs entering the furnace occurs due to the heat radiation and the convective flow
of hot exhaust gas which is directed towards the funnel. In the two heating zones the slabs are heated
up to their pre-planned rolling temperature in order to achieve the desired metallurgical transitions. The
homogenisation of the slabs by diffusive processes inside the material finally occurs in the two soaking zones.
Note that every zone except the convective zone is equipped with burners whose fuel and combustion air
flows can be adjusted autonomously for each zone.
In the typical operation mode cold slabs are pushed into the furnace in up to three parallel rows at

the position z = 0 while the readily heated slabs are pulled out of the furnace on the opposite side at
z = Lz. Note that new slabs can only enter the furnace whenever heated slabs are pulled out of the furnace.
The majority of pusher-type furnaces is continuously fed with slabs of the same geometry such that the
furnace is operated in a quasi-steady state with rather constant working conditions. However, depending
on the integration of the pusher-type furnace within the overall production process, configurations arise
where the furnace is fed discontinuously with slabs of varying geometry and differing desired heating and
homogenisation paths. Due to the coupling of the time-continuous heat exchange and flow processes with
the discrete switching of the slab movement along the z-direction, the thus operated pusher-type furnace
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Figure 1. Schematic illustration of a typical pusher-type reheating furnace heated with gas and/or oil burners.

can be classified as a hybrid system.
This operation mode in particular requires to include state-of-the-art automation facilities in order to

cope with the steadily increasing demands on product quality and the increasing production rates in hot
rolling mills. For this, both advanced optimization strategies to determine the suitable entering sequence
of the slabs in view of their individual heating and homogenisation paths and modern model-based control
techniques to realize the heating strategy have to be incorporated. Thereby, the major difficulty is the
fact that it is desired to control the individual slab temperatures without the possibility to measure the
slab temperatures inside the furnace. Hence, an appropriate mathematical model has to be derived in
order to numerically reconstruct the slab temperatures during the reheating process. Thereby, on the one
hand the highly complex furnace dynamics including the combustion of fuel, the gas mass flows within
the non-trivial geometry of the furnace and the energy exchange between the slabs, the gas and the walls
has to be captured by a suitable mathematical model. On the other hand, a manageable complexity of the
mathematical model has to be retained in view of control design and its real-time implementation.
For computational modelling, system analysis, and simulation, the application of methods originating

from computational fluid dynamics (CFD) often allows to obtain an accurate spatial and temporal res-
olution of the mass flow and heat transfer mechanisms inside the furnace. However, these advantages of
CFD–based approaches are overwhelmed by the large number of system variables reaching up to several
million quantities depending on the level of detail. Hence these tools are commonly used for designing
new furnaces and to perform off-line studies of the gas and/or combustion dynamics [1,2]. A reduction of
the calculating time compared to conventional CFD techniques is achieved by combining the CFD simula-
tion with the classical zone method [3]. Although providing promising results in view of resolving the gas
dynamics and the heat transfer mechanisms, this approach still lacks to provide analytical mathematical
models of medium complexity and dimension, which are the basis for model-based control design.
On the other hand, in many industrial applications a pragmatic modelling approach is considered, which

traces back to [4]. Therein, a sufficiently large number of local furnace temperature measurements obtained
from suitably distributed thermocouples serve as inputs for a slab-heating model, see, e.g., [5,6]. This allows
to evaluate the respective slab temperature profiles in real-time. In view of control design as well as process
optimization the main drawback of this approach arises from the missing relation between the measured
furnace temperatures and their realization by the physical inputs, namely fuel and combustion air.
As a promising alternative avoiding the high number of system variables while preserving the physical

relation between the system state and input quantities, the so-called zone method as proposed in [7], is
extensively studied in [8, 9]. Thereby, the furnace is subdivided into gas volumes, wall and slab elements
whose radiative heat exchange is calculated utilizing coupling factors. Furthermore, this approach assumes
a continuous furnace operation mode and steady state conditions for the wall and gas temperature. The
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available results on furnace modelling utilizing the zone method are based on the assumption of a contin-
uous furnace operation, i.e. uniform slab geometries, target temperatures, and slab movements. However,
this is no longer satisfied in the furnace under consideration.
Therefore, in the following a physics-based modelling approach is considered for the discontinuous op-

eration mode of the reheating furnace depicted in Figure 1. For this, according to the zone method, in
Section 2 the furnace is discretized along the z-direction into control volumes. In each control volume, mass
and energy balances are applied for modelling the dynamics of the exhaust gas composition as well as the
respective gas temperature. In addition, the temperature evolution in the surrounding wall elements and
the slabs is incorporated in the system description. Since thermal radiation represents the major mode
of energy exchange inside the furnace, the so–called net-radiation method is used in Section 3 to deter-
mine the heat flows coupling the individual sub-models of the gas composition, the gas temperature, the
wall temperature, and the slab temperature inside the furnace. This is followed by the assembling of the
sub-models into a single model describing the overall reheating process in the furnace. Furthermore, a
brief discussion on the computational implementation of this model is given in Section 4. The accuracy
of the determined model is validated in Section 5 by comparing numerical results and measurement data
obtained from a measurement campaign at the AG der Dillinger Hüttenwerke, Dillingen (Germany). Some
final remarks conclude the paper.

Nomenclature of some important quantities

Ai
sj area of the j-th slab surface inside the i-th control volume

Asj surface area of the j-th slab
Awi

surface area of the i-th wall element
Q̇gi,sj heat flow between the i-th gas space and the j-th slab surface

Q̇gi,wk
heat flow between the i-th gas space and the k-th wall surface

Q̇wi,sj heat flow between the i-th wall and the j-th slab surface
gi index denoting the i-th control volume, i = 1, . . . , 2Nv

ṁa
gi

combustion air mass flow into the i-th control volume

ṁf
gi fuel mass flow into the i-th control volume

ṁin
gi

mass flow into the i-th control volume, i.e. out of the (i+ 1)-th into the i-th control volume

ṁout
gi

mass flow out of the i-th control volume, i.e. out of the i-th into the (i− 1)-th control volume
Nslab number of slabs charged into the furnace
Nv number of discretized control volumes of a furnace section
sj index denoting the j-th slab, j = 1, . . . , Nslab

T g vector of the gas temperatures Tgi
for i = 1, . . . , 2Nv

T s vector combining all slab temperature vectors T sj of all slabs for j = 1, . . . , Nslab

Tw vector of the wall surface temperatures Twi
for i = 1, . . . , 2Nv

ug vector combining all input vectors ugi
of all control volumes for i = 1, . . . , 2Nv

wg vector combining all vectors wgi
of all control volumes for i = 1, . . . , 2Nv

Tgi
gas temperature in the i-th control volume

Tsj temperature distribution along the height of the j-th slab, i.e. Tsj(t, y)
T sj vector of the spatially discretized temperatures Tsj of the j-th slab
Twi

wall surface temperature of the i-th wall element
ugi

input vector of the i-th control volume
wgi

vector of mass fractions of all species inside the i-th control volume
wi index denoting the wall surrounding the i-th control volume, i = 1, . . . , 2Nv

wν
gi

mass fraction of the ν-th species in the i-th control volume
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Figure 2. Schematic illustration of the furnace discretization into control volumes for the upper (volumes 1 to Nv) and the lower
furnace section (volumes Nv + 1 to 2Nv).

2. Mathematical modelling

In this section, a physics-based mathematical model is presented for the pusher-type reheating furnace
shown in Figure 1. It is thereby desired that the derived model accurately reflects the fundamental dynamics
of the reheating process. Secondary and from a modelling and validation point of view only hardly accessible
effects such as the detailed fluid flow within the furnace or the influence of the flame geometry are neglected
in order to retain a model of manageable dimension and complexity.
For modelling purposes, the furnace is split up into an upper and a lower section as shown in Figure

2. According to the zone method [7, 10], each section is divided into Nv control volumes with respect to
the z-direction in order to accurately approximate the furnace shape and to ensure that (almost) every
control volume contains a thermocouple. Note that the latter requirement is in particular important for
the subsequent experimental validation.
Furthermore, it is assumed that temperature deviations occur only along the z-coordinate, i.e. over the

length of the furnace. This simplification is motivated by the fact that all burners within a furnace zone are
actuated by a common valve for fuel and combustion air, such that it is not directly possible to influence
the temperature distribution along the width and height of the upper and lower furnace section. In the
following, the governing equations for the exhaust gas composition as well as the gas temperature, the wall
temperature, and the slab temperature distribution are exemplarily derived for the i-th control volume
and the j-th slab by applying first principles. The overall system model can then be easily assembled from
these subsystems.

2.1. Gas and combustion dynamics

For the modelling of the exhaust gas dynamics, at first the components G of the furnace atmosphere are
identified and divided into the sets Go, Ga, and Ge denoting the oxidizable components, the combustion
air components, and the combustion products, i.e. the exhaust gas generated from the combustion of Go

with Ga, respectively. In particular, the oxidizable components can be identified as hydrogen (H2), carbon
monoxide (CO), and hydrocarbon gases like methane (CH4), ethane (C2H6), etc., such that Go is given
in the form Go = {H2,CO,CH4,C2H6, . . . }. The combustion air is assumed to be a mixture of nitrogen
(N2) and oxygen (O2), i.e. Ga = {N2,O2}. Hence, the resulting group of exhaust gases consists mainly
of the combustion products vapor (H2O) and carbon dioxide (CO2), i.e. Ge = {H2O,CO2}. In order to
increase the level of detail also incomplete combustion and dissociation products can be included in Ge.
In the following, the composition of the mass mgi

of gas stored in the i-th control volume is expressed in
terms of mass fractions wν

gi
such that the mass of an individual component ν ∈ G = Go ∪Ga ∪Ge inside

the volume is given by mν
gi

= mgi
wν
gi

while
∑

ν∈Gwν
gi

= 1.
As illustrated in Figure 1, the mass flow in each control volume is dominated by the flow directed

towards the funnel, i.e. in the sequel it is assumed that all mass flows are oriented in negative z-direction.
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ṁin
gi ṁout
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Figure 3. Schematic diagram of the i-th control volume.

Furthermore, we assume an isobaric furnace process at constant pressure p, which is ensured in the real
plant by an appropriately controlled valve inside the funnel. Considering the i-th control volume as shown in
Figure 3, the mass flows entering and leaving the control volume are denoted as ṁin

gi
and ṁout

gi
, respectively.

The quantities ṁf
gi and ṁa

gi
describe the fuel and air mass flow into the volume due to the attached

burners. The respective compositions are similarly expressed by the mass fractions win,ν
gi , wout,ν

gi , wf,ν
gi ,

and wa,ν
gi . In order to simplify the notation, in the subsequent mass balances the sum of the fuel and

air mass flows are abbreviated by ṁb
gi

= ṁf
gi + ṁa

gi
while the respective mass fraction follows as wb,ν

gi =

(ṁf
giw

f,ν
gi + ṁa

gi
wa,ν
gi )/ṁb

gi
. According to Figure 3 mass conservation of the stored mass mgi

inside the
control volume Vgi

yields

dmgi

dt
= ṁin

gi
+ ṁb

gi
− ṁout

gi
(1)

while mass balancing for the respective components ν ∈ G results in

dmν
gi

dt
= ṁin

gi
win,ν
gi

+ ṁb
gi
wb,ν
gi

− ṁout
gi

wout,ν
gi

+ Vgi
Mν ṙνgi

. (2)

Here, the term Mν denotes the molar weight of the component ν while ṙνgi
represents the mass generation

rate of the component ν resulting from the chemical reactions of the combustion process. Hence, a positive
generation rate ṙνgi

> 0 indicates the production of the species ν while a negative generation rate ṙνgi
< 0

indicates the degradation of ν [11]. Note that the generation rate ṙνgi
in general depends on the temperature

of the reactants and their mass fractions wν
gi

inside the control volume and will be discussed below.

Substitution of (1) into (2) and assuming ideal mixing conditions inside the gas volume, i.e. wout,ν
gi = wν

gi

for all ν ∈ G, a set of ordinary differential equations (ODEs)

mgi

dwν
gi

dt
= ṁin

gi

(
win,ν
gi

− wν
gi

)
+ ṁb

gi

(
wb,ν
gi

− wν
gi

)
+ Vgi

Mν ṙνgi
, ν ∈ G (3)

for the mass fractions is obtained in terms of the incoming mass flows, their mass fractions, and the reaction
rate. Recall that the considered furnace is operated at a constant pressure p. Hence, by assuming ideal-gas
behavior, the stored mass mgi

in the i-th control volume with volume Vgi
can be easily determined from

the ideal gas law as a function of the gas temperature Tgi
and the mass fractions wν

gi
, ν ∈ G, i.e.

mgi
=

pVgi

RTgi

∑
ν∈G

wν
gi

Mν

(4)

with R the universal gas constant [12]. Hence, for given ṁin
gi

and ṁb
gi

differentiation of (4) with respect
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to time t in view of (3) allows to compute the mass flow ṁout
gi

leaving the control volume. However, this
requires the knowledge of the time evolution of the gas temperature Tgi

.
For this, the energy balance for the control volume is set up by considering the change of the stored

enthalpy Hgi
, i.e.

dHgi

dt
= −Q̇gi

+ Ḣb
gi
+ Ḣ in

gi
− Ḣout

gi
, (5)

where Q̇gi
summarizes the energy exchange between the gas volume and the slabs as well as the walls.

A detailed calculation of Q̇gi
is given in Section 3. The enthalpy flow Ḣb

gi
from the burners consists of

the enthalpies associated with the fuel mass flow ṁf
gi at temperature T f

gi and with the mass flow of the
pre-heated air ṁa

gi
at temperature T a

gi
. This yields

Ḣb
gi
= ṁf

gi

∑

ν∈Gf

wf,ν
gi

hν(T f
gi
) + ṁa

gi

∑

ν∈Ga

wa,ν
gi

hν(T a
gi
), (6)

where hν(T ) denotes the absolute specific enthalpy1 of the species ν at temperature T and Gf ⊂ G
summarizes the components of the fuel. Note that typically the furnaces used in hot rolling mills are fired
with not necessarily constant mixtures of coke oven gas, natural gas, and blast furnace gas. Hence, the
fuel is a mixture of oxidizable and non-combustible components. Since Gf ⊂ G, the subsequent notation

is simplified by extending wf,ν
gi and wa,ν

gi to G with the choice wf,ν
gi = 0 and wa,ν

gi = 0 if ν ∈ G but ν 6∈ Gf

or ν 6∈ Ga, respectively.
Besides the energy input from the burners, the exhaust gas ṁin

gi
from the previous control volume enters

the considered control volume at the temperature T in
gi
. Equivalently, energy is transferred to the next

control volume by the mass flow ṁout
gi

at the temperature T out
gi

such that

Ḣ in
gi

= ṁin
gi

∑

ν∈G
win,ν
gi

hν(T in
gi
), Ḣout

gi
= ṁout

gi

∑

ν∈G
wout,ν
gi

hν(T out
gi

). (7)

Recall that the stored mass-specific enthalpy is given as Hgi
= mgi

hgi
with the mass specific enthalpy hgi

=∑
ν∈G hν(Tgi

)wν
gi
. Hence, by considering the total differential of the mass-specific enthalpy of the mixture

inside the control volume under isobaric conditions [11], i.e. dhgi
= cp,gi

dTgi
+
∑

ν∈G hνdwν
gi

with the
specific heat capacity for ideal mixtures of the gas components cp,gi

=
∑

ν∈Gwν
gi
cνp,gi

, cνp,gi
= ∂hν/∂Tgi

|wν
gi
,

it follows in view of (5) with (2), (6), (7) that

mgi
cp,gi

dTgi

dt
= −Q̇gi

− Vgi

∑

ν∈G
Mν ṙνgi

hν(Tgi
) + ṁin

gi

∑

ν∈G
win,ν
gi

[
hν(T in

gi
)− hν(Tgi

)
]

+ ṁf
gi

∑

ν∈G
wf,ν
gi

[
hν(T f

gi
)− hν(Tgi

)
]
+ ṁa

gi

∑

ν∈G
wa,ν
gi

[
hν(T a

gi
)− hν(Tgi

)
]
. (8)

Here, ideal mixing conditions are assumed, i.e. wout,ν
gi = wν

gi
for all ν ∈ G and T out

gi
= Tgi

. Combining (3)
and (8) results in a system of ODEs constituting the dynamics of the temperature Tgi

and the composition
wν
gi

of the exhaust gas inside the i-th control volume as a function of the incoming mass flows, their

compositions and temperatures, the heat exchange term Q̇gi
, and the generation rate ṙνgi

. The latter can
be determined from the kinetics of the chemical reactions of the combustion process.

1The absolute or standardized enthalpy takes into account the energy associated with chemical bonds and additionally an enthalpy
associated only with a change of temperature [11]. This simplifies our notation of energy balances concerning the released combustion
heat.
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For this, the subsequent analysis is limited to the global reactions of fuel and oxygen under the assump-
tion of lean combustion while neglecting dissociation and the unimolecular reaction mechanism involving
intermediate reaction schemes and the generation of radicals. Lean combustion thereby denotes the fact
that more oxygen is supplied than required for a stoichiometric reaction in contrast to the so-called rich
combustion where less oxygen is supplied. Hence it seems adequate to consider a complete oxidization of
the elements of Go. By employing so–called net rates of production or destruction (cf. [11, p. 119f]), the
mass generation rates ṙνgi

for ν ∈ G can be determined schematically as follows

ṙνgi
=





−χ̄ν
νK

ν(Tgi
)
(
cνgi

)γν
ν
(
cO2
gi

)γν
O2 for ν ∈ Go∑

µ∈Go
χ̄µ
νKµ(Tgi

)
(
cµgi

)γµ
µ
(
cO2
gi

)γµ
O2 for ν ∈ Ge ∪ {O2}

0 else

(9)

with the modified stoichiometric coefficients χ̄µ
ν = χµ

ν for ν 6= O2 and χ̄µ
O2

= −φχµ
O2

, ν ∈ Ge and µ ∈ Go.

Herein χµ
ν denotes the stoichiometric coefficient of the component ν ∈ G in the oxidization reaction scheme

of the oxidizable component µ ∈ Go. Note that the destruction of O2 is incorporated in (9) by the negative
sign of the respective modified stoichiometric coefficient χ̄µ

O2
in order to obtain a uniform representation

in the subsequent analysis. The parameter φ < 1 is called the equivalence ratio indicating that the fuel-
oxigen mixture is lean, Kν(Tgi

), ν ∈ G is called the global rate coefficient, and cνgi
denotes the molar

concentration of the component ν ∈ G in the i-th gas volume. Finally, the exponents γµν can be either
fitted to experimental data or determined from the chemical kinetics by employing collision theory. For the
first case, tabulated values can be, e.g., found in [11, Table 5.1]. In the second case, consider the example
when Go consists only of hydrocarbon-type elements, i.e. CxHy ∈ Go with x ∈ N∪{0}, y ∈ N denoting the
number of carbon and hydrogen atoms, respectively. The respective global reaction scheme in case of lean
combustion follows as

CxHy +
1

φ

(
x+

y

4

)
O2 −→ xCO2 +

y

2
H2O+

1− φ

φ

(
x+

y

4

)
O2.

Then, the kinetic coefficients in (9) can be identified as

χ
CxHy

CxHy
= γ

CxHy

CxHy
= 1, χ

CxHy

O2
= γ

CxHy

O2
=

1

φ

(
x+

y

4

)
,

χ
CxHy

CO2
= γ

CxHy

CO2
= x, χ

CxHy

H2O
= γ

CxHy

H2O
=

y

2

with Ge = {CO2,H2O}. It should be pointed out that by the choice of an adequate generation rate ṙνgi
and

an associated set Ge it is possible to incorporate the full reaction kinetics with dissociation, incomplete
combustion, and effects such as steel oxidization. For more details on the analysis of combustion processes,
the reader is referred to [11].
Note that the molar concentrations in (9) can be expressed in terms of mass fractions by utilizing the

relation cνgi
= wν

gi
mgi

/(Vgi
Mν) such that substitution of (9) into (3) yields three sets of ODEs with the
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first two sets being coupled by the reaction rates, i.e.

mgi

dwν
gi

dt
= ṁin

gi

(
win,ν
gi

− wν
gi

)
+ ṁb

gi

(
wb,ν
gi

−wν
gi

)

− Vgi
Mν χ̄ν

νK̄
ν(Tgi

)
(
wν
gi

)γν
ν
(
wO2

gi

)γν
O2 , ν ∈ Go (10a)

mgi

dwν
gi

dt
= ṁin

gi

(
win,ν
gi

− wν
gi

)
+ ṁb

gi

(
wb,ν
gi

−wν
gi

)

+ Vgi
Mν

∑

µ∈Go

χ̄µ
νK̄

µ(Tgi
)
(
wµ
gi

)γµ
µ
(
wO2

gi

)γµ
O2 , ν ∈ Ge ∪ {O2} (10b)

mgi

dwν
gi

dt
= ṁin

gi

(
win,ν
gi

− wν
gi

)
+ ṁb

gi

(
wb,ν
gi

−wν
gi

)
, ν ∈ Gn (10c)

where Gn = G\
(
Go ∪Ge ∪ {O2}

)
denotes the non-reactive components such as N2. Here the abbreviation

K̄ν(Tgi
) = Kν(Tgi

)(mgi
/Vgi

)γ
ν
ν+γν

O2 (Mν)−γν
ν (MO2)−γν

O2 is used, where K̄ν(Tgi
) now depends on the mass

fractions of all components in G due to (4).
Since the pressure p inside the furnace and the volume Vgi

of the i-th control volume are known the
mass mgi

can be determined algebraically from (4) for given wν
gi

and Tgi
. Thus, utilizing (4) the gas

dynamics of the i-th control volume is given by the exhaust gas composition from (10) and the exhaust
gas temperature from (8) with (9). Note that due to the assumption of a well stirred control volume these
ODEs are independent from the outgoing exhaust gas mass flow ṁout

gi
which can be determined from (1)

with (4) for known wν
gi

and Tgi
as mentioned before.

It should be noted that the combustion reaction included in (8) and (10a), (10b), respectively, represents
a very fast dynamics compared to the rather slow mass diffusion through the volume. Since it is desired to
obtain a model suitable for the development of model-based real-time control and observation strategies,
it is adequate to assume a quasi-instantaneous reaction of all oxidizable fuel components Go with O2. This
results in a systematic model reduction by applying singular perturbation techniques (cf. [13]) as presented
in the following section.

2.2. Reduced gas dynamics by singular perturbation

In order to eliminate the fast dynamics of the combustion process represented by Kν(Tgi
) → ∞ or

respectively K̄ν(Tgi
) → ∞, singular perturbation theory is applied with respect to the small param-

eter 1/K̄ν(Tgi
). For this, the ODEs (8) and (10) have to be transformed into singular perturbation

standard form. For the transformation of the governing equation (10) we introduce the new states
w̃ν
gi

= wν
gi

+
∑

µ∈Go
βµ
νw

µ
gi for all ν ∈ Ge ∪ {O2} where βµ

ν = Mν χ̄µ
ν/(Mµχ̄µ

µ). Note that this state

transformation corresponds to the summation of (10a) weighted by βµ
ν with respect to µ ∈ Go and the

addition of the result to (10b). This yields

mgi

dw̃ν
gi

dt
= ṁin

gi


win,ν

gi
+
∑

µ∈Go

βµ
νw

in,µ
gi

− w̃ν
gi


+ ṁb

gi


wb,ν

gi
+
∑

µ∈Go

βµ
νw

b,µ
gi

− w̃ν
gi


 , ν ∈ Ge ∪ {O2}, (11)

which is independent of K̄ν(Tgi
). This state transformation applied to (8) is more involved and leads to

the enthalpy conservation (5) which is also independent of K̄ν(Tgi
). Hence, starting with this equation

the resulting system consisting of (5)-(7), (10a), (10c), and (11) is in singular perturbation standard form
with respect to the parameter 1/K̄ν(Tgi

) when dividing both sides of (10a) by K̄ν(Tgi
).

By taking the limit 1/Kν(Tgi
) → 0, it follows from (10a) that wν

gi
= 0 for all ν ∈ Go since due to the
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assumption of lean combustion necessarily wO2
gi

> 0. With this result, (11) evaluates to

mgi

dwν
gi

dt
= ṁin

gi

(
win,ν
gi

−wν
gi

)
+ ṁb

gi

(
wb,ν
gi

− wν
gi

)

+
∑

µ∈Go

βµ
ν

(
ṁin

gi
win,µ
gi

+ ṁb
gi
wb,µ
gi

)
, ν ∈ Ge ∪ {O2} (12)

while the energy balance (5)-(7) yields

mgi
cp,gi

dTgi

dt
= − Q̇gi

+ ṁf
gi
hfgi

+ ṁa
gi
hagi

+ ṁin
gi
hingi

−
∑

ν∈Ge∪Ga

hν(Tgi
)w̄ν

gi

−
∑

ν∈Ge∪{O2}
hν(Tgi

)
∑

µ∈Go

βµ
ν w̄

µ
gi

(13)

where hfgi =
∑

ν∈Gf
wf,ν
gi hν(T f

gi), hagi
=
∑

ν∈Ga
wa,ν
gi hν(T a

gi
), hingi

=
∑

ν∈Ge∪Ga
win,ν
gi hν(T in

gi
), and w̄ν

gi
=

ṁf
giw

f,ν
gi + ṁa

gi
wa,ν
gi + ṁin

gi
win,ν
gi . Note that since wν

gi
= 0 for all ν ∈ Go the set G reduces to G = Ge ∪Ga.

In summary, combining (10c), (12) and (13) results in a coupled system of ODEs representing the reduced
gas dynamics of the i-th control volume, i.e. the exhaust gas composition represented by the component
mass fractions and the gas temperature, in the form

d

dt

[
wgi

Tgi

]
=




fwgi

(
wgi

, Tgi
,win

gi
, ṁin

gi
,ugi

)

fTgi

(
wgi

, Tgi
,win

gi
, T in

gi
, ṁin

gi
,ugi

, Q̇gi

)


 (14)

for t > 0 and initial condition [wT
gi
, Tgi

]T (0) = [(w0
gi
)T , T 0

gi
]T . Here, the mass fractions of the exhaust gases

inside the i-th control volume are summarized in the state vector wgi
, i.e. wgi

= {wν
gi
}ν∈Ge∪Ga

. Similar

to this, the composition of the incoming mass flow ṁin
gi

is summarized in the vector of mass fractions

win
gi

= {win,ν
gi }ν∈Ge∪Ga

. Furthermore, the mass flows of fuel and combustion air into the control volume
as well as their compositions and temperatures constitute the input quantities of the i-th control volume.

Hence, they are combined in the input vector ugi
= [(wf

gi)
T , (wa

gi
)T , T f

gi , T
a
gi
, ṁf

gi , ṁ
a
gi
]T with the vector

of mass fractions of the fuel gas wf
gi = {wf,ν

gi }ν∈Ge∪Ga
and the combustion air wa

gi
= {wa,ν

gi }ν∈Ge∪Ga
. In

addition, recall that the mass flow within the furnace is dominated by the flow which is directed towards
the funnel. Therefore, the mass flow leaving the i-th control volume enters the adjacent control volume,
i.e. ṁout

gi
= ṁin

gi−1
(cf. Figure 3). Additionally, the outgoing mass flow can be represented schematically as

ṁout
gi

= f out
gi

(
wgi

, Tgi
,win

gi
, T in

gi
, ṁin

gi
,ugi

, Q̇gi

)
(15)

utilizing (2) and (4) as mentioned before. The temperature evolution as well as the gas composition of
the i-th control volume is given by (14) depending on the heat flow Q̇gi

out of the control volume. This
heat flow summarizes the heat exchange of the exhaust gas with the furnace walls and the slabs which is
modelled in the following.

2.3. Dynamics of the furnace wall

The walls of modern furnaces are normally piled up of several levels of various insulation materials em-
bedded in an exterior shell of steel as schematically shown in Figure 4(a). The thermal properties of the
individual layers are given by the material dependent heat capacity cnp,wi

and density ρnwi
where 1 ≤ n ≤ nwi
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ρ1wi
, c1p,wi

ρ2wi
, c2p,wi

...

ρ
nwi
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nwi
p,wi

�

6

Twi

dwi

r

r To
��

(a) Temperature evolution in the multi-layered in-
sulation.

ρ̄wi
, c̄p,wi

λ̄wi

�

6

Twi

dwi

d̄wi

r

r To
��

(b) Approximation by a two-layered wall element
with d̄wi denoting the effective height of the inner
layer. The outer wall temperature To is measured.

Figure 4. Modelling of the furnace wall wi in the i-th control volume.

indicates the respective layer. In order to model the temperature distribution in the furnace wall the con-
vective as well as conductive heat transfer mechanisms have to be considered [14]. However, since on the
one hand the convective flow in the furnace is hardly accessible due to the complex furnace dynamics and
geometry and on the other hand the conductive properties of the multiple insulation layers are mainly
unknown, an adapted model has to be derived, which captures the essential thermal dynamics.
For this, detailed simulation studies in comparison with measurement campaigns have shown that the

wall temperature mainly varies in a rather thin boundary layer neighbouring the gaseous space followed by
an almost linear decrease to the outer wall temperature. As a result, in the following the multi–layered wall
of area Awi

and thickness dwi
surrounding the i-th control volume is represented by a two–layered element

as depicted in Figure 4(b). The balance of energy for the inner layer of effective thickness d̄wi
≪ dwi

, mean
density ρ̄wi

and mean specific heat capacity c̄p,wi
reads as

d

dt
Twi

=
Q̇wi

− Q̇out
wi

c̄p,wi
ρ̄wi

Awi
d̄wi

, (16)

with the heat flow Q̇wi
entering the wall and Q̇out

wi
the heat flow to the outer layer. Note that the description

of the heat flow Q̇wi
is postponed to Section 3, where heat radiation in the furnace as the major mode

of heat exchange between the gaseous phase, the slabs, and the walls is discussed in detail. The heat flow
Q̇out

wi
due to heat conduction follows as

Q̇out
wi

=
λ̄wi

Awi

dwi
− d̄wi

(
Twi

− To

)
, (17)

where λ̄wi
denotes the average thermal conductivity of the outer layer and To represents the outer wall

temperature [14,15]. It should be pointed out, that To is measured in the considered furnace set-up while
the parameters d̄wi

≪ dwi
, ρ̄wi

, c̄p,wi
, and λ̄wi

are identified from experimental data.
Besides the balance equations for the gaseous furnace space and the surrounding furnace walls, the

modelling of the slabs is of crucial importance.

2.4. Dynamics of the slabs

In pusher-type furnaces, the slab movement in the z-direction is realized by hydraulic pushers, which
discontinuously feed new slabs to the furnace. This results in a sliding of the adjoining slabs along the
installed skid system as depicted in Figure 5.
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Q̇sj ,u

Q̇sj ,d

Tsj ,1

Tsj ,Nsj

x
z

y = 0

y = Ly
sj

skidskid

slab sj

Figure 5. Schematic drawing of the j-th slab, the vertical discretization and the heat flow into the upper and lower surfaces of the slab.

From an energetic point of view, the skids induce a complex temperature distribution in the slab, which
can be mathematically recovered only by considering 2- (along the (x, y)-directions) or 3-dimensional slab
models, see, e.g., [16]. However, a detailed slab model results in a dramatic increase in the dimension of
the system states and thus cannot be used in a real–time environment. Furthermore, in view of process
control no active control of the slab temperature in the neighbourhood of the skids is available, such that
in the sequel the analysis is restricted to a 1-dimensional slab model assuming a homogeneous temperature
distribution in the x- and z-direction. In addition, it is assumed that the heat exchange occurs mainly
through the upper and lower surfaces of the slabs. Note that these assumptions are in good agreement
with the available measurement data (cf. Section 5). Hence, the temperature distribution Tsj = Tsj(t, y)
of the j-th slab sj can be represented by the 1-dimensional heat equation [14], i.e.

cp,sj(Tsj )ρsj(Tsj )
∂Tsj

∂t
=

∂

∂y

(
λsj(Tsj )

∂Tsj

∂y

)
(18)

with the temperature dependent parameters for the specific heat capacity cp,sj , the density ρsj , and the
thermal conductivity λsj of the respective steel alloy [17]. The boundary conditions follow as

λsj(Tsj)
∂Tsj

∂y
= −Q̇sj,d

Asj

at y = 0 (19a)

λsj(Tsj)
∂Tsj

∂y
=

Q̇sj ,u

Asj

at y = Ly
sj . (19b)

Here Q̇sj,d and Q̇sj ,u denote the heat flows into the slab sj at the upper and lower slab surface Asj , which
depend on the properties of the surrounding gas and the neighbouring furnace walls due to the dominating
radiative heat exchange. A detailed derivation of the respective expressions for Q̇sj ,d and Q̇sj ,u is given in
Section 3. The corresponding initial conditions read as

Tsj(t0, y) = T 0
sj(y), y ∈ [0, Ly

sj ]. (20)

with t0 ≥ 0 as the charging time of the respective slab.
In order to obtain a model suitable for real-time applications the governing heat equation (18) and the

corresponding boundary conditions (19) are semi-discretized using the finite difference method [14, 18].
This results in a system of Nsj nonlinear ODEs

d

dt
T sj = f sj

(
T sj , Q̇sj ,d, Q̇sj ,u

)
(21a)

for t > t0 with the initial condition T sj(t0) = T 0
sj due to (20). Thus, a nonlinear system of ODEs with the

state vector T sj(t) = [Tsj ,1, . . . , Tsj ,Nsj
]T of discrete slab temperatures along the slab height as depicted

in Figure 5 is obtained for each slab. The following section is devoted to the derivation of the heat flows
Q̇sj,u and Q̇sj ,d as well as of the heat flows into the furnace walls Q̇wi

and out of the exhaust gas Q̇gi
.
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3. Heat radiation within the furnace

In the previous section, dynamical models are determined for the exhaust gas composition and the exhaust
gas temperature as well as for the wall and the slab temperature distributions. Herein, the heat flows
entering or leaving the sub-models are represented schematically by the variables Q̇gi

, Q̇wi
, Q̇sj ,u, and

Q̇sj,d. Basically, these heat flows are caused by an energy exchange between the exhaust gas, the walls and
the slabs. Since the pusher-type furnace is normally operated at temperatures above 1000◦C, radiative heat
exchange is considered as the major mode of heat exchange such that convective heat exchange between the
gas phase and the wall and the slab surfaces can be neglected. Next the radiative heat transfer mechanisms
inside a fuel fired furnace will be briefly outlined followed by the determination of the heat flows Q̇gi

, Q̇wi
,

Q̇sj,u, and Q̇sj,d.

3.1. Radiating properties

For the subsequent derivations solid body and gas radiation have to be distinguished. Thereby, the solid
surfaces of the furnace walls and the slabs are considered as diffuse, opaque, and grey radiators. The
emissivity of solid surfaces depends among others on the surface temperature, the material, and the surface
texture. For the slabs the latter is affected by the proceeding surface oxidization during the reheating
process1, which significantly complicates the determination of the emissivity of the slabs or makes it even
impossible. Hence, in the following an empirical surface temperature dependent emissivity εsj (Tsj ,1) and
εsj(Tsj ,Nsj

) is presumed. Since the temperature of the furnace walls only varies in a small temperature
range the emissivity of the furnace walls εwi

is considered constant.
The heat radiation of the exhaust gas in general is caused by the polar elements in Ge, i.e. in our case

CO2 and H2O, whereas the radiating properties of these gases primarily depend on their temperature Tgi

as well as on the volume and the shape of the radiating gas space. The latter is approximated by the mean
beam length l⋆gi

= 3.6Vgi
/Agi

where Vgi
denotes the volume of the i-th control volume and Agi

corresponds
to its surrounding area [14]. The gas radiation properties also depend on the chemical composition of the
gas phase, which is incorporated in the partial pressures pCO2

gi
and pH2O

gi
of the radiating gases, i.e.

pCO2

gi
=

wCO2
gi

p

MCO2

∑
ν∈Ga∪Ge

wν
gi

Mν

, pH2O
gi

=
wH2O
gi

p

MH2O
∑

ν∈Ga∪Ge

wν
gi

Mν

(22)

such that ενgi
= ενgi

(Tgi
, p, pνgi

, l⋆gi
) with ν ∈ {CO2,H2O}. The determination of εCO2

gi
and εH2O

gi
is typically

based on the measured diagrams of Hottel and Egbert [20] which relate the gas emissivities to the gas
temperature and the product of the respective partial pressure and the mean beam length, i.e. ενgi

=
ενgi

(Tgi
, l⋆gi

pνgi
) for ν ∈ {CO2,H2O}. For a detailed discussion of this subject the reader is referred to [14,20].

Furthermore, the emissivity of the radiating atmosphere inside the i-th control volume is assumed to follow
from the emissivity of carbon dioxide εCO2

gi
and εH2O

gi
, i.e.

εgi
(Tgi

,wgi
) = εCO2

gi

(
Tgi

, l⋆gi
pCO2

gi

)
+ εH2O

gi

(
Tgi

, l⋆gi
pH2O
gi

)
−∆εgi

(Tgi
, pCO2

gi
, pH2O

gi
, l⋆gi

) (23a)

as given in [14]. The correction term ∆εgi
takes into account weakening effects of the radiation caused by

the partially overlapping radiation spectra of CO2 and H2O. In order to calculate εgi
numerically, in the

following the approximations of the diagrams from Hottel and Egbert [20] as proposed in [21] are applied.
The calculation of the exhaust gas absorptivity αgi

is more involved than the determination of εgi
because

αgi
additionally depends on the temperature of the radiation emitting surface or gas Tsender. Hottel and

1The oxidization kinetic depends among others on the surface temperature of the slab and the composition and temperature of the
furnace atmosphere and is not considered in this contribution. Further information on this topic can be found in [19].
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Figure 6. Schematic diagram of the emitted and received radiation for the surrounding wall of the i-th control volume and the j-th
slab.

Egbert [14,20] relate the absorptivity to the emissivity in the form

αgi
(Tgi

,wgi
, Tsender) =

(
Tgi

Tsender

)0.65

εCO2

gi

(
Tgi

, l⋆gi
pCO2

gi

Tsender

Tgi

)

+

(
Tgi

Tsender

)0.45

εH2O
gi

(
Tgi

, l⋆gi
pH2O
gi

Tsender

Tgi

)
−∆αgi

(23b)

with ∆αgi
= ∆εgi

. Note that for the calculation of the absorptivity we do not distinguish between the
gray radiation emitted from a solid surface and the radiation reflected by gray surfaces after several passes
through the gas phase or the radiation initially emitted by a gas, i.e. radiation composed of different
spectral distributions. However, as long as the reflected radiation is rather small, i.e. εsj and εwi

are
close to unity, this approximation is sufficiently accurate. As a consequence, the transmissivity of the gas
phase is introduced as τgi

(Tgi
,wgi

, Tsender) = 1−αgi
(Tgi

,wgi
, Tsender). In view of a compact notation, in the

following the arguments of εgi
and αgi

are neglected whenever they are self-explanatory and additionally the
abbreviations τgk

gi = τgi
(Tgi

,wgi
, Tgk

), τwk
gi

= τgi
(Tgi

,wgi
, Twk

) and τ
sj
gi = τgi

(Tgi
,wgi

, Tsj ) are introduced
for the transmissivity of the control volume i for radiation emitted by the control volume gk, k = 1, . . . , 2Nv

and k 6= i, the wall wk, k = 1, . . . , 2Nv, and the slab sj , j = 1, . . . , Nslab, respectively. For more detailed
information on this topic the reader is referred to [14,22].

3.2. Heat flow determination

In the following the determination of the heat flows Q̇gi
, Q̇wi

, Q̇sj ,u and Q̇sj ,d in (13), (16), and (21) is
outlined. For this, the configuration illustrated in Figure 6 is considered and energy balances according to
the net-radiation method (cf. [14]) are applied. Furthermore, it is assumed that the part of the separation
plane between the upper and lower furnace section which is not obstructed by slabs is rather small.
Hence, the radiative heat exchange between the upper and lower furnace sections is neglected and thus
the radiative heat transfer for each section is derived separately. In the following the upper furnace section
as shown in Figure 6 is considered, i.e. i = 1, . . . , Nv, and radiative balances are applied for each volume
and each surface with homogeneous temperature inside the volumes. For this, the slab surfaces not fully
included in a control volume, e.g., the sj−1-th and sj+1-th slab in Figure 6, are subdivided into surface
parts each entirely located inside the respective control volumes. Thus, the surface Asj+1

of slab sj+1 is
subdivided into the area Ai

sj+1
located in the i-th control volume and the area Ai+1

sj+1
located in the (i+1)-th

control volume, i.e. Asj =
∑Nv

i=1A
i
sj where Ai

sj 6= 0 if the slab sj is at least partly located in the volume

i = 1, . . . , Nv while else Ai
sj = 0.
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Energy balancing for the wall wi and the slab sj, respectively, yields

Q̇wi
= Ewi

Awi
− Jwi

Awi
, Q̇sj,u =

Nv∑

i=1

(
E
i
sjA

i
sj − J isjAi

sj

)
, (24)

where Ewi
Awi

and E isjA
i
sj denote the irradiance received by the surfaces Awi

and Ai
sj while Jwi

Awi
and

J
i
sjA

i
sj are called the radiosity of the surfaces Awi

and Ai
sj , respectively. Furthermore, the radiosity is

composed of the emissive power of the respective surface and the portion of reflected irradiance, i.e.

Jwi
Awi

= σεwi
Awi

T 4
wi

+ (1− εwi
) Ewi

Awi
(25a)

J
i
sjA

i
sj = σεsjA

i
sjT

4
sj ,Nsj

+
(
1− εsj

)
E
i
sjA

i
sj (25b)

with σ the Stefan–Boltzmann constant (cf. [14]). The irradiance is represented by the received radiosity
of all surfaces in the upper furnace section and the emissive power of the gas volumes weighted with the
respective transmissivity, i.e.

Ewi
Awi

=

Nv∑

k=1

[
Jwk

Awk
FAwk

,Awi
τ̃wk

k,i + σεgk
κ
Awi

,gk

i,k T 4
gk

+

Nslab∑

j=1

J
k
sjA

k
sjFAk

sj
,Awi

τ̃
sj
k,i

]
(26a)

E
i
sjA

i
sj =

Nv∑

k=1

[
Jwk

Awk
FAwk

,Ai
sj
τ̃wk

k,i + σεgk
κ
Ak

sj
,gk

i,k T 4
gk

]
. (26b)

Thereby, the orientation of the surfaces A1 and A2 is taken into account by the so-called view factor
FA1,A2

relating the portion of the radiosity emitted by the surface A1 being received by the surface A2

(cf. [14]). Assuming planar surfaces, the view factors can easily be calculated using the algorithms presented
in [22,23]. Additionally, the abbreviations

τ̃ ιk,i =





∏i
̺=k τ

ι
g̺

for i > k

τ ιgi
for i = k∏k

̺=i τ
ι
g̺

for i < k

and κζ,ξi,k =





Ã−
gk
FÃ−

gk
,ζ τ̃

ξ
i,k−1 for i < k

ζ for i = k

Ã+
gk
FÃ+

gk
,ζ τ̃

ξ
i,k+1 for i > k

(27)

are introduced, where τ̃ ιk,i combines the transmissivity of the gas volumes gk to gi due to the radiosity of

ι. Note that Ã+
gi

and Ã−
gi

denote the surface of the separation planes between the i-th gas volume and the
adjacent gas volumes on the left and on the right, respectively (cf. Figure 6). By balancing the emissive
power and the absorbed irradiation of the i-th gas volume, the outgoing heat flow Q̇gi

follows as

Q̇gi
= σεgi

Agi
T 4
gi
−

Nv∑

k=1


Jwk

κ
Awk

,wk

k,i αwk

gi
+

Nslab∑

j=1

J
k
sjκ

Ak
sj
,sj

k,i αsj
gi
+ (1− δi,k)σεgk

αgk

gi
κ
Ãsign(i−k)

gk
,gk

k+sign(i−k),iT
4
gk


 (28)

with the Kronecker delta δi,i = 1 while δi,k = 0, i 6= k and the signum function sign (i). In order to
determine the radiosities Jwi

and J isj for i = 1, . . . , Nv, j = 1, . . . , Nslab, a linear system of equations
is obtained by considering (25) with (26) for i = 1, . . . , Nv, j = 1, . . . , Nslab. Furthermore, due to the
absorption of the exhaust gas, it makes sense to limit the radiative exchange to adjacent volumes, i.e. to
limit the summations in (26) and (28) to i− 1 ≤ k ≤ i+ 1. This finally allows to compute the remaining
heat flows Q̇sj,u, Q̇wi

and Q̇gi
of the upper control volumes, walls, and slab surfaces from (24) and (28).

Due to the assumption of negligible radiative coupling of the upper and lower furnace sections the heat
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flows Q̇sj ,d, Q̇wi
and Q̇gi

in the lower furnace section are calculated similarly for i = Nv + 1, . . . , 2Nv and
the lower slab temperatures Tsj ,1. The major difference between the furnace sections is the installed skid
system consisting of insulated but internally cooled pipes on which the slabs are sliding (cf. Figures 1
and 6). These skids partly obstruct the radiating surfaces, which can be incorporated in the calculation
of the respective view factors of the slabs and their environment. Unfortunately, no data is available to
identify the spatial cooling characteristics of the skids inside the furnace. Thus, the overall amount of heat
dissipated by the skid system is prorated to the lower control volumes and the lower walls. The feasibility of
this simplification is shown in Section 5 where the good agreement of simulation results and measurement
data are discussed.

4. Model assembling and implementation

In Section 2 dynamical sub-models of the exhaust gas composition and its temperature inside a control
volume as well as the temperature of its surrounding wall and the temperature distribution along the
height of a slab are determined. These sub-models are coupled by radiative heat transfer as presented in
Section 3. Additionally, the control volumes are coupled by the exhaust gas flow. Hence, the determined
sub-models for the individual control volumes, wall elements, and slabs can be assembled into a single
dynamical system described by a set of coupled nonlinear ODEs. For this, it is assumed that the exhaust
gas flow out of a control volume is strictly directed towards the funnel, i.e. along the negative z-direction
and thus this outgoing mass flow enters the adjacent control volume. Hence, it follows that ṁin

gi
= ṁout

gi+1

and T in
gi

= T out
gi+1

= Tgi+1
for i = 1, . . . , Nv − 1 for the upper furnace section and for i = Nv +1, . . . , 2Nv − 1

for the lower furnace section, respectively, as well as ṁin
gNv

= ṁin
g2Nv

= 0 for the enclosed volumes at the
discharging side of the upper and lower furnace parts (cf. Figure 2). Using (15), the mass flow leaving the
i-th control volume ṁout

gi
is calculated by an algebraic equation which can be evaluated in terms of the

actual states wgi
and Tgi

of the respective volume. Hence, equation (14) can be assembled successively
starting with the control volumes Nv and 2Nv at the discharging side of the furnace (cf. Figure 2). It
should be pointed out that in contrast to the modelling of a bidirectional mass exchange of the control
volumes, it is not necessary to solve a system of algebraic equations for calculating the mass flow between
two control volumes due to the assumption that all mass flows are strictly directed towards the negative z-
direction1. Under this assumption, equations (14) and (16) for each control volume and each wall element,
respectively, as well as equation (21) for all slabs inside the furnace, i.e. i = 1, . . . , 2Nv and j = 1, . . . , Nslab,
can be assembled into a single system of ODEs with interconnections due to the radiative heat flows Q̇gi

,

Q̇wi
, Q̇sj ,u, and Q̇sj ,d for i = 1, . . . , 2Nv and j = 1, . . . , Nslab. In view of the algebraic equations (24)-(28),

this results in a differential algebraic description. However, the linear system of equations (25) and (26)
for i = 1, . . . , 2Nv and j = 1, . . . , Nslab can be solved explicitly for the surface radiosities and irradiances
Jwi

Awi
, J isjA

i
sj , Ewi

Awi
, and E isjA

i
sj . By using (24) and (28) this allows to explicitly determine the heat

flows in terms of the gas compositions wν
gi
, the gas temperatures Tgi

, the wall temperatures Twi
and the

slab temperatures Tsj ,1 and Tsj ,Nsj
with i = 1, . . . , 2Nv and j = 1, . . . , Nslab. As a result, the system of

differential algebraic equations (DAEs) is obviously of index one, which finally yields the furnace dynamics
as a system of nonlinear ODEs

d

dt




wg

T g

Tw

T s


 =




f
wg

(
wg,T g,ug

)

fTg

(
t,wg,T g,Tw,T s,ug

)

fTw

(
t,wg,T g,Tw,T s

)

f
Ts

(
t,wg,T g,Tw,T s

)



, (29)

1For a more detailed evaluation a CFD analysis could be performed. Nevertheless, for the purposes considered in this paper such a level
of detail is not necessary.
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with the vector wg = {wgi
}i=1,...,2Nv

and the vector T g = {Tgi
}i=1,...,2Nv

composed of the mass fraction
vectors of all control volumes and the gas temperatures inside all volumes, respectively. The vector Tw =
{Twi

}i=1,...,2Nv
combines the temperatures of all walls and T s = {T sj}j=1,...,Nslab

is composed of all slab
temperature vectors. Similarly to the state variables on the left hand side of (29), the functions on the right
hand side are composed of the respective right hand sides of the sub-model ODEs. In detail, the vector
f
wg

= {fwgi
}i=1,...,2Nv

and the vector fTg
= {fTgi

}i=1,...,2Nv
are given by the right hand sides of (14) for

all control volumes and the vector fTw
is composed of the right hand side of (16) for all walls. Finally,

the vector f
Ts

= {f sj}j=1,...,Nslab
consists of the right hand side of (21) for all slabs inside the furnace.

The input variables of the ODEs (29) follow as ug = {ugi
}i=1,...,2Nv

, which combines the input variables
of all indivdual control volumes. In summary, (29) represents the dominating dynamics of the considered
pusher-type reheating furnace. Furthermore, recall that the pusher-type reheating furnace can be classified
as a hybrid system due to the event driven slab movements as well as the charging and discharging process
which is expressed in (29) by the explicit dependence on the time t of the functions on the right hand side.
In addition, whenever slabs are charged or discharged the dimensions of T s and f

Ts
in (29) have to be

adapted such that the dimension of the overall system (29) given as 2Nv(dim(Ge ∪Ga) + 2) +
∑Nslab

j=1 Nsj

in a typical operation mode varies approximately between 270 and 360.
For the numerical solution the set of ODEs (29) is implemented in Matlab/Simulink. Therefore,

the sub-models presented in Section 2 are implemented using the programming language C++. This
allows to examine several furnace configurations with only small changes of the source code. In addition,
this ensures simple portability of the implementation to the automation system of the plant. During the
numerical solution the differential equations (29) are successively re-assembled and re-adapted according
to the current charging situation inside the furnace. This includes the recurrent change of the model
dimension.

5. Experimental model validation

In order to validate the developed mathematical model (29) a measurement campaign was performed at the
AG der Dillinger Hüttenwerke in Dillingen, Germany. Therefore, a test slab equipped with thermocouples
was reheated in the pusher-type reheating furnace schematically illustrated in Figure 1. Besides the already
mentioned temperature measurement of the test slab, the wall surface temperatures and the exhaust gas
compositions inside the funnel are additionally measured. Furthermore, the input variables ug, i.e. the
mass flows of fuel and combustion air as well as their temperature are measured and are used as inputs
for the numerical solution of (29) with a furnace discretization of Nv = 10. Note that subsequentially
all quantities are depicted in a normalized fashion with the time variable scaled by the duration of the
measurement campaign tE .
At first, a comparison of the simulated and measured exhaust gas composition is illustrated in Figure

7 where the normalized time-evolutions of the concentrations of CO2 and O2 inside the funnel are shown,
respectively. Note that the depicted volumetric exhaust gas composition c̄ν , ν ∈ {CO2,O2} inside the
funnel can be easily obtained by considering the mixture of the mass flows ṁout

g1
and ṁout

gNv+1
, i.e.

c̄CO2 =
wCO2

f

MCO2

∑
ν∈Ga∪Ge

wν
f

Mν

, c̄O2 =
wO2

f

MO2

∑
ν∈Ga∪Ge

wν
f

Mν

(30)

with the mass fractions of the exhaust gas flow in the funnel

wν
f =

ṁout
g1

wν
g1

+ ṁout
gNv+1

wν
gNv+1

ṁout
g1

+ ṁout
gNv+1

, ν ∈ Ga ∪Ge.

Unfortunately, due to an unrecoverable failure of the corresponding measurement devices during the ex-
periment, the time axis in Figure 7 is truncated at t/tE ≈ 0.7. Nevertheless, the superior agreement of
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measured and simulated data confirms the accuracy and applicability of the presented modelling approach
for the exhaust gas composition.
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(a) Volumetric content of CO2.
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(b) Volumetric content of O2.

Figure 7. Comparison of simulated and measured volumetric exhaust gas content in the funnel.

The normalized time-evolutions of the wall temperatures (normalized to the target temperature TE

of the test slab) are depicted in Figure 8, where the simulated and measured surface temperatures are
compared at different locations on the upper and lower section of the furnace. Thereby, the measurement
data are obtained from thermocouples located at the interior wall elements of the furnace. In particular,
the wall temperatures are shown in representative control volumes of the pre-heating zone (Figure 8(a)),
the heating zone (Figures 8(b), 8(c)), and the pre-soaking zone (Figure 8(d)). Obviously, the dynamics of
the surface wall temperature including the heat exchange due to radiation is highly accurately reflected
with only minor deviations between the simulated and measured results. It should be also pointed out that
the small ripples, which are visible mainly in the results for the pre-heating and heating zone, occur due to
the event-driven movement of the slabs. As is shown, these ripples are closely recovered in the determined
simulation model.
In view of a possible application of the derived model to model-based control design and furnace op-

timization, it is required that the numerical solution accurately reproduces the actual slab temperature
distribution. This is illustrated in Figure 9, where the simulated and measured slab temperatures (normal-
ized to the target temperature TE of the test slab) are compared at different locations over the height of
the test slab. The considered locations are thereby fixed by technical reasons, which limit the possibilities
to install thermocouples inside the test slab. As can be clearly deduced from Figure 9, an almost perfect
match between the temperature evolutions close to the upper surface of the test slab (a), its core (b), and
close to its lower surface (c) is obtained throughout the reheating process.
Together with the highly accurate reproduction of the exhaust gas composition and the wall temper-

atures, the comparison of the simulated and measured slab temperature distribution obviously confirms
the applicability of the derived model to represent the dynamics of the considered pusher-type reheating
furnace.

6. Conclusions

In this contribution a mathematical model of managable complexity in view of the application of model-
based control and optimization algorithms is determined for a commonly used pusher-type reheating
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(a) Temperature Tw4 of a wall element located in the pre-heating zone of the upper furnace section.
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(b) Temperature Tw7 of a wall element located in the heating zone of the upper furnace section.
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(c) Temperature Tw17 of a wall element located in the heating zone of the lower furnace section.
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(d) Temperature Tw18 of a wall element located in the pre-soaking zone of the lower furnace section.

Figure 8. Comparison of simulated and measured wall surface temperatures for a representative variety of discretized wall elements in
the pre-heating zone (a), the heating zone (b), (c), and the pre-soaking zone (d). The temperatures are normalized to the target

temperature of the test slab TE .

furnace. Similar to the zone method the furnace is decomposed into suitable control volumes whose upper
and lower boundaries are given by the respective furnace walls and the slabs moving through the furnace.
Besides the gas dynamics due to combustion and convection, the heat exchange due to radiation between
the gaseous phase, the surrounding walls, and the slabs inside the furnace represents the dominating
dynamics of the reheating process.
For modelling purposes, at first mass and energy balances are set up for each control volume in order

to capture the combustion process. The complexity of the system description is reduced by applying
the singular perturbation theory to eliminate the rather fast dynamics of the combustion process. The
dynamics of the surface temperature of the furnace walls is approximated by an ODE taking into account
the dynamics of a thin inner wall layer and the heat conduction through the outer wall layers. Due to the
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Figure 9. Comparision of simulated and measured normalized temperature distribution of the test slab at certain positions along the
slab height.

broad temperature range the temperature distribution in each slab has to be described in terms of the
heat equation with temperature-dependent parameters wich is discretized by means of the finite difference
method.
Since the sub-models obtained for each control volume are interconnected by the heat exchange due

radiation, the overall system model is determined in an assembly process by applying the so–called net
radiation method. For the numerical simulation the resulting system of ODEs is implemented in Mat-
lab/Simulink. Due to the event-driven movement of the slabs, i.e. new slabs can only enter the furnace
whenever reheated slabs are pushed out of the furnace, the system can be classified as a hybrid system. This
significantly complicates the implementation because the sub-models have to be re–assembled whenever
slabs enter or leave the furnace due to the changing radiative coupling of the slabs with their environment.
In addition, the number of slabs inside the furnace varies, which results in a varying dimension of the
system model.
Besides numerical analysis, the determined model of the reheating process is validated by experimental

results obtained from a measurement campaign with a test slab equipped with thermocouples at the AG
der Dillinger Hüttenwerke, Dillingen, Germany. The high accuracy of the model is thereby confirmed by
comparing the time-evolutions of the simulated and measured exhaust gas composition, the wall temper-
atures as well as the slab temperatures. This in particular emphasizes the applicability of the considered
approach in view of model-based control and optimization of the furnace operation.
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