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Abstract—This paper proposes a pose estimation approach of
an industrial six-degree-of-freedom robot without the need of
externally placed sensors. An RGB-D camera that is placed at
the robots end-effector is combined with a SLAM algorithm to
act as a sensor system. The presented system based on the novel
integration approach is evaluated by performing test trajectories
and is capable of estimating the tool-center point with a standard
deviation of 2.6 mm and performing a joint state estimation with
a standard deviation of 13.6 mrad without any external sensor.

Index Terms—Industrial Robots, SLAM, Visual Tracking,
Performance Evaluations and Benchmarking

I. INTRODUCTION

The tasks of modern robots are ranging from exploring
hazardous environments such as the deep sea or the surface
of Mars, supporting chores, up to the precise manufacturing
of high-quality and cost-efficient products [1], [2]. Especially
manufacturing relies heavily on the deployment of robots as
they satisfy the desire for cost-effective production by avoiding
manual labor costs, while facilitating precise assembly and
machining operations [3].

In recent years, a lot of research activity was dedicated to
ease the deployment of robots and increasing their feasibility
for medium and small enterprises. In particular, the complex
setup routines and the expensive hardware that are necessary
to let multiple robots cooperate in production lines during
high precision operations decreases the viability of robot-based
manufacturing for small-scale businesses.

To overcome these deficiencies, cameras are often used to
provide rich information of the current environment of the
robot and are therefore utilized in various algorithms [4]–[7].
Additionally, since the number of affordable and specialized
cameras for robotic systems has increased in recent years,
they have become common components in newly developed
systems [8].

There are two main configurations to place a camera in
a robotic system [5]. In the eye-to-hand configuration, it is
possible to directly estimate the current robot pose, as long as
the field of view is not occluded. Using the appearance of the
robot, a CAD model can be combined with an iterative closest
point (ICP) optimization strategy to estimate the pose of robot
links in the scenery [9].

However, the direct line of sight constraint between robot
end-effector and camera leads to problems during commis-
sioning of the system, as at installation sites an occlusion-
free environment can not be guaranteed. Additionally expert

knowledge for positioning the camera is necessary and cali-
bration is a time consuming and expensive process.

In contrast to the eye-to-hand configuration, the state-of-
the-art eye-in-hand pose estimation algorithms do not pursue
to obtain the pose of the robot in the world reference frame,
instead focusing on the camera-to-work-object relation [10],
[11]. This approach has proven to give superior accuracy
during object manipulation, as the accuracy of the sensor is
utilized more efficiently. However, such systems are focused
on a local description and the desired task may fail if the work
object is obscured or not in the current field of view.

Other solutions of the pose estimation problem are present
in the context of mobile robotics, where the current localiza-
tion and navigation in an unknown environment is of interest.
There, the robot is equipped with a camera observing the
passing scenery and is inferring the pose transitions between
consecutive images. Such systems are thereby able to deduct
the current robot pose without any additional setup at installa-
tion site. Algorithms solving the aforementioned problem are
referred to as simultaneous localization and mapping (SLAM)
algorithms [12]–[15]. However, SLAM-based systems have
mainly been used to estimate the pose of mobile robots in large
exploration scenarios and only limited research is conducted
in heavily limited environments, as it is the case for most
industrial robots.

By directly deploying a SLAM algorithm in the joint space
of the robot, the direct estimation of the joint configuration
is possible [16], however these approaches only estimate the
camera motion that is described by the kinematic model and
thus fail to predict mechanical imperfections such as link
deflections. Therefor, a system that performs the estimation
in the task space of the robot is desired.

The contribution of this paper is a joint and 6-DoF pose
estimation of an industrial robot without external sensors and
the evaluation of the performance achieved by the proposed
system.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of the components and algorithms
deployed to successfully estimate the robot pose solely via
visual sensing. In Section III, the additional components neces-
sary to evaluate the performance are described. Subsequently,
Section IV presents the results of the experiments, followed
by an analysis in Section V. Finally, the findings of this paper
are summarized and an outlook is given in Section VI.
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II. SYSTEM OVERVIEW

The system is designed to estimate the robot’s pose, given
the visual clues obtained from a moving camera, assuming
that the camera to end-effector relation is known. In contrast
to the eye-to-hand estimation approach, the camera is placed at
the robot’s end-effector, forming an eye-in-hand configuration.
The images taken by the camera are passed to two separate
systems:

• the SLAM system which performs the relative pose
estimation of the camera motion, and

• a fiducial marker detection solely for the purpose of
initializing the camera poses.

To evaluate the system performance the information on the
current camera pose is forwarded to an inverse kinematic
solver, which calculates the current joint configuration of the
robot. The overall system and its components are illustrated
in Fig. 1 and presented in the following sections.

A. SLAM

The SLAM algorithm is responsible for inferring the camera
motion based on the passing scenery observed by the camera.
A SLAM algorithm usable in the proposed setup needs to
estimate the camera motion online, i.e. the algorithm must
be capable of extracting the movement information from
subsequent images and publish it at a guaranteed rate. It is
also desirable that the algorithm is usable in various system
configurations with different kinds of cameras deployed. In
addition to the constraints above, the presented use case does
not allow for manipulations of the environment, thus SLAM
algorithms using natural environment features are preferred
over those that use artificial features.

Therefore, the state-of-the-art ORB SLAM 3 [13] is used. It
guarantees a worst-case update frequency of 30 Hz and is able
to handle stereo, RGB-D, and monocular cameras. Pinhole and
fish-eye distorted camera models are also supported, allowing
for even more diversity in its application.

B. Fiducial Detection

As the SLAM algorithm only provides information about
the relative pose of the camera, a second system to initially
anchor the pose of the camera is necessary. In this paper, the
anchor is realized by placing a marker on robots base plate.
During the manufacturing and assembly process of a robot,
it is possible to place fiducial markers with high accuracy.
Therefore, the system proposed in this paper assumes that
a fiducial marker is placed on the robot’s base plate with
a known relation to the robot’s first link, as can be seen
in Fig. 2a. However, this fiducial marker can be realized as
the robot manufacturer logo or any other recognizable image.
For simplicity, a ChArUco [17] board is used in combination
with the OpenCV [18] library’s implementation of a ChArUco
detection algorithm.

ROS

EnvironmentCamera
Parameters

Marker
Pose

Robot
Model

Camera
System

SLAM Fiducial
Detection

Inverse
Kinematics

Estimated Robot
Configuration

Fig. 1. Data flow and system composition of the proposed SLAM-based
eye-in-hand pose estimation approach. Each blue rectangle represents an
independent task implemented and executed in the Robot Operating System
(ROS) environment. The gray boxes are the input data of the system and
the output is represented in red. Black lines between tasks represent the
communication using ROS messages. Dashed lines show the relationship
between tasks and their input data.

C. Inverse Kinematics

Subsequent to the initialization of the camera pose using the
fiducial detection, the static transformation between the end-
effector and the camera frame is used to express the current
end-effector pose. After the end-effector pose is calculated,
an inverse kinematic algorithm is deployed to solve for the
current joint state qC . The Levenberg–Marquardt algorithm
is utilized to calculate the update of the current joint state

∆q = [J(qC)
T J(qC) + λ I]−1 J(qC)

T ∆e(qC), (1)

using the Jacobian matrix J(qC) of the error vector ∆e(qC)
and the damping factor λ. Thereby, the error vector

∆e(qC) = vec(T−1
D TC(qC)− I) (2)

is calculated by using the vec() operator to reorder the matrix
error terms originating between the homogeneous transforma-
tion of the estimated end-effector pose TD and the current
transformation of a simulated model TC(qC), which depends
on the current joint state qC and the forward kinematics of
the deployed robot.

Combining the inverse kinematic scheme of Section II-C
with the SLAM-based camera pose estimation, an eye-in-hand
pose estimation of an industrial robot is achieved. To verify
the system performance, experiments on an industrial robot
are carried out with different pre-planned motion trajectories.
Therefore, the hardware and additional components necessary
to perform the evaluation are specified in more detail in the
next section.

III. EXPERIMENTAL VERIFICATION OF THE PROPOSED
POSE ESTIMATION

The proposed system is verified using an ABB IRB 120
industrial robot equipped with a single Kinect v2 RGB-
D camera at its end-effector. The software components of
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Kinect v2

ABB IRB 120

ChArUco
Marker

(a) Experimental setup

(b) Observed environment

(c) ORB SLAM 3 [13] map (d) Virtual RVIZ [19] model

Fig. 2. System overview: (a) Hardware setup for the experiments. The ChArUco marker serves as a substitute for an appearance based initialization of the
camera pose, the industrial robot ABB IRB 120 is used as a stiff evaluation platform to execute a pre-defined motion and the Kinect v2 3D time-of-flight
camera observes the scenery. (b) Observed environment, which is then forwarded to the ORB SLAM 3 algorithm. (c) Generated map from the ORB SLAM
3 algorithm. (d) Virtual robot model based on the estimated camera pose to visualize the current estimate of the robot pose.

Section II are executed on a PC equipped with an ASUS
GeForce™ RTX 3070 GPU, an AMD Ryzen™ 9 3900X CPU,
and a 32 GB DDR4 3200 MHz memory. The specific setup and
the configuration of the robot and camera are specified in the
following.

A. Robot System

An ABB IRB 120 is chosen as the robot platform to perform
the experiments. This robot is designed as an anthropomorphic
human arm robot, supporting end-effector motion in all six
degrees of freedom (DoF), featuring a rigid structure and
integrated angular encoders with an accuracy of up to 174 µrad.
The ground-truth of the robot pose is then expressed by com-
bining the measured joint angles with the Denavit-Hartenberg
parameters [20]. However, to communicate with the ABB IRB
120 robot via ROS, an additional open source software module
open_abb available in the GitHub repository [21] is utilized.

B. Camera System

The camera system indicated in Fig. 1 is the main sensor
in the overall setup. As introduced in Section II, the utilized
SLAM system limits the usable cameras. Using the ORB
SLAM 3 software library, it is possible to support monocular,
stereo, and RGB-D cameras. However, the current implemen-
tation is restricted to a single camera. Within this setup, a
Kinect v2 [22] 3D time-of-flight camera is used in combination
with the open-source iai_kinect2 driver [23].

The camera was calibrated internally and externally prior
to the experiment using the ChArUco calibration algorithm of
the OpenCV library [24].

IV. SYSTEM EVALUATION

Four scenarios are considered to provide a systematic
overview of the performance of the system. First, a transla-
tion (Movelin) is executed in each of the directions of the
end-effector frame with a range of ±0.1 m to evaluate the
tracking performance in linear motion scenarios. Second, a

path consisting of rotations around the robot base (Moverot)
frame in a range of ±314 mrad is carried out to evaluate the
performance in the case of camera rotations. In these two
scenarios, the crosstalk between the estimated translation and
rotation is evaluated in addition to the interference between
different rotations or translations. Third, a path of actuating
each joint separately about ±0.5 rad (MoveJ) is executed,
which is coarsely equivalent to an joint space coverage rate
of 60 %, to evaluate the interference between the estimated
joints. Fourth, the joints are actuated randomly (Movernd) to
evaluate the tracking performance of non-predefined motions
with a complex composition of rotations and translations in
the camera frame.

The following sections present in detail the results of the
linear translation experiment in the operation space and con-
figuration space. Subsequently, the root mean square (RMS)
error of the proposed test cases are presented.

A. Pose Estimation Performance

In this experiment, the robot is initialized with its head-
down configuration, which means that the camera is facing
the robot base plate as in Fig. 2. The robot is actuated so that
the camera performs a linear translation in the direction of
the X-Axis with a speed of approximately 10 mm s−1. After
10 s, velocity is increased to 25 mm s−1, which can be seen
in Fig. 3, since the slope of the X-Axis motion is steeper
afterward. Simultaneously with the actuated translation, the
end-effector orientation is monitored to enable the evaluation
of the cross-coupling between translation and rotation. During
the experiment a refresh rate of 30 Hz was accomplished based
on the performance ORB SLAM3.

B. Joint Estimation Performance

The end-effector pose is expressed by transforming the
camera pose to the end-effector frame. The inverse kinematic
solver from Section II is then applied to regain information
about the robot’s joint state, allowing a direct comparison
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Fig. 3. Measured and estimated trajectory of the robot’s end-effector pose
during a linear translation in each direction. The position is represented by the
euclidean coordinates for the X-Axis, Y-Axis and the Z-Axis. The orientation
is expressed by the variables Φ, Ψ, and Θ, which represent the angle enclosed
by the axes of the current end-effector frame and the end-effector frame of
the initial orientation. Four main error sources are identified within this figure
a bias error is observable at the start time, a position error during the motion,
a cross talk between the active and passive axes and an interference between
rotation and linear motion.

with the built-in angular encoders. It is shown in Fig. 4 that
the estimated joint angles follow the ground-truth trajectory –
even in the case of a nonlinear joint motion originating from
a linear translation or a rotation of the end-effector.

In the next section, a further evaluation of the results shown
in Figs. 3 and 4 is carried out by computing the overall RMS
error during each experiment.

C. Error Evaluation

The results of the experiments are summarized in Table I.
Each of the columns Movelin, Moverot, MoveJ and Movernd
represent one of the four evaluation scenarios. The evaluation
is carried out by calculating the RMS error

eRMS =

√
1

nx

∑

k

(f̂k − fk)2, (3)

where nx is the number of samples, fk is the ground truth
acquired from the angular encoders, f̂k is the estimated value
and the index k is the discrete sampling time. By combining
the RMS error terms of all scenarios, the overall estimation
performance is given by

Moves =

√
1

n

∑

x

nx Movex
2, with n =

∑

x

nx, (4)

TABLE I
RMS ERROR OF THE ESTIMATED POSE EVALUATED BY PERFORMING

LINEAR TRANSLATIONS, ROTATIONS AROUND THE BASE FRAME,
SEPARATE ACTUATION AND RANDOM ACTUATION IN EACH JOINT

Joint Angle RMS Error [mrad]
Movelin Moverot MoveJ Movernd Moves

Joint1 7.27 16.06 10.10 14.45 12.46
Joint2 13.78 13.67 30.90 10.17 18.94
Joint3 21.34 16.09 56.07 31.52 34.83
Joint4 3.41 26.60 13.23 16.70 17.13
Joint5 20.11 14.98 24.84 43.17 27.88
Joint6 7.00 30.03 13.59 20.58 19.74
Joints 13.90 20.56 29.38 25.40 23.05

TCP RMS Error [mm]/[mrad]
Movelin Moverot MoveJ Movernd Moves

X 2.60 3.70 6.53 14.31 8.18
Y 2.23 4.65 2.78 9.19 5.45
Z 2.90 4.26 7.72 14.99 8.81
TR 2.59 4.22 6.05 13.09 7.62
Φ 11.88 10.79 8.11 14.16 11.13
Ψ 1.23 11.61 10.53 9.06 9.43
Θ 12.60 11.28 8.07 14.81 11.53

in which Movex represents the RMS error in the different
scenarios and nx are the number of samples per scenario. In
the upper half of Table I, the RMS error for each joint is given,
followed by the average RMS error for all joint estimates.
The lower half concerns the tool-center point (TCP) RMS
error: first for the separate Cartesian axes and subsequently
the average RMS error over all translations TR.

1) Crosstalk between rotation and translation: In experi-
ments consisting of pure rotation or translation, a performance
estimation of the desired motion is performed by analyzing
the crosstalk between these two types of motion. In the first
experiment, in which only translations are performed, the
maximal observed crosstalk is 34 mrad m−1 and in the second
experiment, which consists of rotations, the crosstalk is around
14 mm rad−1.

2) Interference in orientation and translation: Similar to
the evaluation of crosstalk, a coupling to the same type of
motion is observed. This type of error, also referenced as
interference, has been observed with a maximum magnitude of
0.3 % in case of the translation shown in Fig. 3 and during the
second experiment consisting of only rotations with a value of
1.5 %.

3) Interference in the configuration space: Using the results
of experiment three, in which only a single joint is actuated
at a time, the worst interference occurred between joints six
and two with a magnitude of 12 %.

4) Bias Evaluation: To further classify the error that arises
during estimation, a separation of the RMS error into mean
error

eµ =
1

nx

∑

k

(f̂k − fk), (5)

and standard deviation

eσ =

√
1

nx − 1

∑

k

(
(f̂k − fk)− eµ

)2
(6)
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Fig. 4. The measured and estimated trajectory of a linear translation expressed in the robot configuration space. Joint angles are calculated using the current
estimate of the end-effector pose followed by the calculation of the inverse kinematics. Although the nonlinear mapping of the inverse kinematic is applied
the tracking of the ground truth data is visible.

is performed, where nx is the number of samples, fk is the
ground truth acquired from the angular encoders, f̂k is the
estimated value, and k is the discretized sampling time. The
remaining mean error in the TCP µTCP = 7 mm and the joints
µJ = 16 mrad represent the bias in the estimation process. The
existence of the bias can be explained by erroneous calibration
data, for example, in the manually measured marker pose, by
a residual error in the camera calibration, or by an error in
the robot kinematics. As this error is systematic, reappearing
each time the same trajectory is executed, the SLAM-based
approach is not capable of detecting and correcting these
deviations.

V. DISCUSSION

A. Absolute Performance

With the results presented in Table I and the experiment
utilizing a random path, it is verified that an arbitrary motion
of the end-effector is estimated as well as the designed
paths that only consist of rotations and translations. Using
the results from the experiments containing the trajectories
involving pure rotations and translations, the crosstalk and
interference between these two types of motion are observable.
Comparing the estimates with the ground-truth data acquired
by the angular decoders of the deployed industrial robot shows
that the estimation of the current joint state leads to an average
tracking RMS error of 23 mrad with a standard deviation of
13.64 mrad in each joint and a TCP estimation RMS error of
8 mm with a standard deviation of 2.6 mm on average.

B. Error Sources: SLAM

As the core component of this system, the SLAM algorithm
has a major impact on the quality of pose estimation. Due

to erroneous measurements or trajectory estimations, a wrong
map point may be created, which impairs the actual and
future camera poses. As a consequence, the estimated joints
will be subject to errors, leading to a severe degeneration
of the estimation performance, meaning that the RMS error
increases. However, since SLAM algorithms are designed to
cope with erroneous measurements, the system is able to
recover from such faulty states if the already mapped scenes
are revisited. The state correction that is subsequent to such a
revisit is visible as a jump in the current pose estimation of
the camera.

C. Error Sources: Calibration Data

The remaining bias, evaluated in Section IV-C4, can be
explained by the remaining error in the calibration parameters.
These parameters include the kinematic robot model of the
deployed robot with its camera pose relative to the end-effector
and the fiducial marker pose relative to the robot base. All of
these must be provided beforehand and will negatively affect
performance if they are not chosen correctly. In addition to
bias, interference and crosstalk measured in Sections IV-C1
to IV-C3 can also be explained by the presence of a remaining
calibration error. For instance, if there is a remaining camera
barrel distortion, then a part of the translation is incorrectly
estimated as rotation. Furthermore, any error in the calibration
data will lead to systematic errors which cannot be mitigated
by the current implementation, as they are not observable by
the SLAM system.

D. Environmental Influence

In addition to the parameters mentioned above, environ-
mental conditions are another important impact factor on the
quality of the estimate. Due to the use of a vision-based sensor
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principle, there is a dependency on the current illumination and
the uniqueness of the observed scenery. High illumination will
improve pose estimation by allowing for a shorter exposure
time of the camera sensor, thereby limiting the effect of motion
blurs impairing the image.

In summary, the proposed system enables the estimation
of the pose of an industrial six-degree-of-freedom robot. The
experimental setup, consisting of a Kinect v2 RGB-D camera
mounted on an ABB IRB 120 robot, achieves a standard
deviation of the pose estimate of 2.6 mm, forming a basis for
the prediction of mechanical imperfections in robotic systems
and monitoring the system’s condition.

VI. CONCLUSION

Images and depth information have been captured by a
Kinect v2 time-of-flight camera mounted on the TCP of an
ABB IRB 120 industrial robot, which are used to infer the
motion of its end-effector using the ORB SLAM 3 algorithm
to estimate consecutive poses.

To initially anchor these poses, a known ChArUco fiducial
marker, placed on the base plate of the robot, is used as a
substitute for an appearance-based initialization.

The knowledge of the current global camera pose is then
used to deduce the current joint state by implementing an
inverse kinematics algorithm based on a Levenberg-Marquardt
nonlinear least-squares solver.

To further analyze the performance of the proposed system,
four motion patterns are evaluated. In each of the experiments
performed, the estimated end-effector poses and joint states are
compared with the ground truth data acquired from the angular
joint encoder of the robot. A performance evaluation is carried
out, showing that a TCP standard deviation of 2.6 mm and a
joint estimation standard deviation of 13.6 mrad is achievable.

The results presented in this work show that an eye-in-hand
pose estimation algorithm is suitable to estimate the robot pose
of a six degree-of-freedom robot by using only a single camera
at its end-effector, and the kinematic chain model of the robot.

For future work, it is planned to utilize the proposed system
in the context of modular robots to provide TCP measurements
for algorithms such as collision avoidance or human-machine
interaction. Furthermore, its feasibility as a complementary
measurement system to satisfy safety requirements in sensitive
environments is going to be evaluated.
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