
Depth-data-based object cluster tracking and
velocity estimation in robot workspace

Peter Gsellmann, Christoph Buchner, Karin Egretzberger,
Martin Melik Merkumians, Member, IEEE, and Georg Schitter, Senior Member, IEEE

Automation and Control Institute
TU Wien

Vienna, Austria
gsellmann@acin.tuwien.ac.at

Abstract—Depth-data-based sensor systems, such as depth
cameras or LiDAR systems, are gaining popularity in the field
of robotics, especially in human-robot collaboration. To avoid
collisions with humans or external objects, object detection and
tracking in the workspace is needed. This paper presents an
integrated object cluster tracking and velocity estimation method
that is purely based on depth data. Therefore, a tracking heuristic
based on similarity and the velocity of the object is used to
enable the tracking of external objects. To obtain the velocity, a
Kalman filter utilizing a constant velocity model is implemented.
For experimental verification, a case study comprising two
objects moving within the robot workspace is designed. The
experimental setup allows for the initial tracking a maximal
trackable object velocity of 9m s−1, and for already tracked
objects a velocity deviation of 3.4m s−1 to correctly track
both repetitive and arbitrary motions of the test objects, and
thus constitutes the proposed integrated object cluster tracking
approach as a foundation for collision avoidance strategies in
robotic tasks.

Index Terms—Object tracking, vision-based systems, robotics.

I. INTRODUCTION

INDUSTRIAL robot manipulators are nowadays used in
a variety of different areas in factory automation, where

high precision, repeatability and reliability of operations are
required. Typical applications, in addition to picking and
placing objects, are milling [1], welding [2], or assembly
tasks [3]. However, developments in recent years have shown
that in addition to a high degree of reconfigurability of
the manipulator, the capability of collaborating with human
operators is required. Today, the industry focuses more on
human-robot collaboration (HRC) [4], such as processing the
same work piece or sharing the same workspace. Conse-
quently, surveillance is needed to detect or even react to
collisions of the robot with objects in its workspace. Thus,
to not compromise the high-level flexibility of the robotic
system, typically considered sensor systems, such as Time-
of-Flight (ToF) cameras or LiDAR systems, are mounted on
the robot system [5]. This configuration drastically reduces
the number of external calibrations, as the sensor system is
fixed on the robot manipulator. Therefore, repositioning the
robot system also does not pose problems in configuration.
To avoid collisions with humans or obstacles, object detection
and tracking in the workspace is required.

Several approaches regarding object cluster tracking in
robotic and autonomous driving applications are implemented
using classic methods with 2D images using color information
and image features [6], [7]. Methods based on Structure-
from-Motion (SfM) show proficient tracking performance [8].
However, the extraction of feature points, the reconstruction
of feature tracks, and the parallel calculations for 3D feature
locations generate a high computational effort and, thus, are
not applicable in real-time applications.

With RGB-D cameras gaining popularity, the first ap-
proaches of object tracking with the addition of depth data
are conducted. Typically, color information is used for the
recognition of objects to be tracked and only uses depth data
as an additional source of information, e.g., to calculate the
possible motion trajectory of tracked objects [9], or to obtain
only the distance to objects [10]. Other approaches utilize
RGB-D point cloud features to track occluded objects [11].

Since depth cameras or LiDAR systems in robotic or
autonomous driving applications do not always have the option
to fall back to color information, approaches relying purely
on depth data are necessary. Implementations that provide
an a priori model of the objects to be tracked have proven
promising [12]. The downside to these approaches is that this
is rarely applicable in the case of HRC or autonomous driving
applications.

To remedy this, solutions are devised with object cluster
tracking using only depth data [13], [14]. Therefore, the back-
ground subtraction method is used to record the initial scenery
as background. Thereafter, the background is subtracted from
the current depth image in order to obtain the clusters of all
emerged objects, which are subsequently tracked. The main
disadvantage in the context of robotics, especially HRC, or
also for autonomous driving, is that the background shall not
change during operation, which is hardly possible.

This paper proposes an integrated object cluster tracking
and velocity estimation method that is based only on depth
data. Thereby, a heuristic based on similarity and the object’s
velocity is used to enable tracking of the obstacles in a robot
workspace.

The paper is structured as follows: In Section II, the robot
utilized and the vision system are presented. Furthermore,
the preliminary actions carried out in the vision system are
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Figure 1: System overview: IGUS robolink RL-DP 5-Degrees-
of-freedom (DOF) robot manipulator. In the robot base, four
pmd pico flexx Time-of-flight (ToF) cameras are place around
the manipulator in order to monitor the workspace.

elaborated, which generates the basis for the object cluster
tracking and velocity estimation approach. In Section III , the
depth-data-based object cluster tracking and the subsequent
velocity estimation approach are described in detail. This is
followed by the presentation and analysis of experiments in
Section IV. Finally, Section V concludes the work.

II. SYSTEM OVERVIEW

The vision system, providing preliminary measures for
the depth-only object cluster tracking, and the utilized robot
system as demonstration application for the feasibility study
are presented in the following in detail.

A. Vision System

The considered system consists of depth cameras mounted
on the robotic system and the vision algorithm with prelimi-
nary steps for object cluster tracking and velocity estimation.
The task of the vision system is to perceive the surroundings
of the robot and subsequently process the data obtained for use
in other applications, such as collision avoidance strategies.

To make the overall system as modular as possible, ROS is
used as the middleware between robotic and vision systems.
All software components used are executed on a PC equipped
with an ASUS GeForceTM RTX 3070 GPU, an AMD RyzenTM

9 3900X CPU, and 32GB DDR4 3200MHz memory.
1) Depth camera system: Since for applications such as

HRC an all-round view of the robot has to be ensured, one
possible configuration is to mount the cameras on the robot,
though this leads to a high number of sensors. Especially in
the context of modular robotics, this is problematic, as for
the versatile structure and therefore the freedom to assemble
the robot arbitrarily, an all-round view in every robot module
is required, which enormously increases the data volume. To
counteract this, a possible remedy for this is to place the

Figure 2: Example point cloud of the distinction between
points on the robot (white points) and surroundings (blue
points) via filtering of the robot’s URDF model.

cameras in the robot’s base around the manipulator facing
upward (see Fig. 1). For the purpose of this paper, four pmd
pico flexx Time-of-Flight (ToF) cameras with a range of 0.1 -
4m and a framerate of 45 fps are used, although the number
of depth cameras can be arbitrarily selected and should be
chosen based on the requirements of the application.

To correctly merge the point clouds, an extrinsic calibration
with a calibration target is conducted [15], which yields the
transformation between single camera frames. Subsequently,
the recorded point clouds can be transformed and merged to
one overall point cloud.

2) Robot model filtering: The overall point cloud perceived
by the cameras lays the foundation for the surveillance of the
robot’s workspace. Since in configurations where the depth
cameras are placed at an external position of the robot to
perceive its environment, as well as in eye-in-hand config-
urations or in the present approach with depth cameras in
the base of the robot, there is a high chance that the robot
manipulator appears on that overall point cloud. Therefore,
it is essential to know which points belong to the robot and
which points belong to external objects in the workspace. A
trivial approach to address this problem is to define a volume
that contains the robot manipulator and subsequently marks
every point in that volume as a point belonging to the robot.
This consequently implies that all points outside the volume
correspond to external objects. However, this also limits the
usability of the system, since external objects in the volume
cannot be detected, and thus no near approach of the robot is
possible, which is vital in HRC applications, for example. A
possible solution to overcome this is to use the a priori known
robot model to extract the points that belong to the robot.

Modeled in the Unified Robot Description Format (URDF),
this model’s pose is updated via the current states of the
joint encoders. Subsequently, all points inside and on the
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model are removed, resulting in a point cloud with only
all perceived external objects in the workspace. Furthermore,
due to the range of the depth cameras used, also the room’s
ceiling is perceived, which can easily be discarded by setting
a height threshold and remove all points above. An example
of the implemented approach can be seen in Fig. 2, where a
clear distinction can be made between the robot and external
objects; in this example, a human working in proximity to the
robot.

3) Point cloud clustering: After filtering the robot body, the
remaining points in the point cloud represent external objects
in the robot workspace. With the ultimate goal of tracking
the separate objects, it is necessary to combine the points to
clusters. For use in robotic applications, especially HRC, the
number of clusters is unknown a priori, which already rules out
methods such as k-means clustering [16]. A suitable technique
without knowing the number of clusters is the agglomerative
hierarchical clustering algorithm [17]. Therefore, a bottom-up
approach is utilized, where each data point starts as its own
cluster and then gradually merges with other clusters within
a defined threshold based on their Euclidean distance. This
yields a set of clusters with their associated points and the
cluster center position.

III. DEPTH-DATA-BASED OBJECT CLUSTER TRACKING
AND VELOCITY ESTIMATION

With the preliminary steps described in Section II done, a
basis is given for the depth-data-based tracking of the object
clusters and subsequent velocity estimation. This section is
concerned with the proposed novel tracking method of the
perceived object clusters and their 3D velocity estimation.

A. Cluster Tracking

The object cluster tracking algorithm based solely on depth
data utilizes the cluster position p which is defined by the
average cluster point position, the cluster velocity v, the cluster
volume V , the number of points in a cluster n for recognition.
A pseudocode for this method is provided in Algorithm 1.

Initially, all clusters and their respective properties are
stored. From the next sampling step on, a distinction between
two cases must be made.

The first case (see Fig. 3) occurs if a cluster ak−1 is
registered for the first time in the time step k − 1. Thus,
the velocity of this cluster cannot yet be estimated, since it
needs at least two measurement points. For the recognition of
the object cluster ak−1 in the successive time step k newly
perceived clusters, in Fig. 3 ak, bn, and cn, within a distance
threshold dth = dth2 are considered. If the difference in
volume dV and the difference in number of points dn for
a cluster is within a set threshold Vth = fV V and nth = fnn,
respectively, where fV and fn describe a threshold coefficient,
the cluster ak is found as a match to ak−1 and therefore the
object cluster is tracked. Subsequently, the 3D velocity vk of
the cluster ak is estimated.

The second case (see Fig. 4) is present if a cluster ak−1 is
already registered in the time step k − 1, and therefore has a

Figure 3: Object cluster tracking heuristic without prior in-
formation on object cluster’s velocity. In order to recognize
a object cluster for the first time, cluster size V , number of
elements in the cluster n, and position p are considered. In this
case, only the cluster ak constitutes a suitable match to ak−1,
since the cluster bn does not comply with the size threshold,
and the cluster cn is not within the distance threshold.

Figure 4: Object cluster tracking heuristic with prior informa-
tion on object cluster’s velocity. For already registered object
clusters, the cluster size V , number of elements in the cluster
n, position p, and also the clusters velocity v are considered.
In this case, only the cluster ak constitutes a suitable match
to ak−1, since the clusters bn and cn are not located within
the distance threshold.

current velocity estimation vk−1. Now, for the recognition of
the object cluster ak−1 in the next time step k, its movement
and therefore its approximate position can be extrapolated with
the translation vector ta,k−1 = vk−1T . With prior information
on the velocity of the object cluster, the difference in volume
dV , and number of points dn for a cluster within a set
threshold Vth and nth, a match is searched solely within a
smaller distance threshold dth = dth1. If these requirements
are met, the cluster ak is found as a match to ak−1 and thus the
object cluster is tracked. Finally, the 3D velocity is updated.

If multiple objects satisfy the tracking conditions, the first
element is chosen as the match. If both cases do not apply,
the perceived object cluster is registered for the first time, and
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its properties are stored. As this process can be applied to
several objects concurrently, the proposed algorithm is able to
perform multi-object tracking.

Algorithm 1 Object cluster tracking heuristic
Input: List of clusters Ck, list of registered clusters Rk−1

Output: updated list of registered clusters Rk

1: for each element r of Rk−1 do
2: for each element c of Ck do
3: if r has valid v estimation then
4: dth = dth1
5: else
6: v(r) = 0
7: dth = dth2
8: end if
9: Vth = fV V (r)

10: nth = fnn(r)
11: d = ∥p (r)− p (c) + v (r) · TS∥2
12: dV = |V (r)− V (c) |
13: dn = |n (r)− n (c) |
14: if (dV < Vth) ∧ (dn < nth) ∧ (d < dth) then
15: Cluster match found: c and r
16: Rk ← Updated position, number of points

and size of cluster
17: end if
18: end for
19: end for
20: Register all unmatched clusters in Rk

21: return Rk

B. 3D Velocity Estimation

For the proposed depth data object cluster tracking, a
suitable velocity estimation is required. Kalman filters and
its variants are usually used in tracking algorithms for the
estimation of the motion [18]. For this purpose, a dynamic
model of the target motion is required. Since in applications
such as robot collision avoidance or autonomous driving, the
type of motion of the external objects is unknown, a constant
velocity (CV) model is used, which assumes that the velocity
stays constant during the sampling.

For the velocity estimation of an object cluster, the state
vector

xk =

[
pk

vk

]
(1)

comprises the position vector pk = [px, py, pz]
⊺ and the

velocity vector vk = [vx, vy, vz]
⊺ at the time step k. The

utilized CV model is expressed as

xk+1 = Φxk +wk+1, (2)

where xk denotes the state at the time step k, wk+1 the process
noise with the covariance matrix Q, and Φ the transition
matrix, which is defined as

Φ =

[
I3×3 TS · I3×3

0 I3×3

]
. (3)

Here, TS defines the sampling time of the measurement system
and I3×3 the 3 × 3 identity matrix. To determine Q, several
strategies can be followed, such as the use of random velocity
or random acceleration process noise models [18]. For the
analysis of the proposed approach, the covariance matrix of the
process noise is empirically determined and set to a diagonal
matrix Q = diag(0.1, 0.1, 0.1, 10, 10, 10). The measurement
model is defined as

zk = xk + vk, (4)

where zk describes the measurement vector, xk the measured
position, and vk the measurement noise with the covariance
matrix R. Within this paper, the latter is empirically deter-
mined and set to R = I3×3.

IV. ANALYSIS AND DISCUSSION

In order to verify the proposed object cluster tracking
algorithm, an experiment with two objects moving within the
robot workspace is designed. For that, two types of motion
are considered: a repetitive motion performed by a pendulum
(diameter of pendulum body d = 0.16m, pendulum length
L = 1m) mounted on the ceiling and an arbitrary motion
performed by a wooden plank (length l = 0.06m, width
w = 0.02m) moved by a human operator.

For this case study, the following parameters are chosen:
The tolerance factors for the volume difference fV = 0.2 and
the difference in the number of points fn = 0.2. The threshold
for tracking without prior velocity information is set to dth2 =
0.2m, whereas for the case of current velocity estimation the
distance threshold is set to dth1 = 0.075m.

An illustration of the test case is shown in Fig. 5 for six time
stamps during the experiment. The pendulum swings from the
beginning in an elliptical orbit, with its main component in
the x-direction. The center position of the object cluster is
marked with red dots that show the values for the last five mea-
surements. At approximately t = 8 s an object with arbitrary
motion enters the workspace from the positive y-direction,
with its cluster center position marked with blue dots. For
both object clusters, the estimated velocity is indicated via the
black vectors.

To illustrate the performance of cluster tracking and sub-
sequent velocity estimation, the tracked position in x,y,z and
the estimated 3D velocity of the pendulum are drawn over
the elapsed time in Fig. 6. As can be seen in Fig. 6a, the
repetitive motion of the pendulum is captured accordingly,
with a pendulum frequency of approximately f = 0.5Hz
which is consonant to the theoretical pendulum frequency
ft = 1/(2π

√
l/g) = 0.498Hz. In Fig. 6b, the estimated

velocity is also in accordance with the tracked position and
has its main component in the x-direction.

Although the proposed novel depth-data-only object cluster
tracking approach shows suitable results, some limitations are
present. The tolerance factors set for the difference in volume
fV and the number of points fn influence if a cluster is
tracked successfully. Hence, information on the application
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t = 0.61 s t = 3.38 s t = 6.07 s

t = 8.16 s t = 10.41 s t = 15.18 s

Figure 5: Analysis of the multi-object tracking performance in the robot workspace based on depth data only: A pendulum
(cluster center marked with red points) swings next to the robot. At t = 8 s an object with arbitrary motion enters the workspace
from positive y-direction (cluster center marked with blue points). The arrows (black) represent the velocity vectors. Both the
cluster positions and the velocity vectors for the different tracked objects are shown for the last five measurements.
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Figure 6: Tracked position and estimated velocity in the case
of the pendulum (see Fig. 5 points in red). The pendulum
motion is visible in both the position and the velocity.

and the surrounding environment are necessary to tune them
appropriately.

Moreover, tracking performance is also limited by the frame
rate f or sampling time TS of the vision system, and the
set distance thresholds dth1 and dth2. For the initial tracking,
objects with a maximal velocity of vmax = dth2

TS
are trackable,

which results for the present system with a sampling time of
TS = 222ms to vmax = 9ms−1. If an object is already
tracked, it is of interest how much it can deviate from the
considered constant velocity model. Thereby, the object’s
maximum velocity deviation which still allows tracking results
to ṽmax = dth1

TS
. In this case, this amounts to a maximum

velocity deviation of ṽmax = 3.4m s−1.
In summary, the integrated object cluster tracking and ve-

locity estimation method based solely on depth data is able to
process repetitive and arbitrary motion of external objects, and
thus is considered suitable as a basis for collision avoidance
strategies in HRC applications.

V. CONCLUSION

This paper presents the development of an integrated object
cluster tracking and velocity estimation method that is based
on depth data only and is experimentally verified in use
within a robot workspace. Depth cameras mounted in the
robot’s base are perceiving the exterior. By removing the
robot from the point cloud only depth information on external
objects remains. With an agglomerative hierarchical clustering
approach, the object clusters, and thus their properties are
obtained. By using information on the volume, number of
points, position, and velocity of the cluster, the proposed
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tracking method enables object cluster tracking solely based on
depth data. Subsequently, a Kalman filter in combination with
a constant velocity model is utilized to estimate the object
cluster’s 3D velocity. For verification, an experiment with
two objects moving within the robot workspace is designed.
The proposed algorithm correctly tracks both repetitive and
arbitrary motion of external objects with an maximal trackable
object velocity of 9m s−1 for initial tracking, and a velocity
deviation of 3.4m s−1 for already tracked objects for the
considered experimental setup. Therefore, the proposed track-
ing approach constitutes a foundation for collision avoidance
strategies in robotic tasks.

For future work, the feasibility of this approach in collision
avoidance applications within robot environments will be
evaluated. In such applications systems often need information
on objects moving in the workspace, which requires a reliable
method for tracking external objects.
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