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Laser Triangulation Measurements on Moving
Samples With Reduced Lateral

Feature Uncertainty
Thomas Kern , Matthias Laimer , Georg Schitter , and Ernst Csencsics , Member, IEEE

Abstract— This article proposes a model-based measurement
correction approach for laser triangulation measurements on
moving samples. A model of the laser intensity distribution
on the moving sample and the obtained intensity distribution
on the sensor’s detector is used to decrease the motion-induced
uncertainty in lateral feature width in a postprocessing step. This
is achieved by detecting sharp edges, which are often feature-
defining elements, with high lateral accuracy. The enhanced
feature width accuracy is evaluated using an experimental laser
triangulation sensor. Experimental evaluation demonstrates an
improvement of 60% in lateral accuracy. Furthermore, the
proposed method detects features that are missed in conventional
dynamic laser triangulation measurements.

Index Terms— Intensity distribution model, measurement cor-
rection, measurement uncertainty, triangulation sensor.

I. INTRODUCTION

THE industrial demand for throughput and product quality,
especially in the high-tech sector, is constantly increas-

ing [1]. With the growing need for precision, high-performance
measurement systems are required [2]. Integrating mea-
surement systems directly into the production line enables
permanent quality control and a reduction of production
rejects [3], [4]. Surface structure and the size of surface
features frequently serve as quality criteria in such applica-
tions [5], [6]. As these surface features are often defined by
edges, the edge locations have to be detected with high lateral
accuracy [7].

Due to the high production speed and throughput require-
ments, quality inspection is performed directly on the moving
sample. Hence, measurement systems combining fast mea-
surements and high lateral resolution are required [8]. Optical
measurement systems enable contactless displacement mea-
surements with high measurement rates and are of high interest
in these applications [9]. Laser triangulation sensors (LTSs) are
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one of the most frequently used optical displacement sensors in
industrial applications, as they combine high axial resolution
with an extensive measurement range [10]. These sensors
typically use CMOS imaging sensors to detect the location
of the diffusely reflected laser spot [11]. The pixel values of
CMOS sensors result from integrating the photocurrent caused
by the incident light during the exposure time [12]. Due to this
integrating behavior, a spot movement, that is, a change in the
sample height, during the exposure results in a blurry image on
the detector and thus increased uncertainty in the displacement
measurement. Furthermore, the combination of the sensor
frame rate and the sample motion causes spatial sampling of
the sample’s surface. Therefore, the lateral resolution of the
measurement system and the detectable lateral feature size are
limited [13].

Both the effect of motion blur and spatial sampling can
be mitigated by decreasing the exposure time and increasing
the frame rate. However, laser safety regulations in industrial
manufacturing facilities are often a limiting factor for this
approach [14]. Several approaches to compensate for the
sample’s movement have been proposed recently. Wang and
Zhou [15] proposed a compensation approach for surface
inspection, where the entire camera system is moving syn-
chronized with the sample. Scanning displacement sensors,
which manipulate the optical path of the sensor, were also
recently introduced [16], [17]. These may also enable motion
compensation with smaller actuated masses, even for higher
sample velocities. While these methods can compensate for
the sample movement, the actuation systems have to be reset
at the end of the actuation range, rendering this approach
inefficient for continuous manufacturing processes [15]. Mea-
surement correction approaches overcome the drawbacks of
mechanical actuation. However, a tailored correction approach
to reduce lateral feature error in dynamic laser triangulation
measurements is still missing.

The contribution of this article is a measurement correc-
tion approach to reduce feature width uncertainty in laser
triangulation measurements caused by sample motion. This is
achieved by analyzing the LTS’ detector data and comparing
it to the modeled laser intensity distribution on the moving
sample’s surface. In contrast to conventional laser triangula-
tion measurements, the entire detector information is used.
In Section II, the root causes of edge location uncertainty
are described. The model of the intensity distribution on the
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Fig. 1. Measurement principle of an LTS. The alignment of the laser source,
the lens, and the detector satisfies the Scheimpflug condition. A variation of
the sample height results in a displacement of the reflected laser spot on the
detector. The intensity distribution on the detector is shown for a measurement
on a flat surface and an edge, respectively.

imaging sensor and the sample is derived in Section III,
followed by the introduction of the measurement correction
algorithm in Section IV. An experimental LTS design for
evaluation purposes is shown in Section V. The results of
the experimental performance evaluation are presented in
Section VI, and Section VII concludes the article.

II. LATERAL FEATURE UNCERTAINTY

An exemplary LTS setup is schematically illustrated in
Fig. 1 [18]. The laser source emits a beam that is diffusely
reflected from the sample surface. A lens focuses the reflected
spot on the detector. The geometric arrangement of the system
components satisfies the Scheimpflug condition, ensuring a
constant spot size on the detector over the entire measure-
ment range [19]. An axial sample displacement d leads to a
displacement d ′ of the reflected spot’s center of gravity (COG)
on the detector, following the relation [18], [20]:

d ′(d) = tan(φ) f

√
1+

(
tan(φ)−

u0

f

)2

×

d√
1+tan(φ)2(

d√
1+tan(φ)2

+
u0

tan(φ)
− f

)(
tan(φ)− u0

f

) (1)

with φ being the triangulation angle, f the lens’ focal length,
and u0 the distance from the lens center to the intersection
line.

LTSs typically use CMOS line sensors as detectors, as the
axial sample displacement causes a 1-D spot displacement on
the detector [11]. Their frame time comprises the exposure
time Texp and the time needed for analog–digital conversion

and readout, which is about 1% of Texp. The combination of
the exposure time and the sample motion yields the exposure
length

1xexp = vTexp (2)

which is the distance the sample travels at velocity v. Suppose
the sample surface that passes the sensor during the exposure
is flat. In that case, the reflected measurement spot shows
a single intensity peak on the detector as illustrated in blue
in Fig. 1. If an edge passes the measurement spot during
the exposure, both sample surfaces at the distances d1 and
d2 contribute to the resulting intensity distribution on the
detector. The spot reflections from both surfaces result in two
intensity peaks at the pixel coordinates ξ1 and ξ2. Due to the
integrating behavior of the CMOS detector, the peak height
corresponds to the exposure time of the respective surface.
In the illustrated example in Fig. 1, the sample surface at
d1 is exposed for a shorter amount of time than the surface
at d2. Thus, the peak at ξ2 is higher than at ξ1. In such
a case, conventional LTSs choose the highest peak for the
displacement measurement [21], [22]. Therefore, the intensity
distribution on the detector illustrated in dashed red in Fig. 1
would result in a measured value of d2.

Omitting this part of the detector information induces lat-
eral feature uncertainty. Fig. 2 shows an exemplary dynamic
measurement of a sample feature. The reflected light from the
surface during the exposure length 1xexp yields the detector
data shown in the upper plots of the figure. As illustrated,
the peak height corresponds to the exposure length of the
respective sample surface. Choosing the highest peak as in
conventional measurements results in the red data points.
As the displacement measurement of a data point corresponds
to the exposed sample length before the lateral position of the
data point (see Fig. 2), the measured feature appears shifted
toward positive xs values. The smallest lateral feature error is
achieved by measuring the feature width exactly between two
measurement points as illustrated. However, due to the spatial
sampling, the measured feature width wm discretely changes
in intervals of 1xexp, defining the lateral resolution of the LTS
in conventional dynamic measurements. Since sample features
are of arbitrary size, the lateral resolution induces uncertainty
in the measured feature width. Furthermore, if the feature
width w and the exposure length 1xexp fulfill the condition
w < 1xexp, features can be missed in conventional dynamic
measurements, which limits the lateral spatial resolution.

III. LASER INTENSITY DISTRIBUTION MODEL

The incident laser intensity distribution on the sample is
deterministic, and assuming a constant reflectivity of the
sample, the peak power on the detector corresponds to the
exposure time of the respective surface. Therefore, the lateral
feature accuracy can be refined by modeling the intensity
distribution. To determine the ratio of the reflected power from
the sample surfaces, the intensity distribution obtained by the
detector is analyzed using 1-D Gaussian maximum likelihood
estimation (MLE) [23], [24], matched filtering [25], [26], and
Gaussian mixture models (GMMs) [27].
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Fig. 2. Exemplary measurement result of a conventional measurement in
motion. Choosing the highest intensity peak results in the red data points.

A. One-Dimensional Gaussian Model

As the laser source emits a Gaussian beam, the resulting
intensity distribution on the detector when measuring on a flat
surface is of Gaussian shape as well. Thus, the obtained data
from the imaging sensor can be described as the 1-D Gaussian
distribution

N (ξ |µ, σ) =
1

σ
√

2π
e−

1
2 (

ξ−µ

σ )
2

(3)

with ξ being the pixel coordinate, µ the mean value, and σ

the standard deviation. The parameters µ and σ are determined
using MLE [23], [24] as

µ =
1

Ptot

N∑
n=1

Ipx(ξn)ξn (4a)

σ =
1

Ptot

N∑
n=1

Ipx(ξn)(ξn − µ)2 (4b)

for N pixels with the pixel values Ipx of the respective pixel
coordinates ξn , and the total power

Ptot =

N∑
n=1

Ipx(ξn). (5)

The mean µ of the Gaussian model is equivalent to the spot’s
COG and used to determine the distance to the sample d as
discussed in Section V.

While the 1-D Gaussian model fits the obtained data well
for measurements on flat surfaces, it is unsuitable for mea-
surements on edges, as the intensity distribution is no longer
Gaussian. An example of the resulting intensity distribution
when an edge passes the laser during exposure is given
in Fig. 3. Two intensity peaks are visible, with their peak
locations corresponding to the sample heights on either side
of the edge.

Fig. 3. Intensity distribution of a static measurement conducted on an edge.
The distribution is described by fitting a GMM to the data and by matched
filtering.

B. Matched Filtering

The relative peak power can be determined by summation
of the pixel intensity values Ipx(ξn) of the respective peak and
normalization by the total power Ptot

P1 =

∑m
n=1 Ipx(ξn)

Ptot
(6a)

P2 =

∑N
n=m+1 Ipx(ξn)

Ptot
(6b)

with m being the index of the pixel coordinate at the local
minimum between the peaks. However, determining the local
minimum ξm is sensitive to noise. Since the shape of an
intensity peak on the detector is expected to be Gaussian,
a matched filter with a Gaussian filter kernel N (X f |µ f , σ f )

is used to denoise the obtained intensity distribution [25],
[26]. To avoid overlaps between the filter kernel and a second
peak, the filter’s standard deviation σ f is chosen three times
smaller than a single peak’s standard deviation σ . Furthermore,
the filter is zero centered µ f = 0 and has a width of
X f = [−4σ f , . . . , 4σ f ]

T . The vector of filtered intensity
values I f (ξ) is derived by

I f (ξ) = F−1
{F{Ipx(ξ)}F∗{N (X f |µ f , σ f )}} (7)

with F denoting the Fourier transform of the respective
vectors. The denoised intensity distribution illustrated in Fig. 3
fits the raw intensity distribution well, and the local minimum
between the two peaks can be identified. If, due to excessive
noise, multiple local minima are found, the minimum showing
the highest prominence is chosen [28]. To achieve subpixel
accuracy, the Gaussian interpolation [29], [30]

ζ =
ln(ξmax − 1)− ln(ξmax + 1)

2[ln(ξmax + 1)− 2 ln(ξmax)+ ln(ξmax − 1)]
(8)

with the pixel coordinate of the maximum intensity

ξmax = argmax
ξ

I f (ξ) (9)

is applied to obtain the highest peak’s pixel coordinate ζ .
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Fig. 4. Modeled intensity and power distribution on the sample surface. The
intensity of the sample is described by a convolution of the Gaussian spot
profile over the distance traveled during the exposure time. Integrating the
intensity distribution yields the normalized power.

C. Gaussian Mixture Model

For a small second peak, a local minimum with sufficient
prominence cannot always be found in the filtered inten-
sity distribution. Hence, a GMM [27] is used in that case.
It describes the intensity distribution as a weighted superposi-
tion of Gaussian distributions

p(ξ |2) =

K∑
k=1

πkN (ξ |µk, σk) (10)

with K being the Gaussian components, their respective
weights πk and the parameter vector

2 =
[
2T

1 , . . . ,2T
K

]T

=
[
µ1, σ1, π1, . . . , µK , σK , πK

]T
. (11)

The weights fulfill the relation

K∑
k=1

πk = 1 (12)

such that the overall distribution given in (10) has a total power
of 1. The estimation of the model parameters 2 is performed
by the iterative expectation-maximization (EM) algorithm for
GMM [31], [32], [33]. As the framerate of the imaging sensor
is considered to be sufficiently high, that is, that only one edge
is passing by the sensor during one exposure time, a GMM
consisting of two Gaussian components, K = 2, is chosen.

The E-step and M-step are iterated until the loglikelihood
improves less than a chosen threshold. Using the obtained
model, the pixel coordinates of the peaks are obtained by
solving

ζ1,2 = argmin
ξ

{−p(ξ |2)}, ξ0 = µ1,2. (13)

As the GMM is normalized to a total power of 1 and each
component, excluding the weighting factors, has a total power
of 1 as well, the component weights π1, π2 directly correspond
to the relative peak powers, respectively.

D. Laser Intensity Distribution on the Sample

While the intensity distribution on the detector is used
to determine the ratio of the reflected laser power, it does
not contain spatial feature width information. To link the
determined reflected power ratio to the lateral feature width,
the laser intensity and power distribution on the sample are
modeled.

The collimated laser beam has a Gaussian intensity profile

Ispot(x, y) =
1

2πσ 2 e

(
−

1
2

(x−x0)2+(y−y0)2

σ2

)
(14)

with x, y being the lateral coordinates, x0, y0 the spot center,
and σ the spot’s standard deviation. As the spot has circular
symmetry and edges are assumed to occur perpendicular to
the direction of motion, a 1-D intensity distribution

Ispot(x) =

∫
∞

−∞

Ispot(x, y)dy =
1

σ
√

2π
e

(
−

(x−x0)2

2σ2

)
(15)

is used. The waist diameter of the beam is defined as the
1/e2 diameter, which corresponds to a beamwidth of 4σ .
As the outer regions of the spot are due to their low intensity
not detectable by the detector, the effective spot width 4σeff,
depending on the laser power, the sample’s reflectivity, and
the detector’s exposure time, is used in the model.

The CMOS imaging sensor’s pixel values correspond to the
integrated intensity of the incident light during one exposure
time. Therefore, the intensity distribution on the sensor equals
the mean intensity reflected from the sample surface over one
exposure length 1xexp

Is(x) =
1

1xexp

∫ x0+1xexp

x0

1

σeff
√

2π
e
−

(x−x0−τ)2

2σ2
eff dτ

=

erf
(√

2(x−2x0)

2σeff

)
+ erf

(√
2(2x0+1xexp−x)

2σeff

)
21xexp

(16)

with x0 being the lateral coordinate at the start of the exposure
and erf() the error function. The intensity distribution Is(x) is
normalized to have a total power of 1. Fig. 4 illustrates the
resulting intensity distribution. To determine the normalized
power on the sample until a point x , the intensity distribution
is integrated along the direction of motion as

Ps(x) =

∫ x

−∞

Is(τ )dτ =
σeff

(
e−α2
− e−β2

)
√

2π1xexp

+
(x − 2x0) erf(α)+ (x − 2x0 −1xexp) erf(β)+1xexp

21xexp

(17)

with the coefficients

α =
x − 2x0
√

2σeff
(18a)

β =
−x + 2x0 +1xexp

√
2σeff

. (18b)
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Fig. 5. Schematic illustration of the laser power distribution and sampling
point refinement when measuring on a moving sample. (a) Intensity distribu-
tion on the sample and the relative powers P1 and P2. (b) Measurement result.
The gray sampling points result from a conventional measurement, while the
red crosses mark the refined sampling points.

IV. MODEL-BASED FEATURE WIDTH REFINEMENT

Using the models shown above, a feature width refine-
ment method, tailored to detect edge locations, is introduced.
A schematic illustration of a dynamic measurement on a
sample feature is given in Fig. 5(a). As the sample is moving
with a velocity v in the x-direction, the laser is moving in the
xs-direction in the sample fixed coordinate system [xs, ys, zs]

T .
The sample motion leads to the illustrated intensity distribution
on the sample according to (16), with the relative power
P1 before the edge and P2 after the edge, as shown in (17).
In a conventional measurement, the highest peak is used to
determine the sample displacement as discussed in Section II.
As P1 is larger than P2 in the illustrated case, the intensity peak
corresponding to P1 would be used, leading to a displacement
value equal to the displacement before the edge as depicted in
Fig. 5(b). This causes a lateral shift of the assumed edge loca-
tion and, therefore, feature width uncertainty. By determining
the relative reflected power P2, the corresponding lateral offset
1xoffset can be determined using the power distribution derived
in (17).

The detector data must be preprocessed in the first step
to determine the relative powers and sample displacement.
Algorithm 1 applies the models introduced in Section III
to minimize computational effort. First, the matched filter is
applied to the raw intensity distribution, as it is the computa-
tionally cheapest method. If no prominent local minimum is
found, a 1-D Gaussian function is fit to the intensity distri-
bution. As the GMM is the computationally most expensive
algorithm, it is only applied if the spot width of the 1-D model
exceeds the threshold of σ = 50, indicating that a double
peak could be present. The displacement d is obtained using
a calibration model M(ζ ) introduced in Section V.

As the relative powers are estimated, the lateral edge offset
1xoffset is determined by solving

Ps(1xoffset)|x0=0 − P2 = 0 (19)

for 1xoffset. To refine the feature width, the lateral coordi-
nate xs of the sampling point is shifted by −1xoffset. The

Algorithm 1 Measurement Data Preprocessing
Require: Ipx(ξ)

Ensure: d, P1, P2
I f (ξ)← matched filter Eq. (7)
[ξm1 , . . . , ξmM ]

T
← local minima of I f (ξ)

if M > 0 then {Local minima found}
if M > 1 then {Multiple local minima found}

ξm ← argmax prominence(I (ξm1,...,M ))

end if
P1, P2 ← Eq. (6)
ζ ← Eq. (8)

else {No local minimum found, fit 1D Gaussian}
µ, σ ← Eq. (4)
if σ ≤ 50 then {Spotwidth exceeds threshold}

2← GMM EM-algorithm
P1 ← π1
P2 ← π2
ζ1,2 ← Eq. (13)
ζ ← argmaxζ1,2

p(ζ1,2|2)

else {No edge detected}
P1, P2 ← 0
ζ ← µ

end if
end if
d ←M(ζ ) {Obtain displacement from peak location}
return d, P1, P2

displacement value obtained by the next sampling point is
copied and inserted at the same lateral position as the pre-
viously refined point to indicate a sharp edge, as illustrated in
Fig. 5(b).

V. EXPERIMENTAL SENSOR DESIGN

For evaluating the proposed method, an experimental LTS is
designed. The geometric alignment is illustrated in Fig. 6(a).
The setup is aligned to fulfill the Scheimpflug and Hinge
conditions, ensuring a constant spot size over the entire
measurement range [34]. Fig. 6(b) shows the assembled LTS
with all its components. A solid-state laser (PL206, Thorlabs,
USA) with a wavelength of 638.8 nm is coupled into an optical
fiber (P1-630A-FC-2, Thorlabs, USA). Using a fiber collimator
(F230FC-B, Thorlabs, USA), a collimated beam with a waist
diameter of w = 0.8 mm is emitted and aligned perpendicular
to the sample surface. A bi-convex lens (LB1761-A-ML,
Thorlabs, USA) with a focal length of f = 25.4 mm focuses
the diffusely reflected spot on the 2-D imaging sensor (DMM
37UX273-ML, The Imaging Source, USA) which is connected
to the computer via USB3.0 interface. The choice of a
2-D imaging sensor is deliberately made to compensate for
rotational misalignments of the imaging sensor and the fiber
collimator.

As the reflected spot on the detector moves along a straight
line, the 2-D data is transformed into 1-D data. A position-
controlled vertical stage (X-VSR20A-SV2, Zaber, Canada) is
used to identify the principal axis of the spot’s motion on the
sensor. Using principal component analysis (PCA), a transfor-
mation vector w is derived [35], [36]. The transformed 1-D
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Fig. 6. Experimental setup. (a) CAD model of the experimental LTS, which satisfies both the Scheimpflug and the Hinge condition. (b) Experimental setup.
(c) Sample which is actuated by a linear stage.

Fig. 7. Dimensionality reduction of the detector data. (a) Raw data obtained
by the 2-D imaging sensor. (b) Transformed 1-D data.

pixel coordinates ξ result in

ξ = wT X, ξ ∈ R1×N , w ∈ R2, X ∈ R2×N (20)

with w being the transformation vector, X the vector of
2-D pixel coordinates, and N the total number of pixels.
The resulting pixel coordinates are binned to equidistant
whole-numbered pixel values. Fig. 7(b) shows the resulting
sensor data obtained from the 2-D image given in Fig. 7(a).
As can be seen, the 1-D intensity distribution can be approx-
imated by a Gaussian curve.

The experimental LTS is calibrated using an industrial LTS
(optoNCDT1420, Micro-Epsilon, Germany) and the vertical
stage. By mapping the COG ζ of the obtained intensity distri-
bution on the detector to the stage displacement d measured
by the industrial LTS, a cubic spline model [37]

d =M(ζ ) (21)

is fit to the obtained data.

VI. EXPERIMENTAL RESULTS

The experimental evaluation is performed on a 3-D-printed
test sample. A precision linear stage (VT-80, Physik Instru-
mente GmbH and Co.KG, Germany) with a top speed of
v = 20 mm s−1 and a step size of 1 µm is used to actuate
the test sample as displayed in Fig. 6(c). The sample shows
trench features with a depth of 2 mm and varying widths. As a
reference measurement, the sample topography is determined

Fig. 8. Reference measurement of the 3-D printed sample. The sample
consists of six features with varying widths.

by conducting static measurements with a lateral sampling of
1 µm. The reference measurement showing three trenches with
the corresponding feature widths is illustrated in Fig. 8.

The result of a corrected measurement at a sample speed of
v = 20 mm s−1 and an exposure time of Texp = 40 ms resulting
in an exposure length of 1xexp = 0.8 mm is shown in Fig. 9.
As can be seen in the conventional measurement, the features
appear shifted to positive xs values, which corresponds to the
expected effects discussed in Section II and Fig. 2. The feature
at xs = 35.5 mm is missed in the conventional measurement.
Since the feature width is smaller than the exposure length,
the highest peaks in the detector data correspond to the sample
surfaces before and after the feature. The feature at xs =

46.5 mm is detected. However, the lateral feature resolution
is limited to the exposure length in the conventional mea-
surement. Applying the proposed method, the edge locations
and, thus, the feature widths are estimated using the full
information contained in the detector’s intensity distribution.
As shown in Fig. 9, the correction approach refines the features
with high accuracy.

To quantify the correction performance, measurements at a
sample speed of v = 20 mm s−1 and exposure times ranging
from 10 to 50 ms leading to exposure lengths in the range of
1xexp = 0.2, . . . , 1 mm are performed. For each configuration
of 1xexp, 50 measurements with random sample starting
positions are conducted, where the measured feature widths
w1 to w6 serve as evaluation criteria. The lateral edge locations
and, thus, the feature widths are well-defined in the refined
measurements, as two data points are placed at the same lateral
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Fig. 9. Experimental result of a corrected measurement at a travel distance
of 1xexp = 0.8 mm. The missed feature at xs = 35.5 mm is reconstructed,
and the lateral edge location accuracy is refined.

TABLE I
COMPARISON OF FEATURE WIDTH ERRORS FOR CONVENTIONAL AND

REFINED MEASUREMENTS. FOR EACH 1xexp CONFIGURATION,
50 MEASUREMENTS WITH RANDOM STARTING POSITIONS ARE CON-

DUCTED. CONVENTIONAL RESULTS ARE DENOTED WITH SUBSCRIPT
“c” AND REFINED VALUES WITH SUBSCRIPT “r”

position to indicate an edge. In conventional measurements,
the edge locations are assumed to be at the lateral position
exactly between the two edge-defining sample points to enable
a fair comparison.

Considering the mean absolute errors and the standard
deviations given in Table I, it is visible that the feature width
uncertainty increases with increasing exposure length 1xexp.
Applying the proposed method significantly reduces the mean
absolute feature width error |e| and its standard deviation σe.
The correction approach reduces the mean absolute feature
width error by more than 60 % for the configurations where
no features are missed in the conventional measurement.
For the case where features get missed in the conventional
measurement, the correction still reduces the uncertainty by
almost 40 %.

As mentioned above, features can be missed in the con-
ventional measurement if the feature width is smaller than
the exposure length. Thus, as shown in Table I, for a travel
distance of 1xexp = 0.6 mm feature w3 gets missed in four
of the 50 measurements. The correction approach shows a
significant improvement, as the first missed features appear
at 1xexp = 1 mm. As long as at least one sampling point is

located on the feature, that is, the feature’s edges appear in
the detector data during two exposures, the proposed method
can detect the feature width with high lateral accuracy.

In summary, the experimental evaluation shows that the
proposed method successfully reduces lateral feature width
uncertainty and detects features that are missed in conventional
dynamic measurements.

VII. CONCLUSION AND OUTLOOK

This article presents an offline measurement correction
approach to enhance the feature width accuracy for laser
triangulation measurements on moving samples. For this pur-
pose, a measurement correction algorithm is developed to
estimate the lateral edge location between two measurement
points and, therefore, the feature widths. The relative reflected
peak powers are calculated using a combination of matched
filtering, 1-D Gaussian MLE, and GMM. The feature width
defining lateral edge locations is estimated by comparing
this power ratio to the modeled intensity distribution on the
sample. Due to the lateral relocation of sampling points, the
proposed method results in nonequidistant sampling points.
Experimental evaluation shows a significant feature width
uncertainty reduction of more than 60%. Furthermore, missed
features with a width in the size of the exposure length are
detected, and feature width is determined with high accuracy
using the proposed method.

Considering implementation in real industrial applications,
system parameters such as exposure time and laser spot size
have to be chosen appropriately for the expected feature widths
and sample velocity. The effective spot size 4σeff has to be
smaller than the smallest expected feature width, to unam-
biguously detect the feature’s edges. As the exposure length
1xexp is the performance defining parameter, the exposure
time Texp has to be scaled according to (2) for the given sample
velocity v.
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