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Switched amplifier-driven nanopositioning:
Integrating system modeling and control tuning

Daniel Pechgraber, Johannes Wiesböck, Ernst Csencsics, and Georg Schitter

Abstract—This paper presents the integrated mecha-
tronic and control design of a switched current amplifier-
driven high-precision positioning system. An optimization
based parameter tuning process for a highly integrated
state-control structure is proposed, including both dynamic
requirements and target positioning uncertainty. This is
enabled by a dynamic error budgeting analysis in the fre-
quency domain, which is used to estimate position error
contributions of the dominant error sources in the con-
trol system. The theoretical results are validated in prac-
tical experiments on a built prototype system, revealing
a steady-state positioning uncertainty of 0.6nm (rms) and
fast reference position tracking with a rise-time of 0.64ms.
Additionally 17% less overshoot in comparison to classical
loop-shaping cascade-controllers is demonstrated.

Index Terms—Nanometer positioning, Switched ampli-
fier, Precision, Controller tuning, Dynamic error budgeting

I. INTRODUCTION

H IGH-precision motion systems can be found in vari-
ous applications throughout the high-tech industry, like

semiconductor manufacturing [1], atomic-force microscopy
[2], and 3D-printing [3]. Many of these systems rely on
electromagnetic Lorentz-force actuation because of its favor-
able properties, such as the linear relation between force
and current or (quasi) zero-stiffness [4], [5]. Zero-stiffness
implies that vibrations originating from the stator are naturally
isolated from the moving part of the actuator due to a position
independent force, which makes them well suited for high-
precision applications on the nano-scale [6]. The moving part
is usually constrained in the not actuated degrees of freedom
by either magnetic levitation [7] or air bearings [8], to keep
the zero-stiffness property, or by mechanical flexure structures
[6], [9]. The latter, often the simplest and cheapest solution,
can still transmit vibrations from the stator to the mover via
the non-zero flexure stiffness, which is typically counteracted
by a high-bandwidth position control loop [10].
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The high-precision position control loops for Lorentz-force
actuated positioning systems are usually implemented as cas-
caded control-structure incorporating an inner current control
loop with a current amplifier and an outer position control
loop [11]. Switched current amplifiers offer advantages over
classical linear amplifiers due to their enhanced energy effi-
ciency and minimized heat generation [11]. This is particularly
important in precision positioning applications within limited-
space environments, where thermal expansion effects can
be a significant concern. On the other hand they introduce
additional current ripple and the need for more complex
modulation schemes and current measurement procedures as
compared to linear current amplifiers and are therefore often
avoided [12], [13].

There are many publications focusing on the development
of high-precision current amplifiers alone, without taking into
account their effect on the precision in a position control-loop.
A combination of a Luenberger estimator, an Linear Quadratic
Regulator (LQR) for fast transient response and an outer
frequency domain controller is used for controlling a high-
precision industrial current amplifier [14]. A more general
approach studies the contribution of the current amplifier to
the overall system precision by analysing the error propagation
through the entire mechatronic system including the outer
position control loop [15]. It takes into account offset errors,
gain errors and non-linearity errors of the amplifier and the
bandwidth of the current control loop. This investigation is
further extended to current measurement noise and spurious
signals occuring in the current amplifier in [16].

Especially measurement noise coupled into the system by
closing the current-control loop is considered a major cause
for current amplifier related positioning uncertainties [17]. A
common approach to reduce the effects of measurement noise
in a control system is the implementation of a Kalman-filter
as state-observer, which takes two parameters, the measure-
ment noise covariance and the process noise covariance of
the system. These parameters are widely depending on the
problem and measurement system and there is no commonly
accepted method to tune the filter properly [18]. Mostly it is
tuned be trial-and error, or an optimization process based on
real measured data is used to minimize certain performance
metrics, like the normalized estimation error squared (NEES)
[19], [20]. However, the primary focus of precision positioning
systems is the positioning uncertainty at the output, which is
not directly used in the tuning of the controller parameters so
far.

The contribution of this paper is the integrated design of
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a switched amplifier-driven nanopositioning system and the
systematic tuning of a state-control structure, based on a
dynamic error budget analysis in the frequency domain.

II. SYSTEM DESCRIPTION AND MODELLING

The system under investigation is a 1 degree of freedom
(DoF) motion system actuated by a Lorentz actuator which
is driven by a switched current amplifier. In this section
the principle structure of the system is introduced and a
comprehensive mathematical model is derived, considering the
electrical as well as the magnetical and mechanical system
together with their dynamic coupling.

A. Switched amplifier based 1 DoF positioning system
The mechanical system comprises a mover, which is sus-

pended by a mechanical flexure structure which constrains
the 5 non-actuated DoFs. The mover is rigidly connected to
the moving part of a voice coil actuator (VCA), serving as
the positioning mechanism. To enable high accelerations, the
mover mass is kept as low as possible. This also showcases
the achievable precision with the proposed control structure,
because lighter masses are inherently more responsive to
external disturbance forces and it is therefore more challenging
to minimize the position uncertainty. Fig. 1 shows the principle
mechanical structure together with the circuit diagram of a
switched current amplifier for driving the Lorentz actuator
[14].

Fig. 1. Circuit diagram of switched current amplifier together with its
connection to the VCA and the mechanical system represented as a
mass-spring-damper system. Due to the symmetric on-times of both
half-bridges around the center-aligned carrier signal, the mean-value
of the actuator current can be extracted without the need for additional
filtering.

The amplifier has a full-bridge topology including 4 MOS-
FETs, switched corresponding to the respective duty-cycle
values α1 and α2. This topology has the advantage, that only
one supply rail Vs is necessary for driving the VCA voltage
in the range from −Vs to +Vs. A small dead-time between
the switching transitions ensures, that no short-circuit occurs
on either side. A center-aligned triangular carrier waveform

is used for the PWM-generation on each side as sketched in
Fig. 1, leading to a symmetric on-time of each half-bridge
around the center of the carrier signal. Due to this symmetry,
the mean-value of the actuator current ivca, which is used for
the control, can directly be extracted by sampling the current
in the center of the triangular carrier. This eliminates the need
for filtering the superimposed current ripple, which would
introduce unacceptable delays in the control loop. A further
advantage is, that at these time instants (k, k+1,...) switching
events in the MOSFETs only occur in the extreme duty-cycle
cases α = 0 or α = 1, which can be avoided by design. This
improves the robustness of the current measurement against
electrical disturbances arising from the MOSFET switching.
To reduce current ripple and EMI, an LC output filter is
integrated on either half-bridge side, which makes it a viable
solution for EMI-sensitive environments.

B. Mathematical modelling

In order to derive the mathematical model for the entire
electro-mechanical system, at first the electronic circuit from
Fig. 1 has to be investigated in more detail. The VCA consists
of the inductance Lvca(f), its copper resistance Rvca and the
back-induced voltage uemf originating from the movement
of the VCA. Measurements show a distinct frequency depen-
dency of the inductance, which can be explained by an eddy-
current induced magnetic flux in the stator parts of the VCA
opposing the flux generated by the actuator current. The LC-
output filter on both sides (L1, C1, L2, C2) reduces the current
ripple in the VCA resulting from the PWM-switching. For
damping the resonance peak of the LC-output filter, additional
RC-snubber circuits are added (Rs1, Cs1, Rs2, Cs2).

Under the assumption of symmetric component values on
both sides (L1 = L2, C1 = C2, ...) and with the reduction of
the two duty-cycle inputs to one generalized duty-cycle input α
with α1 = α, and α2 = 1−α the full-bridge topology of Fig. 1
can be equivalently expressed by a state-space averaged (time-
average over one PWM switching period) one-sided circuit
model as depicted in Fig. 2 [21]. The equivalent component

Fig. 2. Equivalent amplifier model for symmetric component values
and one generalized duty-cycle input α. The frequency dependency
of the VCA inductance is modelled in the magnetic domain with the
main reluctance Rm, the magnetic equivalent of an inductance G
representing eddy-currents, and a parallel reluctance Rp.

values for the output filter and the snubber-circuit are then
calculated by L′ = 2L1, C ′ = C1/2, R′

s = Rs1 and C ′
s =

Cs1/2. With R′
L and R′

C additionally the parasitic resistances
of L′ and C ′ are considered. The state-space averaged input
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voltage upwm ranges from the negative supply voltage −Vs to
the positive supply voltage Vs and is calculated by

upwm = (2α− 1)Vs , α ∈ [0, 1] . (1)

As shown in the grey box of Fig. 2, the VCA representation is
refined to model the frequency dependency of the inductance
Lvca originating from eddy-current effects. Therefore the sys-
tem is split into two Kirchhoffian domains, one magnetic and
one electric [22]. In the magnetic domain eddy-currents are
represented by a ”magnetic inductance” G, which counteracts
the magnetic flux generated by the current ivca together
with a parasitic parallel reluctance Rp. At zero frequency
the ”magnetic inductance” G has no effect and the actuator
inductance is determined with the coil windings N and the
main reluctance Rm by the well-known formula Lvca(0) =
N2

Rm
. Φe represents the magnetic flux through the eddy-current

inductance and Φp the flux through the parasitic reluctance
Rp. With Φ = Φe + Φp, the coupling between the electrical
and magnetical domain is given by

Nivca = GΦ̇e +RmΦ , (2a)

uvca = Rvcaivca +N Φ̇ + uemf , (2b)

Φp =
GΦ̇e

Rp
. (2c)

It is to note, that the magnetical parameters (N , G, Rm, Rp)
can not be directly obtained from Fig. 1, so they are deter-
mined later in the system identification process (Section V-A).
Further the actuator resistance Rvca is subject to heating in the
copper windings, which leads to a change in resistance [23].
However, as thermal effects are slow compared to the target
control bandwidth, the inclusion of an integrator will cope
with these changes instead of explicitly modeling it.

The mechanical subsystem of the positioning system is
modeled as mass-spring-damper system with the mover mass
m, spring constant k and damping coefficient d (see Fig. 1).
It is dynamically coupled to the electrical subsystem by the
actuator force F and the counter induced voltage uemf .
The coupling equations between magnetical and mechanical
subsystem are

F = kmivca , (3a)
uemf = kmẋ , (3b)

with the actuator motor constant km and mover velocity ẋ. For
simplicity it is assumed that the actuator motor constant km
is independent from the mover position x, which is valid for
small motion ranges [4]. To control the position, measurements
of both actuator current ivca and the mover position x are
accessible.

With the states x =
[
ẋ x iL′ uc′ ucs′ Φ̇e Φe

]T
, the input

u = upwm, the output y =
[
x ivca

]T
, A ∈ R7×7, b ∈ R7×1

and C ∈ R2×7, the continuous dynamic model of the entire

mechatronic system can be derived in the state-space form

ẋ =



A11 0 A13

0 A22 A23

A31 A32 A33




︸ ︷︷ ︸
A

x+
[
0 0 1

L′ 0 0 0 0
]T

︸ ︷︷ ︸
bT

u , (4a)

y =

[
0 1 0 0 0 0 0

0 0 0 0 0
G(Rm+Rp)

NRp

Rm

N

]

︸ ︷︷ ︸
C

x . (4b)

The dynamic matrix A is partitioned into the mechanical part

A11 =

[
− d

m − k
m

1 0

]
, (5)

the electrical part

A22 =




(−R′
s−R′

L)R
′
C−R′

sR
′
L

L′(R′
C+R′

s)
−R′

s

(R′
C+R′

s)L′
−R′

C

(R′
C+R′

s)L′

R′
s

C′(R′
C+R′

s)
−1

C′(R′
C+R′

s)
1

C′(R′
C+R′

s)
R′

C

C′
s(R′

C+R′
s)

1

C′
s(R′

C+R′
s)

−1

C′
s(R′

C+R′
s)



,

(6)
and the magnetical part

A33 =

[
a1 a2
1 0

]
, (7)

with

a1 =
− ((Rvca +R′

s)R
′
C +RvcaR

′
s) (Rm +Rp)

N2 (R′
C +R′

s)
− Rp

G
,

(8a)

a2 = −Rm ((Rvca +R′
s)R

′
C +RvcaR

′
s)Rp

GN2 (R′
C +R′

s)
. (8b)

The dynamic coupling between the 3 domains results from (2)
and (3) and is given by the off-diagonal matrices

A13 =

[
Gkm(Rm+Rp)

RpNm
Rmkm

Nm

0 0

]
, A31 =

[−Rpkm

NG 0
0 0

]
, (9a)

A23 =




GR′
sR

′
C (Rm+Rp)

NRp(R′
C+R′

s)L′
R′

CR′
sRm

N(R′
C+R′

s)L′

−GR′
s(Rm+Rp)

C′NRp(R′
C+R′

s)
−R′

sRm

C′N(R′
C+R′

s)
−GR′

C (Rm+Rp)

NRp(R′
C+R′

s)C′
s

−R′
CRm

C′
sN(R′

C+R′
s)


 , (9b)

A32 =

[
R′

sR
′
CRp

NG(R′
C+R′

s)
R′

sRp

NG(R′
C+R′

s)
R′

CRp

NG(R′
C+R′

s)
0 0 0

]
. (9c)

III. CONTROL DESIGN

A. Integrated state-control structure
Based on the system model (4) an optimal LQR state-

space controller is now derived. Fig. 3 shows the proposed
control structure, including the physical electro-mechanical
system with its measured outputs x and ivca and two first-
order low-pass anti-aliasing filters (GLP,i, GLP,x). The LQR
requires full-state feedback, but only two of the 7 system states
are directly measured. For this reason a Kalman-filter (KF) is
included as a state-observer.

The goal of the control is to track a reference position xd,
therefore the LQR is formulated in the translated coordinates
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Fig. 3. Block diagram of proposed integrated control-structure and
the cascade-control structure. The integrated control structure uses an
LQR with integrator (LQR+I) state-space controller in combination with a
Kalman-filter (KF) for the estimation of the unmeasured states (LQG+I).
The cascade-controller consists of the inner current controller Cc and
the position controller Cp. The current measurement can either be used
directly (CC) or in combination with the KF (CC+KF).

z = x − xS and u∗ = u − uS , with xS and uS being the
steady-state state-vector and control input respectively. Setting
0 = Ax + bu with (4) and solving for each state and u
depending on the desired position xd yields

xS =
[
0 1 k

km

Rvcak
km

Rvcak
km

0 Nk
Rmkm

]T

︸ ︷︷ ︸
X

xd , (10a)

uS = k
RL +Rvca

km︸ ︷︷ ︸
U

xd . (10b)

To cope with model uncertainties and slow changes in system
parameters, like changing actuator resistance due to heating,
an integrator is included in the LQR control design (LQR+I).
The system model (4) is discretized with the sample time Ts

and an integrator state zI is included

za =

[
z
zI

]
, zIk+1 = zIk + Ts

(
xd
k − x̃k

)
, (11)

forming the augmented discrete time system

zak+1 = Φazak + Γauk , (12a)
yk = Cazak . (12b)

Taking (11) into account, the augmented state-space matrices
result to

Φa =

[
Φ 0

−C1 0

]
, Γa =

[
Γ
0

]
, (13)

with Φ and Γ denoting the discretized dynamic matrix and
input vector of the system (4) and C1 being the first row
of the matrix C. This is, because for the integral part only
the measured position x̃ is considered. With a positive semi-
definite matrix Q ∈ R8×8 and the positive constant R ∈ R, the

LQR feedback gain K is calculated with the Matlab command
lqrd by minimizing the cost function [24]

argmin
uk

J(uk) =
∞∑

k=1

(
zTQz+ uT

kRuk

)
. (14)

In the same manner the KF is designed with the command
kalmd for the discrete system model without additional inte-
grator state. It is parameterized with the (continuous) process-
noise covariance matrix Qn ∈ R7×7 and the measurement
noise covariance matrix Rn ∈ R2×2 delivering the estimated
system states x̂ by

x̂k+1 = Φx̂k + Γuk + L (yk −Cx̂k) , (15)

with the KF gain matrix L ∈ R7×2. Given the state estimate
from the KF and by using (10), the final control output of the
state-control scheme is calculated via

uk =
[
Kz KI

]
︸ ︷︷ ︸

K

[
x̂k −Xxd

k

zIk

]
+ Uxd

k . (16)

The closed-loop stability of the linear plant controlled by an
LQR is given by design and the stability of the combination
of LQR and KF is given by the separation theorem for linear
systems [24], [25].

B. Cascade-control structure
As a reference control structure, a conventional cascade-

control scheme is derived with a loop-shaping approach [5]
in the frequency domain. As shown in Fig. 3, it consists of
the outer position controller Cp and the inner current controller
Cc. The current controller is comprised of a PI-controller CPI

and notch-filter Cn with the structure

CPI(s) =
kI,c
s

(1 + sTI) , (17a)

Cn(s) =
s2 + 2Dξωns+ ω2

n

s2 + 2ξωns+ ω2
n

, (17b)

according to Cc(s) = CPI(s)Cn(s) in the Laplace domain.
The notch-filter is tuned for suppressing the resonance peak
of the LC-output filter of the switched amplifier (Fig. 2) and
therefore enables a higher bandwidth of the current control
loop.

The position controller is implemented as PID-controller
with the structure [26]

Cp(s) = kp +
kI,p
s

+
kds

1 + sTt
. (18)

Additionally to the direct measurement of the position and the
current, the possibility of using the estimated current signal
from the KF is added (yellow CC+KF block in Fig. 3).

IV. POSITION UNCERTAINTY ANALYSIS

To analyze the impact of disturbances and noise sources
on the position uncertainty of the system, dynamic error
budgeting can be used [27]–[29]. Every error source in the
system is modeled as an (equivalent) noise source with a cer-
tain power spectral density (PSD), and its contribution to the
position uncertainty is calculated with the sensitivity function
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|S(jω)|2 from error location to the output x [30]. Therefore
the frequency domain representation of the controller and the
plant are required for the calculation.

A. Frequency domain representation
As shown in Fig. 3, the derivation of the sensitivity functions

in the case of cascade-control (CC) is straightforward, as the
controllers are directly available as frequency domain transfer
functions. Further the transfer functions from the voltage u
to the actuator current ivca and the position x can be derived
from the introduced state-space model (4) via

[
Gxu(s)
Giu(s)

]
= C (sI−A)

−1
b . (19)

In the proposed state-control case however, the general block
diagram in Fig. 3 does not intuitively lead to a frequency
domain representation of the controller. It is thus redrawn as
shown in Fig. 4. All control structures can be represented

Fig. 4. System block-diagram used for dynamic error budgeting with
frequency domain representation of the control. The modeled error
sources affect the system at the locations represented with arrows.

in the frequency domain by the transfer function Gur from
the reference position xd to the control output u, and the
transfer matrix Guy ∈ R1×2 from the measurement to the
control output. In the case of LQG+I they are derived by using
(10), (11), (15), (16) and the superposition principle for linear
systems. By z-transformation of (11) and (15), zI and x̂ can
be expressed by

zI =
1

z − 1

(
xd −

[
1 0

]
y
)
, (20a)

x̂ = ΛLy +ΛΓu , (20b)

with Λ = (zI−Φ+ LC)
−1. Substituting (20a) into the z-

transform of (16) yields

u = Kz

(
x̂−Xxd

)
+ Uxd +

KI

z − 1

(
xd −

[
1 0

]
y
)
. (21)

After including (20b) into (21) and solving for u, the frequency
domain transfer function of the state-control structure (LQG+I)
can be expressed by

u = (1−KzΛΓ)
−1

(
KzΛL− KI

z − 1

[
1 0

])

︸ ︷︷ ︸
Guy=


Gux

Gui




[
x̃

ĩvca

]

︸ ︷︷ ︸
y

+(1−KzΛΓ)
−1

(
U +

KI

z − 1
−KzX

)

︸ ︷︷ ︸
Gur

xd .

(22)

In the cascade-control case (CC) and in the case where the
cascade-control is extended with the KF (CC+KF), the control
system can also be expressed by Gur and Guy . The derivation
is done in a similar manner as in the demonstrated case of
state-control.

B. Position error sources

Several error sources affect the position accuracy of the sys-
tem under investigation. They include external noise sources
like power-supply noise or current measurement noise, non-
linear effects of some system components, like PWM switch-
ing or quantization effects, or the discrete implementation
of the controllers. For reasons of simplicity, only the most
prominent position error sources are considered. In Fig. 3 and
Fig. 4, the location of the error sources in the control-loop are
shown.

The current sensor noise dnoise consists of the electrical
noise introduced by the sensing shunt resistor and its cor-
responding current-sense amplifier. Based on measurements
(data not shown), the current sensor noise can be approximated
by a constant PSD nsens,i (A2/Hz). Considering that the
current is sampled with the switching frequency of the current
amplifier Ts, this noise value has to be multiplied with some
factor kalias, to also account for aliased noise components with
frequencies greater than the Nyquist frequency fN = 1/2Ts.
The cut-off frequency fc of the 1st-order anti-aliasing filter
(GLP,i in Fig. 4) is chosen to not introduce significant delays
in the feedback loop. For determining the factor kalias, the
concept of the equivalent noise-bandwidth fenb is used, in
which the frequency behaviour of GLP,i is approximated by
an ideal low-pass with unity gain up to the equivalent noise-
bandwidth fenb. For a 1st-order lowpass it can be shown, that
for equivalent noise energy on the output this frequency is
fenb =

π
2 fc [31], which leads to

kalias =
fenb
fN

=
π

2
fc2Ts = πfcTs . (23)

The current sensor noise used for dynamic error budgeting
dsens,i follows accordingly with dsens,i = kaliasnsens,i.

The external disturbance dext is dominated by vibrations of
the environment which are transmitted to the mover via the
flexure stiffness. It is determined by recording the position
signal x with disabled controllers for several seconds and
performing a Fast Fourier Transform (FFT) on the time-
domain data. The worst-case over multiple measurements is
taken for calculating the PSD.

It is important to point out, that the PWM switching
results in voltage ripple at the output of the current amplifier
dsw, which exhibits its first harmonic at twice the switching
frequency of the PWM full-bridge (see Fig. 1). Considering
the incorporation of the LC-output filter and that the suspended
mover acts as a 2nd-order mechanical low-pass, the impact on
the position uncertainty is negligible. This point will be further
reinforced in the next section through the analysis of the error
sensitivity function.
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C. Error sensitivity functions
The error sensitivity functions represent the sensitivity of

the position x to the respective error source (dsens,i, dext,
dsw). The derivation procedure is equivalent for all cases and
is demonstrated for the current measurement noise dsens,i:

1) Set xd, dsw and dext to zero (superposition principle).
2) Calculate the plant transfer functions Gxu(s) and Giu(s)

(19) and the controller transfer matrix Guy (22).
3) Use the block-diagram (Fig. 4) and solve for x(s) de-

pending on dsens,i(s) in the frequency domain.
4) The error sensitivity function is then given by

Ssens,i(s) =
x(s)

dsens,i(s)

The resulting error sensitivity function is given by

Ssens,i(s) =
GuiGxuGLP,i

1−GuiGiuGLP,i −GuxGxuGLP,x
. (24)

In Fig. 5 the error sensitivity functions are plotted together
with the PSD of the investigated error sources dsens,i and dext.
The values for the system parameters and error sources are

Fig. 5. Error sensitivity functions (colored, left y axis) and PSD of current
measurement noise dsens,i (A2/Hz) and external disturbances (m2/Hz)
(gray/black, right y axis) for the CC, CC+KF and LQG+I case. The
suppression of current measurement noise with the KF is highlighted
by the dotted red arrows.

taken from the actual experimental prototype system, which is
developed in Section V-A, and the controller parameter tuning
is discussed in the next section. From the error sensitivity
functions it is apparent, that the incorporation of the KF offers
a significantly enhanced capability to attenuate the prevailing
current measurement noise compared to the cascade-control
case without KF (colored, solid lines). By adjusting the respec-
tive entry of the Rn-matrix of the KF, it is possible to tune the
current measurement noise sensitivity Ssens,i, thus allowing
for adaption of the desired noise rejection performance.

Further it is evident, that the rejection of external dis-
turbances is similar across all three investigated cases. This
similarity arises from the tuning of the control schemes to the

TABLE I
COST FUNCTION TERMS AND NORMALIZATION WEIGHTS

Cost function terms Unit Normalization weights
e1 f3dB − fd

3dB Hz w1 10
e2 max

(
0, xe,rms − xmax

e,rms

)
m w2 1·10−9

e3
∥∥T (s)

∥∥
∞ dB w3 1

e4
∥∥S(s)

∥∥
∞ dB w4 2

e5 |S(j2π1Hz)| 1 w5 5·10−3

same closed-loop bandwidth and the inclusion of an integrator
in each case. Interestingly in the CC+KF case, the external
disturbance rejection is even enhanced in the lower frequency
range. Conversely, the LQG+I configuration shows superior
disturbance rejection within the frequency range from 200Hz
to 2 kHz, as illustrated in the zoomed section of Fig. 5.

Additionally, the sensitivity to voltage ripple from PWM-
switching is plotted (colored, dash-dotted lines), which shows
a −80 dB per decade slope after the cut-off frequency of the
LC-output filter. This confirms that the position uncertainty
contribution of the high frequent voltage ripple (100 kHz for
the prototype setup) is negligible.

D. Controller parameter tuning
Based on the system model and presented error analysis

in the frequency domain, the LQR+I controller and the KF
are systematically tuned to a desired performance. Therefore
the dynamic position error xe is evaluated, by applying the
sensitivity functions to the PSD of the error sources. The
resulting output position error PSD originating from each error
source can be calculated by [30]

|PSDx,sens,i(f)| = |Ssens,i(s)|2|dsens,i(f)| , (25a)

|PSDx,ext(f)| = |Sext(s)|2|dext(f)| . (25b)

For uncorrelated error sources, the total PSD of the position
error is then given by [30]

|PSDx,tot(f)| = |PSDx,sens,i(f)|+ |PSDx,ext(f)| . (26)

By now integrating over the relevant frequency range [f1, f2],
the rms-value of the position uncertainty in the time-domain
is calculated by

xe,rms =

√∫ f2

f1

|PSDx,tot(f)| df . (27)

With this formulation of the positioning uncertainty, together
with the frequency domain representation of the controller and
the plant, the control objectives can be expressed in a cost
function depending on the controller parameters. This allows
the formulation of the control parameter tuning process as a
multi-dimensional optimization problem

min
Qn,Rn,Q,R

J(Qn,Rn,Q, R) =

5∑

k=1

(
ei
wi

)2

, (28)

with several cost terms ei and normalization weights wi, which
are summarized in Table I. In addition to (27), the calculation
of the complementary sensitivity function T (s) = x(s)

xd(s)
and

the sensitivity function S(s) = x(s)
dext(s)

from Fig. 4 is required
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for the evaluation of the cost function. It is to note that the
dependency of the cost terms on the tuning parameters is not
explicitly stated in the table for easier notation.

The principle goal of the control is to achieve a certain
closed-loop bandwidth fd

3dB in combination with a desired
maximum positioning uncertainty xmax

e,rms. This is reflected
in the cost function by penalizing the difference of f3dB
from the complementary sensitivity function T (s) to fd

3dB and
values xe,rms above xmax

e,rms. Secondly, to have good transient
behavior and to maximize robustness, the H∞-norms of T (s)
and S(s), which correspond to the respective peak values in
the magnitude functions, are penalized. Additionally to ensure
sufficient rejection of low-frequent disturbances and model
uncertainties, the absolute value of the sensitivity function
S(s) evaluated at a frequency of 1Hz is used. This term
ensures that the introduced integrator in the control is tuned
accordingly.

The cost function (28) is now minimized by varying the
LQR+I and KF controller parameters Qn, Rn, Q, and R.
Since the number of tunable parameters is 118 in this case
(refer to Section III-A), the matrices are chosen as diagonal
matrices

Qn = diag (qn) , qn ∈ R7

Rn = diag (rn) , rn ∈ R2

Q = diag (q) , q ∈ R8

R ∈ R ,

(29)

which reduces the optimization problem to

min
qn,rn,q,R

J(Qn,Rn,Q, R) =
5∑

k=1

(
ei
wi

)2

, (30)

with 18 tunable parameters. The optimization problem is
solved with an interior-point algorithm of the fmincon com-
mand in Matlab. The starting parameter set for the algorithm
is manually chosen considering known system properties. For
example the entries for the measurement noise covariance
matrix Rn are chosen in dependence of the reliability of the
respective measurement. Further, the entries in Q correspond-
ing to the position x and the integrated position error (state 2
and 8 of (12)) are weighted higher than the other entries.

V. EXPERIMENTAL VALIDATION

To validate the derived system model and to evaluate the
control structures with the optimized control parameters, an
experimental prototype system of a 1 DoF precision position-
ing system is developed according to Section II-A. For this
system, the theoretical dynamic error budget is evaluated with
the derived sensitivity functions and compared to measurement
data. Afterwards the dynamic behavior of the integrated con-
trol structure is experimentally compared against the cascade-
controllers in the time-domain.

A. Experimental prototype system
The manufactured prototype system of the high-precision

1 DoF positioning system is shown in Fig. 6. It employs
the lightweight mover held in place by an aluminium flexure
structure and the VCA (VCAR0087-0062-00A, Supt Motion,

Fig. 6. High-precision 1 DoF positioning system with Lorentz-type
positioning mechanism, optical interferometer position measurement,
and custom-made switched current amplifier.

CN) serving as the positioning mechanism. On top of the
mover a reflective mirror is mounted, enabling sub-nm position
measurement with an interferometer (IDS3010, AttoCube Sys-
tems AG, Germany). The 3D-printed base holding the flexure
and the stator part of the VCA is mounted on a vibration
isolated laboratory table. On the right of Fig. 6 the custom-
made switched current amplifier (see Fig. 1) connected to
the VCA is shown. It has a maximum supply voltage of
24V and an output current capability of up to 8A. The
controllers are implemented in a rapid prototyping system
(MicroLabBox, dSPACE GmbH, Germany) with a sample-
time of Ts = 1/50 kHz.

To identify the model parameters of the built system, the
measured frequency domain transfer function from the ampli-
fier output voltage upwm to the actuator coil current iact is
shown in Fig. 7. The parameters corresponding to the derived

Fig. 7. Measured transfer functiom from upwm to iact (blue). The
parameter of the system model (4) are derived by solving a non-
linear least-squares curve fitting problem (red). Without the eddy-current
model in Fig. 2 (constant inductance of VCA) the fitted model deviates
from the measurement at higher frequencies (yellow).

system model Fig. 2 are then determined by numerically
solving a non-linear least-squares curve fitting problem to the
measured response with Matlab. The resulting model transfer
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TABLE II
SYSTEM AND CONTROL PARAMETERS

L1 22.5 µH Rp 1·108 1/H
RL1 70mΩ Rm 3.47·107 1/H
C1 15 µF km 12.87N/A
RC1 10mΩ m 47·10−3 kg
Cs1 21 µF k 4.1·103 N/m
Rs1 1.35Ω d 8.79N s/m
Rvca 5.36Ω Ts 1/50 kHz
G 1.98·103 1/Ω nsens,i 6·10−12 A2/Hz
N 243 fc 100 kHz
Vs 16V

Cascade-control (CC)
kI,c 1.08·10−4 TI 1.08·10−4

ωn 33.6·103 D 0.398
ξ 0.4 kp 5.57·103
kI,p 7.78·105 kd 8.87
Tt 7.86·10−5

State-control (LQG+I)
q

[
2.6·108 4.6·1015 0.78 0.17 0.08 0.003 0.44 2.4·1019

]

R 1
qn

[
1.62·107 1.95·109 2.5 1.35 1.77 0.97 1.75

]
· 1·10−6

rn
[
2.3·10−12 0.57

]

function is represented by the red curve in Fig. 7. It is to
mention that electrical component values which are easily
accessible to measurement are fixed to their measured value to
reduce the number of unknown parameters for the curve fitting
problem. To evaluate the influence of the proposed eddy-
current model on the modeling accuracy, additionally to the
presented model a simplified model is derived which assumes a
constant VCA inductance instead of the magnetical model part
in Fig. 2. The result of the numerical curve fitting result for
the simplified model is shown with the yellow line in Fig. 7.
Both models match the measurement very well in the lower
frequency range, whereas the simple model starts deviating
from the measured response at higher frequencies, at which
eddy-current effects start to emerge. The identified system
parameters for the full model are summarized in Table II.

To enable a fair comparison between the control structures,
both the state-controller and frequency domain controllers
are tuned for the same closed-loop positioning bandwidth
of fd

3dB = 700Hz. The current loop of the cascade-control
structure is tuned to be a factor 5 faster than the outer position
loop. Measurements on the experimental system reveal a
phase-margin of 50 deg for the cascade-controller (data not
shown).

For the tuning of the LQG+I control a positioning uncer-
tainty of 1 nm (rms) is targeted, so xmax

e,rms is set to this value
for the optimization (Section IV-D). It is to note, that single
tuned parameters largely vary for different starting parameter
sets used in the optimization, as the defined error function (30)
is not equally sensitive to all tunable parameters. However,
this variation had no visible impact on the measurement
results presented in this section. Additionally, Monte-Carlo
simulations with the optimized parameter set are performed
with variations up to 15% of the nominal plant parameters,
which covers typical component variations in reality (data not
shown). In all cases, the closed-loop system remains stable,
giving an indication of the control systems robustness. The op-
timized LQG+I parameters and the parameters of the cascade-

controller are given in Table II in the continuous domain and
are transformed to their respective discrete counterpart for the
implementation on the experimental setup.

B. Evaluation of dynamic error budget

Fig. 8. Measured PSD of steady-state position error and PSD of external
disturbances dext (m2/Hz) (top plot). Evaluation of the dynamic error
budget: Theoretical and measured cumulative PSD of position error
(m2) plus division into respective error source. The corresponding rms
position uncertainty for a normal distribution is marked for the end-
values of the experimental data (bottom plot).

In this section the dynamic error budget for each control
structure is evaluated and compared to experimental data.
The results are shown in Fig. 8, in which the measured
PSD of steady-state position error and the cumulative PSD
for each control-scheme is plotted, together with its divi-
sion into the contribution from current measurement noise
(dsens,i) and external disturbances (dext). As expected from
the sensitivity analysis in Fig. 5 the dominating error source
for classical cascade-control (CC) is the current measurement
noise, whereas for the other cases with included KF (CC+KF,
LQG+I) external disturbances are dominating. With a position
uncertainty of 0.6 nm and 1 nm (rms), LQG+I and CC+KF
show more than a tenfold improvement as compared to the
11.2 nm (rms) in the case without KF (CC). The circles in the
plot represent the calculated cumulative PSD from measured
time-domain data on the prototype setup, which match the
theoretical values from the dynamic error budget evaluation
very well. The results show, that the first control objective of
a positioning uncertainty below 1 nm (rms) is clearly achieved
by the optimization based controller parameter tuning from
Section IV-D.
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C. System dynamics evaluation
In addition to the dynamic error budgeting analysis, the

control-structures are evaluated with respect to closed-loop
system dynamics and position uncertainty in the time-domain
on the prototype setup. Fig. 9 shows the measured position x̃
and the corresponding control output uvca for multiple steps
on the reference input. All control-schemes exhibit a similar

Fig. 9. Comparison of cascade-control (CC), cascade-control with
Kalman-filter (CC+KF) and full-state control (LQG+I) for a steps on the
reference input xd. On the bottom the control action upwm is plotted for
all three cases.

rise-time of 0.64ms, as they are tuned for the same closed-
loop bandwidth. The frequency domain controllers show an
overshoot of 25%. In the dynamic comparison the integrated
state-control structure is clearly superior over the other control
schemes with 8% overshoot, which corresponds to an im-
provement of 17%. The slight oscillations after the step result
from the excitation of structural modes of the mechanical
system, which emerge a few hundred Hertz beyond the closed-
loop bandwidth of the controllers. These modes are excited due
to the step-function as reference input, which could be avoided
with smoother motion profiles, e.g. minimum-jerk trajectories
[6].

The precision and steady-state position uncertainty is eval-
uated in Fig. 10, in which the system response to multiple
5 nm steps at the reference input is shown. Additionally,
the normalized empirical probability density function (EPDF)
of the position signal in the grey shaded steady-state area
is plotted together with a Gaussian fit on the right side. It
confirms that the steady-state position uncertainty closely fits
a normal distribution and that the values from the dynamic
error budget analysis in the frequency domain match the time-
domain data (refer to Fig. 8).

In summary, the effectiveness of the proposed tuning pro-
cedure for the integrated state-control (LQG+I) is success-
fully demonstrated on the experimental setup, achieving sub-
nanometer positioning uncertainty and superior dynamic po-

Fig. 10. Comparison of cascade-control (CC), control-control with
Kalman-filter (CC+KF) and full-state control (LQG+I) for 5nm steps on
the reference input xd (left). Normalized Empirical Probability Density
Function (EPDF) of the steady-state position and Gaussian fit (right).

sition tracking performance compared to the cascade-control
structures (CC, CC+KF).

VI. CONCLUSION

This paper presents the integrated mechatronic and control
design of a switched amplifier-driven high-precision position-
ing system. In addition to classical cascade-controllers (CC,
CC+KF) a highly integrated state-control structure (LQG+I)
is designed based on a comprehensive mathematical system
model considering the mechanical, electrical and magnetical
system. An optimization based tuning process is proposed for
the parameters of the LQR+I controller and KF, considering
both dynamic requirements and a targeted steady-state po-
sitioning uncertainty, which is enabled by a dynamic error
budget analysis in the frequency domain. The analysis reveals
a steady-state positioning uncertainty of 0.6 nm (rms) for the
tuned state-control structure (LQG+I), which is more than a
tenfold improvement compared to a classical cascade-control
structure (11.2 nm). Experimental measurements on a built
prototype system confirm these results and further demonstrate
fast reference position tracking with a rise-time of 0.64ms in a
step-response. While the achieved positioning uncertainties of
the cascade-controller with included KF (CC+KF) and LQG+I
are comparable, LQG+I exhibits superior dynamic tracking
performance, featuring 17% less overshoot in a step-response.

REFERENCES

[1] H. Butler, “Position control in lithographic equipment [applications of
control],” IEEE Control Systems, vol. 31, no. 5, pp. 28–47, 2011.

[2] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner,
and P. K. Hansma, “Design and modeling of a high-speed AFM-
scanner,” IEEE Transactions on Control Systems Technology, vol. 15,
no. 5, pp. 906–915, 2007.
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