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Abstract: This paper presents an algorithm for the precise registration of optical wavefronts.
A wavefront exceeding the spatial or dynamic measurement range of a wavefront sensor, e.g.
a Shack-Hartmann sensor, can be measured in multiple sub-measurements, each providing a
segment of the wavefront. Sensor misalignment during the measurements results in the demand
for registration algorithms to precisely reconstruct the entire wavefront from the segments. The
proposed algorithm registers the segments in parallel and incorporates a priori information about
the uncertainty of the sensor misalignment obtaining high-quality registration. A simulative
analysis of the algorithm with respect to sensor misalignment and measurement errors is presented
together with an application of the algorithm to a measured divergent wavefront. In the scope of
the analysis, the algorithm is compared to state-of-the-art registration algorithms, such as the
iterative closest point (ICP) algorithm, where an improvement of the registration performance by
a factor of 3 is obtained. Results show that the algorithm is able to reconstruct a divergent and a
freeform wavefront with an RMS registration error of a few tens of nanometers with a standard
deviation of 80 µm and 2.4 mrad.
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1. Introduction

The performance of an optical system corresponds to the conversion of an optical wavefront,
passing through the system, into a desired wavefront. Using a wavefront sensor the optical
wavefront is measured enabling the evaluation of the performance of the optical system. Among
several types of wavefront sensors [1] the Shack-Hartman sensor (SHS) is attractive, as it can
measure the wavefront directly without a reference. In addition, the SHS is less sensitive to
vibrations as compared to other wavefront sensors [2]. For the measurement of highly divergent
wavefronts or wavefronts with large diameters additional supporting optics, like null optics
or shrinking optics [3], are typically necessary to provide a measurable wavefront within the
dynamic range and the aperture size of the sensor. A drawback of supporting optics is that they
cause additional errors in the wavefront [4]. Moreover, for complex shaped wavefronts it might be
challenging to assemble the appropriate supporting optics [5]. In [6–8] a measurement system is
proposed where no supporting optics are needed to measure highly divergent wavefronts as well as
large wavefronts. In particular, the wavefront is directly measured at multiple locations using an
SHS in combination with a positioning system. Each individual measurement provides a segment
of the wavefront and using the positioning data of the SHS, the segments can be registered to
obtain the entire wavefront. The task of registering the segments can be a challenge due to errors
in the positioning data, resulting in the need for registration algorithms to attain small registration
errors. These algorithms find the correct position and alignment of the segments by minimizing
the overlap mismatch between the segments. In literature different kinds of algorithms are
found for the registration of segments of an optical wavefront, e.g. the iterative closest point
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(ICP) algorithm [9]. Registration algorithms based on the least squares method are proposed to
minimize the overlap mismatch [10,11]. Algorithms enabling parallel registration are developed
where the overlap mismatch between all segments is simultaneously minimized [12,13]. In
[14,15] parallel registration algorithms are proposed that allow for the precise reconstruction of
freeform wavefronts, i.e. wavefronts with complex shapes generated by freeform optics [16].
This is in particular achieved by minimizing the overlap mismatch with respect to the position,
the alignment and the phase of the segments. None of the proposed registration algorithms,
however, can incorporate a priori information about the errors in the positioning data, such as
underlying statistical properties, to improve the accuracy of the registration. A derivation of the
statistical properties of the positioning errors may be possible [17] along with an experimental
characterisation.

The contribution of this paper is the development and evaluation of a registration algorithm that
incorporates a-prior information about the errors in the positioning data to increase the registration
performance. In particular, the standard deviation of the errors is used to constrain the segments
to relevant domains obtaining an improved quality of the registration. The algorithm registers the
segments in parallel and is able to reconstruct freeform wavefronts with high precision. Section
2. introduces the algorithm and discusses the mathematics. Section 3. presents a simulative
analysis of the algorithm. Section 4. presents an application of the algorithm to a measured
divergent wavefront and Section 5. concludes the paper.

2. Algorithm description

2.1. Wavefront measurement concept

The SHS is mounted on a positioning system to enable scans of complex and large wavefronts
with a diameter 14 times larger than the diameter of the aperture of the sensor [7,8]. During
scanning, segments of the wavefront are measured at different locations of the wavefront depicted
in Fig. 1. In an individual measurement of the SHS, the gradients of the incident wavefront
segment are determined at grid points [18]. A point cloud is then reconstructed from the
gradients, where each point of the point cloud corresponds to a point of the segment in the local
coordinate system of the sensor. For the reconstruction of the point cloud, zonal as well as
modal reconstruction algorithms [19,20] can be used where zonal reconstruction algorithms are
preferred as they better preserve local variations of the segment [21]. For segments containing
huge dynamics, the phase distribution of the optical field over the sensor aperture is reconstructed
from the gradients [14]. From the phase distribution the wavefront is then easily determined, as
it corresponds to the surface of a specific phase. Uncertainties in the positioning system cause
errors in the positioning data which result in an overlap mismatch between the segments when
they are combined to reconstruct the entire wavefront. Minimizing the overlap mismatch allows
for a precise registration of the segments and reconstruction of the entire wavefront. For this, the
segments are rigid body transformed, i.e. translated and rotated with respect to the three spatial
dimensions, as well as propagated as illustrated in Fig. 1. The propagation is needed to minimize
the overlap mismatch with respect to the phase difference between the segments.

2.2. Parallel registration algorithm incorporating a priori information

From the measurement data each wavefront segment is reconstructed as a point cloud represented
in the local coordinate system of the sensor at the corresponding measurement position. To
reconstruct the entire wavefront the point clouds have to be appropriately transformed into the
global frame (FG). A rough estimate of this transformation is given by T0i ∈ R3, R0i ∈ R3×3 and
S0i ∈ R for each segment i = 1..U, where T0i and R0i correspond to the nominal position and
alignment of the sensor during the measurement of the respective segment. The transformation
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Fig. 1. The SHS scans the wavefront measuring different segments of the wavefront.
Uncertainties in the sensor positioning cause an overlap mismatch between the segments.
The segments get registered by rigid body transformation and propagation.

of a point (x{i}
0j ) from the local coordinate system of measurement i into FG is then given by

x0j = R0i (x{i}
0j + n{i}

0j S0i) + T0i ∈ P0i, (1)

where n{i}
0j is the unit normal vector of the segment at the point and P0i denotes the transformed

point cloud in FG. The upper index in curly brackets in Eq. (1) indicates the local coordinate
system in which the objects are represented. While T0i and R0i define a rigid body transformation,
S0i denotes an estimate of the propagation of the segment to compensate for the phase difference
between the segments. The registration of the point clouds based on Eq. (1) leads to an overlap
mismatch between the point clouds explained by position uncertainties during the measurement.
The desired registration of the segments is obtained by a correction of the presumed transformation
of each segment (see Fig. 2) given by

T1i = R0i k∗i + T0i

R1i = R0i R(θ∗i )
S1i = S0i + s∗i

(2)

where k∗i ∈ R3 denotes the translational misalignment and θ∗i ∈ R3 the rotational misalignment
(R(θ∗i ) ∈ R3×3) of the sensor. s∗i ∈ R denotes the correction of the presumed propagation of the
segment. The registering parameters of all segments are collected in A∗T = (.. a∗Ti ..) ∈ R7 U with
a∗Ti = (k∗Ti , θ∗Ti , s∗i ) ∈ R7. Replacing T0i with T1i, R0i with R1i and S0i with S1i in Eq. (1) results
in the desired registration of the segments. Let dik(x, y, A) be the overlap mismatch between
segment i and segment k at position (x, y) after an arbitrary correction denoted by A. For the
desired correction, i.e. A∗, the overlap mismatch equals the difference between the measurement
errors, i.e.

0 = dik(x, y, A∗) − (ek(x, y) − ei(x, y)), (3)

where ek(x, y) and ei(x, y) denote the measurement errors at position (x,y) of segment k and i,
respectively. For details regarding the dependence of the overlap mismatch on A∗, it is referenced
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to [15]. Collecting all the considered local overlap mismatches of all overlapping segment pairs
in D = (. . dik(xn, yn). . )T ∈ RN with N being the total number of considered overlap mismatches,
Eq. (3) turns into the vector equation

0 = D(A∗) − ∆e, (4)

where ∆e contains the corresponding differences between the measurement errors. Linearization
of D around A = 0 leads to

D(A) = D0 + Q A, (5)

with Q ∈ RN×7 U . D0 denotes the overlap mismatch of the initial configuration of the segments in
FG. In Appendix A. a detailed derivation of Q is presented. For more details on the derivation
see [14,15]. If Eq. (24) is a good approximation for ∥A∥ ≥ ∥A∗∥, Eq. (4) can be written as

B = −D0 = Q A∗ − ∆e, (6)

and the linear estimator
(QT Q)−1QT B = Â (7)

can be used to estimate A∗. For the mean of the errors E[∆e] = 0 and the covariance matrix of
the errors C∆e = σ2

∆e I, with I being the identity matrix and σ∆e being a scalar value, Eq. (7)
corresponds to the best linear unbiased estimator proved by the Gauss-Markov theorem [22].
Using a linear estimator, parallel registration can be carried out with low computational costs
[14]. A priori information concerning the auto-correlation matrix of A∗, i.e. Λ = E[A∗ A∗T ], can
be incorporated by the estimator [23]

(QT C−1
∆e Q + Λ−1)−1QT C−1

∆e B = Â. (8)

If A∗ and ∆e are uncorrelated and E[∆e] = 0, Eq. (8) corresponds to the best linear estimator and
provides a better estimation than Eq. (7).

Fig. 2. The segments show an overlap mismatch if they are positioned in FG at the nominal
measurement positions, described by (..T0i, R0i, S0i..). The estimation of the registering
parameters a∗i ∈ A∗ is improved using a priori probability distributions for the parameters.

This study focuses on the widely used assumption that Λ corresponds to a diagonal matrix and
C∆e = σ2

∆e I, simplifying Eq. (8) to

(QT Q + wσ2
∆e Λ

−1)−1QT B = Â, (9)

with w = 1. w is an additional weighting factor of the a priori information to maintain the
estimation quality in case of measurement errors with E[∆e] deviating from 0. In case of large
A∗, Eq. (6) might not be true and Eq. (9) does not provide the desired estimation. In such cases,
the desired estimation of the registration data can be obtained in several iterations, where in each
iteration the estimator is applied [15].

Based on this approach an a priori iterative fast parallel registration (AIFPR) algorithm is
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proposed. The algorithm is initialised with the presumed transformations for the registration
of the segments. The transformations are collected in Tr0 = {.., T0i, R0i, S0i, ..}. In the first
step, the negative initial overlap mismatch B and the matrix Q of Eq. (24) are computed for
the configuration of the segments in FG based on Tr0. Then the estimator of Eq. (9) is applied
leading to Â and the presumed transformation Tr0 is corrected to Tr1 = {.., T1i, R1i, S1i, ..} using
Eq. (2). As mentioned above, the desired estimation might not be obtained (Â ≠ A∗) if A∗ is of
large value. Nevertheless, the corrected transformation Tr1 provides a better configuration of the
segments with a smaller overlap mismatch than the configuration based on Tr0. The quality of
the correction correlates with the quality of the linearisation in Eq. (24) for A = Â. With w in
Eq. (9) the quality of the correction can be controlled, as w, in addition to Λ, can restrict Â to
values for which Eq. (24) provides an acceptable approximation. For a further correction, Tr1 is
considered as the presumed transformation for the registration of the segments and Eq. (9) is
applied again to estimate A∗

1. To enable the estimation with Eq. (9) an auto-correlation matrix
for A∗

1, i.e. Λ1 has to be determined. For Λ1 being diagonal, only the standard deviations of the
parameters in A∗

1, collected in V1 = (. .σ1m. . )T , need to be considered as they entirely define the
auto-correlation matrix. The proposed updating rule of the standard deviations is

V1 = max(V/α, V − |Âg |/β), (10)

Presume transformation
to register the segments:

𝑇𝑟0
Initialise �̂�𝑔 = 0

Determine 𝑩 = −𝑫0 and 𝑸 (Eq. 24)

Determine 𝑽𝑚 from 𝑽 and �̂�𝑔 (Eq. 10)

Estimation of 𝑨∗𝑚 (Eq. 9) → �̂�𝑚

Correct transformation:
𝑇𝑟𝑚 and �̂�𝑚 (Eq. 2) → 𝑇𝑟𝑚+1

Update estimate for 𝑨∗:
�̂�𝑔 = �̂�𝑔 + �̂�𝑚

Δ𝔐𝑚+1𝑔 < 𝜀

Transformation for
desired registration:

𝑇𝑟∗

yes

no

Fig. 3. Flow chart of the AIFPR algorithm.
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where V includes the standard deviations of A∗ and α and β are scalar values. Âg is the so far
estimate for A∗ being Â in this case. With the estimate of A∗

1, i.e. Â1, Âg = Â + Â1. The second
argument in Eq. (10) restricts Âg in a certain way to the interval [−βV, βV] meaning that V1
decreases the closer Âg is to βV. The first argument in Eq. (10) softens this restriction by setting
a minimal value for V1. This accelerates the registration and allows registration even in the rare
cases, where A∗ is outside the interval [−βV, βV]. Estimation of the parameters and correction
of the transformation is then repeated until the relative change of the initial overlap mismatch is
smaller than a specific threshold (ε) indicating the convergence to the desired transformation Tr∗
to register the segments. To enable the comparison of the overlap mismatch to a scalar value, the
initial global mismatch metric, defined by DT

0 D0/N is considered, with N denoting the number
of elements in D0. The relative change of the initial global mismatch metric from iteration m to
m + 1 is then given by

∆Mm+1g =
|DT

0m+1 D0m+1 − DT
0m D0m |

DT
0m D0m

. (11)

The steps of the AIFPR algorithm are illustrated in the flowchart in Fig. 3.

3. Algorithm analysis

The performance of the AIFPR algorithm is analysed and compared with an iterative fast parallel
registration (IFPR) algorithm [15] and with the established iterative closest point (ICP) algorithm
[24]. Using simulation tools, the dependence of the performance of the algorithms on sensor
misalignment, measurement noise and the weighting factor of the a priori information (see
Eq. (9)) is evaluated. In addition, the algorithms are applied to reconstruct a measured divergent
wavefront.

3.1. Simulation setting

Software tools are developed to simulate the measurement of a wavefront with a SHS. The
software is based on MATLAB (The MathWorks Inc., Natick, MA, USA) and OpticStudio
(Zemax LLC, Kirkland, WA, USA) where the latter one is used for raytracing simulation. In the
simulative analysis of the algorithms two use cases are considered including the registration of a
freeform wavefront and a divergent wavefront.

The freeform wavefront (diameter 50 mm) contains large dynamics with a peak-to-valley (PV)
of 587 µm and is simulatively measured in 25 overlapping sub-measurements arranged in the
x,y-plane as illustrated in Fig. 4(a). Each sub-measurement corresponds to the measurement with
a squared sensor aperture of 13 mm side length. The sub-measurements overlap in an area which
is 20 % of the area of the sensor aperture.

The dynamics of the divergent wavefront (divergence 140◦) have a PV of 61 µm with respect
to the nominal sphere of the wavefront with a diameter of 30 mm. The wavefront is simulatively
measured in 43 sub-measurements with a circular sensor aperture (diameter 7 mm) arranged
on the nominal sphere of the wavefront depicted in Fig. 4(b). The overlap area between some
sub-measurements is larger than 20 % of the sensor aperture to allow for a complete covering of
the wavefront.

From the sub-measurements the segments of the wavefront are then reconstructed using a
spline-based zonal reconstruction algorithm [25]. The reconstruction of the segments is followed
by the registration of the segments using the registration algorithms reconstructing the entire
wavefront. The local overlap mismatches at all points belonging to the overlap area of the point
cloud are used for registration and are considered in D (see Eq. (24)), resulting in 930 and 315
average number of points per overlap used for registration of the freeform and the divergent
wavefront respectively. In the AIFPR and the IFPR algorithm the point clouds of the segments
are interpolated using cubic interpolation and the normal vectors are interpolated using linear
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(a) (b)

Fig. 4. The freeform wavefront (PV=587 µm) measured at 25 sensor positions (a) and the
divergent wavefront (divergence=140◦, PV=61 µm with respect to the nominal sphere with
diameter 30 mm) measured at 43 sensor positions (b). The measurement of the wavefronts is
simulated.

interpolation [14] to enable subpixel registration. The stopping conditions of the AIFPR and
IFPR algorithm (see Fig. 3) use the same threshold of ε = 1

3 which is a suitable value for fast
convergence [15]. For the updating rule of the standard deviations of the registering parameters
in each iteration (see Eq. (10)), α is set to a value of 5 and β to a value of 2. These values turned
out to be good choices for Gaussian distributed sensor misalignment which is considered in the
simulation of the measurements.

While the AIFPR and IFPR algorithm register the segments in parallel, the ICP algorithm
registers the segments sequentially, meaning that the segments are consecutively combined in
individual registration processes where in each registration process one segment is added to the
entire wavefront. The segments are combined in a spiral way starting from the segment in the
center of the set of segments [12]. To evaluate the registration performance, the reconstructed
wavefront is fitted into the original wavefront. Then the difference between the reconstructed and
the original wavefront is determined. A non-zero difference between the wavefronts may result
from registration errors, measurement noise and systematic measurement errors. Removing the
simulated measurement errors from the difference reveals the registration error over the aperture
of the wavefront. In a last step the root-mean-square (RMS) and the PV of the registration error
are computed to enable a comparison of different registration results.

3.2. Reference configuration

To obtain a realistic simulation, noise as well as sensor misalignment is simulated. The
measurement noise is Gaussian distributed with zero mean and a standard deviation σ = 10 nm.
For each point in the point cloud representing a segment, a measurement noise is drawn from the
underlying probability distribution and added to the point. The sensor misalignment during the
measurement of segment i is reflected by the registering parameters k∗i , θ∗i ∈ R3 (see Eq. (2))
where k∗i denotes translational misalignment and θ∗i rotational misalignment of the sensor. The
simulated sensor misalignment is Gaussian distributed with zero mean where the elements of k∗i
have a standard deviation σ = 40 µm and those of θ∗i a standard deviation σ = 1.2 mrad. The
standard deviations have realistic values considering a multi-axis positioning system [17]. The
weighting factor in the estimator of the AIFPR algorithm (see Eq. (9)) is set to 100.
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The freeform wavefront is reconstructed by the algorithms with a registration error illustrated
in Fig. 5. The RMS registration error of the AIFPR algorithm is 11 nm which is a factor of 3
smaller than the RMS registration error of the IFPR algorithm.

(a) AIFPR
RMS = 11 𝑛𝑚, PV = 180 𝑛𝑚

(b) IFPR
RMS = 30 𝑛𝑚, PV = 380 𝑛𝑚

(c) ICP
RMS = 110 𝑛𝑚, PV = 955 𝑛𝑚

Fig. 5. Registration error of the AIFPR (a), IFPR (b) and ICP (c) algorithm for the freeform
wavefront with respect to the exact wavefront.

For the divergent wavefront the related registration error of the algorithms is illustrated in
Fig. 6. With an RMS registration error of 30 nm the AIFPR algorithm attains a registration result
a factor of 2 better than the IFPR algorithm.

The results show the improvement that can be attained by incorporating the standard deviation
of the sensor misalignment. Using the a priori information, the segments are prevented from too
large translation and rotation during the registration. Reasons for too large registering parameters
are translational or rotational symmetries of the segments as well as approximation errors due to
the linearization of the overlap mismatch in Eq. (24). The dependence of the registration error on
the shape of the wavefront, the number of registered segments as well as the number of points per
overlap used for registration [14,15] might be the reason for the slightly better registration results
with respect to the freeform wavefront as compared to the divergent wavefront. The reduced
registration quality using the ICP algorithm as compared to the other algorithms is explained by
the sequential approach of registering the segments, which leads to an increased accumulation of
registration errors. In addition, the ICP algorithm does not consider propagation of the segments,
resulting in large registration errors for the divergent wavefront.

The AIFPR and the IFPR algorithm show both fast convergence to the minimum of the global
mismatch metric, which is for both wavefronts reached in 3 iterations as illustrated in Fig. 7. The
global mismatch metric is given by DT

0m D0m/N for iteration m (see Eq. (11)). The algorithms run
on a personal computer with a processor frequency of 2.6 GHz. The AIFPR and IFPR algorithm
have comparable computation times around 300 ms for both wavefronts. The ICP algorithm
needs around 2 s to register the wavefronts.

In the following sections the values of the simulated sensor misalignment and measurement
noise and the weighting factor of the a priori information are equivalent to those of the reference
configuration if no other values are explicitly mentioned.

3.3. Influence weighting factor of a priori information

In each iteration of the AIFPR algorithm, linearization of the local overlap mismatches is carried
out (see Eq. (24)) followed by the estimation of the registering parameters (see Eq. (9)). Large
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(a) AIFPR
RMS = 30 𝑛𝑚, PV = 182 𝑛𝑚

(b) IFPR
RMS = 52 𝑛𝑚, PV = 415 𝑛𝑚

(c) ICP
RMS = 1.5 𝜇𝑚, PV = 7 𝜇𝑚

(d) AIFPR
RMS = 30 𝑛𝑚, PV = 182 𝑛𝑚

(e) IFPR
RMS = 52 𝑛𝑚, PV = 415 𝑛𝑚

Fig. 6. Registration error of the AIFPR (a,d), IFPR (b,e) and ICP (c) algorithm for the
divergent wavefront with respect to the exact wavefront. Figure (d) and (e) show the same
results as (a) and (b) but at a different scale for a better visualization of details of the
registration error.

registering parameters are estimated with large errors, as Eq. (24) is not valid for large values of
A. In the estimator w ∈ R denotes a weighting factor of the a priori information where w>1 can
be used to restrict the estimation of the registering parameters (Â) to values for which Eq. (24)
provides an acceptable approximation resulting in reduced estimation errors. A mean of the
difference between the measurement errors (E[∆e]) deviating from 0 results in a decrease of the
quality of the estimator especially for a large number of points per overlap used for registration.
In such a case, the quality of the estimator can be maintained using w>1. In Fig. 8 the RMS
registration error of the AIFPR algorithm is illustrated in dependence of the weighting factor
of the a priori information for the freeform and the divergent wavefront. Results show that a
weighting factor in the range between 10 and 100 improves the registration by a factor of 3. For
excessive weighting factors of 10000 the registration errors again significantly increase, as in this
case the estimation is restricted to too small values for the respective registering parameters.

3.4. Influence of sensor misalignment

Misalignment of the sensor refers to a deviation from the sensor’s nominal position and alignment
and is caused by uncertainties in the positioning system [17]. Translational and rotational
misalignment during the measurement of segment i is reflected by the corresponding registering
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Fig. 7. Minimization of the global mismatch metric (see Eq. (11)) in dependence of
the number of iterations of the AIFPR and the IFPR algorithm in case of the freeform
and divergent wavefront. The measurement conditions are with respect to the reference
configuration.
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Fig. 8. RMS registration error of the AIFPR algorithm in dependence of the weighting
factor of a priori information for the freeform (blue) and the divergent wavefront (red) with
respect to the simulation settings of the reference configuration.
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parameters k∗i ∈ R3 and θ∗i ∈ R3 respectively (see Eq. (2)). The RMS registration error of the
algorithms in dependence of the standard deviation of the translational misalignment is shown in
Fig. 9(a) and Fig. 9(b) for the freeform and the divergent wavefront, respectively. The dependence
of the RMS registration error on the translational misalignment is determined in presence of
rotational misalignment one time with σ = 1.2 mrad and one time with σ = 2.4 mrad.
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Fig. 9. RMS registration error in dependence of σ of initial translational misalignment
for the AIFPR, IFPR and the ICP algorithm regarding the freeform wavefront (a) and the
divergent wavefront (b). Curves are shown for two different standard deviations of initial
rotational misalignment, i.e. 1.2 and 2.4 mrad.

For large misalignment with σ = 80 µm the freeform wavefront is registered by the AIFPR
algorithm with high quality where an RMS registration error of 15 nm is attained. For the same
misalignment the IFPR algorithm attains a 4 times larger RMS registration error.
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The divergent wavefront is registered by the AIFPR algorithm with an RMS registration error
of 50 nm in case of translational misalignment with σ = 80 µm. Under the same misalignment
conditions the IFPR algorithm attains an RMS registration error of 100 nm.

The results show the higher robustness of the AIFPR algorithm to sensor misalignment as
compared to the other algorithms. As can be expected, the results of both algorithms deteriorate
with an increase of the misalignment where the extent of deterioration is less using the AIFPR
algorithm. Results show that an increase of rotational misalignment hardly increases the
registration error which is due to the flat shape of the wavefront segments leading to an overlap
mismatch that is more sensitive to rotational misalignment than to translational misalignment.
For the freeform wavefront the ICP algorithm shows high robustness to misalignment, as the
results are hardly affected by an increase of the mislaignment. Nevertheless, the results of the
ICP algorithm are of less quality as compared to the other algorithms, explained by the increased
accumulation of registration errors for sequential registration.

3.5. Influence of noise and systematic error

Measurement noise caused by, e.g., background light, readout and dark currents [26] is simulated
by adding a Gaussian distributed error with a zero mean value to each point in the point cloud of
a segment. In addition to noise, the residual systematic error after a calibration of the SHS [27]
is simulated in this section. For this purpose an error distribution with a PV equal to 5 nm is
added to each point cloud. In Fig. 10 the RMS registration error of the algorithms in dependence
of the standard deviation of measurement noise up to 20 nm is illustrated for both wavefronts. As
expected, the RMS registration error of the algorithms increases with a larger standard deviation
of noise. The AIFPR algorithm attains the best results with a RMS error below 20 nm for the
freefrom and 30 nm for the divergent wavefront. While the performance of the IFPR algorithm
decreases by a factor of 3 when noise is increased to σ = 20 nm, its performance is less affected
by noise for the divergent wavefront. This implies the dependence of the robustness of the
algorithms on the shape of the wavefront. For the divergent wavefront the results of the ICP
algorithm cannot be evaluated for noise with σ>10 nm due to huge gaps in the reconstructed
wavefront.
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Fig. 10. RMS registration error in dependence of σ of the measurement noise for the
AIFPR, IFPR and the ICP algorithm considering the freeform and the divergent wavefront.
In addition to noise, a systematic measurement error is simulated with a PV = 5 nm.
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4. Experimental setup and results

The measurement system is realized with a commercial SHS (HR-2, Optocraft, Erlangen,
Germany) mounted on a multi-axis positioning system consisting of three linear stages (VT-80,
PI Physik Instrumente, Braunschweig, Germany) and two rotational stages (RM-3, Newmark
Systems Inc., California) as illustrated in Fig. 11. An arbitrary configuration of position and
alignment of the sensor can be realized with the multi-axis positioning system to allow for
scanning of complex shaped wavefronts. For the positioning uncertainty of the sensor a standard
deviation of σ = 20 µm for the translational and σ = 1 mrad for the rotational misalignment is
expected. A microscope objective (NA=0.45) is illuminated with a collimated beam to generate
a wavefront with a divergence of approximately 54◦. A measurement with the SHS is carried out
at 43 locations of the wavefront resulting in 43 segments that are registered by the algorithms.

Fig. 11. Setup for the measurement of the wavefront of a microscope objective with an
NA=0.45. The sensor is positioned via a multi-axis positioning system.

The reconstructed wavefront of the AIFPR and IFPR algorithm is depicted in Fig. 12(a) and
Fig. 12(b) respectively. The nominal wavefront, i.e. a sphere, is fitted into the reconstructed
wavefront and the difference between nominal and reconstructed wavefront is shown in Fig. 12(c)
and Fig. 12(d) for the results of the AIFPR and IFPR algorithm. The illustrated difference (etot)
has an RMS value of 71 nm and 81 nm for the AIFPR and the IFPR algorithm respectively
and corresponds to the sum of wavefont aberration and registration error, i.e. etot = eab + ereg.
Assuming no correlation between eab and ereg and a zero mean value for ereg or eab, the RMS
value of etot can be written as

RMStot =
√︂

RMS2
ab + RMS2

reg, (12)

where RMSab and RMSreg are the RMS values of eab and ereg. Considering the simulative analysis,
a value for RMSreg of around 30 nm is expected from the AIFPR algorithm, which results in
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RMSab = 64 nm using Eq. (12). With this RMS value for the wavefront aberration the RMS
registration error of the IFPR algorithm is around RMSreg = 50 nm, which is comparable to
the results of the simulation (see Fig. 6). The results of the ICP algorithm are not explicitly
illustrated, as they contain huge registration errors leading to an insufficient reconstruction of
the wavefront. The measurement of the wavefront is repeated and for each measurement the
wavefront is reconstructed using the AIFPR and IFPR algorithm. Deviations between the results
are caused due to statistical variations of the measurement errors and the sensor misalignment.
For 10 measurements of the wavefront the values for RMStot have a mean value of 71 nm and a
standard deviation of 1.6 nm for the AIFPR algorithm and a mean value of 84 nm and a standard
deviation of 12 nm for the IFPR algorithm. The results proof the higher robustness of the AIFPR
algorithm to measurement errors and sensor misalignment as compared to the IFPR algorithm.

(a) AIFPR
reconstructed wavefront

(b) IFPR
reconstructed wavefront

(c) AIFPR
RMS = 71 𝑛𝑚, PV = 545 𝑛𝑚

(d) IFPR
RMS = 81 𝑛𝑚, PV = 655 𝑛𝑚

Fig. 12. Wavefront of a microscope objective (NA=0.45) registered by the AIFPR (a)
and IFPR (b) algorithm and the corresponding difference (etot) from a spherical wavefront
(AIFPR (c), IFPR (d)). The wavefront is measured in 43 segments.

In summary, the improved registration performance of the proposed a priori iterative fast
parallel registration algorithm as compared to an IFPR algorithm and the ICP algorithm is
successfully demonstrated. The algorithm attains small registration errors, which can be a factor
of 3 smaller than those of the IFPR algorithm and a factor of 50 smaller than those of the ICP
algorithm if highly divergent wavefronts are considered. The algorithm shows fast convergence
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to the registering parameters and needs computation times of a few hundred milliseconds on a
personal computer.

5. Conclusions

In this paper, an algorithm is proposed for the high-quality registration of a set of optical
wavefronts. The algorithm is able to incorporate a priori information about the positioning
uncertainty of the sensor during the measurement of the wavefronts resulting in an improved
registration performance. Parallel registration of the wavefronts is enabled by the algorithm
allowing for a reduced accumulation of registration errors. The algorithm’s high degree of
flexibility with respect to the shape of the wavefront makes it suitable for the reconstruction of
freeform as well as highly divergent wavefronts. The mathematics of the algorithm are discussed
and an analysis of the algorithm is presented, where it is compared to an IFPR algorithm [15] and
the ICP algorithm. Using simulations, the performance of the algorithm is evaluated with respect
to sensor misalignment and measurement errors and it is shown that the algorithm attains RMS
registration errors down to 10 nm. Even for large sensor misalignment with a standard deviation
of 80 µm and 2.4 mrad the algorithm reconstructs a freeform and a divergent wavefront with an
RMS registration error of a few tens of nanometers and attains results a factor of 2 to 3 better
than the other algorithms. Only 3 iterations are required to obtain the results for both wavefronts
leading to a total computation time of around 300 ms on a personal computer. In addition to
the simulative evaluation, the algorithm is applied to a real divergent wavefront generated by
a microscope objective with an NA=0.45. Results show that the algorithm reconstructs the
wavefront with a higher quality as compared to the IFPR and the ICP algorithm. The low
computation times and the high registration accuracy despite large sensor misalignment and
measurement errors make the algorithm suitable for time critical measurement tasks of high-end
optical systems.

A. Linearization of the overlap mismatch

Two propositions are introduced in the following, which are used to derive the formulas for the
linearization of the overlap mismatch.

Proposition 1 An arbitrary translation of a plane given by the vector t is equivalent to a
translation of the plane given by n · ρ, where n is the unit normal vector of the plane and ρ ∈ R
is a scalar value given by

nT t = ρ. (13)

With Fig. 13 and the well known definition of the dot product (nT t = |n| |t| cos(γ)) Proposition
1 is obvious.

Proposition 2 A translation of a plane given by n · ρ, where n is the unit normal vector of the
plane and ρ ∈ R is a scalar value, is in a coordinate system L equivalent to a translation along
the z-axis given by

ρ

n{L}
z
= ∆z, (14)

where n{L}
z is the z-component of n represented in L.

Proof. From Fig. 13 and the fact that n is a unit vector the following equation can derived.

sin(α) = ρ
∆z
= n{L}

z → ρ

n{L}
z
= ∆z ■

The local overlap mismatch between two wavefront segments (index 1 and 2) at a sampling
point (q21n) is given by

d12(q21n, a1, a2) = W {1}
2 (q21n, a2) − W {1}

1 (q21n, a1), (15)
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Fig. 13. Translation of a plane by t or n · ρ, where n is the unit normal vector of the plane
and ρ ∈ R is a scalar value.

where W {1}
1 (·, a1) = W {1}

1 (a1) and W {1}
2 (·, a2) = W {1}

2 (a2) are functions describing segment 1
and 2, respectively, in the local coordinate system of segment 1 (see Fig. 14), i.e. FS1, indicated
by the upper index in curly brackets. q21n ∈ R2 denotes a sampling point in the x-y plane of FS1
belonging to the overlapping region of the segments. The transformation of segment 1 and 2 is
defined by a1 and a2, respectively, with aT

i = (kT
i , θT

i , si) ∈ R7. Let χn be a point of W2(a2 = 0),
i.e. segment 2 not transformed, with ηn denoting the unit normal vector of segment 2 at χn. The
transformation of segment 2 by a2 is in the local coordinate system of segment 2 defined by

χ {2}
n (a2) = R(θ2) (χ {2}

n + s2 η
{2}
n ) + k2, (16)

where k2 ∈ R3 denotes a translation, θ2 ∈ R3 denotes a rotation about the three spatial dimensions
(R(θ2) ∈ R3×3) and s2 ∈ R denotes a wavefront propagation. With the assumption that the
considered transformation parameters are small, linearization of Eq. (16) leads to

χ {2}
n (a2) = χ {2}

n + k2 +

3∑︂
v=1
R

′
v χ

{2}
n θ2v + s2 η

{2}
n , (17)

which is obtained after a Taylor expansion of Eq. (16) and neglecting second order terms with
respect to the parameters. R′

v =
dR(θ)
dθv

|θ=0 with θv being a component of θ.
In the vicinity of χn segment 2 can be approximated by a plane including χn with a surface

normal vector equal to ηn, which can be proven with a Taylor expansion of the wavefront about
χn. Considering Eq. (17) the transformation of segments 2 leads to a translation of the plane by
the vector

t{2}n = k2 +

3∑︂
v=1
R

′
v χ

{2}
n θ2v + s2 η

{2}
n . (18)

With Proposition 1, this translation is equivalent to the translation of the plane by η {2}
n · ρ with

ρ = η {2} T
n t{2}n = η {2} T

n k2 +

3∑︂
v=1

η {2} T
n R

′
v χ

{2}
n θ2v + s2. (19)
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Fig. 14. Segment 1 (W1(a1)) and segment 2 (W2(a2)) in the local coordinate system of
segment 1 (FS1) [14].

The last term includes only s2, as η {2} T
n η {2}

n = 1. With Proposition 2 the translation of the plane
by η {2}

n · ρ is in the local coordinate system of segment 1 equivalent to a change of the height of
the plane by

∆z =
ρ

η
{1}
nz
=

1
η
{1}
nz

[︁
η {2} T

n k2 +

3∑︂
v=1

η {2} T
n R

′
v χ

{2}
n θ2v + s2

]︁
, (20)

where η {1}nz is the z-component of η {1}
n . With Eq. (20) the transformed segment 2 in the local

coordinate system of segment 1 is given by the function

W {1}
2 (q21n, a2) = χ {1}nz +

1
η
{1}
nz

[︁
η {2} T

n k2 +

3∑︂
v=1

η {2} T
n R

′
v χ

{2}
n θ2v + s2

]︁
= χ

{1}
nz + CT

12n a2,

(21)

if χ {1}
n is the point at W {1}

2 (q21n, a2 = 0) (see Fig. 14) where χ {1}nz is the z-component of χ {1}
n .

C12n ∈ R7 contains the coefficients of a2.
Analogous to the derivation of Eq. (21), an expression for the transformed segment 1 in its

local coordinate system can be derived given by

W {1}
1 (q21n, a1) = χ̃ {1}nz +

1
η̃
{1}
nz

[︁
η̃ {1} T

n k1 +

3∑︂
v=1

η̃ {1} T
n R

′
v χ̃

{1}
n θ1v + s1

]︁
= χ̃

{1}
nz + C̃T

12n a1,

(22)

where χ̃ {1}
n and η̃ {1}

n are point and normal vector at W {1}
1 (q21n, a1 = 0) (see Fig. 14) with χ̃ {1}nz

and η̃{1}nz as the related z-components. C̃12n ∈ R7 contains the coefficients of a1.
Inserting Eqs. (21) and (22) into Eq. (15) leads to

d12(q21n, a1, a2) = χ {1}nz + CT
12n a2 − χ̃ {1}nz − C̃T

12n a1

= CT
12n a2 − C̃T

12n a1 − B12n,
(23)

where B12n = χ̃
{1}
nz − χ {1}nz ∈ R.
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With Eq. (23), the linearization of D(A) = (. . dik(qkin, ai, ak). . )T ∈ RN around A = 0 is given
by

D(A) = Q A − B, (24)

where
(k-1) 7 k 7+1 (i-1) 7 i 7+1

Q =

⎛⎜⎜⎜⎜⎜⎝

...
...

...
...

0 . . 0 CT
ikn 0 . . 0 −C̃T

ikn 0 . . 0
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠
∈ RN×7 U ,

(25)

and

B =

⎛⎜⎜⎜⎜⎜⎝

...

Bikn
...

⎞⎟⎟⎟⎟⎟⎠
∈ RN . (26)
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