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Feasibility Analysis of Optical UAV Detection Over
Long Distances Using Robotic Telescopes

Denis Ojdanić, Andreas Sinn, Christopher Naverschnigg, and Georg Schitter

Abstract—Substantial technological development has made
Unmanned Aerial Vehicles (UAVs) more versatile, cheaper and
accessible to the public in recent years. Alongside many positive
effects and use cases, safety concerns are increasing as a plethora
of incidents demonstrate the destructive potential of UAVs. To
counteract this development and thus protect people and critical
infrastructure, UAV detection, tracking and defence gains more
and more research attention. Whereas, different drone detection
technologies like RADAR, radio frequency and acoustic detection
are deployed within multi-spectral systems, optical detection
and imaging of approaching objects provide key information
to correctly assess the situation. As reaction time is a crucial
parameter for successful UAV defence, the operating distance of
the optical detection system needs to be improved further. This
paper presents the analysis, development and evaluation of a
telescope-based UAV detection system. The system consists of a
high precision mount and a telescope equipped with a camera.
UAVs are detected in the captured video frames by the deep
learning algorithm YOLOv4 using a modified architecture. The
proposed system, which uses a f/10 telescope with a focal length
of f = 2540 mm and a camera equipped with a 7.3 mm x 4.1 mm
sensor, allows a significant increase of the optical detection range
to more than 3 km of UAVs down to 0.3 m in diameter under
daylight conditions and sufficient contrast, extending the reaction
time significantly for counter UAV systems.

Index Terms—UAV detection, long distance detection, tele-
scopes, deep learning

I. INTRODUCTION

OVER the past decade advances in technology led to a
massive grow in popularity of unmanned aerial vehicles

both in professional and private sector [1]. Easy public accessi-
bility is accompanied by an increased risk of potential misuse,
ranging from relatively harmless violations to severe hazardous
situations. Extensive research is conducted on possible future
threat scenarios and an alarming number of real live incidents
has already occurred [2], [3]. An analysis on the threat UAVs
pose to nuclear facilities concludes that UAVs are resourceful
tools to cause a variety of perturbations in the form of
distraction, reconnaissance or kinetic attacks [3]. Likewise,
incidents around airports show a development for potentially
dangerous situations [4]. A famous example is the shutdown
of the London Gatwick airport for more than a day due to a
nearby UAV in 2018 [5]. Similar to the mentioned scenarios,
numerous other threats exists that have already taken place
like the illegal smuggling of goods over state borders [6] or
incidents near governmental buildings [7]. Summarizing, the
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stated examples and studies emphasise that early detection and
identification of uncooperative UAVs is essential in order to
protect people and critical infrastructure.

Various technological solutions based on different sensors
exist for the purpose of UAV detection and tracking. For
example radio frequency (RF) signals, which are utilized
for communication between the operator and drone, can be
exploited to detect UAVs in a distance of up to 5 km [8], [9].
However, a major drawback of this technology is the inherent
possibility for controlling the UAV without any communica-
tion for example using pre-programmed flight paths. In this
scenario, the UAV remains completely invisible to the RF
detection system.
RADAR does not suffer from the aforementioned limitation.
It detects targets by emitting radio frequency waves and mea-
suring the reflection of an obstructing object. The operational
range can go up to several kilometres of distance depending
on the size of the radar cross section of the object [10], [11].
Generally, a classification of the detected target is possible
with the exploitation of the Doppler effect [12]. However, for
objects like consumer drones, which have a small radar cross
section, detection and identification becomes more challeng-
ing [11].
Acoustic sensors, in the form of microphone arrays, capture
sound and detect UAVs by applying appropriate signal pro-
cessing methods. Angular uncertainties for the target localiza-
tion of about 4◦ can be achieved [13] and even identification
is possible by using comprehensive databases [14]. The dis-
advantage of this technology is the small operational range of
below 600m [15], since it suffers greatly from ambient noise,
which lies in a similar frequency band as the emitted UAV
sound.
Finally, optical systems capture images with cameras using
different spectral bands like the visible spectrum from 400
to 700 nm, but also the near infrared as well as thermal
signatures. Paramount for the optical system performance in
terms of detection distance is the selection of the field of
view (FoV) of the camera system. A wider FoV allows the
observation of a broader area with the expense of a shorter
achievable distance as the resolution of camera is limited to a
finite size. Therefore, most optical UAV detection systems are
based on cameras with relatively narrow FoVs, mounted on
pan-tilt devices [16]. These devices allow the observation of a
large area through realignment of the camera orientation, while
providing acceptable resolution. Additionally, these systems
can support optical zoom to adapt the FoV to the given
task [17]. Current state of the art optical systems are limited
by the detection range and achieve about 1 to 2 km [18]
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using for example a 4k image sensor with a focal length
of 81.6mm for UAV diagonal sizes of 350mm. The short
operational range allows little time to appropriately react
to incoming threats. Whereas being susceptible to weather
conditions like rain, snow and fog, the main advantage of
optical systems over the previously mentioned methods is
the inherent possibility to identify the incoming target and
additional payloads over long distances. This is a crucial
benefit, allowing a differentiated situational assessment in
order to prepare for appropriate countermeasures. For the
task of target detection within the captured images or videos,
optical systems rely on computer vision algorithms. Since
2012 deep learning based approaches, which utilize pre-
trained neural networks, offer the best performances for object
detection [19]. This trend is co-evolving with the accessibility
of high performance computers, especially GPUs, for fast and
parallel computing. The application of deep learning models
based on RCNN [20], SSD [21] and YOLO [22] for UAV
detection have been studied extensively in recent years, with
studies suggesting that YOLO gives a good trade off in terms
of accuracy and speed [23] [24]. Likewise, the usage of deep
learning as the main method for UAV detection in systems
equipped with pan-tilt-zoom cameras is investigated by various
studies [16] [17] [25]. Similarly, for the application of air to
air visual detection, where UAVs detect other UAVs during
flight, deep learning algorithms are investigated, emphasizing
the significance of a diverse and generalized dataset. [26], [27].
Morphological filters can be used to detect small objects over
long distances [28], and by combining these filters with neural
networks the false positive rate can be reduced [29].

Each one of the presented sensor types offers individual ad-
vantages and disadvantages. In order to implement a functional
UAV detection system the best advice is to combine several
sensors to profit from the respective strengths. An exemplary
use case is an unidentified object detected by a radar system in
a significant distance. After this coarse localization, the optical
component of the system is aligned towards the intruder to
capture an image for identification purposes. Ctrl+sky [30] and
Ihtar [31] are two multispectral systems that combine radar,
RF, acoustics and cameras for UAV detection.

The limitation in the current state of the art is the
operational range offered by optical systems as small
UAVs like consumer drones are not detectable over long
distances with conventional optical systems. As stated above,
optical sensors offer the most conclusive information for
classification, as visual material can be classified by neural
networks or even cross-checked and understood by a human
operator. Therefore, it is paramount to increase the optical
detection distance in order to gain more time to decide and
prepare for appropriate countermeasures.

The contribution of this paper is the analysis, implemen-
tation and evaluation of a telescope-based optical detection
system which is capable to detect UAVs over significantly
larger distances and thus enabling early threat assessment.
Following an analysis of the optical components, suitable
hardware is selected to meet the requirements. Deep learning
algorithms process the captured video frames and are used

for UAV localization. Based on the extracted information,
commands are provided to a mount controller to precisely
actuate the telescope to keep the UAV within the FoV.
Section II presents an analysis on the most relevant design
parameters to achieve long distance UAV tracking. In Sec-
tion III the system is described together with details about
the deep learning algorithms and control strategies in use.
The performance of the proposed solution is evaluated in
Section IV. Finally, a conclusion is given in Section V.

II. SYSTEM ANALYSIS

For a conclusive optical system analysis and design, first the
expected UAV size and operation range are defined. The UAV
classes examined within this work are commercially available
drones which fall into the categories C0 to C3 according of
European regulations [32]. Expressed in numbers, the smallest
UAV sizes to be detected are about 0.3m in diameter and
the goal is to significantly extend the state of the art optical
detection distances, which are currently around 1 to 2 km for
daylight conditions [18]. In the following, an analysis of the
most relevant design parameters and their impact on the system
performance is given.

A. Resolution

One crucial parameter to distinguish objects in an image is
the theoretically achievable resolution of the optical system. In
optimal environmental conditions this value is limited by the
diffraction limit which can be calculated using the Rayleigh
criterion [33] given in Equation 1

θ = 1.22
λ

D
, (1)

where λ is the wavelength of light, D is the aperture size
of the optical device and θ the smallest resolvable angle
between two objects using the approximation sin(θ) ≈ θ. A
wavelength of 530 nm is selected in accordance to the peak
response of typical color cameras for green light. Following
this equation an increase of the telescope aperture is necessary
to achieve ambitious requirements. However, in practice this
is accompanied by two drawbacks. First, larger apertures
need bigger telescope structures as seen in Fig. 1, where the
weight of typical telescopes is depicted. A larger system mass
increases the inertia, which inherently limits the achievable
bandwidth for pan and tilt motions. Second, besides the
fundamental limit described in Equation 1, the atmosphere
further decreases the achievable resolution depending on the
Fried parameter r0 [34]. Local variations due to temperature,
pressure and humidity differences affect the refracting index
of air and the cumulation of these disturbances along the
optical path results in beam spread, wander and intensity
fluctuations [35]. Using Equations 2 and 3 to describe the
variance of the beam tilt α2

jit and spread σ2
comp [35]:
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Figure 1: Theoretically achievable resolution of a telescope
depending on the aperture size in a distance of 3.2 km.
The resolution limited by diffraction (solid blue line) and
atmosphere (dashed blue line) under poor (r0 of 1.8 cm) and
excellent (r0 of 15 cm) conditions is depicted.

the long exposure Strehl ratio can be calculated [35]:

S =
eσ

2
comp

1 +
(

2.22αjitD
λ

)2
1− eσ

2
comp

1 +
(
D
r0

)2 . (4)

Incorporating the atmospheric disturbances to the diffraction
limit from Equation 1 results in Equation 5 [35],

θatm = θ
Q

S
(5)
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2
comp
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)2 · 1− eσ
2
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D
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)2 , (6)

with Q taken from [35]. Plotting the calculations for differ-
ent aperture sizes and expected values for r0 during daylight,
Fig. 1 demonstrates that larger telescope diameters not neces-
sarily increase the achievable resolution [36], [37]. Depending
on environmental conditions smaller telescopes may perform
similar as larger ones.

B. Field of view

Another paramount system property is the FoV. A large
FoV allows simultaneous coverage of more area during the
search for UAVs and an increased margin for tracking errors.
However, increasing the observed area requires camera sensors
with a higher number of pixels to ensure sufficient resolution.
The width of the FoV is determined according to

FoVrad = 2arctan(
sw
2f

), (7)

with sw being the camera sensor width and f the focal
length of the telescope. A similar formula is applied for
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Figure 2: Minimum necessary resolution to obtain 15x15 pix-
els for an object of 0.3m size at a given distance using a
telescope with a focal length of 1200mm.

calculating the height. The achievable FoV in meter is given
in Equation 8

FoVm = 2d · tan(FoVrad
2

), (8)

and is used to determine the necessary number of pix-
els needed to detect objects of different sizes for a given
distance d. An exemplary calculation for a system with a
typical focal length of 1200mm and different sensors sizes
demonstrates the requirements on the hardware of varying
FoVs. An increased sensor size results in a larger FoV as per
Equation 7. To detect and identify an object with a diameter of
0.3m reliably, a minimum number of 15x15 pixels is needed,
as discussed in Section IV. The red dash-dotted line in Fig. 2
shows that for the presented system a 23mm wide APS-C
sensor would require a 4k image resolution to detect a UAV
reliably in 4 km of distance.

Ultimately the choice of a suitable FoV depends on the
speed of the object, the frame rate and the expected detection
distances. Assuming a camera frame rate of 60 FPS, Fig. 3
depicts the number of frames captured of a typical consumer
UAV flying at a velocity of 31m/s horizontally through the
FoV, if the optical system is not moving. Referring back to
the previous example system with a FoV of 1.1◦, it is possible
to capture 74 images of the UAV in a distance of 2 km with
sufficient resolution to accurately detect the object as seen in
Fig. 2. Additionally, the 74 captured frames provide enough
margin for the object detection algorithm to detect the UAV
in one of the frames. Reducing the distance between telescope
and UAV leads to a reduction of the number of captured
images in such a scenario.
Therefore, to implement a system capable of observing long
and short distances, a combination of multiple optical systems
with different FoVs is necessary. Pairing a large FoV, which
observes a broader area over shorter distances, with a narrow
FoV, which offers high resolving capabilities for detection and
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identification over long distances, establishes a system with a
wide and flexible operational range.

III. SYSTEM IMPLEMENTATION

The main architecture of the system is depicted in Fig. 4.
The system consists of a telescope and camera as the imaging
devices and a commercially available mount to pan and tilt
the optical components. The extraction of the UAV position
from the video is performed on a PC running a deep learning
algorithm. The UAV position is sent to an FPGA, which
implements suitable control strategies for feedback control of
the mount to keep the UAV within the FoV. In the following
an overview of the most relevant components of the system is
given.

A. Optical design

For the optical system a Meade Schmidt Cassegrain tele-
scope (LX200-ACF, Meade Acquisition Corp., Watsonville,
USA) is selected, with a focal length of 2540mm and an
aperture size of 254mm. The choice for the telescope is
justified by the calculated resolution using Equation 5 as
seen in Fig. 1. A larger aperture, leading to an increased
system weight, does not significantly improve the resolution.
As an imaging device an ASI 385 MC-Cool (ZWO Company,
Suzhou, China) camera is used, with a sensor width of 7.3mm,
a sensor height of 4.1mm, and it provides up to 67 frames
per second (FPS) at a resolution of 1936x1096 pixels. A FoV
of 0.16◦ on the horizontal axis and 0.09◦ on the vertical
axis is reached using the telescope and camera. As stated in
Section II-B, to extend the optical detection distance a narrow
FoV is necessary. A DJI Mini 2 with a size of 0.29m x 0.05m
in a distance of 3 km for example covers roughly 65x11 pixels
in an image, which is enough to perform a detection using
current state of the art algorithms [16].
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Figure 3: The number of images obtained of a UAV passing
the camera FoV horizontally with a speed of 31m/s at various
distances. The camera is running with 60 FPS. For a FoV of
1.1◦, 74 images are captured of a UAV passing at a distance
of 2 km.
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Figure 4: Overview of the system architecture consisting of
the telescope and camera as the imaging system, a PC run-
ning computer vision algorithms and an FPGA implementing
feedback control to actuate the telescope mount to keep the
UAV within the FoV.

B. Object detection

After capturing a video stream with the camera, appro-
priate algorithmic methods for UAV localization within each
video frame are needed. For this task a deep learning frame-
work is selected and modified. To achieve acceptable results
within short processing times, the algorithm runs on a PC
equipped with a RTX 3080 GPU (Nvidia Corporation, Santa
Clara, California, USA) with 10 GB of GPU RAM, an
AMD Ryzen 3900 CPU (Advanced Micro Devices, Inc., Santa
Clara, California, USA) and 32 GB of RAM.
A crucial perquisite to work with deep learning algorithms is
an extensive and diverse dataset. A custom dataset is created
consisting of six UAV multi-rotor models ranging in a diagonal
size from 0.3m to 2m. Video material of these UAV models
is gathered during flight on different days, locations and back-
grounds. The video material is gathered using an ASI 385 MC-
Cool and with four different telescopes to capture several
field of views and distances as shown in Table I. From these
videos, approximately 5.000 images are extracted every few
seconds and manually labeled. Additional data is generated
synthetically by blending images of drones onto background
images. Using this method, data can easily be generated with
the corresponding label. For this purpose several images of
drones are manually cropped along their edges and in a
variety of poses. These images are then blended pixel wise
onto a random position within different background images.
Furthermore, Gaussian blur is applied at a varying degree to
these images. Using synthetic data generations, another 5.000
images are generated to create a dataset consisting of 10.000
labeled images. Fig. 6 shows the distribution of the data with
regards to the bounding box size in pixels. Roughly 21% of the
images contain UAV bounding box sizes below 15x15 pixels,
25% are between 15x15 pixels and 50x50 pixels, and the
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Figure 5: Proposed YOLO architecture. Marked in red are the changes made to the default architecture. Summarizing the
adaptions, the network input resolution size is set to 800x512 and the number of filters is reduced in the residual blocks.
Furthermore, routing from an earlier stage in the network is established as depicted by the red arrow, paired with appropriate
upsampling to allow correct concatenation.

remaining 54% are larger than 50x50 pixels. Finally, during
the training process data augmentation is facilitated via the
implemented methods supported by YOLOv4 [22]. Images are
randomly cropped, resized and the saturation, exposure and
hue are changed randomly.
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Table I: Telescopes used to capture training data.

Telescope Focal length f Aperture D

Celestron 1.25m 0.125m

ASA 1.14m 0.3m

Meade 2.54m 0.254m

Meade Adventure 0.36m 0.06m

YOLOv4 is used as deep learning algorithm for the task of
object detection as it provides accurate results while operating
at a high frame rate [22], [38]. In order to meet the require-
ments of long operational distances for the proposed setup,
the capability to detect small objects comprising of only a few
pixels, is desirable. Therefore, a modified YOLO architecture
is proposed based on the standard YOLO approach and the
alterations are summarized in Fig. 5.
YOLOv4 uses CSPDarknet53 as a backbone, which is respon-
sible for feature extraction and deriving from these features,
detection is performed with the standard YOLO head [22]. In
order to improve the detection performance for small objects,
the backbone is modified. In the first step, the camera frames
are resized to fit the network input image size. If the network
resolution is low, an object covering only a few pixels in
the camera frame will almost diminish after resizing, making
detection more challenging. Hence, a simple possibility for
improvement is the increase of the network input resolution,
as the frame provided by the camera is resized to the network
input size. Additionally, a rectangular input size of 800x512
is chosen to better fit the aspect ratio of the frames provided
by the ASI camera. The detection distance can be further
increased, by cropping the camera frame to the network input
resolution, however, this reduces the field of view of the setup,
as a smaller portion of the sensor is utilized. Increasing the res-
olution comes with a drawback of more memory consumption
and lower achievable frame rates. To compensate for this, one
might reduce the number of filters, however, a network with
a smaller amount of filters learns less features and therefore
suffers from poor detection and classification accuracies. A
known strategy to improve computation performance is the
introduction of a 1x1xN block, before a 3x3xN convolution
within the residual layers in order to reduce the number of
filters while keeping as much information as possible [39]. In
comparison to the default YOLOv4 configuration the value N ,
for residual layers is bisected to improve the frame rate and
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allow for higher input resolutions.
Similar to the residual layers, route layers are utilized within
YOLOv4 to facilitate signal propagation through the deep
network and to connect finer details observable in earlier layers
with layers further back. This technique allows to preserve
information from the earlier stages by avoiding the in-between
processing [39]. For small object detection it is desirable to
route from layers with a high resolution, thus the network is
configured to route information from layer number 23 back
to layer number 129, which brings information with the size
of 208x152 to the later stages of the network [22]. To ensure
mathematically correct concatenation the upsampling layers
are set to 4 beforehand [22]. The modified route for small
object detection is depicted in Fig. 5 by the red arrow.
Finally, the classical YOLO head consisting of three detection
layers concludes the network architecture [22]. Each detection
layer is responsible to detect objects of varying sizes based
on anchor boxes learned from the training dataset. For the
application to the custom UAV dataset, these anchor boxes
are recalculated using the standard k-means clustering ap-
proach [22]. For the training process of both architectures a
learning rate of 0.0007, a momentum of 0.949 and a decay of
0.0005 is set. Both models are trained for 20.000 iterations,
whereas a stepwise reduction of the learning rate after 16.000
and 18.000 steps is facilitated via multiplication by a factor of
0.1. For both models the training ended with an average loss
of below 0.4% and the last model weights are chosen for the
evaluation.

C. Control of the system

The control of the telescope mount is based on the system
developed by Riel et al. [40]. For the current implementation a
larger mount model, a DDM100 (ASA Astrosysteme GmbH,
Neumarkt, Austria), is used. Additionally, the outer control
loop is modified to a cascaded velocity (PI) and positional
(PID) feedback loop to allow the system to react to the
unpredictable motion of an approaching UAV. The velocity
loop determines the current which serves as a reference input
for an underlying field-oriented-control of the PMSMs motor
of the DDM100 mount. The control loops are implemented on
an FPGA (Avnet Inc., Phoenix, USA), and the communication
between PC, which is connected to the camera and runs the
deep learning algorithms for UAV detection, and FPGA is
established via an UDP interface.

IV. EXPERIMENTS AND RESULTS

For the experimental analysis and the evaluation of the
performance in terms of detection distance, field tests are
performed with the implemented setup depicted in Fig. 7.
Additionally, the proposed YOLOv4 architecture is tested and
compared to the default YOLOv4 configuration on a separate
dataset consisting of labeled videos and images.

A. Resolution evaluation

To get an estimate of the resolving power of the pre-
sented system, experiments involving a modified version of

Meade telescope f/10 

f = 2540 mm

DDM100 mount

Figure 7: Implemented system with ASA DDM100 mount
and two telescopes. For the evaluation of long distance UAV
detection, only the Meade Schmit Cassegrain telescope is used.

Resolution Target

Figure 8: Example of a resolvable target with a beam width of
72mm in a distance of 3.2 km under challenging conditions.
In the top left the target, consisting of alternating black and
white beams, is magnified and in the top right, the used target
is displayed. The distribution of the pixel value intensities is
shown in Fig. 9.

the United States Air Force (USAF) resolution test chart are
performed. Targets consisting of two white and three black
beams are placed in a distance of 3.2 km to validate the
imaging system as seen in Fig. 8. The width of the beams is
reduced for each target to find the smallest resolvable pattern.
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Figure 9: Mean pixel values obtained from resolution targets
with various beam widths in a distance of 3.2 km. Higher pixel
intensity values correspond to the white coloured beam and
lower values to the black beam. Targets down to a beam width
of 72mm are distinguishable.

To obtain a clear image, the focus is adjusted manually without
dedicated auto focus algorithm. The experiment is performed
under challenging conditions, as the sun is located behind
the target due to the daytime. Considering the application
of UAV detection, this scenario corresponds to the detection
of a UAV, which is not directly illuminated by the sun as,
for example, it is flying in the shadow of a building. Fig. 9
shows the distribution of pixel intensities over the resolution
target. The values are obtained by cropping the image around
the target and calculating the mean of pixel intensities in the
direction of the beams. Finally, the values are normalized to
the corresponding maximal value for better comparison. The
two peaks representing the white beams are clearly visible
in Fig. 9 for target beam widths of 89 and 72mm. As the
width of the black and white beams is reduced, the two
peaks become smaller and not clearly distinguishable. The
decision criterion to classify a target as resolvable is linked
to the number of frames captured in the video that produce
distinguishable results as in Fig. 9 only a single observation
can be shown. The 49mm target from Fig. 9 represents
the best image in a video sequence of roughly 2 minutes
and produces a subjectively barely visible target, whereas the
72mm bar width is constantly distinguishable throughout the
whole video. Therefore, the experimentally obtained resolution
is given with 72mm in a distance of 3.2 km corresponding to
a Fried parameter of 2.9 cm, which represents a typical value
for daylight observations [36], [37]. This analysis shows, that
detection of small UAVs, like a DJI Phantom 4 with a diagonal
size of 350mm is possible, as the resolution suffices to discern
enough features. For the analysis it is assumed that the image
provides enough contrast to allow a human to discriminate an
object like a drone from the background.
The experiments are repeated for the vertical axis of the

camera sensor and similar results are obtained as the height
and width ratio of the sensor size have a similar ratio to the
horizontal and vertical number of pixels.

B. Evaluation of YOLOv4 architecture

For the test phase an additional dataset is needed along
with corresponding labels, which have not been used for the
training phase. Therefore, the dataset described in Section III
is separated into two parts before the training process, namely
a training and test set. The test set is further divided into
three subsets according to the ground truth bounding box sizes
marking the UAVs. The separation into less than 15x15 pixels,
15x15 to 50x50 pixels and larger than 50x50 pixels is neces-
sary to evaluate the algorithm accuracy on different object
sizes. The test set consists of images showing UAVs over
various backgrounds like sky, trees, buildings, clouds etc.
Fig. 10 shows some example images of UAVs in front of
different backgrounds. It is important to note, that the test
images are obtained from different video sequences than the
training image set to guarantee that the evaluation is performed
with previously unseen and completely new data.

The results of applying the standard and proposed YOLOv4
configurations to the test datasets are shown in Fig. 11.
The proposed YOLOv4 architecture outperforms the standard
configuration around the operating frame rate of the used ASI
camera considerably for object sizes below 15x15 pixels. At
65 FPS the proposed architecture achieves a mean average
precision (mAP) of 0.61 compared to 0.42 of the default
architecture. Likewise, for object sizes between 15x15 to
50x50 pixels the proposed model achieves a mAP of 0.86
compared to 0.81 of the default configuration. This indicates
that a larger input resolution of the network, paired with a
reduced number of filters, to save memory and increase execu-
tion speed, yields an improved performance. Introducing early
routing within the network architecture combined with upsam-
pling layers additionally improves the detection performance
for small objects. For large objects both approaches leverage
similar results. The measurements for different frame rates are
obtained by altering the network input resolution showing the
overall trend that higher resolutions produce better prediction
capabilities. The false positive rate for both YOLOv4 architec-
tures is neglectable when no UAV is located within the image.
Table II shows the application of the models on the whole
dataset with various intersection over union (IOU) thresholds
for the average precision. As mentioned before, the improved
precision is attributed to the success rate of the proposed model
on small objects. Examining the average precision (AP) for
different thresholds, the AP for an IOU threshold of 0.75 of the
default architecture is significantly reduced compared to the
proposed architecture. Considering the application of reliable
long distance UAV detection, Table III shows the recall and
precision values, when applying both YOLOv4 configurations
to the three test datasets. For precision values close to 1, the
respective recall indicates the amount of correctly detected
UAVs, as each prediction is a correct prediction and the recall
is calculated by the number of correct predictions divided
by all possible ground truth objects. Therefore, it can be
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(a) (b)

(c) (d)

Figure 10: Typical examples of detected UAVs with the corresponding bounding box in front of various backgrounds. On the
top right of each image a magnification of the detection is shown.
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Figure 11: Mean average precision (mAP) for the three test
datasets obtained with the default and the proposed YOLOv4
architecture. For small object sizes, the proposed architecture
significantly outperforms the default architecture.

concluded, that the probability to detect a UAV with a size
of 15x15 pixels using the proposed YOLOv4 architecture is
58% and for UAVs larger than 15x15 pixels the probability
increases to 82%.

Table II: Average precision over different IOU thresholds
(0.25 to 0.75) after application to whole test dataset. For
strict thresholds of 0.75, the AP of the default architecture
significantly drops compared to the proposed architecture.

Configuration AP0.25 AP0.5 AP0.75 FPS

Default YOLOv4 0.89 0.87 0.59 65

Proposed YOLOv4 0.93 0.91 0.70 65

Table III: Comparison of precision and recall results using an
IOU threshold of 0.5. For precisions close to 1 recall values
resemble the percentage of correctly detected UAVs in the
absence of false positives.

< 15 px 15 - 50 px > 50 px

Configuration Prec. Recall Prec. Recall Prec. Recall

Default YOLOv4 0.83 0.38 0.99 0.78 1.0 0.91

Proposed YOLOv4 1.0 0.58 0.99 0.82 1.0 0.98

In summary it is shown that the proposed system design
paired with a modified deep learning algorithm extends the
optical detection range significantly compared to conventional
approaches, successfully demonstrating that UAVs are detected
with a mAP of 86% in a distance of 3 km.
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V. CONCLUSION

A UAV detection system is developed based on a telescope
and camera for image acquisition, a precise mount for align-
ment of the optical components with the UAV, and a deep
learning algorithm for UAV localization. Following an analysis
of parameters influencing the system performance, suitable
hardware components are selected to create a system that
increases the optical detection range of small UAVs compared
to the state of the art. Proper training and modification of the
deep learning algorithm show that UAVs, covering between
15x15 to 50x50 pixels, are detected with a mAP of 86%.
Paired with the proposed optical system using a f/10 telescope
with a focal length f of 2540mm and a camera equipped
with a 7.3mm x 4.1mm sensor, the detection range for
small unidentified UAVs down to a diagonal size of 0.3m
is extended to more than 3 km under daylight conditions and
sufficient contrast.
Future work will include the integration of a second telescope
to add various FoVs for better situational awareness. Addition-
ally, the impact of different light conditions on the achievable
detection distances will be investigated.
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