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ABSTRACT

This paper presents an evaluation of three developed parallel registration algorithms for the reconstruction of
optical wavefronts. Two practical use cases are considered including high-quality optics generating (i) a plane and
(ii) a divergent wavefront. The wavefronts are measured segment-by-segment with a scanning Shack-Hartmann
sensor measurement system and are reconstructed by the algorithms. As a benchmark for the comparison of
the registration performance, the well-established iterative closest point (ICP) algorithm is used. Results show
that the developed registration algorithms attain a registration precision up to a factor of 10 better than the
registration precision of the ICP algorithm.
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1. INTRODUCTION

Wavefront sensors1 enable the evaluation of optical systems, as its performance is directly related to the trans-
formation of a wavefront that is entering the system. The complete measurement of a wavefront is not possible
if the wavefront exceeds the aperture size of the wavefront sensor or its dynamic range. More sophisticated
measurement systems have to be used to measure these wavefronts, e.g. a wavefront sensor in combination with
null optics2 or a wavefront sensor in combination with a positioning system.3,4 The latter one offers advantages,
such as a higher flexibility with respect to the shape of the wavefront and no additional aberrations due to
null-optics. Using a positioning system with 5 degrees of freedom (DOF), an almost arbitrarily shaped wavefront
can be scanned with the wavefront sensor. During the scan, segments of the wavefront are measured at different
locations. The entire wavefront is then reconstructed by registering the segments using the positioning data of the
sensor. Due to uncertainties in the positioning system, registration algorithms are of great importance to obtain
a high-quality reconstruction of the wavefront. Recently, three registration algorithms have been proposed, i.e. a
parallel registration (PR),5 a fast parallel registration (FPR)6 and an iterative fast parallel registration (IFPR)7

algorithm, where the segments of a wavefront are registered in parallel to attain small registration errors. In
the individual publications the performance and functionality of the registration algorithms are evaluated and
proven in the scope of a simulation-based analysis.

The contribution of this paper is the experimental evaluation and comparison of the PR, the FPR and the IFPR
algorithm based on two use cases, i.e. the reconstruction of a plane and a divergent wavefront generated by
real optical systems. In addition to the parallel registration algorithms, the well-established iterative closest
point (ICP)8 algorithm is considered as a benchmark. Section 2 introduces the measurement concept and the
registration algorithms. Section 3 presents and discusses the experimental results and Section 4 concludes the
paper.

Further author information: (Send correspondence to Nikolaus Berlakovich)
Nikolaus Berlakovich: E-mail: berlakovich@acin.tuwien.ac.at, Telephone: +43 (0) 1 58801 376 529

Pre-Print version (generated on 21.10.2022)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Pre-Print version of the article: Nikolaus Berlakovich, Martin Fuerst, Ernst Csencsics, and Georg Schitter, “Reconstruction
of optical wavefronts with parallel registration algorithms,”SPIE Optics + Photonics 2022Vol. 12221, pp. 192–198, 2022.
DOI: 10.1117/12.2632961

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1117/12.2632961


2. MEASUREMENT CONCEPT AND REGISTRATION ALGORITHMS

The used measurement system is illustrated in Fig. 1 where a Shack-Hartmann sensor (HR-2, Optocraft, Erlan-
gen, Germany) is mounted on a multi-axis positioning system (MAPS). The MAPS with 5 DOF is composed of
three linear stages (VT-80, PI Physik Instrumente, Braunschweig, Germany) and two rotational stages (RM-3,
Newmark Systems Inc., California) enabling scanning of complex shaped wavefronts with a diameter of up to
100mm.4 The Shack-Hartmann sensor (SHS) is a frequently used wavefront sensor, providing a reference free
measurement that is insensitive to vibrations.9 The optical system under test generates a wavefront which is
then scanned by the measurement system, where the SHS measures the wavefront at multiple locations. In each
SHS-measurement a specific segment of the wavefront is measured. In particular, the gradient of the wavefront
segment is measured at points of a grid defined by the lenslet array in the aperture of the SHS10 where each
lenslet corresponds to a grid point. The wavefront segment is then reconstructed from the gradients using zonal
reconstruction algorithms.11 Using the positioning data of the MAPS for each SHS-measurement, registration
of the wavefront segments is carried out to reconstruct the entire wavefront. For partially overlapping wavefront
segments an overlap mismatch between the segments is observed, reflecting registration errors caused by uncer-
tainties in the MAPS. The desired registration can be obtained by minimizing the overlap mismatch between
the segments using registration algorithms. The registration algorithm determines the transformation of the
segments for which the overlap mismatch has its global minimum. The transformation consists of a translation,
a rotation and a wavefront propagation of each segment. The translation and the rotation are with respect to
the three spatial dimensions. The wavefront propagation corresponds to the propagation of the segment along
its surface normals.

Figure 1: Measurement system. An optical system (microscope objective) generates a wavefront which is scanned
by the SHS mounted on a MAPS. During scanning, the SHS measures segments of the wavefront.

From the reconstruction of a segment from an SHS-measurement a point cloud is determined representing the
segment. The positioning data of the MAPS during the SHS-measurement is used to transform the point cloud
from the local coordinate system of the sensor into the global frame (FG), leading to a coarse registration of the
segments due to uncertainties in the MAPS (see Fig. 2a). The transformation consists of a translation denoted by
T 0i ∈ R3, a rotation denoted by a rotation-matrix R0i ∈ R3×3 and a wavefront propagation denoted by S0i ∈ R
where the lower index i is referring to a certain segment. Usually, S0i equals 0, if ideal scanning of the wavefront
is assumed where no phase differences between the segments are observed. Starting from the configuration of
the segments based on T 0i, R0i and S0i, the segments are then translated, rotated and propagated for the fine
registration (see Fig. 2b) defined by the parameters k∗

i ∈ R3, θ∗
i ∈ R3 and s∗i ∈ R, respectively, where s∗i is equal

to the distance of propagation. For reasons of clarity, the parameters of a segment are collected in the vector
a∗T
i = (k∗T

i ,θ∗T
i , s∗i ) ∈ R7 and the parameters of all segments are collected in A∗T = (.a∗T

i .) ∈ R7U , where U
is equal to the total number of segments.
To determine the transformation for fine registration, a metric corresponding to the global overlap mismatch
between the segments is minimized with respect to the transformation parameters A. The global overlap mis-
match is considered to obtain parallel registration of the segments and the corresponding metric is given by the
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Figure 2: Registration of the segments to reconstruct the entire wavefront. Transformation of the segments into
FG using the positioning data of the MAPS (a). Fine registration of the segments using registration algorithms
(b).

sum over all overlapping segment pairs, i.e.

Mg(A) =
∑

i,k

Mik(ai,ak), (1)

where Mik denotes a metric for the overlap mismatch between segment i and k. In the PR algorithm5 Mg is
minimized using a Quasi-Newton method which is a well establish method for solving nonlinear optimization
problems.12 In the FPR algorithm Mg(A) is approximated by a quadratic function which can be efficiently
minimized. The approximation is achieved by linearizing the transformation of a segment with respect to the
corresponding parameters ai.

6 The minimization of the quadratic function is then carried out by solving a
matrix equation

QT QA = QT B, (2)

with Q ∈ RV×7U and B ∈ RV where V denotes the total number of sampling points that contribute to Eq. 1.
Equation 2 is in particular solved using a Cholesky decomposition.13 As the approximation is only valid for
sufficiently small parameters, the FPR algorithm yields significantly larger registration errors in cases of large
uncertainties in the MAPS. This issue is tackled in the IFPR algorithm where Mg is minimized in an iterative
manner.7 Starting from T 0i, R0i and S0i, the transformation of the segments into FG is corrected in each
iteration towards the minimum of Mg. In an iteration m the metric for the global overlap mismatch between
the segments that are transformed by the previously corrected transformation, i.e. Tm−1i, Rm−1i and Sm−1i,
is approximated by a quadratic function. The approximated metric is then efficiently minimized, leading to a
further correction of the transformation into FG given by

Tmi = Rm−1i k
∗
i +Tm−1i

Rmi = Rm−1i R(θ∗
i )

Smi = Sm−1i + s∗i .

(3)

The iteration is stopped when the relative decrease of Mg is smaller than a specific threshold indicating that the
transformation for the minimization of the metric is obtained.

3. EXPERIMENTAL RESULTS

Using the measurement system illustrated in Fig. 1, a plane and a divergent wavefront are measured.
The plane wavefront is generated by a meniscus lens (LE1015-A, Thorlabs, USA) which is illuminated using a
single mode fiber positioned at a distance of 200mm (focal length) from the lens. The plane wavefront has a
diameter of 46mm and is measured in 69 segments. Each segment is measured using a square sensor aperture
with a side length of 6.9mm. This leads to 2800 lenslets used for the measurement of a segment where the size
of a lenslet is equal to 130 × 130µm2. The average overlap area between the measurements is 30% of the area
of the sensor aperture (47.6mm2). The segments are reconstructed using a spline-based zonal reconstruction
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algorithm.14 Using the positioning data of the MAPS to register the segments, leads to an RMS overlap mismatch
of 6µm between the segments. The ICP, PR, FPR and IFPR algorithm, are used to obtain a fine registration of
the segments and the results are illustrated in Fig. 3. The results show, in particular, the difference (etot) between
the reconstructed wavefront and a plane (nominal wavefront) which is fitted into the reconstructed wavefront in
the least squares sense. The difference is equal to the sum of the wavefront aberration and the registration error,
i.e.

etot = eab + ereg, (4)

where the latter one depends on the type of the registration algorithm leading to different results. Besides the
PV and RMS value of the difference, the RMS overlap mismatch between the segments after the registration is
determined to enable an assessment of the registration performance.
In addition to the wavefront aberration and the registration error, there are measurement noise and systematic
measurement errors. Typically, these errors are small, however, if the measurement noise is smaller than the sys-
tematic measurement errors, too large in-plane shifts of the segments might be the result of the fine registration.
To solve this problem, artificial white noise with a standard deviation of 30nm and a zero mean value is added
via software to the segments. After the registration, the artificial noise is removed from each segment.
The ICP algorithm reconstructs the plane wavefront with a gap indicating large in-plane shifts of the segments.
This can be explained by the fact that the ICP algorithm registers the segments sequentially, where the segments
are one-by-one registered with the reconstructed wavefront, leading to a stronger accumulation of registration
errors. Local minima in Eq. 1 cause the PR algorithm to stop the registration at an RMS overlap mismatch
of 180nm. This results in a wavefront with an RMS difference of 3µm significantly deviating from the results
of the other algorithms. The IFPR and FPR algorithm attain high-quality registration results with an RMS
overlap mismatch of 14nm and 17nm, respectively. As the FPR algorithm corresponds to the IFPR algorithm
with one iteration, the IFPR algorithm needs 2 iterations to obtain the result where in the second iteration only
a small decrease of the RMS overlap mismatch of 3nm is attained.

(a) ICP
RMS = 10µm
PV = 37.8µm

RMS OM = 20nm

(b) PR
RMS = 3µm
PV = 15µm

RMS OM = 180nm

(c) FPR
RMS = 10µm
PV = 36.9µm

RMS OM = 17nm

(d) IFPR
RMS = 10µm
PV = 37µm

RMS OM = 14nm

Figure 3: Plane wavefront. A plane is fitted into the reconstructed plane wavefront and the difference between the
reconstructed wavefront and the plane is illustrated for the ICP (a), PR (b), FPR (c) and IFPR (d) algorithm.
The RMS and the PV of the difference are determined along with the RMS overlap mismatch (OM) between
the registered segments.

The divergent wavefront is generated by a microscope objective (Olympus DPlan 40 0.65 160/0.17, Olympus,
Japan) which is illuminated with a collimated beam (see Fig. 1). The wavefront has a divergence of 81◦ and is
measured at a radius of 25mm. The wavefront is measured in 67 segments, where each segment is measured
using a circular sensor aperture with a radius of 3.45mm, leading to 2200 lenslets per segment. The average
overlap area between the measurements is 30% of the area of the sensor aperture (37.4mm2). The segments are
reconstructed with the same zonal reconstruction algorithm as for the plane wavefront.
The RMS overlap mismatch between the segments is 30µm if the positioning data of the MAPS is used to
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register the segments. Analogous to the registration of the plane wavefront, artificial white noise with a standard
deviation of 40nm and a zero mean value is added via software to the segments to prevent the segments from too
large in-plane shifts during fine registration. After the application of the registration algorithms, the artificial
noise is removed from the segments. The nominal wavefront (sphere) is fitted into the reconstructed wavefront
and the difference between nominal and reconstructed wavefront is illustrated in Fig. 4 for the ICP, PR, FPR and
IFPR algorithm. The ICP algorithm registers the divergent segments with huge gaps and a large RMS overlap
mismatch. Reasons for the bad result of the ICP algorithm are first, the sequential approach for the registration,
and second, the fact that the algorithm does not consider wavefront propagation which becomes relevant for the
reconstruction of divergent or freeform wavefronts. Dust and scratches on the lenses in the microscope objective
result in an occlusion of the wavefront at some locations, where the SHS measures either nothing or strong and
high-frequency dynamics of the wavefront. The registration of segments at these locations is a challenge. First,
the segments might not have the same shape in the overlap area which is essential for the registration algorithm.
Second, the high-frequency dynamics lead to local minima in the overlap mismatch for small in-plane shifts of
the segments in which the registration algorithm might get stuck. The result of the PR algorithm shows an RMS
overlap mismatch of 467nm. The IFPR algorithm attains in total an RMS overlap mismatch of 173nm, where
the RMS overlap mismatch significantly decreases to 68nm if the parts of the wavefront with the high-frequency
dynamics (circled in red in Fig. 4d) are omitted. As expected, the reconstructed wavefront is similar to a sphere
with an RMS difference equal to 390nm and 178nm if the parts with the high-frequency dynamics are neglected.
The IFPR algorithm needs 9 iterations to register the divergent segments indicating that the approximation in
the FPR algorithm is not sufficient to attain the desired reduction of the overlap mismatch. The RMS overlap
mismatch of the FPR algorithm equals 1000nm and 276nm if the high-frequency dynamics are neglected. The
approximation of the high-frequency dynamics is of high quality only for small registering parameters, however,
large registering parameters are necessary to compensate for the initial overlap mismatch with an RMS value of
30µm resulting in an increased residual overlap mismatch in the result of the FPR algorithm.
The algorithms are implemented on a personal computer with 2.6GHz. Except for the IFPR algorithm, each
registration algorithm needs for the reconstruction of both wavefronts computation times at the same order of
magnitude as depicted in Table 1. The IFPR algorithm needs a significantly larger computation time for the
divergent wavefront, as 9 iterations are necessary to reconstruct the divergent wavefront while only 2 iterations
are necessary to reconstruct the plane wavefront.
In summary, the superiority of a parallel registration algorithm as compared to a sequential registration algorithm
is shown, as the parallel registration algorithms are able to reconstruct the plane and the divergent wavefront
without gaps. Especially the IFPR algorithm attains a small RMS overlap mismatch between the segments down
to a few tens of nanometers which is for the divergent wavefront a factor of 10 smaller than the RMS overlap
mismatch attained by the ICP algorithm.

Table 1: Computation time of the ICP, PR, FPR and IFPR algorithm for the reconstruction of
the plane and the divergent wavefront. The algorithms run on a personal computer (2.6GHz).

ICP PR FPR IFPR
plane (s) 3.7 680 0.2 0.37

divergent (s) 8.5 1000 0.3 2

4. CONCLUSION

In this paper, an experimental evaluation of parallel registration algorithms, in particular, the PR,5 the FPR6

and the IFPR7 algorithm is presented. The evaluation is based on two use cases, i.e. the reconstruction of
a plane and a divergent wavefront generated by a meniscus lens and a microscope objective, respectively. In
the scope of the evaluation, the well-known ICP algorithm is considered as a benchmark. The ICP algorithm
reconstructs both wavefronts with at least one gap. A reason for this is that the ICP algorithm registers the
segments sequentially while the other algorithms register the segments in parallel, where the accumulation of
registration errors is typically reduced. The PR algorithm attains moderate results which can be explained by
the fact that the PR algorithm is more prone to get stuck in local minimal than the IFPR and FPR algorithm.
The FPR algorithm shows a good registration performance with respect to the plane wavefront where an RMS
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(a) ICP
RMS = 19µm
PV = 161µm

RMS OM = 1400nm

(b) PR
RMS = 1.9µm
PV = 34µm

RMS OM = 467nm
RMS OMred = 420nm

(c) FPR
RMS = 0.88µm
PV = 32µm

RMS OM = 1000nm
RMS OMred = 276nm

(d) IFPR
RMS = 0.39µm
PV = 26µm

RMS OM = 173nm
RMS OMred = 68nm

(e) FPR (f) IFPR

Figure 4: Divergent wavefront. A sphere is fitted into the reconstructed divergent wavefront and the difference
between the reconstructed wavefront and the sphere is illustrated for the ICP (a), PR (b), FPR (c,e) and IFPR
(d,f) algorithm. (e) and (f) show the same results as (c) and (d), respectively, at a different scale. The RMS
and the PV of the difference are determined along with the RMS overlap mismatch (OM) between the registered
segments.

overlap mismatch between the segments of 17nm is attained. The IFPR algorithm attains the smallest RMS
overlap mismatch with 14nm for the plane wavefront and 173nm for the divergent wavefront. The RMS overlap
mismatch in the divergent wavefront decreases to 68nm, if parts of the wavefront are omitted that include
high-frequency dynamics due to occlusions in the microscope objective.
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