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A concept for the fast measurement and reconstruction of optical wavefronts using Shack-Hartmann
sensors (SHS) is presented. For wavefronts with a diameter at the scale of several tens of millimeters,
hundreds of measurements with an SHS may be necessary to cover the wavefront. In the proposed concept
a few SHS are used to measure about 2 % of the entire wavefront, providing sufficient measurement data
for a successful reconstruction of the wavefront. The small number of SHS mounted in parallel makes the
concept suitable for time-critical applications. A simulation analysis is performed and an experimental
validation of the concept is presented, demonstrating that the wavefront can be reconstructed with an RMS
error of about 100 nm.
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1. INTRODUCTION

Wavefront sensors are frequently used in industry for assessing
optical systems. By measuring the optical wavefront, they pro-
vide non-contact measurements of optical systems and enable
a direct measurement of the optical performance. Especially,
Shack-Hartmann sensors (SHS) are popular wavefront sensors,
because of their compactness, insensitivity to vibrations, and
reference-free measurement [1, 2]. To enable the measurement
of wavefronts with a diameter larger than the diameter of
the sensor aperture shrinking optics in combination with null
optics can be used. However, supporting optics can reduce the
accuracy of the measurement, as they may cause additional
errors in the wavefront [3]. In an alternative approach, the
wavefront is scanned with an SHS, such that no supporting
optics are necessary [4–6]. Using a positioning system, the SHS
measures the wavefront at several locations. The measurements
partially overlap to enable the reconstruction of the wavefront
using registration algorithms [7–11]. While the registration can
be carried out in hundreds of milliseconds, the measurement can
be time-consuming, as a large number of SHS measurements
(>100) are necessary to cover the entire wavefront. This
may result in measurement times of minutes unsuitable for
time-critical applications, such as inline metrology.

The contribution of this paper is a concept for the sparse
measurement and modal reconstruction of large plane wave-
fronts using SHS. This enables a significant decrease in
the measurement time as compared to a registration-based
approach. Section 2 introduces the concept. Section 3 presents
a simulation analysis of the concept and Section 4 presents an
experimental proof of the concept. Section 5 concludes the
paper.

2. CONCEPT

A. Wavefront measurement
The wavefront is measured with an SHS at a few positions as
illustrated in Fig. 1a. A percentage of about 2% of the wavefront
is measured and used to reconstruct the wavefront.
The SHS measures the gradients of the wavefront at grid points
defined by the lenslet array in the aperture of the sensor. This re-
sults in a set of gradient measurements for each sensor position.
The sets of gradient measurements and the respective sensor
positions are then used to estimate the wavefront. In particu-
lar, the coefficients of a linear combination of polynomials, e.g.
Zernike polynomials [12], are estimated from the measurement
data where the linear combination corresponds to the estimated
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wavefront.
In Fig. 1b an experimental setup is illustrated. In front of the
measurement system, a condenser lens is positioned generating
a wavefront with a diameter of around 92 mm. The measure-
ment system consists of 5 SHS which measure in total 1.4% of
the wavefront. In Section 4 details with respect to the setup
are presented and an experimental evaluation of the concept is
discussed.
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Fig. 1. (a) Measurement concept. The wavefront is measured
at a few positions with an SHS. (b) Experimental setup of the
measurement concept. The measurement system comprises 5
SHS. A condenser lens generates a plane wavefront which is
measured by the system.

B. Wavefront reconstruction
The nominal positions of the gradient measurements in the
global frame (FG) are given by

xul = ru + xl with xul = (x1ul , x2ul) ∈ R2, (1)

where ru is the nominal position of SHS u (u = 1..U) and xl
is the position of the lenslet l (l = 1..L) in the local coordinate
system of the SHS, as illustrated in Fig. 2. For a position xul , the
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Fig. 2. xul is the nominal position of one gradient measure-
ment (one lenslet) in FG.

measured gradient is represented by two scalar values, i.e.

gulk =
dW
dxk

∣∣∣
xul

+ εulk with k = 1, 2 , (2)

where W denotes the wavefront and εulk the measurement er-
ror. To enable the modal reconstruction of the wavefront, it is
assumed that the wavefront is well described by a linear combi-
nation of polynomials.

W =
N

∑
n=1

cn Zn, (3)

where Zn denotes a polynomial and cn ∈ R the respective un-
known coefficient. In this paper, Zernike polynomials are used
in Eq. 3. The coefficients are estimated in the least squares sense
[13], where a quadratic optimization problem given by

min
c1..cN

∑
u,l,k

(
gulk −

dW
dxk

∣∣∣
xul

)2

= min
c1..cN

∑
u,l,k

(
gulk − ∑

n
cn

dZn

dxk

∣∣∣
xul

)2,
(4)

is solved. To avoid coupling effects all polynomials with a non-
zero coefficient have to be considered in Eq. 3 [14].
The measurement error (εulk) is caused by noise as well as mis-
alignment of the sensor, i.e. a deviation of the sensor from its
nominal position and alignment. Translational misalignment
defines the deviation from the nominal position and is described
by three parameters, each corresponding to a translation of the
sensor with respect to one spatial dimension. Rotational mis-
alignment corresponds to a deviation from the nominal align-
ment and is defined by three angles reflecting roll, pitch, and
yaw of the sensor (see Fig. 3). Simulation analysis shows that the
estimation of the coefficients is highly sensitive to pitch and yaw
and a reduction of the influence of these quantities on the estima-
tion is typically necessary. The contributions of pitch and yaw to
the measurement error (εulk) at position xul can be expressed by

εul1 = εrest
ul1 + η

yaw
u and

εul2 = εrest
ul2 + η

pitch
u ,

(5)
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Fig. 3. Rotational misalignment of the SHS.

where εrest
ulk comprises the contributions of all other error sources.

Pitch and yaw have no influence on the derivative of the wave-
front with respect to x1 and x2, respectively, which enables the
following compact expression of Eq. 5

εulk = εrest
ulk + ηuk with k = 1, 2, (6)

where ηuk is the measurement error caused by pitch and yaw.
The fact that ηuk does not depend on the lenslet index l, moti-
vates the additional estimation of this error to obtain a decou-
pling of the coefficients and pitch and yaw. For this, Eq. 4 is
extended to the following optimization problem

min
c1..cN ,η11..ηU2

∑
u,l,k

(
gulk − ηuk − ∑

n
cn

dZn

dxk

∣∣∣
xul

)2, (7)

which corresponds to the least squares estimation of the coef-
ficients and the error caused by pitch and yaw. Owing to the
decoupling, a significant reduction of the influence of pitch and
yaw on the estimation of the coefficients is obtained. If the
Zernike polynomials for vertical and horizontal tilt are used in
Eq. 3, two terms are added to Eq. 7 given by

(
∑
u

ηu1
)2 and

(
∑
u

ηu2
)2. (8)

With these terms, the mean values of the pitch and yaw of the
sensors are defined as 0. Owing to this definition unique results
for the coefficients of vertical and horizontal tilt are obtained.
The problem of Eq. 7 can be transformed to a matrix equation
given by

QT Q A = QT G, (9)

with Q ∈ R(2UL)×(N+2U), A ∈ RN+2U and G ∈ R2UL. The
explicit expressions of the quantities of Eq. 9 are as follows:

Q =




dZ1
dx1

∣∣∣
x11

. . dZN
dx1

∣∣∣
x11

1 0 0 . . 0

dZ1
dx2

∣∣∣
x11

. . dZN
dx2

∣∣∣
x11

0 1 0 . . 0

...
...

...
...

dZ1
dx1

∣∣∣
xUL

. . dZN
dx1

∣∣∣
xUL

0 . . 0 1 0

dZ1
dx2

∣∣∣
xUL

. . dZN
dx2

∣∣∣
xUL

0 . . 0 0 1




, (10)

A =




c1
...

cN

η11

η12
...

ηU1

ηU2




and G =




g111

g112
...
...
...
...

gUL1

gUL2




. (11)

The additional estimation of the misalignment parameters,
suggested by Eq. 7, is successful as long as Q remains well-
conditioned, meaning that the column vectors in Q are not too
close to linear dependence. This is important to keep the influ-
ence of measurement errors, such as noise, sufficiently small. If
the column vectors are too close to linear dependence, Eq. 7 does
not lead to the desired decoupling and additional measurements
have to be carried out to calibrate the system with respect to the
misalignment parameters.

3. SIMULATION ANALYSIS

In the following sections, the dependence of the reconstruction
performance on the number of sensors, sensor misalignment,
and measurement noise is analyzed. In particular, the influence
of one quantity on the reconstruction error is evaluated per
section, while the other quantities remain equal to a reference
configuration introduced in Section A.

A. Simulation settings
The simulated wavefront consists of a combination of the first 15
Zernike polynomials and is illustrated in Fig. 4. It has a peak-to-
valley (PV) of 14 µm and a diameter of 92 mm. The measurement
with an SHS is simulated using in-house software based on Mat-
lab (The MathWorks Inc., Natick, MA, USA) and OpticStudio
(Zemax LLC, Kirkland, WA, USA). Measurement noise as well
as sensor misalignment are simulated to obtain a realistic simu-
lation. With the simulated measurement data, the wavefront is
reconstructed based on the algorithm presented in Section B. In
particular, the estimator of Eq. 7 is used to determine the coeffi-
cients of the Zernike polynomials of the first 4 orders, leading
to 14 coefficients as piston cannot be determined from gradient
measurements.
To evaluate the result, the reconstruction error is determined,
which is defined as the difference between the exact wavefront
and the reconstructed wavefront. Before the difference between
the wavefronts is determined, the reconstructed wavefront is
fitted into the exact wavefront using rigid body transformation
and wavefront propagation to compensate for misalignment and
phase differences between the wavefronts [7].
A simulation with 5 SHS is presented in this section where the
respective simulation settings are used as a reference configura-
tion in the simulation analysis of the subsequent sections. The
nominal sensor positions are given by

(x, y) [mm] = (0, 0), (30, 30), (30,−30), (−30, 30), (−30,−30),

and are illustrated in Fig. 5a, where the red squares represent
the sensor apertures with a side length of 3.9 mm. Each sensor
aperture includes a 52× 52 lenslet array (2704 lenslets) with each

Post-print version (generated on 25.09.2023)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Nikolaus Berlakovich, Ernst Csencsics, Damian Senoner, and Georg Schitter , “Fast modal
reconstruction of large plane wavefronts from sparse measurements using Shack–Hartmann sensors,”Applied Optics, Vol.
62, Issue 26, pp. 6986-6992, 2023. DOI: 10.1364/AO.493076
© 2023 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modifications of the content of this paper are prohibited.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1364/AO.493076


Research Article Applied Optics 4

Fig. 4. The wavefront (PV=14 µm) is a linear combination of
the first 15 Zernike polynomials and measured at 5 sensor
positions (sensor apertures illustrated with red squares).

lenslet covering an area of 75 × 75 µm2. Noise in the gradient
measurements is simulated with a standard deviation of the
angle of slope equal to 30 µrad, which is a realistic value for
noise in an SHS [15]. All sensors are randomly misaligned,
where the translational and rotational misalignment have an
expected standard deviation of 100 µm and 1 mrad, respectively
[16]. With five SHS 1.4 % of the wavefront is measured. The
wavefront is reconstructed with the measurement data and the
respective reconstruction error is shown in Fig. 5b. The RMS
value of the reconstruction error is equal to 99 nm. The wavefront
is successfully reconstructed using the estimator of Eq. 7, where
the pitch and yaw of the sensors are estimated along with the
Zernike-coefficients. Simulation shows that the pitch and yaw
of each sensor are estimated with a relative error of around 2 %.

B. Influence of sensor number
Sensor configurations with 3, 5, 13, and 17 SHS are considered for
the evaluation of the number of sensors. As the reconstruction
of the wavefront is influenced by the sensor arrangement as
well, lower-number sensor configurations are included in higher-
number sensor configurations, leading to a better observation of
the effects related to the number of sensors. The arrangement
of the sensors for all configurations is illustrated in Fig. 6a. The
dependence of the RMS reconstruction error on the number of
SHS is illustrated in Fig. 6b. As expected, the reconstruction
error decreases with a higher number of sensors, as with more
measurements the influence of noise and sensor misalignment
on the estimation of the coefficients (see Eq. 6) decreases. For
sensor numbers below 5, the reconstruction error appears highly
sensitive to the number of sensors, resulting in a decrease of the
RMS reconstruction error by a factor of 24 when increasing the
number of sensors from 3 to 5. A further increase to 17 sensors
measuring 4.6 % of the wavefront leads to a decrease of the RMS
reconstruction error from 99 nm (5 sensors) to 25 nm.

C. Influence of sensor misalignment
Uncertainties in manufacturing and assembly lead to a misalign-
ment of the lenslet array within the housing of the sensor and a
misalignment of the sensors mounted in the experimental setup

(a)

(b)

Fig. 5. (a) Arrangement of the 5 SHS (red squares illustrate
sensor apertures). (b) Difference between the reconstructed
wavefront and the exact wavefront (=reconstruction error)
with an RMS value of 99 nm.

(see Fig. 1b). The combination of the misalignment of the lenslet
array and the sensor can be considered as a misalignment of
the ideal sensor in the experimental setup, where in the ideal
sensor no misalignment of the lenslet array exists. The misalign-
ment is divided into translational and rotational misalignment,
where each type of misalignment is described by three param-
eters (see Section B). In the simulation, values drawn from a
zero-mean Gaussian distribution are assigned to the parameters
of misalignment. The dependence of the RMS reconstruction
error on the standard deviation (σ) of the translational misalign-
ment of the ideal sensor is depicted in Fig. 7. Two curves are
determined, each for a specific σ of rotational misalignment (i.e.,
pitch, yaw and roll) equal to 1 and 2 mrad. An approximately lin-
ear dependence of the reconstruction error on the translational
misalignment is observed, where the RMS reconstruction error
increases by about 1.4 nm if σ of the translational misalignment is
increased by 10 µm. An increase of σ of rotational misalignment
from 1 to 2 mrad results in an increase of the RMS reconstruction
error of about 2 nm.
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Fig. 6. (a) Arrangement of the SHS. A sensor aperture (=red
square) is used for each number of sensors greater or equal
to the value next to the aperture. (b) Dependence of the RMS
reconstruction error (logarithmic scale) on the number of SHS.

D. Influence of noise

There are different sources for measurement noise, such as back-
ground light, readout, or dark currents [17]. The gradient mea-
surement at a lenslet provides two values corresponding to the
slopes of the wavefront with respect to the two spatial dimen-
sions in the plane of the lenslet array. The noise is simulated by
adding an individual error to each measured slope where the
error is drawn from a Gaussian distribution with a mean of zero.
The dependence of the RMS reconstruction error on the standard
deviation of the noise is illustrated in Fig. 8. A linear relation-
ship between the two quantities is observed where the RMS
reconstruction error starts at 23 nm (σ = 0 µrad) and increases
by around 27 nm if σ is increased by 10 µrad. For σ = 60 µrad
the RMS reconstruction error is 185 nm.

4. EXPERIMENTAL VALIDATION OF THE CONCEPT

The experimental setup is illustrated in Fig. 1b. The measure-
ment system consists of 5 commercial SHS (AR3, Optocraft,
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Fig. 7. Dependence of the RMS reconstruction error on σ of
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Fig. 8. Dependence of the RMS reconstruction error on σ of the
noise in the measurement.
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Erlangen, Germany) with an arrangement equal to Fig. 5a. The
lenslet array of one SHS contains 65 × 49 lenslets (3185 in total)
with a lens-pitch of 75 × 75 µm2 resulting in a detection area of
4.9 × 3.7 mm2. The sensors are mounted on an aluminum frame.
A condenser lens with a diameter of 100 mm and a focal length
of 400 mm is positioned in front of the measurement system
converting a spherical wavefront, generated by a multi-mode
fiber, into a plane wavefront, which is then measured by the
system. The 5 SHS measure in total 1.4 % of the entire wavefront.
The housing of the SHS with a cross-section of 29 × 29 mm2

limits the number of sensors per unit area. In Eq. 3 the Zernike
polynomials of the first 4 orders are considered to describe the
wavefront.
After the reconstruction of the entire wavefront with a diameter
of 92 mm, the measurement system is laterally shifted by
±10 mm to enable the measurement of the wavefront at
different locations. A linear stage is used for shifting the
measurement system (see Fig. 1b). In total, the wavefront is
measured at 6 distinct locations that are not used to reconstruct
the wavefront. For each location, the measured wavefront
segment is reconstructed using a state-of-the-art reconstruction
algorithm [18]. Owing to the high density of the gradient
measurements, the segments are precisely reconstructed with an
RMS reconstruction error of a few nanometers. The 6 segments
are then fitted into the entirely reconstructed wavefront at
the respective measurement locations and the RMS difference
between the segments and the wavefront is determined as a
measure of the reconstruction quality.
The wavefront is reconstructed one time with the estimator of
Eq. 4 (pitch/yaw-estimation off) and one time with the estimator
of Eq. 7 (pitch/yaw-estimation on) and the results are illustrated
in Fig. 9a and Fig. 9b, respectively. The fitted segments are also
depicted. The estimator of Eq. 7, successfully reconstructs the
wavefront, as it attains a small RMS difference between the
segments and the wavefront of 9.5 nm. Using the estimator of
Eq. 4, where pitch and yaw are not estimated, leads to an RMS
difference of 112 nm. The result shows the high sensitivity of the
estimation quality with respect to pitch and yaw, underlining
the importance of the calibration of the system with respect to
these misalignment parameters, as suggested by Eq. 7.
The measurement time of one SHS is at the scale of 40 ms
and the data is sent to a personal computer (2.6 GHz) where
the reconstruction of the wavefront is carried out in about 60 ms.

In summary, the reconstruction of a large plane optical
wavefront (diameter = 92 mm) from a sparse measurement cov-
ering about 2 % of the wavefront is successfully demonstrated.
A few SHS are used for the measurement. The wavefront is
reconstructed with an RMS error at the scale of 100 nm suitable
for the evaluation of optical systems.

5. CONCLUSIONS

The paper proposes a concept for the sparse measurement and
modal reconstruction of large plane wavefronts. A small fraction
of the wavefront is measured with a few SHS, and least squares
estimation is used to reconstruct the wavefront from the mea-
surements. A simulation analysis is carried out to evaluate the
reconstruction quality as well as the influence of measurement
errors, such as noise and misalignment of the sensors. Analysis
shows that a wavefront with a diameter of 92 mm can be recon-
structed with an RMS error of about 100 nm after a measurement
of 2 % of the wavefront. Furthermore, the functionality of the

(a) pitch/yaw-estimation off
RMS difference = 112 nm

(b) pitch/yaw-estimation on
RMS difference = 9.5 nm

Fig. 9. Six additional segments (black rectangles) of the wave-
front are measured and fitted into the reconstructed wavefront.
The RMS difference between the segments and the wavefront
is a measure of the reconstruction performance, as the seg-
ments are not used for the reconstruction.

concept is experimentally proven with a measurement system
containing 5 SHS. As the concept enables low measurement
times, it is suitable for time-critical applications including the
assessment of optical systems that generate large wavefronts
with a diameter of several tens of millimeters.
The relation between the reconstruction performance and the po-
sitions of the sensors is part of future research revealing sensor
arrangements optimized for the estimation of specific Zernike
modes in the wavefront.
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