Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 13.05.2016

LÖSUNG

Aufgabe 1:

a) Lösung zur Unteraufgabe

i.

$$x_{k+1} = x_k - T_a \sqrt{x_k} + \frac{T_a^2}{4}.$$

ii.

$$x_R = \frac{T_a^2}{16}$$

b)

$$G(z) = V_I \frac{T_a}{z - 1}$$

- c) Die Übertragungsfunktion $G^{\#}(q)$ ist BIBO-stabil, da ihre Pole $\left\{-\frac{1}{4}, -3\right\}$ in der linken offenen q-Halbebene liegen. Da sie eine Nullstelle bei $q = \Omega_0 = \frac{2}{T_a} = 4$ hat, ist sie nicht sprungfähig. Da keiner ihrer Pole bei $q = \Omega_0$ liegt, ist sie realisierbar.
- d) Lösung zur Unteraufgabe
 - i. Wegen $g_{1,0} \neq 0$ und $g_{2,0} = 0$ ist G_1 sprungfähig und G_2 nicht. Da $(g_{2,k})$ im Gegensatz zu $(g_{1,k})$ absolut summierbar ist

$$\sum_{k=0}^{\infty} |g_{1,k}| \to \infty, \qquad \sum_{k=0}^{\infty} |g_{2,k}| < \infty,$$

ist G_2 BIBO-stabil und G_1 nicht. Steuerungen können nur auf BIBO-stabile Strecken, im vorliegenden Fall also nur G_2 , angewandt werden.

ii. Das System ist genau dann vollständig beobachtbar und vollständig erreichbar, wenn die Hankelmatrix

$$\mathbf{H} = \begin{bmatrix} 2 & -1 & -2+p \\ -1 & -2+p & -2+p \\ -2+p & -2+p & -2+p \end{bmatrix}$$

regulär ist. Die Hankelmatrix lässt sich durch Zeilenoperationen auf die Matrix

$$\begin{bmatrix} 2 & -1 & -2+p \\ -3 & -1+p & 0 \\ -1+p & 0 & 0 \end{bmatrix}$$

überführen und ist somit für $p\notin\{1,2\}$ regulär.

Aufgabe 2:

a)
$$\operatorname{Rang}(\mathcal{O}) = \operatorname{Rang}\left(\begin{bmatrix} \mathbf{c}^{\mathrm{T}} \\ \mathbf{c}^{\mathrm{T}} \mathbf{A} \\ \vdots \\ \mathbf{c}^{\mathrm{T}} \mathbf{A}^{n-1} \end{bmatrix}\right) = 2 \rightarrow \operatorname{nicht} \text{ vollständig beobachtbar}$$

- b) Wenn die Bedingung $\omega_j = \frac{l\pi}{T_a}, l = \pm 1, \pm 2, \dots$ erfüllt ist geht Beobachtbarkeit verloren, wobei die Eigenwerte der Dynamikmatrix $\lambda_j = \alpha_j \pm \mathrm{I}\omega_j$ sind. Für (2) gilt somit $T_a \neq \frac{l\pi}{1}, l = \pm 1, \pm 2, \dots$
- c) Nein, da das das System Eigenwerte in der rechten Halbebene besitzt.

$$G(s) = \frac{s}{s^2 + 2s + 2}$$

- e) Nicht asymptotisch stabil, da Eigenwert bei $\lambda=1$
- f) Ja, da nur konj.-komplexes Polpar mit negativem Realteil $\lambda = -1 \pm I$.
- g) Mit Hilfe der Linearitätseigenschaft erhält man aus den gegebenen Lösungen

$$y(t) = \frac{11}{5}e^{-t}\cos(t) - \frac{13}{5}e^{-t}\sin(t) - \frac{1}{5}\cos(2t) + \frac{2}{5}\sin(2t).$$

Aufgabe 3:

a) i.

$$\dot{\mathbf{x}} = \begin{bmatrix} x_2 \\ ax_2 \cos x_1 - x_2 e^{x_1 - \pi} - x_3 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -\sin x_1 \end{bmatrix} u$$

$$u = x_1 - x_2 u^2$$

ii.

$$x_{1,R} = \begin{cases} bel. & u_R = 0 \\ k\pi, k \in \mathbb{Z} & u_R \neq 0 \end{cases}$$

$$x_{2,R} = 0$$

$$x_{3,R} = 0$$

iii. $\mathbf{x}_{R}^{\mathrm{T}}=\begin{bmatrix}\pi & 0 & 0\end{bmatrix}, u_{R} \neq 0$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -(a+1) & -1 \\ u_R & 1 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & -u_R^2 & 0 \end{bmatrix}, d = 0$$

iv. Als charakteristisches Polynom erhält man

$$\det(\mathbf{A} - \lambda \mathbf{E}) = -\lambda^3 - (a+1)\lambda^2 - \lambda - u_R.$$

Mit Hilfe des Routh-Hurwitz-Verfahrens erhält man folgende Bedingungen für asymptotische Stabilität:

$$u_R > 0$$

$$a > -1$$

$$a > u_R - 1$$

- b) i. Für die Fehlerdynamik des ersten Systems erhält man $\dot{e}=0.$
 - ii. Das zweite System hat die Fehlerdynamik $\dot{e}=-e$, welche die Lösung $e(t)=\mathrm{e}^{-t}e_0$ besitzt.

Aufgabe 4:

a) Die Forderung

$$T_{r_1,y_1}(s) = \frac{1}{1 + sT_*}.$$

kann durch $V_I = \frac{1}{10T_*}$ und $T_I = 2$ erfüllt werden. Der kleinstmögliche Wert von T_* , für den

$$\lim_{\omega \to \infty} |T_{r_1, u_1}(\mathrm{I}\,\omega)| \le 10$$

gerade noch erfüllt ist, lautet $T_* = \frac{1}{50}$.

b) Für eine exakte Störgrößenkompensation müsste

$$R_d(s) = \frac{1}{G_1(s)} = \frac{s + \frac{1}{2}}{5}$$

verwendet werden. Dies ist aber nicht möglich, da $R_d(s)$ nicht realisierbar ist.

c)

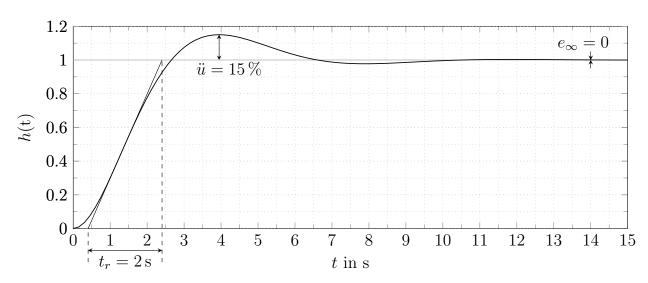


Abbildung 1: Sprungantwort.

- d) Kaskaden
regelung: $T_{r_1,y_1}(s) \approx 1$
 - Vorgaben: $\omega_C=2,\,\Phi=60^\circ$ und I-Anteil im Regler
 - Ansatz für den Kompensationsregler

$$R_2(s) = V_2 \frac{1 + 2\xi_2 s T_2 + (sT_2)^2}{s (1 + sT_r)}$$

• Bestimmung der Regler-Parameter

$$\arg(L_2(I \omega_C)) = -\frac{2\pi}{3} \Rightarrow T_r = \frac{2 - \sqrt{3}}{2} = \frac{1}{2(2 + \sqrt{3})},$$

$$|L_2(I \omega_C)| \stackrel{!}{=} 1 \Rightarrow V_2 = 16$$