Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 12.09.2025

Arbeitszeit: 150 min

Name:	
Vorname(n):	
Matrikelnummer:	Note:

Aufgabe	1	2	3	4	Bonus	Σ
erreichbare Punkte	10	10	10	10	5	40 + (5)
erreichte Punkte						

Bitte ...

- ... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,
- ... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,
- ... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,
- ... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und
- ... begründen Sie Ihre Antworten ausführlich.

Viel Erfolg!

- 1. Die Aufgaben a) und b) können unabhängig voneinander gelöst werden.
- 10 P.

a) Gegeben sind die Modellgleichungen

4 P.

$$\dot{x}_1 = ax_1 + \frac{1}{x_2} + u, x_2 \neq 0 \tag{1a}$$

$$\dot{x}_2 = 4x_1^2 x_2 - x_2 \tag{1b}$$

$$y = x_1 + 25,$$
 (1c)

mit dem Systemeingang u und dem Systemausgang y.

- i. Berechnen Sie sämtliche Ruhelagen $x_{1,R},\ x_{2,R}$ und y_R des Systems für 1.5 P. $u_R = -1$. Geben Sie außerdem den mathematisch zulässigen Wertebereich für den Parameter a an.
- ii. Linearisieren Sie das System (1) um eine allgemeine Ruhelage (\mathbf{x}_R, y_R, u_R) $2.5 \, P.$ und geben Sie die Zustandsraumdarstellung des linearisierten Systems an.
- b) Gegeben ist das lineare, zeitinvariante und zeitkontinuierliche dynamische Sys-6 P.|

$$\dot{\mathbf{x}} = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \tag{2a}$$

$$y = \begin{bmatrix} 3 & 3 \end{bmatrix} \mathbf{x} + u \tag{2b}$$

$$y = \begin{bmatrix} 3 & 3 \end{bmatrix} \mathbf{x} + u \tag{2b}$$

mit dem Anfangszustand $\mathbf{x}(0) = \mathbf{x}_0$.

- i. Überprüfen Sie, ob das System (2) asymptotisch stabil ist. $1.5 \, P.$
- ii. Ist das System vollständig erreichbar und vollständig beobachtbar? Liegt $1.5 \, P.$ eine minimale Zustandsrealisierung vor? Begründen Sie Ihre Antworten.
- iii. Bestimmen Sie die Übertragungsfunktion G(s) des Systems. Führen Sie $2.5 \, P.$ mögliche Pol-Nullstellen-Kürzungen durch. Ist die erhaltene Übertragungsfunktion realisierbar? Begründen Sie Ihre Antwort.
- iv. Ist das System BIBO-stabil? Begründen Sie Ihre Antwort. $0.5 \, P.$

a) i.
$$x_{1,R} = \pm \frac{1}{2}$$
, $x_{2R} = \frac{1}{1 - ax_{1,R}}$, $y_R = x_{1,R} + 25$, $a \in \mathbb{R} \setminus \{\frac{1}{x_{1,R}}\}$

ii. Das linearisierte System um die Ruhelage ist

$$\Delta \dot{\mathbf{x}} = \begin{bmatrix} a & -\frac{1}{x_{2,R}^2} \\ 8x_{1R}x_{2R} & 4x_{1,R}^2 - 1 \end{bmatrix} \Delta \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Delta u$$
$$\Delta y = \begin{bmatrix} 1 & 0 \end{bmatrix} \Delta \mathbf{x} + 0\Delta u$$

b) i. Die Eigenwerte des Systems sind $\lambda_1 = 3$ und $\lambda_2 = -1$. Das System ist nicht asymptotisch stabil.

ii.

- Das System ist vollständig erreichbar: Die Erreichbarkeitsmatrix hat Rang 2.

$$\mathcal{R} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

- Das System ist nicht vollständig beobachtbar: Die Beobachtbarkeitsmatrix hat Rang 1.

$$\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \mathbf{A} \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 9 & 9 \end{bmatrix}$$

- Die Zustandsrealisierung ist nicht minimal, da das Paar $\{A, B\}$ zwar vollständig erreichbar, das Paar $\{A, C\}$ aber nicht vollständig beobachtbar ist.

iii.

- Die Übertragungsfunktion lautet

$$G(s) = \frac{s(s+1)}{(s+1)(s-3)}$$

und nach der Pol-Nullstellenkürzung

$$G(s) = \frac{s}{s-3}.$$

- Die Übertragungsfunktion G(s) ist realisierbar, da der Zählergrad von G(s) gleich dem Nennergrad ist und damit die Bedingung für die Realisierbarkeit erfüllt ist.
- iv. Das System ist nicht BIBO-stabil, da die Übertragungsfunktion G(s) einen Pol in der rechten offenen s-Halbebene (bei s=3) enthält.

10 P.

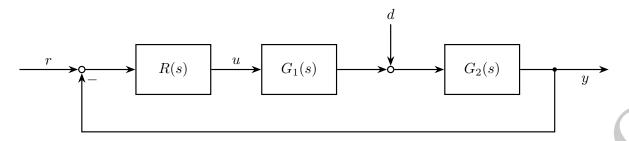


Abbildung 1: Regelkreis

a) Für die Teilstrecken

5 P.

$$G_1(s) = \frac{1}{s+2}, G_2(s) = \frac{s+3}{s}$$
 (3)

soll ein Regler in einem Regelkreis nach Abbildung 1 entworfen werden. Die Struktur des Reglers ist in der Form eines Proportionalgliedes

$$R(s) = V \text{ mit } V > 0, \tag{4}$$

gegeben.

- i. Geben Sie für den Regelkreis in Abbildung 1 unter Verwendung der Übertragungsfunktionen der Teilstrecken (3) und des Reglers (4) die Übertragungsfunktion des offenen Regelkreises L(s) sowie die Übertragungsfunktionen $T_{r,y}(s) = \frac{\hat{y}(s)}{\hat{r}(s)}$ und $T_{d,y}(s) = \frac{\hat{y}(s)}{\hat{d}(s)}$ an.
- ii. Bestimmen Sie den Verstärkungsfaktor V, sodass für den Regelkreis in Abbildung 1 ohne Störung (d=0) eine Regelabweichung $e_{\infty}=\frac{1}{2}$ zufolge eines rampenförmigen Testsignals r(t)=t erzielt wird.
- iii. Wie bzw. um welchen Anteil muss das Regelgesetz (4) erweitert werden, damit es zu keiner bleibenden Regelabweichung ($e_{\infty} = 0$) zufolge eines rampenförmigen Testsignals r(t) = t kommt? Formulieren Sie dazu ein möglichst einfaches Regelgesetz als Übertragungsfunktion $R_0(s)$. Ist der geschlossene Regelkreis mit den Teilstrecken (3) und $R_0(s)$ für V > 0 BIBO-stabil? Begründen Sie Ihre Antwort.
- b) Gegeben ist die Eingangsfolge

5 P.|

 $2.5 \, P.$

$$u_k = (1^k), \ k \ge 0$$

und die resultierende Ausgangsfolge

$$y_k = (0, \alpha, 1, 3, -2, \beta, 0, 0...),$$

wobei der Index k bei 0 startet $(y_1 = \alpha)$.

- i. Bestimmen Sie die Impulsantwort (g_k) des Systems sowie die Parameter α 2.5 P.| und β , sodass $g_k = 0$ für $k \in \{1, 5\}$.
- ii. Überprüfen Sie anhand der Impulsantwort (g_k) mit den zuvor berechneten 0.5 P.| Werten für α und β , ob das System BIBO-stabil ist.
- iii. Geben Sie die Übertragungsfunktion G(z) des Systems an. Ist die Übertragungsfunktion realisierbar? Begründen Sie Ihre Antwort.
- iv. Ist das System sprungfähig? Begründen Sie Ihre Antwort. 0.5 P.|

a) i.

$$L(s) = V \frac{s+3}{s(s+2)}$$

$$T_{r,y}(s) = \frac{L(s)}{1+L(s)} = \frac{V(s+3)}{s(s+2)+V(s+3)}$$

$$T_{d,y}(s) = \frac{G_2(s)}{1+L(s)} = \frac{(s+2)(s+3)}{s(s+2)+V(s+3)}$$

ii. $e_{\infty} = \frac{2}{3V} \stackrel{!}{=} \frac{1}{2} \to V = \frac{4}{3}$

iii. Das Regelgesetz ist intuitiv (in einem ersten Schritt) um ein Integral-Glied (Integrator) zu erweitern, damit es bei einem rampenförmigen Testsignal r(t) zu keiner bleibenden Regelabweichung kommt. Das Regelgesetz $R_0(s)$ kann wie folgt formuliert werden:

$$R_0(s) = \frac{V}{s}.$$

Mit $R_0(s)$ errechnet sich die neue Übertragungsfunktion des geschlossenen Regelkreises $T_{0,r,y}(s)$ zu

$$T_{0,r,y}(s) = \frac{L_0(s)}{1 + L_0(s)} = \frac{s+3}{s^3 + 2s^2 + Vs + 3V}.$$

Der geschlossene Regelkreis mit $R_0(s)$ ist nicht BIBO-stabil, da das Nennerpolynom von $T_{0,r,y}(s)$ kein Hurwitzpolynom ist, wie z.B. mit dem Rough-Hurwitz Verfahren gezeigt werden kann.

Eine Berechnung der Polstellen zeigt, dass der geschlossene Regelkreis aufgrund einer konjugiert komplexen Polstelle außerhalb der linken offenen s-Halbebene nicht BIBO-stabil ist.

Im nächsten Schritt müsste deshalb korrekter Weise $R_0(s)$ noch um ein Lead-Glied erweitert werden, um die Realisierung sicherzustellen, wobei dieser Schritt hier allerdings nicht mehr gefragt ist.

b) i. $(g_k) = (0, 0, 1, 2, -5, 0, 2, 0, 0, \dots), \ \alpha = 0, \ \beta = -2$

 $ii.\ Da\ g(t)\ absolut\ integrabel\ ist,\ ist\ das\ System\ BIBO-stabil.$

iii.

- Die Übertragungsfunktion ergibt sich zu

$$G(z) = z^{-2} + 2z^{-3} - 5z^{-4} + 2z^{-6} = \frac{z^4 + 2z^3 - 5z^2 + 2}{z^6}$$

- Da der Zählergrad von G(z) kleiner als der Nennergrad ist, ist die Übertragungsfunktion realisierbar.
- iv. Das System ist nicht sprungfähig, da der Zählergrad von G(z) kleiner als der Nennergrad ist (bzw. weil $g_0 = 0$).

5

- 3. Die Aufgaben a) und b) können unabhängig voneinander gelöst werden.
- 10 P.

a) Gegeben ist das zeitdiskrete, lineare, zeitinvariante System

4 P.

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} \alpha \\ 0 \\ 2 \end{bmatrix} u_k$$
 (5a)

$$y_k = \begin{bmatrix} 1 & 0 & \beta \end{bmatrix} \mathbf{x}_k \tag{5b}$$

mit $\alpha, \beta \in \mathbb{R}$.

- i. Geben Sie die Wertebereiche für α und β an, sodass das System (5) voll-1 P. ständig erreichbar, aber nicht vollständig beobachtbar ist.
- ii. Nehmen Sie nun an, dass in (5) $\alpha = 1$, $\beta = -3$ gilt. Außerdem ist die 3 P. inverse Hankelmatrix

$$(\mathbf{H}_d)^{-1} = \frac{1}{7} \begin{bmatrix} 0 & -5 & 2 \\ -5 & 17 & -6 \\ 2 & -6 & 4/3 \end{bmatrix}$$
 (6)

gegeben. Geben Sie die Matrix \mathbf{k}^{T} einer Zustandsrückführung $u_k = \mathbf{k}^{\mathrm{T}} \mathbf{x}_k$ an, sodass der geschlossene Regelkreis die Eigenwerte $0, 0, \frac{1}{2}$ besitzt. *Hinweis:* Die inverse Erreichbarkeitsmatrix $\mathcal{R}(\Phi, \Gamma)^{-1}$ kann direkt aus (6) und der Beobachtbarkeitsmatrix $\mathcal{O}(\Phi, \Gamma)$ berechnet werden, ohne dass Sie Matrizen invertieren müssen.

b) Für das lineare, zeitinvariante und zeitkontinuierliche dynamische System

6 P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{7a}$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{7a}$$
$$y = \mathbf{c}^{\mathrm{T}}\mathbf{x} \tag{7b}$$

sind die Vektoren $\mathbf{b}=\left[\begin{array}{cc} 0 & 1\end{array}\right]^{\mathrm{T}}$ und $\mathbf{c}^{\mathrm{T}}=\left[\begin{array}{cc} 1 & 1\end{array}\right]$ sowie die Transitionsmatrix

$$\mathbf{\Phi}(t) = \begin{bmatrix} 1 & 2(1 - e^{-t/2}) \\ 0 & e^{-t/2} \end{bmatrix}$$

gegeben.

i. Berechnen Sie die Dynamikmatrix A.

1 P.

3 P.|

ii. Berechnen Sie die Ausgangstrajektorie y(t) des Systems (7) für den Anfangszustand $\mathbf{x}(0) = \begin{bmatrix} -1 & \frac{1}{2} \end{bmatrix}^{\mathrm{T}}$ und den Eingang $u(t) = u_0 \sigma(t)$.

iii. Das System (7) wird nun mit einer Abtastzeit T_a diskretisiert. Geben Sie 2 P. die Systemmatrizen des diskretisierten Systems

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}u_k \tag{8a}$$

$$y_k = \mathbf{C}\mathbf{x}_k + \mathbf{D}u_k \tag{8b}$$

an.

a) i. Determinante der Erreichbarkeitsmatrix ist $-\frac{7}{2}\alpha^2 \implies \alpha \neq 0$. Determinante der Beobachtbarkeitsmatrix ist $\frac{7}{4}\beta \implies \beta = 0$.

$$ii. \ \mathbf{k}^{\mathrm{T}} = \left[\begin{array}{ccc} -3 & 3 & 0 \end{array} \right] \, .$$

b) *i*.

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{1}{2} \end{array} \right]$$

ii.
$$y(t) = -\frac{1}{2}e^{-t/2} + 2u_0(t - 1 + e^{-t/2})$$

iii.

$$\mathbf{\Phi} = \begin{bmatrix} 1 & 2(1 - e^{-T_a/2}) \\ 0 & e^{-T_a/2} \end{bmatrix}, \ \mathbf{\Gamma} = \begin{bmatrix} 2T_a + 4(e^{-T_a/2} - 1) \\ 2(1 - e^{-T_a/2}) \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 1 \end{bmatrix}, \ \mathbf{D} = 0$$

- 4. Die Aufgaben a), b) und c) können unabhängig voneinander gelöst werden.
- 10 P.|

a) Gegeben ist die Übertragungsfunktion

2.5 P.

$$G(s) = \frac{1 - \frac{s}{5}}{1 + 5s} \ .$$

Berechnen Sie hieraus die Übertragungsfunktion G(z) für eine allgemeine Abtastzeit T_a .

b) Gegeben ist die Übertragungsfunktion

4.5 P.

$$G^{\#}(q) = \frac{1 - \frac{q}{5}}{1 + 6q + q^2} \ . \tag{9}$$

Berechnen Sie die Parameter $V,\ T,\ \rho$ der Reglerübertragungsfunktion

$$R^{\#}(q) = \frac{V(1+qT)}{q^{\rho}}$$

mithilfe des Frequenzkennlinienverfahrens so, dass der geschlossene Regelkreis folgende Spezifikationen erfüllt:

- Anstiegszeit: $t_r = 2.4$ s
- Überschwingen: $\ddot{u} = 2\%$
- Bleibende Regelabweichung: $e_{\infty} = 0$ bei $r_k = 1^k$

Hinweis: $\arctan(\frac{1}{10}) \approx 6^{\circ}$, $\arctan(4) \approx 76^{\circ}$, $\tan(60^{\circ}) = \sqrt{3}$.

c) Skizzieren Sie die Betrags- und Phasenkennlinie der Übertragungsfunktion

3 P.

$$G(s) = -10 \frac{s - 10^5}{10^4 + 100s + s^2}$$

in der hinten angefügten Beilage.

a)
$$G(z) = 1 - \frac{26}{25} \frac{z - 1}{z - e^{-T_a/5}}$$
.

b) $\rho \geq 1$ (wähle der Einfachheit halber z.B. $\rho = 1), \, T = 2\sqrt{3}, \, und$

$$V = \frac{1}{|\frac{(1-I/10)(1+\sqrt{3}I)}{I/2(3/4+3I)}|}$$

c) Das Bode-Diagramm kann in Abbildung 2 gefunden werden.

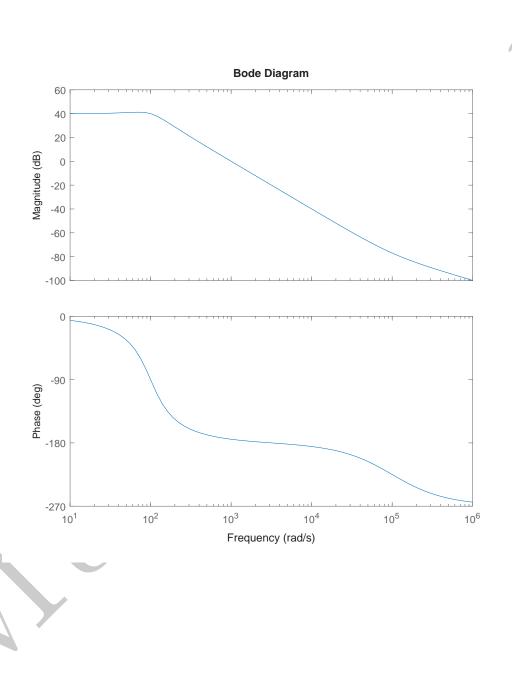


Abbildung 2: Bode-Diagramm aus Aufgabe 4c.