Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 05.04.2024

Arbeitszeit: 150 min

Name:

Vorname(n):

Matrikelnummer:

Note:

Aufgabe	1	2	3	BP	Σ
erreichbare Punkte	13	16	11	5	40
erreichte Punkte					

Bitte ...

- ... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,
- ... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,
- ... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,
- ... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und
- ... begründen Sie Ihre Antworten ausführlich.

Viel Erfolg!

1. Mit dem im Abbildung 1 dargestellten Seiltrieb soll mithilfe der Antriebsrolle A (Radius R_1) eine Kraft f_e über ein Seil auf die Rolle E (Radius R_2) ausgeübt werden. Die Rollen E und B (Radius r) sind fest miteinander verbunden. Das Seil wird reibungsfrei über eine Spannrolle C und eine Umlenkrolle D, welche jeweils den Radius r haben, geführt. Die Spannrolle ist an einem Arm der Länge l befestigt auf welchen das Moment τ_t wirkt. Die Rollen werden masselos angenommen. Zwischen dem Seil und der Antriebsrolle A sowie der Rolle B herrscht Haftung, sprich, das Seil rutscht nicht durch.

13 P.

Hinweis: Der Unterpunkt g) kann unabhängig von den anderen Punkten gelöst werden.

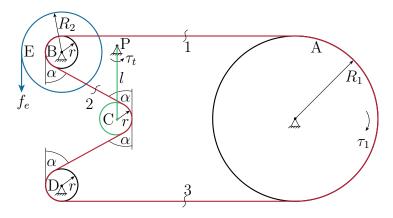


Abbildung 1: Seiltrieb.

- a) Schneiden Sie die Antriebsrolle A, die Rolle E gemeinsam mit B sowie den 3.75 P. | Arm gemeinsam mit der Spannrolle C frei, fertigen Sie eine Schnittskizze an und zeichnen Sie alle relevanten Kräfte ein.
- b) Berechnen Sie die Seilkräfte an den Stellen 1, 2 und 3.
- c) Berechnen Sie das notwendige Antriebsmoment τ_1 damit f_e wirkt.
- d) Wie groSS muss τ_t mindestens sein, damit das Seil an keinem der Schnittpunkte 1.5 P. | 1, 2 oder 3 die Spannung verliert $(f_{s,i} > 0, i = 1, ..., 3)$.
- e) Berechnen Sie den Haftreibungskoeffizienten μ_H zwischen Seil und Rolle B so, 1.5 P. dass das Seil nicht rutscht.
- f) Berechnen Sie die Lagerkräfte an der Rollenkonstruktion B mit E. 1.5 P.
- g) Nehmen Sie nun an, dass die Spannrolle C die Masse m_C und das Trägheitsmo- 1.25 P. | ment I_C um den Schwerpunkt hat und der Arm (homogener dünner Stab) die Masse m_A und das Trägheitsmoment I_A um den Schwerpunkt hat. Berechnen Sie das Trägheitsmoment der Kombination aus Arm und Spannrolle C um den Drehpunkt P.

Lösung:

a) Schnittskizze: siehe Abbildung 2

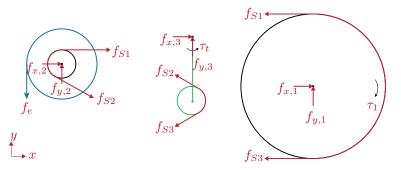


Abbildung 2: Freischnitt Bsp. 1.

b) Hinweis: Werden die Spannrolle C und der Arm getrennt freigeschnitten folgt aus der Drehmomentenbilanz für die Spannrolle C unmittelbar, dass $f_{S2} = f_{S3}$ gilt.

$$f_{S1} = f_e \frac{R_2}{r} + \frac{\tau_t}{2l\sin(\alpha)}$$
$$f_{S2} = \frac{\tau_t}{2l\sin(\alpha)}$$

- $c) \tau_1 = f_e \frac{R_1 R_2}{r}$
- $d) \tau_t > 0$
- $e) \mu_h \ge \frac{1}{\frac{\pi}{2} + \alpha} \ln \left(\frac{f_{S1}}{f_{S2}} \right) = \frac{1}{\frac{\pi}{2} + \alpha} \ln \left(1 + \frac{f_e R_2 2l \sin(\alpha)}{\tau_t r} \right)$
- f) $f_{2x} = -f_e \frac{R_2}{r} \frac{\tau_t}{2l} \left(1 + \frac{1}{\sin(\alpha)} \right)$ $f_{2y} = f_e + \frac{\tau_t}{2l \tan(\alpha)}$
- g) $I = I_C + m_C l^2 + I_A + m_A \left(\frac{l}{2}\right)^2$

16 P. |

2. In Abbildung 3 ist links schematisch ein Fensterputzroboter dargestellt. Das System besitzt die Freiheitsgrade $\mathbf{q} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{q}_3 \ \mathbf{q}_4]^{\mathrm{T}}$, wobei \mathbf{q}_1 eine reine Translation in z_0 -Richtung, \mathbf{q}_3 eine reine Translation in y_1 -Richtung und \mathbf{q}_2 sowie \mathbf{q}_4 jeweils Rotationen um die z_1 - bzw. z_2 -Achse darstellen. Die Schwerpunkte der zwei vertikalen Ausleger befinden sich in den Punkten \mathbf{s}_1 und \mathbf{s}_2 .

Die Verhältnisse während des Putzvorgangs sind rechts in Abbildung 3 dargestellt. Der Abstand des Endeffektors zur Scheibenoberfläche s_E verkürzt sich durch die Krafteinwirkung f_E , gleichzeitig verbiegt sich die Scheibe leicht in y_F -Richtung. Dies lässt sich vereinfacht durch das dargestellte Federmodell dreier linearer Federn mit den Federkonstanten c_E und c_F sowie den entspannten Längen $s_{E,0}$ und $s_{F,0} = 0$ beschreiben. Die Durchbiegung der Scheibe ist mit s_F gegeben.

Hinweis: Die Aufgaben e bis g können unabhängig gelöst werden.

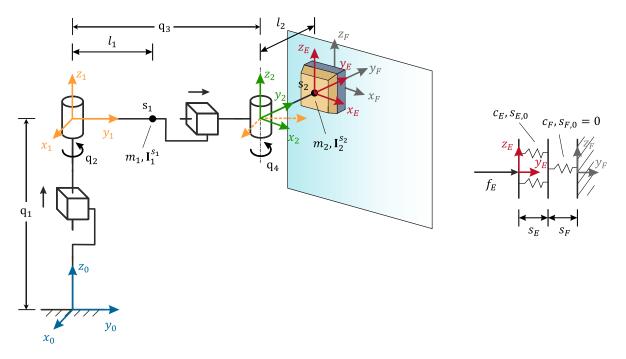


Abbildung 3: Fensterputzroboter.

- a) Geben Sie die homogenen Transformationen \mathbf{H}_0^1 , \mathbf{H}_1^2 , \mathbf{H}_2^E zwischen den Koordinatensystemen in den jeweiligen Punkten sowie \mathbf{H}_0^2 , \mathbf{H}_0^E zwischen dem Ursprung und den Koordinatensystemen in Abhängigkeit von \mathbf{q} an.
- b) Berechnen Sie die Vektoren $\mathbf{p}_0^{s_1}$ und $\mathbf{p}_0^{s_2}$ zu den Schwerpunkten s_1 und s_2 im 2 P. | Basiskoordinatensystem $0_0x_0y_0z_0$.
- c) Bestimmen Sie die Manipulator-Jacobi-Matrix $(\mathbf{J}_{\mathbf{v}})_0^{\mathbf{s}_1}$ sowie die Manipulator-Jacobi-Matrix der Winkelgeschwindigkeiten $(\mathbf{J}_{\omega})_0^{\mathbf{s}_1}$ und $(\mathbf{J}_{\omega})_0^{\mathbf{s}_2}$ in Abhängigkeit von \mathbf{q} .
- d) Bestimmen Sie den Anteil $\mathbf{M}_1(\mathbf{q})$ der Massenmatrix zufolge des Körpers 1. 2P. | Nehmen Sie für das Massenträgheitsmoment $\mathbf{I}_1^{s_1} = \mathrm{diag}\left(\left[I_{1,xx}^{s_1}\ I_{1,yy}^{s_1}\ I_{1,zz}^{s_1}\right]\right)$ bezüglich Koordinatensystem 1 an.
- e) Berechnen Sie die potentielle Energie der Federn in Abhängigkeit von der Kraft $1.5 \,\mathrm{P.}$ | f_E .

f) Berechnen Sie die maximale Federkraft $f_E \leq f^{max}$ so, dass der Abstand zwischen Endeffektor und Scheibe $s_E + s_F$ den Wert s^{min} nicht unterschreitet.

Nehmen Sie für die folgende Aufgabe an, dass für eine Pose mit festem ${f q}$ für die homogene Transformation und die Jacobi-Manipulator-Matrix

$$\mathbf{H}_{0}^{E} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & -\frac{4}{\sqrt{2}}l_{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}l_{2} \\ 0 & 0 & 1 & -\frac{2}{\sqrt{2}}l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$(\mathbf{J}_{\mathbf{v}})_{0}^{E} = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}}l_{2} & -1 & -\frac{1}{\sqrt{2}}l_{2} \\ 0 & -\frac{4}{\sqrt{2}}l_{2} & 0 & \frac{1}{\sqrt{2}}l_{2} \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

gilt.

g) Berechnen Sie die generalisierte Kraft $\mathbf{f}_{q,0}^E$, wenn am Endeffektor eine Kraft f_E 2 P. | in negative y_E -Richtung wirkt.

Lösung:

a)

$$\begin{split} \mathbf{H}_{0}^{1} &= \begin{bmatrix} \cos(\mathbf{q}_{2}) & -\sin(\mathbf{q}_{2}) & 0 & 0 \\ \sin(\mathbf{q}_{2}) & \cos(\mathbf{q}_{2}) & 0 & 0 \\ 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \mathbf{H}_{1}^{2} &= \begin{bmatrix} \cos(\mathbf{q}_{4}) & -\sin(\mathbf{q}_{4}) & 0 & 0 \\ \sin(\mathbf{q}_{4}) & \cos(\mathbf{q}_{4}) & 0 & \mathbf{q}_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \mathbf{H}_{2}^{E} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \mathbf{H}_{0}^{2} &= \mathbf{H}_{0}^{1} \mathbf{H}_{1}^{2} &= \begin{bmatrix} c_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} & -s_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & -s_{\mathbf{q}_{2}} \mathbf{q}_{3} \\ s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} + c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & c_{\mathbf{q}_{2}} \mathbf{q}_{3} \\ 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\mathbf{q}_{2} + \mathbf{q}_{4}) & -\sin(\mathbf{q}_{2} + \mathbf{q}_{4}) & 0 & -\sin(\mathbf{q}_{2}) \mathbf{q}_{3} \\ \sin(\mathbf{q}_{2} + \mathbf{q}_{4}) & \cos(\mathbf{q}_{2} + \mathbf{q}_{4}) & 0 & \cos(\mathbf{q}_{2}) \mathbf{q}_{3} \\ 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &\mathbf{H}_{0}^{E} &= \mathbf{H}_{0}^{2} \mathbf{H}_{2}^{E} &= \begin{bmatrix} c_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} & -s_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & l_{2} (-c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} - s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}}) \\ s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} & -s_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & l_{2} (-c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} - s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}}) \\ s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & l_{2} (-c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} - s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}}) \\ s_{\mathbf{q}_{2}} c_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & -c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} & 0 & l_{2} (-c_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}} - s_{\mathbf{q}_{2}} s_{\mathbf{q}_{4}}) \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 1 & \mathbf{q}_{1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

b)

$$\mathbf{p}_{0}^{s1} = \begin{bmatrix} -l_{1}\sin(\mathbf{q}_{2}) \\ l_{1}\cos(\mathbf{q}_{2}) \\ \mathbf{q}_{1} \end{bmatrix}$$

$$\mathbf{p}_{0}^{s2} = \begin{bmatrix} l_{2}(-c_{\mathbf{q}_{2}}s_{\mathbf{q}_{4}} - s_{\mathbf{q}_{2}}c_{\mathbf{q}_{4}}) - s_{\mathbf{q}_{2}}\mathbf{q}_{3} \\ l_{2}(-s_{\mathbf{q}_{2}}s_{\mathbf{q}_{4}} + c_{\mathbf{q}_{2}}c_{\mathbf{q}_{4}}) + c_{\mathbf{q}_{2}}\mathbf{q}_{3} \\ \mathbf{q}_{1} \end{bmatrix}$$

$$= \begin{bmatrix} -l_{2}\sin(\mathbf{q}_{2} + \mathbf{q}_{4}) - \sin(\mathbf{q}_{2})\mathbf{q}_{3} \\ l_{2}\cos(\mathbf{q}_{2} + \mathbf{q}_{4}) + \cos(\mathbf{q}_{2})\mathbf{q}_{3} \\ \mathbf{q}_{1} \end{bmatrix}$$

$$(\mathbf{J}_{\mathbf{v}})_{0}^{s1} = \begin{bmatrix} 0 & -l_{1}\cos(q_{2}) & 0 & 0\\ 0 & -l_{1}\sin(q_{2}) & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{\omega}_{0}^{s1} = \begin{bmatrix} 0\\0\\\dot{\mathbf{q}}_{2} \end{bmatrix} = (\mathbf{J}_{\omega})_{0}^{s1}\dot{\mathbf{q}}$$

$$(\mathbf{J}_{\omega})_{0}^{s1} = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{\omega}_{0}^{s2} = \begin{bmatrix} 0\\0\\\dot{\mathbf{q}}_{2} + \dot{\mathbf{q}}_{4} \end{bmatrix} = (\mathbf{J}_{\omega})_{0}^{s2}\dot{\mathbf{q}}$$

$$(\mathbf{J}_{\omega})_{0}^{s2} = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}$$

d)

e)

$$V(f_E) = \left(\frac{1}{4c_E} + \frac{1}{2c_E}\right) f_E^2$$

f)

$$f^{max} = \frac{2c_E c_F}{2c_E + c_F} \Big(s_{E,0} - s^{min} \Big)$$

g)

$$\mathbf{f}_0^E = egin{bmatrix} rac{1}{\sqrt{2}}f_E \ rac{1}{\sqrt{2}}f_E \ 0 \end{bmatrix} \ \mathbf{f}_{q,0}^E = egin{bmatrix} 0 \ -rac{5}{2}l_2f_E \ -rac{1}{\sqrt{2}}f_E \ 0 \end{bmatrix}$$

3. Eine Masse m gleitet entlang einer Stange, wobei viskose Reibung mit dem Reibkoeffizienten μ_v wirkt. Die Masse ist an dessen Schwerpunkt einerseits mit einer Feder $f_f = c(l - l_0)$ befestigt, wobei l_0 die entspannte Länge der Feder beschreibt und c die Federkonstanten ist. Andererseits ist die Masse über ein masseloses Seil mit einer Antriebsrolle mit dem Radius r und dem Trägheitsmoment I verbunden, bei welcher das Drehmoment τ wirkt, siehe Abbildung 4. Die Gravitation wirkt in negative x-Richtung.

11 P.

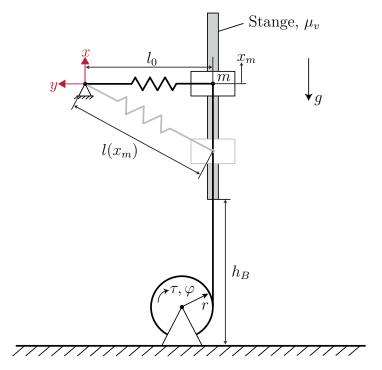


Abbildung 4: Masse entlang einer Stange.

- a) Schneiden Sie die Masse und die Antriebsrolle frei. Fertigen Sie eine Schnittskizze an und zeichnen Sie alle relevanten Kräfte ein.
- b) Geben Sie die Bewegungsgleichung des Systems (Masse und Antriebsrolle) an $3.5\,\mathrm{P.}$ | und wählen Sie dazu x_m als Freiheitsgrad.
- c) Die Masse m wird mithilfe der Antriebsrolle von der Ausgangslage (Feder entspannt $x_m(0) = 0$) auf $x_m(T) = x_{mu}$ nach unten gezogen. Die Masse befindet sich danach im Stillstand. Berechnen Sie die in der Feder gespeicherte Energie.
- d) Daraufhin wird das Seil von der Masse gelöst. Berechnen Sie, wie weit sich $1.5\,\mathrm{P.}$ | die Masse danach maximal nach oben bewegt. Vernachlässigen Sie dazu die Reibung und nehmen Sie $l_0=0$ an.
- e) Nehmen Sie nun an, dass die Feder reiSSt (das Seil ist ebenso nicht mehr 1.5 P. verbunden). Berechnen Sie die Geschwindigkeit der Masse für $t \to \infty$ entlang der Stange. Beachten Sie, dass viskose Reibung mit dem Reibkoeffizienten μ_v wirkt.
- f) Die Masse ist nach $t=t_1=0$ am Ende der Stange (Höhe h_B) angekommen und 1.5 P. | hat dort die Geschwindigkeit v_e . Ab diesem Punkt befindet sich die Masse im freien Fall. Berechnen Sie die Zeitdauer, bis die Masse auf den Boden auftrifft. Vernachlässigen Sie dazu jegliche Reibung.

Lösung:

a) Schnittskizze: siehe Abbildung 5

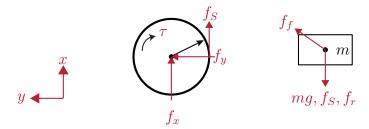


Abbildung 5: Freischnitt Bsp. 3.

b)
$$\left(m + \frac{I}{r^2}\right) \ddot{x}_m = -mg - c\left(\sqrt{x_m^2 + l_0^2} - l_0\right) \frac{x_m}{\sqrt{x_m^2 + l_0^2}} - \mu_v \dot{x}_m - \frac{\tau}{r}$$

c)
$$V_f = \frac{c}{2} \left(\sqrt{x_{mu}^2 + l_0^2} - l_0 \right)^2$$

d)
$$x_{mo} = \frac{-2mg - cx_{mu}}{c}$$

e) $v_{\infty} = -\frac{mg}{\mu_v}$

$$e) v_{\infty} = -\frac{mg}{\mu_v}$$

$$f) T = \frac{v_e + \sqrt{v_e^2 + 2gh_B}}{g}$$