Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 05.02.2016

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnummer:						N	ote:
	Aufgabe	1	2	3	\sum		
	erreichbare Punkte	10	10	10	30		

Bitte ...

- ... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,
- ... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,
- ... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,
- ... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und
- ... begründen Sie Ihre Antworten ausführlich.

erreichte Punkte

Viel Erfolg!

1. Gegeben ist das in Abbildung 1 dargestellte mechanische System. Eine Last L (Masse m_L) wird auf einer schiefen Ebene (Winkel ϕ) mithilfe eines Seiles nach oben gezogen. Zwischen der Last und der schiefen Ebene tritt trockene Gleitreibung mit dem Gleitreibungskoeffizienten μ_C auf. An der frei beweglichen Rolle R_2 (Masse m_2 , Trägheitsmoment θ_2 , Radius r_2) wirkt die externe vertikale Kraft F. Zwischen der Last L und der Rolle R_2 befindet sich die drehbar und reibungsfrei gelagerte Seiltrommel R_1 (Position fest, Masse m_1 , Trägheitsmoment θ_1 , Radius der äußeren Seiltrommel r_1 , Radius der inneren Seiltrommel r_2). Zum Zeitpunkt t_0 besitzt die Last L die Geschwindigkeit v_0 (bergauf). Über die Kraft F soll die Last L innerhalb der Wegstrecke s auf die Geschwindigkeit v_1 beschleunigt werden. Die Radien r_1 sowie r_2 der Seiltrommel R_1 können als konstant und die Seile als masselos angenommen werden. Betrachten Sie die folgenden Größen als gegeben: $s, v_0, v_1, m_L, m_1, m_2, \theta_1, \theta_2, r_1, r_2, \phi, \mu_C$.

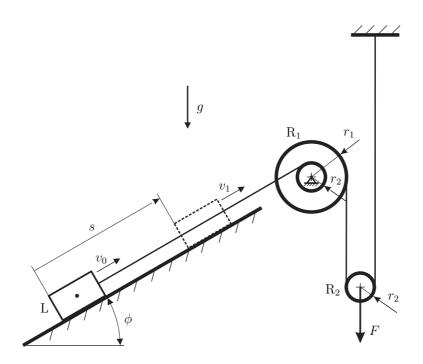


Abbildung 1: Schiefe Ebene mit Seilzug.

a) Berechnen Sie die kinetische Energie T des Systems.

- 3 P.|
- b) Bestimmen Sie die dissipative Energie W welche während des Verschiebens der 1 P. Last L um die Strecke s in Wärme umgewandelt wird.
- c) Berechnen Sie die potentielle Energie V des Systems zum Zeitpunkt t_1 . Das 2 P. Bezugsniveau soll dabei so gewählt werden, dass die potentielle Energie der Last L sowie der Rolle R_2 zum Zeitpunkt t_0 Null ist.
- d) Bestimmen Sie die Arbeit welche durch die konstante (und für diesen Unterpunkt als bekannt betrachtete) Kraft F beim Verschieben der Last L um die Wegstrecke s verrichtet wird.
- e) Berechnen Sie die zeitlich konstante Kraft F, welche die Last L mit der An- 3P. fangsgeschwindigkeit v_0 innerhalb der Wegstrecke s auf die Geschwindigkeit v_1 beschleunigt. Dies kann mithilfe der zuvor berechneten Energien durchgeführt werden.

Lösung:

a)
$$\omega_{R1} = \frac{v}{r_2}$$

$$v_{R2} = v \frac{r_1}{2r_2}$$

$$\omega_{R2} = v \frac{r_1}{2r_2^2}$$

$$T = \frac{m_L v^2}{2} + \frac{\theta_1 \omega_{R1}^2}{2} + \frac{\theta_2 \omega_{R2}^2}{2} + \frac{m_2 v_{R2}^2}{2}$$

$$b)$$

$$W = s\mu_C m_L g \cos \phi$$

$$V(t_0) = 0$$

$$V(t_1) = m_L g \sin \phi - m_2 g s \frac{r_1}{2r_2}$$

$$W_F = Fs \frac{r_1}{2r_2}$$

$$T(t_0) + V(t_0) + W_F - W = T(t_1) + V(t_1)$$

$$F = \frac{2r_2}{sr_1} \left(m_L \frac{v_1^2 - v_0^2}{2} + \theta_1 \frac{\omega_{R1}(t_1)^2 - \omega_{R1}(t_0)^2}{2} + \theta_2 \frac{\omega_{R2}(t_1)^2 - \omega_{R2}(t_0)^2}{2} + m_2 \frac{v_{R2}(t_1)^2 - v_{R2}(t_0)^2}{2} + m_L gs(\sin\phi + \mu_C \cos\phi) - m_2 gs \frac{r_1}{2r_2} \right)$$

2. Ein Stab S (Masse m_s , Trägheitsmoment bezogen auf den Schwerpunkt θ_s , Schwerpunktsabstand l_s) ist, wie in Abbildung 2 dargestellt, im Gelenk D auf einer Seiltrommel T (Trägheitsmoment θ_t , Radius r) drehbar gelagert montiert. Zusätzlich befindet sich zwischen dem Stab S und der Seiltrommel T eine Drehfeder mit der Federsteifigkeit c_1 und der entspannten Lage ($\alpha = 0, \beta = 0$). Die Seiltrommel T ist im Koordinatenursprung 0 drehbar gelagert. Über ein Seil und eine lineare Feder (Federsteifigkeit c_2 , entspannte Länge $l_c = l_{c,0}$) ist die Last L (Masse m_L) mit der Seiltrommel T verbunden. An der Last L wirkt eine externe Kraft F_e in negativer y-Richtung. Der Radius r der Seiltrommel kann als konstant und das Seil als masselos angenommen werden. Die Reibung in den Drehgelenken kann vernachlässigt werden. Betrachten Sie die folgenden Größen als gegeben: $r, l_{c,0}, l_s, m_L, m_s, \theta_s, \theta_t, c_1, c_2$.

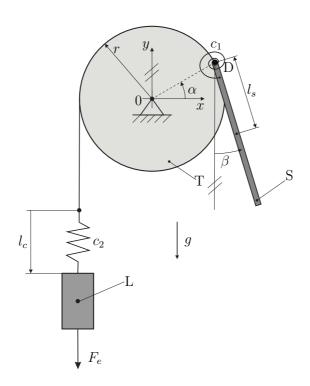


Abbildung 2: Seiltrommel mit elastisch angebundener Last.

- a) Berechnen Sie die Position des Stabschwerpunktes als Funktion von α und β 1 P.| sowie dessen zeitliche Ableitung.
- b) Bestimmen Sie die kinetische Energie T des Systems. $3 P.| (\sin x \cos y \cos x \sin y = \sin(x y))$
- c) Berechnen Sie die potentielle Energie V des Systems. (Das Bezugsniveau zur $2\,\mathrm{P.}|$ Berechnung der potentiellen Energie der Last L kann beliebig gewählt werden)
- d) Bestimmen Sie die generalisierten Kräfte τ . 2 P.| (Für die generalisierten Koordinaten α , β und l_c)
- e) Schreiben Sie die Lagrange-Funktion L sowie die Euler-Lagrange Gleichungen 2 P. an. Führen Sie die Differentiation der Euler-Lagrange Gleichung **nicht** durch!

Lösung:

$$x_s = r \cos \alpha + l_s \sin \beta$$

$$y_s = r \sin \alpha - l_s \cos \beta$$

$$\dot{x}_s = -r\dot{\alpha} \sin \alpha + l_s \dot{\beta} \cos \beta$$

$$\dot{y}_s = r\dot{\alpha} \cos \alpha + l_s \dot{\beta} \sin \beta$$

$$r_s = [x_s \ y_s]^T$$

$$v_s^2 = r_s^T r_s = r^2 \dot{\alpha}^2 + l_s^2 \dot{\beta}^2 - 2r l_s \dot{\alpha} \dot{\beta} \sin(\alpha - \beta)$$

$$T = \theta_t \frac{\dot{\alpha}^2}{2} + \theta_s \frac{\dot{\beta}^2}{2} + m_s \frac{v_s^2}{2} + m_L \frac{(r\dot{\alpha} + \dot{l}_c)^2}{2}$$

c)
$$V_g = m_L g(c - l_c - r\alpha) + m_s g y_s , \quad c \in konst$$

$$V_f = c_1 \frac{(\beta - \alpha)^2}{2} + c_2 \frac{(l_c - l_{c,0})^2}{2}$$

$$V = V_g + V_f$$

d) Vektor zum Kraftangriffspunkt

$$\mathbf{p}_{f} = [-r - r\alpha - l_{c} - c]^{T}$$

$$\mathbf{F}_{\mathbf{e}} = [0 - F_{e}]^{T}$$

$$\tau_{\alpha} = \mathbf{F}_{\mathbf{e}}^{T} \frac{\partial \mathbf{p}_{f}}{\partial \alpha} = rF_{e}$$

$$\tau_{\beta} = \mathbf{F}_{\mathbf{e}}^{T} \frac{\partial \mathbf{p}_{f}}{\partial \beta} = 0$$

$$\tau_{lc} = \mathbf{F}_{\mathbf{e}}^{T} \frac{\partial \mathbf{p}_{f}}{\partial l_{c}} = F_{e}$$

$$\tau_{lc} = \mathbf{F_e}^T \frac{\partial \mathbf{p}_f}{\partial l_c} = F_e$$

$$E = T - V$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\alpha}} \right) - \frac{\partial L}{\partial \alpha} = \tau_{\alpha}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\beta}} \right) - \frac{\partial L}{\partial \beta} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{l}_c} \right) - \frac{\partial L}{\partial l_c} = \tau_{lc}$$

3. In Abb. 3 ist die vereinfachte Skizze eines integrierten Spannungsreglers (IC) mit Wasserkühlung zu sehen. Für eine Eingangsspannung $U_e \in [U_{e,\min}, U_{e,\max}]$ liefert der lineare Spannungsregler am Ausgang die konstante Spannung U_a . Die angeschlossene Last zieht einen Gleichstrom I_a . Der gleiche Strom fließt auch eingangsseitig. Aus dem Datenblatt des Spannungsreglers ist der thermischen Widerstandswert R_{SB} zwischen Sperrschicht und Basisplatte bekannt. Die Basisplatte hat eine Masse m_B und eine spezifische Wärmekapazität c_B . Die Wärmeübertragung über das Kunststoffgehäuse und die elektrischen Anschlusskontakte sei vernachlässigbar klein. Um die Kühlung zu verbessern, wird ein Kühlkörper mit der Länge l_K , der Breite b_K und der Höhe h_K aufgeschraubt. Das Material des Kühlkörpers besitzt die Dichte ρ_K sowie die spezifische Wärmekapazität c_K . Durch die Verwendung von Wärmeleitpaste wird zudem der Übergangswiderstand zwischen Basisplatte und Kühlkörper im Vergleich zu einem Luftspalt deutlich reduziert. Die Paste hat eine Wärmeleitfähigkeit von λ_P und wurde auf einer Fläche A_P mit einer Dicke h_P aufgetragen. Zur besseren Kühlung wird der Kühlkörper von einem Fluid (z.B. Wasser) mit der Temperatur T_{∞} und der Geschwindigkeit u_{∞} angeströmt.

Wärmeströme in die Umgebungsluft können gegenüber den Wärmeströmen durch die Wärmeleitpaste und zwischen Kühlkörper und Fluid vernachlässigt werden. Die Temperaturverteilungen in der Basisplatte und im Kühlkörper können jeweils in alle Richtungen als homogen betrachtet werden.

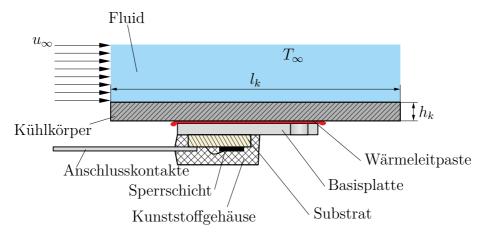


Abbildung 3: IC mit Wasserkühlung

- a) Welches physikalische Prinzip bestimmt die Wärmeübertragung zwischen Kühlkörper und Fluid? Um welchen Typ Randbedingung für das Wärmeleitproblem im Kühlkörper handelt es sich dabei?
- b) Zeichnen Sie das RC-Ersatzschaltbild des Wärmeleitproblems und beschriften 3 P. | Sie die einzelnen Elemente. Geben Sie die Ersatzelemente des ICs, der Wärmeleitpaste und des Kühlkörpers in Abhängigkeit der gegebenen Größen an.
- c) Der Hersteller der Wärmeleitpaste ist an der zeitlichen Änderung des Wärmestroms durch die Pastenschicht zufolge sich ändernder Eingangsspannung interessiert. Stellen Sie die beschreibende Differentialgleichung auf. Die Gleichung kann auch im Laplace-Bereich angegeben werden. Wie groß ist der stationäre Wärmestrom für eine konstante Eingangsspannung $U_e > U_a$?
- d) Wie groß darf der Wärmeübergangswiderstand zwischen Kühlkörper und Fluid 2 P. höchstens sein, so dass die Sperrschicht-Temperatur des ICs den Wert $T_{S,\text{max}}$ stationär nicht überschreitet?

Lösung:

- a) Das Prinzip heißt erzwungene Konvektion. Es handelt sich um eine Randbe- 1 P. dingung dritter Art, also eine gemischte Randbedingung.
- b) Skizze s. auch im Skriptum. Die Elemente folgen zu 3 P.|

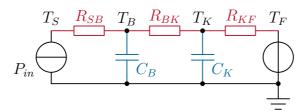


Abbildung 4: RC-Ersatzschaltbild zur Wasserkühlung.

$$P_{in} = I_a(U_e - U_a) \tag{1}$$

$$R_{SB} = gegeben \tag{2}$$

$$C_B = m_B c_B \tag{3}$$

$$R_{BK} = \frac{h_p}{\lambda_p A_p} \tag{4}$$

$$C_K = m_K c_K = \rho_k l_K b_K h_K c_K \tag{5}$$

c) Die Ausgangsgleichungen sind die Knoten- und Maschengleichungen 4P.

$$sC_BT_B = \dot{Q}_{SB} - \dot{Q}_P \tag{6}$$

$$sC_K T_K = \dot{Q}_P - \dot{Q}_{KF} \tag{7}$$

$$R_{KF}\dot{Q}_{KF} = T_K - T_F \tag{8}$$

$$\dot{Q}_P R_{BK} = T_B - T_K \tag{9}$$

$$\dot{Q}_{SB}R_{SB} = T_S - T_B \tag{10}$$

$$\dot{Q}_{SB} = P_{in} \tag{11}$$

Damit kann

$$\dot{Q}_P = \frac{(C_K R_{KF} s + 1) P_{in} - C_B T_F s}{(C_B C_K R_{BK} R_{KF} s^2 + s(C_B R_{BK} + C_B R_{KF} + C_K R_{KF}) + 1)}$$
(12)

berechnet werden. Stationär gilt natürlich $\dot{Q}_P = P_{in}$

d) Der Widerstand R_{KF} zwischen Kühlkörper und Fluid folgt aus der gemittelten 2 P.| Wärmestromdichte, was hier aber nicht relevant ist. Aus stationärer Lösung des Wärmeleitproblems folgt

$$P_{in} = \frac{T_S - T_F}{R_{SB} + R_{BK} + R_{KF}} \tag{13}$$

und damit für den Widerstand

$$R_{KF,\text{max}} \le \frac{T_{S,\text{max}} - T_F}{P_{in}} - R_{SB} - R_{BK}.$$
 (14)