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1 Introduction

This lecture deals with the modeling of technical systems. As a first step, it is therefore
necessary to clarify what is meant by a system. Simply put, a system is the connection of
different components that are interconnected to form a whole for the purpose of performing
certain tasks. The interaction of a system with the system environment takes place via
the so-called input or output variables, see Figure 1.1.
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Figure 1.1: On the concept of systems.
The input variables w1, ug, ..., u, are variables that act on the system from the system

environment and are not influenced by the behavior of the system itself. A distinction
is made between input variables with which the system can be influenced in an control
engineering sense (manipulated variables) and input variables that are not under our
control (disturbance variables). The output variables y1, y2,...,y, are variables that are
generated by the system and in turn influence the system environment. Output variables
that can be measured are also called measured variables.

A model is essentially a limited representation of reality that takes into account the
essential properties of the system for the task at hand. In a mathematical model, the
behavior of the real system is represented in an abstract form, for example by algebraic
equations, ordinary or partial differential equations. At this point it is important to
emphasize that no mathematical model can represent a system exactly. Rather, a math-
ematical model is always a compromise between model complexity and model accuracy
with respect to the desired properties. In order to develop a mathematical model that is
suitable for the respective question, various steps of decomposition (breaking down the
system into individual subsystems and components), reduction and abstraction (omitting
details that are irrelevant for the task and transferring to a simpler substitute system) and
aggregation (combining components and subsystems into a whole) must be carried out,
sometimes in recurring loops. These steps can only be systematized to a limited extent,
which is why the creation of a suitable mathematical model is at least partly an art and
always will be. The mathematical model forms the basis not only for system analysis, in
which the static and dynamic behavior of the system is investigated as a function of the
input variables and system parameters, but also for system synthesis, i.e. the design of the
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1 Introduction Page 2

overall system. The latter point includes in particular the design of suitable sensors and
actuators up to the control design, which will be dealt with in detail in the Automation
lecture next semester.

Basically, a distinction is made between theoretical and experimental modeling. In
experimental modeling, the mathematical model is created on the basis of the measured
input and output variables in such a way that the input-output behavior is reproduced
as well as possible. This type of modeling is also called system identification and models
that are based exclusively on experimental information are called black box models. Since
black box models are based solely on experimental results and use no (or very little) a
priori knowledge of the system, the model obtained in this way is only valid for the data
set covered by the identification. The main advantage is that relatively little knowledge
about the system is required. In contrast, in theoretical modeling, the mathematical
models are derived on the basis of fundamental physical laws. In this context, one also
speaks of white box models or first-principles models. Between the black box and white
box models, there are different degrees of gray box models, depending on the ratio of
experimental to physically based model information. It should be mentioned here that it is
generally not possible to derive a mathematical model exclusively from physical laws and
to parameterize it completely. Some so-called constitutive parameters (friction parameters,
leakage inductances, leakage oil flow coefficients) have to be determined from experiments,
even if the model approach is physically motivated. The advantages of these latter models
(white box models with few experimentally determined constitutive parameters) are the
very good extrapolatability of the model beyond the data obtained by experiments, a high
reliability, a good insight into the model, as well as the fact that the model is scalable
and also applicable to systems not yet realized (prototyping). The disadvantage is that
this type of modeling is generally relatively time-consuming and requires a thorough
understanding of the system. In this lecture, we will focus exclusively on the latter type
of mathematical models.

Figure 1.2: On static and dynamic systems.

In the following, consider the two simple electrical systems of Figure 1.2, namely a
resistor and an ideal capacitor, with the input variable i(¢) (current), the output variable
u(t) (voltage) and time ¢. For the resistor R, the output variable at any time ¢ is uniquely
determined by the input variable at time ¢, namely

u(t) = Ri(t) . (1.1)

Systems of this type, whose output variables depend only on the instantaneous value of
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1 Introduction Page 3

the input variables, are called static systems. In contrast, to calculate the voltage u(t) of
the capacitor C at time ¢, the input current i(7) for the entire past 7 < ¢ must be known,

o - é/tooi(r) C/to dT+ t (T) dr . (1.2)

to =ug

If the input variable i(7) is known only for the time interval ¢y < 7 < ¢, then the voltage
of the capacitor at time ¢y must also be known as the initial condition u(tp) = ug. As can
be seen from (1.2), the initial condition contains all the information about the past 7 < tg.
One also says that u(tp) describes the internal state of the capacitor system at time to.
Systems of this type, whose output variables depend not only on the instantaneous value
of the input variables but also on their past, are called dynamic systems.

If, for a system according to Figure 1.1, as in the case of the resistor and the capacitor,
the values of the output variables y1, y2,...,y, at time ¢ depend exclusively on the course
of the input variables uq(7), ua(7),...,u,(7) for 7 < ¢, then the system is called causal.
Since all technically realizable systems are causal, we will restrict ourselves to this case in
the following.

The previous considerations now allow us to give the general definition of the state
variables of a dynamic system:

Definition 1.1 (State). If for a dynamic system there exist variables z1,...,%,
with the property that the output variables y1, y2,...,y, at any time ¢ are uniquely
determined by the course of the input variables uq(7),u2(7),...,u,(7) on the interval
to < 7 < t and the values of z1(tg), ..., xn(to) for any to, then the variables z1,...,z,
are called state variables of the system.

Exercise 1.1. Which variable would you choose as the state variable for an inductor?
Justify your answer.

| Solution of exercise 1.1. The current or the flux linkage of the inductor.

Dynamic systems that can be characterized by a finite number n of state variables are
also called finite-dimensional systems of order n. These finite-state systems, often also
called lumped-parameter systems, are described by mathematical models in the form of
ordinary differential equations and algebraic equations. Within the scope of this lecture,
we restrict ourselves to the class of finite-state systems that can be described by an explicit
mathematical model of the following form:

d
= Ji(w, .oz, ut, . up, t), r1(to) = 71,0
d State differen-
&562 = fo(z1, .- s Tny UL, - up, t), z2(to) = 72,0 tial equations
o (1.3a)
with initial
conditions
d
axn = fo(x1, ..., &n,ut,. .. Up,t), xn(to) = Tno
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1 Introduction Page 4

Y1 = hl(xl, ey Ty ULy up,t)
Yo = hQ(IL‘l, RS N 5 P up,t)

Output equations (1.3b)
Yg = hg(x1, ..., Tp,u1, ... up,t)

If the input, output, and state variables are combined into column vectors

u= {ul Uy ... up}T (1.4a)
y=|u v .. yq}T (1.4b)
X = {xl To ... xn}T (1.4¢)

and, to simplify the notation, a dot is written above the variable to be derived instead of

%, then (1.3) can be written in compact vector notation in the form
x = f(x,u,t), x(to) = xo (1.5a)
y = h(x,u,t) (1.5b)

The variables u, y and x are called the input, output and state of the dynamic mathematical
model.

If the state x is considered as an element of an n-dimensional vector space, then this
vector space is also called the state space. The state of a system at time ¢ can then be
represented as a point in the n-dimensional state space. The curve of all these points in
state space for variable time ¢ in a time interval is also called a trajectory, see Figure 1.3
for an illustration of a trajectory in 3-dimensional state space.
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1 Introduction Page 5

Figure 1.3: On the concept of trajectory.

For the sake of completeness, it should be mentioned that systems with infinite-
dimensional state, also called distributed-parameter systems, are described by partial
differential equations. Examples are beams, plates, flow fields, and electromagnetic
fields.

Example 1.1. As a simple example of modeling, consider the electrical series resonant
circuit from Fig. 1.4.

(7 Uy
i > _ » .
l (2
L R ic

Figure 1.4: Series resonant circuit.

In the first step, the component equations are formulated. The (linear) electrical
resistance R is described by

ur(t) = Rip(t) (1.6)
cf. (1.1). According to (1.2), the capacitor C' can be modeled by

d d

d .
790 = 3 (Cuc(t)) = Cpuc(t) = ic(t),  ue(0) = uco (1.7)
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and the inductor L by

d d d

) = g (La)) = Loa) =w(t), 4(0)=io (1.8)

Furthermore, the balance equations, i.e., the node and mesh equations, must be
satisfied in the electrical network. These are

ir(t) = i(t) (1.9a)
io(t) = (1) (1.9b)
w(t) = —up(t) — uc(t) + u(t) (1.9¢)

and inserted into (1.6)-(1.8) follows

d ln(t)] B [ﬁ—ucm ~ Rir(t) + u(t))

X7 ) Li(t)

] =f(x,u), x(0)=xo. (1.10)
As output of the system one can choose e.g. the voltage u. at the capacitor, i.e.
Y = Ug.

Based on this model, the behavior of the system can be analyzed. Sln:Hs:

C), the initial values x(0)T = 2
u(t) on the dynamic system behavior can be calculated. Today, very advanced
computer programs, such as MAPLE or MATLAB, are available for this purpose.
The creation and analysis of the model using MAPLE can be found in the
file Serienschwingkreis.mw, which can be downloaded from the institute’s
homepage https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

This lecture focuses on the systematic modeling of mechanical rigid body systems, which
occur in many real systems (at least as subsystems). Two typical applications with rigid
body systems are shown below as examples.

Ezample 1.2 (Robot). One of the most important technical applications of rigid body
systems are (industrial) robots. Fig. 1.5 shows a lightweight robot from KUKA. This
robot has 7 degrees of freedom and is designed for direct interaction with humans.
For this purpose, it has a sensor for the torque in each joint, which enables, for
example, the detection of collisions with obstacles. Typical applications of this robot
are manipulation tasks or assembly tasks that are performed in cooperation with
humans.
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force sensor

Figure 1.5: KUKA lightweight robot: (a) Sketch of the system, (b) Photo of the
robot.

The (optimal) planning and control of the position and orientation of the end-
effector are challenging tasks that are based on a mathematical model of the robot.
One goal of this lecture is therefore to model the kinematics and dynamics of such
robots.

of the robot

ers shows the interaction of the robot with a target moved by a human.
The video Pfadfolgeregelung mit Konzepten fir den Pfadfortschritt
shows possible ways of interaction between humans and robots. The
application of adhesive tape on a complex 3D surface is shown in the
video Oberfléchen-basierte Pfadfolgeregelung fir das Ablegen von
Klebestreifen. Finally, the use of the robot for the swing-up and stabi-
lization of a spherical pendulum is shown in the video Aufschwingen eines
sphéarischen Pendels.

FEzample 1.3 (Gyroscope). Another application with mechanical rigid body systems as
an essential part are micro-mechanical gyroscopes. Gyroscopes are required in many
current applications, such as mobile phones, game consoles or navigation systems.
In the automotive sector, gyroscopes are used to measure the rotation of the vehicle
around the vertical and lateral axis. These measured values are used (in combination
with other sensors), for example, for the electronic stability control (ESP) of vehicles,
see Fig. 1.6.
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Sensorcluster

Drehratensensor

Figure 1.6: Application of a gyroscope in the automotive sector.

A possible design of a micro-mechanical gyroscope is shown in Fig. 1.7. It consists
of a number of rigid bodies coupled to each other by elastic elements (springs).
These rigid bodies can be set into vibration in the z-direction by means of capacitive
actuators. The working principle of this gyroscope is essentially based on the fact
that when a rotational speed occurs, additional vibrations in the y- or z-direction
are excited due to the Coriolis effect. These are detected with capacitive sensors,
whereby the amplitude is a measure of the angular velocity. The entire sensor has an
extension of 1000 pm x 2000 pm x 100 pm and is manufactured in silicon by etching
techniques.

kapazitive Aktoren kapazitive Sensoren

Figure 1.7: Mechanical structure of the micro-mechanical gyroscope.

This example shows that mechanical rigid body systems also occur in very small
applications.
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2 Point Kinematics

Kinematics describes the motion of bodies or individual material points in space with
respect to a reference frame. This chapter describes the basics of point kinematics, i.e., the
description of the motion of point masses in space. If one considers the inertial Cartesian
coordinate system (Oxyz) with the origin 0 and the orthonormal basis vectors e;, e,, and
e, as the reference frame, i.e.,

T T T

e,e, e e, ege; 1 00

eje; eye, ege.| =0 1 0], (2.1)
T T T

e,e; e;e, e;e, 0 01

then the position vector r from the origin 0 to a material point P can be described in the
form
I‘(t) = Tz(t)ew + Ty(t)ey + Tz(t)ez (2.2)

with the time-parameterized components 7,(t), 7,(t), and r,(t), see Figure 2.1. The

e, A
r.(t)
P
—_— trajectory
r(t) e
0 ry(t) -
€y
r2(t)

€y
Figure 2.1: Trajectory in a Cartesian coordinate system.

velocity v(t) and the acceleration a(t) of the material point P are obtained by time
differentiation in the form

V(t) = vpep + vyey + V.8, = Tyey +Tyey + 1€, (2.3)
and

a(t) = age, + ayey + a e, = e, + iyey + e, (2.4)

respectively, where v., vy, v, and az, ay, a. describe the respective components with
respect to the basis vectors e;, ey, and e.. It should be noted that in the following the
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2 Point Kinematics Page 11

total time derivative of a function z(t) is denoted by #(t) = %x(t) and Z(t) = %x(t},
respectively. In the simplest case, if the coordinate system can be chosen such that
the position vector r(t) coincides with a coordinate axis for all times ¢, one speaks of a

rectilinear motion.

Example 2.1. A mass is accelerated linearly by a motor according to the acceleration
profile shown in Figure 2.2.

a(t)a

Omaz

8

to t1 to t3

Qmin

Figure 2.2: Acceleration a(t) as a function of time.

How large must the time ¢3 and the minimum acceleration a,,;, be chosen so that at
time t = t3 the velocity is zero and the position assumes a given value zs;? It is
assumed that at time ¢ = tg we have v(ty) = vg = 0, z(tg) = 9 = 0.

For the time interval tg <t < t; the velocity and position profiles are calculated as

t

v1(t) = v(tg) + Umaz AT = Vg 4 Qmaz(t — T 2.5a
1(t) = v(to) A 7?) (t —to) (2.5a)
(t) (t ) /t ( t ) - ! (t t )2 (2 il )
T Z\to " Umax\T 0 d7 Zo 2ama:r; 0 ’ .5b

for t1 <t <ty it follows

t
vo(t) =vi(t1) + [ 0 d7 = amas(ts — to) (2.6a)

t1

t

1
$2(t) = xl(tl) + amax(tl - tO) dr = iamaz(tl - t0)2 + amax(tl - tO)(t - tl)

t1
(2.6b)
and for t9 <t < t3 we obtain
t
Ug(t) = Ug(tg) + Qi AT = am(w(tl - to) + amm(t — tg) (2.7&)

to
t

1 1
.leg(t) = {Eg(tg) + ) ’1}3(7') dr = §amm (t% — t%) + amaz(tl — to)t + iamm(t — t2>2 .
2
(2.7b)
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2 Point Kinematics Page 12

With the velocity at time ¢ = t3

v3(t3) = Gmaz(t1 — to) + amin(ts — t2) (2.8)
the desired time t3 is calculated from the condition v3(t3) = 0 to be

Omazx

ty = to — AT (4 to) (2.9)

Amin

and the desired position z3(t3) = s, With

:L'3(t3) = 7amax(t1 — to)(amin(2t2 —to — tl) + amax(to - tl))7 (2'10)

2amin

is reached by the acceleration

_a72naa: (tl - t0)2

min = 2.11
e ama:p(tl - tO)(tl + tO - 2t2) + 2xsoll ( )
The position and velocity profiles are shown in Figure 2.3.
o(t) (1)
Tsoll
1 1 >
'to tq to t3 t to tq to i3 t

Figure 2.3: Velocity profile v(¢) and position profile x(t).

@ The solution  of  this example using MAPLE is [EpEpE
shown in  the file Beispiel_2_1.mw, which  can yZkrdpef

be downloaded from the institute’s homepage @
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

In the following, the motion of a material point P in the xy-plane with respect to
the inertial coordinate system (0zy) is considered and described with the aid of polar
coordinates

ro(t) = r(t) cos(p(t)) and 71y (t) = r(t)sin(e(t)) (2.12)
see Figure 2.4. Thus, the position vector from the origin 0 to a material point P is

r(t) = r(t) cos(p(t))e, + r(t) sin(p(t))ey . (2.13)

The velocity v(t) according to (2.3) is obtained by applying the chain rule of differentiation

in the form 9 5
v(t) = (&r>r + (&pr><p , (2.14)
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2 Point Kinematics Page 13

ry(t) trajectory

Figure 2.4: Trajectory in a polar coordinate system.

where the basis vectors of the polar coordinates are

& = aar = cos(p)e, + sin(p)ey (2.15a)
r
&, = 6a<pr = —rsin(yp)e, + rcos(p)ey . (2.15b)

The vectors €, and &, form a valid basis of a coordinate system if and only if the matrix

cos(yp) sin(y)
—rsin(y) 7 cos(p)

J= (2.16)

is non-singular, i.e., det(J) = r # 0. This is the case everywhere except at the point r = 0.
If one normalizes the basis vectors to a length of 1

& &,

e = — and e, = (2.17)
T el 7 el
with
&1y = /cos?(p) +sin?() =1 and &, =7 (2.18)
then (2.14) can be written in the form
v(t) = vre, +ve, = 1€, + e, (2.19)

with the components v, = 7 (radial component) and v, = r¢ (circular component) of
the velocity v(t) with respect to the basis vectors e, and e,. In the time dt the position
vector r(t) sweeps over an angle dy and the time rate of change of the angle w = ¢ is
called angular velocity. For a pure circular motion (see Figure 2.5) the radial velocity
component is v, = 0 and for the circular velocity component we have v, = rw.

Ezxercise 2.1. Show that the velocity components of a material point P in space with
respect to the normalized basis vectors e,, eg and e, in spherical coordinates

ry = rsin(f) cos(p), 1y, =rsin(f)sin(p), r, = rcos(f) (2.20)
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Figure 2.5: Circular path in a polar coordinate system.

can be calculated as

@ The solution to this exercise using MAPLE is presented in
the file Aufgabe_2_1_und_2_2.mw, which can be downloaded at

https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

The components of the acceleration a(t) in polar coordinates with respect to the basis
vectors e, and e, are obtained by total time differentiation of v(t) according to (2.19)

a(t) = are, + agey, = Ure + vre + ey + vy (2.22)
where it must be noted that the basis vectors (see (2.15) and (2.17))

e, = cos(p)e, +sin(p)ey (2.23a)
e, = —sin(yp)e, + cos(p)ey (2.23b)

also change over time. One now tries to express €, and &, in terms of e, and e,. To do
this, (2.23) is inverted

e, = cos(p)e, —sin(p)e, (2.24a)
e, = sin(p)e, + cos(p)e, (2.24b)

and substituted into &, and &, i.e.

é, = —sin(p)pe, + cos(p)pey
= —sin(p)@(cos(p)e, — sin(p)e,) + cos(p)(sin(p)er + cos(p)ey)
= pe, (2.25)
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and

&, = — cos(p)pe, — sin(p)pey,
= —cos(p)p(cos(p)er —sin(p)ey) — sin(p)p(sin(p)er + cos(p)ey)
= e, . (2.26)

Substituting (2.25) and (2.26) into (2.22)

a(t) = e, + 0,6 + Vg, + V€,
= i'e, + 1pey, + (1o + rd)e, + ro(—pe;)
= (F=1¢)e, + (rg + 279)ey | (2.27)

then the radial acceleration is a, = #* — r$? and the circular acceleration is ap = TP+ 21,
For a pure circular motion, the tangential component simplifies to a, = r¢ and the radial
component a, = —ry? is also called centripetal acceleration, see Figure 2.5.

It should be mentioned at this point that in the general case of a coordinate transfor-
mation, the time derivatives of the basis vectors can be expressed very elegantly using the
so-called Christoffel symbols with the help of the basis vectors themselves. Efficient ways
to calculate these Christoffel symbols can be found e.g. in [2.0].

FEzercise 2.2. Show that the acceleration components of a material point P in space
with respect to the normalized basis vectors e, ey and e, in spherical coordinates

ry = rsin(f) cos(p), 1y =rsin(f)sin(p), r, =1rcos(f)
can be calculated as

ar = i — rf% — rsin®(0) >
ap = 210 + rf — rsin(f) cos()p>
ay = (r$ + 2i¢) sin() + 2r¢pf cos(6) .

| Remark: Use a computer algebra system to solve this exercise!

@ The solution to this exercise using MAPLE is presented in
the file Aufgabe_2_1_und_2_2.mw, which can be downloaded at

https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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3 Newton’s Laws

3.1 Force Systems

In the context of this lecture, only point forces acting at discrete points (points of
application) of a rigid body are considered. A rigid body has the property that under the
action of forces the distance between any two points of the body always remains the same.
The direction of the force is described by its line of action and by the direction of the
force vector. The SI unit of force is Newton (N = kgm/s?).

In a so-called central force system, all individual forces f;, i = 1,...,n, act at the same
point of application and the resulting force fg is given by (see Figure 3.1)

n

fR=> f. (3.1)

i=1

€A

fr

point of application

IL// line of application
€z

Figure 3.1: Central force system.

If the forces f; are expressed in terms of their components in the coordinate system
(Oxzyz) with the orthonormal basis vectors e;, e, and e, i.e. f; = f; e, + fiy e, + fi.e.,
i=1,...,n, then (3.1) becomes

n

n n n
fr = Z(fi,:ce:r: + fi,yey + fi,zez) = Z fi,xe:c + Z fi,yey + Z fz’,zez . (32)
i=1 i=1 i=1 i=1
fR,z fR,y fR,z

A central force system is now in equilibrium if the resulting force vanishes

fr=0 or fR,z =0, fR,y =0, fR,z =0. (33)
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The third Newton’s law (law of interaction) states that for every force there is always
an equal and opposite reaction force (actio equals reactio). For example, if you press your
finger on the table top, then an equal and opposite force acts from the table top on your
finger. This can be illustrated by cutting the two bodies apart at the point of contact
finger/table top and drawing the corresponding forces (cutting principle), see Figure 3.2.

finger ~__

finger f=1r contact plane

\% __________ l ________ (_c_utting plane)

7 7

Figure 3.2: Forces between the table top and the hand pressing on it.

roll
rope
® / fS
Is
fs
fsj!y
m

Lmg

Figure 3.3: Force in a rope.

Another example is shown in Figure 3.3. Assuming that the weight of the rope is
negligible and the pulley is frictionless, then the rope force fg acts on the mass m and
the person must also apply the force fg to hold the load.

Example 3.1. A cylinder of mass m with radius r is held on a smooth plane by a rope
of length [ attached to its center, see Figure 3.4(a). The forces acting on the isolated
cylinder are shown in Figure 3.4(Db).
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Since the central force system is in equilibrium, according to (3.2) it must hold
that

e, :fn — fssin(a) =0 (3.4a)
e, :fgcos(a) —mg=0 (3.4b)

with the acceleration due to gravity g ~ 9.81 m/s? and the angle a = arcsin(r/l).
From (3.4) the forces fs and fx can now be calculated in the form
mg

fs = cos(a) and fy = mgtan(«) (3.5)

(a)
Figure 3.4: Cylinder on a rope.
FEzercise 3.1. A vertical mast M is braced by ropes according to Figure 3.5. What

are the magnitudes of the forces fg1 and fgo in ropes 1 and 2 and the force fs in
the mast when the tensile force fgs is applied to rope 37

Figure 3.5: Vertical mast with three ropes.
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Solution of exercise 3.1.

sin(3 + )

fs1= fs2 = fssL(V) and  fy = —fs3 cos(3)

2 cos(a) cos(f3)

@ The solution to this Exercise using MAPLE is shown
the file Aufgabe_3_1.mw, which can be downloaded

https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

In a general force system, the individual forces do not act at a single point of application
and therefore can no longer be combined into a single resultant force, see Figure 3.6.
In this case, the forces — if they are not in equilibrium — cause not only a translational

fa
€,

point of application

€z
Figure 3.6: General force system.

displacement of the rigid body but also a rotation. In the simplest case, consider the
rigid body of Figure 3.7, where the two forces f, 1e, and f, 2e, produce a resulting torque
about the axis of rotation e, and thus rotate the rigid body about this axis, if the lever
rule fi1li = f.2lo (force times lever arm equals load times lever arm) is not satisfied.
The torque about the axis of rotation is counted positive if the effect of the torque is in

A

€y @

L

fZ,l fz,2

Figure 3.7: Beam mounted on a pivot.
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the direction of the directional vector belonging to the axis, according to the right-hand

rule. For positive force components f, 1 and f, 2, the torque 7';?1) =
(0

of rotation e, is positive and the torque TyQ) = — f>,2l2 is negative for Figure 3.7. The SI

f21l1 about the axis

unit of torque is Newton-meter (Nm = kg m?/s?).
The torque
7O =7Oe, + Téo)ey + 70, (3.6)

of the force
f = fres + fyey + fre. (3.7)

with respect to point 0 in the Cartesian coordinate system (0zyz) with the position vector
r from point 0 to the point of application of the force P, see Figure 3.8,

r=r.e, +ryey + 7€, (3.8)
is given by
Tm(o) = (Tyfz - rzfy)a TZ;(’O) — (Tzf:t - Txfz), 7’}50) = (’[“xfy - ’I“yfx) . (39)
t7
(P9 }fz
P |
L
r : fy
..
0 Je i
T L 8y
77777777777777 :i:i\,iif:‘l//rm
Ty

€z
Figure 3.8: On the torque of the force f with respect to the point 0.
It can be seen immediately that the torque can be written in the form'.

Ty fu Tyl — T2 fy

Tz [z rmfy _Tyfx

IFor a simplified and more compact notation, the components of the vector quantities are often combined
in a single vector, i.e. with [ fu fz} or rt = [Tz Ty Tz]7 f = foe, + fye, + f.e. or
r =rge; +rye, + r.e. is meant.

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien



3.1 Force Systems Page 23

(4)

If several torques 7,7, i = 1,...,n with respect to the same point A act on a rigid body,
then the resulting torque TE,%A) is calculated as
(4) _ N~ (A) N (A, N A, L N )
Th =2 T =Y Tin ety T ety T e (3.11)
i=1 i=1 i=1 i=1
D v )
Tg?,z TR,y TR,Z

A general force system according to Figure 3.6 can always be reduced with respect to an
arbitrarily chosen reference point A by a resulting force fz at the point of application

(4)

A and a resulting torque 75’ with respect to this point A. A general force system is

(4)

now in equilibrium if both the resulting force fr and the resulting torque 75 vanish,
ie.

Balance of forces: fr =0 or fre=0,fry=0, frR.=0 (3.12a)
Balance of torques: T%‘) =0 or TI({’Q =0, 7'1({2 =0, 7']({2 =0. (3.12b)

FExample 3.2. Consider the rigid body of Figure 3.9 with the forces

fA,x fB,x fC,:):
fA - fA,y ) fB = fB,y s fC = fC,y (313)
fA,z fB,z fC,z

at the points of application A, B and C as well as the reference point D with the
corresponding position vectors

az/2 ag/2 0 Qg
roa = 0 |, rop= ay/2 , Toc= 1|0, rop=1]0]|". (3.14)
a,/2 a, 0 0
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Figure 3.9: Reduction of a general force system.

For the reference point D, the torques follow as

~as/2]  [fae —faya:/2
TE4D) = (I'()A — I'OD) X fA = 0 X fA,y = fA,zax/2 + fA,CEaZ/Q (3153‘)
—————
rpa a,/2 | fAz —fayae/2
—a./2]  [fBe IB20y/2 — f540:
D
T(B ) — (roB — rOD) X fB = ay/2 X fB7y = fB,Za/CC/2 + fB,xaz (315b)
rpB | a: _fB,z —fB,yaz/Q — fB,xay/Q
__a:c fC,x 0
D
T8 = (roc —rop) xfo=| 0 | % |foy| = | arfe. (3.15¢)
~——
rpe | 0 fe,z —azfoy

and the general force system f4, fp and fo can be replaced by the resulting force
fr = fao + fp + fo and by the resulting torque TEQD) = TE4D) + T(BD) + T(CD). Thus, the

equilibrium conditions result from the balance of forces (fr = 0)

€y : fA,:E + fB,x + fC,:l: =0 (316&)
€y ! fA,y + fB,y + fC,y =0 (316b)
€, : fA,z+fB,z+fC,z =0 (3160)

and the balance of torques (T%{D) =0)

€ = fA,yCLz/2 + fB,zay/2 - fB,yaz =0 (3.17&)
€y fa:0:/2+ fa20:/2+ fB202/2 + fB2a: + fo00 =0 (3.17b)
€;: - fA,yaa?/Q - fB,yaa?/2 - fB,zay/2 - fC,yaz =0. (317C)
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Ezercise 3.2. Give the balance of torques for the example in Figure 3.9 about the
reference point C.

Solution of exercise 3.2.

_fA,yaz/Q fB,zay/2 - fB,yaz
C C C
TE4 )= _fA,zaa:/2 + fA,a:az/2 ) 7'53 ) — —fB7za$/2 + fBaa: |, T(C ) = 0
fayaz/2 [Byaz/2 — fBpay/2

@ Solution in MAPLE: Beispiel_Aufgabe_3_2.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Ezample 3.3. The mechanism shown in Figure 3.10(a) is pivotally mounted at point
A and held at points B and C' by a rope. It is assumed that the rope pulleys are
mounted frictionless and that the rope mass as well as the thickness of the individual
beams can be neglected. If the mechanism is cut free, one obtains the forces shown
in Figure 3.10(b).

fea:t fS fe:}ct
fA,a:

a fA,z

Is

Figure 3.10: Simple mechanism.
In equilibrium, the balance of forces

€ faqs+ fscos(a) =0 (3.18a)
e.: far+ fs+ fosin(a) — fexr =0 (3.18Db)

and the balance of torques (chosen reference point A)

ey: —afs+2afer —afs(sin(a) + cos(a)) =0 (3.19)

must be fulfilled.

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien


https://www.acin.tuwien.ac.at/file/teaching/bachelor/modellbildung/Beispiel_Aufgabe_3_2.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

3.2 Center of Gravity Page 26

@ Solution in MAPLE: Beispiel_3_3.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.2 Center of Gravity

The previous considerations now allow the definition of the so-called center of gravity of a
rigid body. For this purpose, consider in a first step a massless rigid rod which connects the
point masses m;, ¢ = 1,...,n according to Figure 3.11. Due to the acceleration of gravity

\g
e

Ls

S

Ly lIiJrll Tn l

mig mag mig  Miy1g  Mpg

fs

€z

Figure 3.11: Definition of the center of gravity: Massless rod with point masses.

g in the negative e, direction, the gravitational forces f; = —m;ge,, it = 1,...,n act on
the rod. It is now known that the forces f;, ¢ = 1,...,n with respect to an arbitrarily
chosen reference point A can be replaced by a resultant force fg at the point of application

(4)

A and a resultant torque 75 with respect to this point A. The center of gravity now
describes that point of application S at which the resultant torque Tgf) vanishes and thus
the rod can be held in equilibrium solely by suspending it at point S with the holding

force fg. From the balance of torques

ey: Zmigm — fsxg =0 (3.20)
i=1
and the balance of forces "
e:: —» mig+fs=0 (3.21)
i=1

one can calculate zg in the form

n
> MiT;
i=1

n

rg = (3.22)
mg
=1
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Ezercise 3.3. Show that for a general system consisting of n rigidly coupled point
masses with masses m; and position vectors r; from the origin 0 of the coordinate
system (0zyz) to the point masses, the position vector rg to the center of gravity is
calculated as follows

(3.23)

This can now be directly transferred to a general rigid body. Assume that the rigid body
has the volume V and the (position-dependent) density p(z,y, z). The mass m of the rigid
body is then given by

m = / plx,y,z)dV . (3.24)
1%

The center of gravity S with the position vector rg measured in the coordinate system
(Ozyz) is now that point at which the body would have to be suspended (holding force
fs) so that the body is in equilibrium independent of the direction of the acceleration
due to gravity ¢g. Assuming that the acceleration due to gravity acts in the direction
of ey, then the volume element dV is acted upon by the force gp(z,y, z) dVe, due to
the acceleration of gravity and by the torque r x gp(z,y, z) dVe, = rgp(x,y,2)dV x e,
with respect to the coordinate origin 0, see Figure 3.12. The equilibrium conditions are

(SP Y

fSeg
Figure 3.12: Definition of the center of gravity of a rigid body.

obtained by integration over the rigid body volume V again from the balance of forces

~fsey +9 ple.y.2)dVe, =0 (3.25)

and the balance of torques
—(rs x fseq) + g/vrp(:n,y, z)dV xe; =0 . (3.26)
Substituting fs = mg from (3.25) into (3.26) yields

<—mgr5 + g/ rp(z,y, 2) dV) Xe;=0 (3.27)
1%
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and since e, is arbitrary, the expression in parentheses must vanish identically, i.e.

Jrp(z,y,2)dV

or in component notation rg = rg €, +r5y€y +75.€;

Jxp(z,y,z)dV Jyp(z,y,z)dV [ zp(z,y,2)dV
TSy = y TSy = Yy rs, = L (3.29)
m m m
If a body is composed of several sub-bodies j = 1,..., N with volumes V; and density

pj(z,y, z), then the position vectors rg; to the centers of gravity of the sub-bodies measured
in the same coordinate system (0zyz) are calculated as

f rpj (.%', Y, Z) dv]

m; i

From this it can be seen immediately that the center of gravity of the entire body according
to (3.28) can be calculated in the form

Jrpi(z,y,z)dVi+ ...+ [rpi(z,y,2)dV; + ...+ [ rpn(z,y,2)dVN
W v, Vi

m

Z rgjmj (331)
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Ezample 3.4. For the homogeneous rigid body (density p is constant) of Figure 3.13,
the position vector to the center of gravity is sought.

€4

A

Figure 3.13: Calculation of the center of gravity of composite bodies.

For this purpose, the centers of gravity are first calculated separately for the two
volumes V; and Vs, according to (3.30). For the first part of the body with volume V;

follows
Il opl3 4
T‘Sl,mzi/ // xdxdydz:%l—zi
my JijaJo Jo psgl24 6
l I rl/3 414 l
0
= — dedydz = w— = =
o= e | varayae = e =

l I rl/3 4514 51

p
=L dedyde = o =2
s m1/l/4/0/0 P T E3 TR

and for the second sub-body Vs follows

/4 rl pl 14 l

“ade o dyeaie= S

rS2e = — rdrdydz = ——— = -
2 ma Jo o Jo Y pii28 2
/4 rl pl 4 14 1

P

= — drdydz = —— = =
"%y m2/0 /o/oyxyz B8 2

/4 rl pl 474 l
P

s = — dedydz = w—=—-.
rs2, m2/0 /0/Ozxyz 332 8

Hence, according to (3.31), the position vector of the center of gravity of the entire
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body is
1 1 1
1 1 s 6 4|2 3
- =SB L+ 284 | = L] . (3.32
T L+ ma (mursy +marss) fB+EB4 |2 Ty 2 2 (3:32)
8 8 B

@ Solution in MAPLE: Beispiel_3_4.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Ezercise 3.4. Calculate the center of gravity of a homogeneous hemisphere according
to Figure 3.14.

€

Figure 3.14: Center of gravity of a homogeneous hemisphere.
Solution of exercise 3.4.

0
r¢s=10
3

@ Solution in MAPLE: Aufgabe_3_4.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.3 Conservation of Momentum

The second Newton’s law (law of conservation of momentum) formulated for a point mass

states that the temporal change of momentum p = mv is equal to the force f acting on
the point mass, i.e.

d d

with the mass m and the velocity v. Note that the formulation (3.33) is only valid
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with respect to a resting reference coordinate system (inertial system). For the systems
considered in this lecture, the Earth can be considered as an inertial system.

Example 3.5. A ball of mass m is launched from a height h above the ground with
the velocity v(0) = vg > 0, see Figure 3.15.

(ST Yo

to=0 #

Figure 3.15: Projectile motion.

In the following, we want to calculate at which angle « the ball has to be launched
in order to maximize the throwing distance under the assumption of vanishing air
friction. Since the mass m is constant, the law of conservation of momentum in the
inertial system (0zyz) reads as

mi& =0 and mZ=—mg (3.34)

with the initial conditions z(0) = 0, #(0) = vgcos(a), z(0) = h, 2(0) = vgsin(a).
From (3.34) with #(t) = v;(¢) and 2(t) = v,(t) one obtains

vz (t) = £(0) = vo cos() (3.35a)
x(t) = vg cos(a)t (3.35b)
v;(t) = —gt + vp sin(«) (3.35¢)
2(t) = —gt; + vosin(a)t +h . (3.35d)

The time ¢ can now be eliminated in the second equation and substituted into the
last equation, which results in the well-known projectile parabola
2

—g————+t h. 3.36
9203 cos?(a) +tan(a)e + (3:36)

z =

The time ¢; at which the ball hits the ground is obtained from the condition z(¢;) = 0
as

vo sin(a) + y/vg sin?(a) + 2gh
t = () ; (@) (3.37)
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and thus the throwing distance is

vp sin(a) + /v sin?(a) + 2gh

p (3.38)

x(t1) = vg cos(a)

To maximize the throwing distance, one differentiates x(¢1) with respect to o and
sets the expression equal to zero. As a result one obtains

Vo
\/ V8 + 2gh

One can easily convince oneself that for h = 0 the angle is amax = 45° and the
maximum distance is Tmax(t1) = v3/g.

@ Solution in MAPLE: Beispiel_3_5.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

(3.39)

Omazx = arctan

Ezercise 3.5. Show the validity of (3.39).

Figure 3.16 shows two point masses m; and m; which are rigidly connected by a massless
rod. If one cuts the rod, it follows from the cutting principle that f;; = —f;;. The law of

e.A

€y
Figure 3.16: Two point masses connected by a massless rod.

conservation of momentum written separately for each point mass is

d d
mia"i =f+f;; and m; Evj =f +f; (3.40)
or by summation and using the cutting principle f;; = —f;; one obtains
d? d?
mi@ri + mj@rj =f + fj + fij + fji . (3.41)
fr =0
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Substituting the relation for the center of gravity according to (3.23)

m;r; + m;r;

TS = oty (342)
i j
into (3.41), (3.41) simplifies to
d2
—_———— Hf/_/
m R

It can be seen immediately that this also holds for a rigid body with volume V, mass m
according to (3.24) and position vector to the center of gravity rg according to (3.28), see
Figure 3.12. Namely, if one writes the law of conservation of momentum (3.33) for a mass
element dm = p(x,y, z) dV with the corresponding position vector r and integrates over
the volume V), it follows that

d2 d2 2

d
. mrp(amy,z) dy = @/vrp(m,y, z)dV = Mmats = fr . (3.44)

mrg

Equation (3.44) is known in the literature as the center of mass theorem and states
that the center of gravity with the position vector rg of a system of bodies behaves like a
point mass whose mass m is the sum of the masses of all the individual bodies, and on
which the vector sum fg of all the external forces acting on the individual bodies acts.

Ezxample 3.6. Figure 3.17 shows a simple pulley system with two masses m; and my
connected by a massless rope over frictionless, massless pulleys.

Sy
) 3
€y

° °
.. K\ |
‘fSl 1 f
S2 T
29 fSl . f fSB 29
1 S2
z1 1 1 f53
lg /\ /\ 1
Mo |—Y— Mo Y-
mag
mig

Figure 3.17: Pulley system with two masses.
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The corresponding equations of motion are

mi1Z1 = mig — fs1 — fs2 (3.45a)
MmoZy = mag — fs3 . (3.45b)

Due to the above assumptions, the force in the entire rope is the same, i.e.
fs1=fs2=fs3=T[s . (3.46)

Denoting by z19 and 299 the position of the masses m; and ms at time ¢ = 0, then a
change of z3 by Az causes a displacement of mass m; by —Azy/2 (pulley system),
i.e.

Azo(t
Zz(t) = Z90 + AZQ(t), 21 (t) = zZ10 — ;( ) . (3.47)
Substituting (3.46) and (3.47) into (3.45), one obtains
o & g2 (3.48)
9 dt2 22 = Mmig S 40a
2
WQEAZQ =mag — fs, (3'48]3)

from which the equation of motion of the coupled system and the rope force fg can
be calculated directly in the form

2 2m2 — mi

—Azg =2 3.49
de? 2 gm1 + 4myoy ( a)
3mimag
= 3.49b
fs e ( )

@ Solution in MAPLE: Beispiel_3_6.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.3.1 Bodies with Variable Mass

The law of conservation of momentum (3.33) also applies to bodies with variable mass
m(t). Assuming that the body has the mass m(t), the velocity v(t) at time ¢ and is acted
upon by the force f. If the body now ejects the mass dm with the ejection velocity w
during the time interval d¢, then the body has the mass m(t + dt) = m(t) — dm and the
velocity v(t + dt) at time ¢ + d¢. The momentum at time t is p(¢t) = m(t)v(t) and the
total momentum at time ¢ 4 dt is calculated as

p(t +dt) = (m(t) —dm)(v(t) + dv) + dm(v(t) + dv + w(t)) = p(t) + dp (3.50)
m(t4dt) v(t4dt)

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien


https://www.acin.tuwien.ac.at/file/teaching/bachelor/modellbildung/Beispiel_3_6.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

3.3 Conservation of Momentum Page 35

or

dp = m(t)dv + dmw(t) . (3.51)
Thus, the law of conservation of momentum (3.33) becomes

d d d

Sp=mit)= Sim=t. 52
3P m(t)—v + w(t) L (3.52)
Here, %m =~ > 0 describes the ejection rate. With m(t 4+ dt) = m(t) + dm we have the
mass decrease of the body due to the ejected mass

d d _
=g = (3.53)
and the expression
fo = —yw(t) (3.54)

is called the thrust. The differential equations of a body with variable mass m(t) and
ejection rate v > 0 can therefore be summarized as follows

d

m(t)av =f—yw(?) (3.55a)
%m =—7. (3.55Db)

FEzercise 3.6. Calculate the mathematical model of a single-stage rocket with time-
varying mass m(t) = mo — my(t), where mg denotes the mass of the rocket before
launch (dead weight + payload + fuel mass) and mf(t) the burned fuel mass. Assume
that the burned fuel mass my(t) is ejected from the rocket with the fuel ejection rate
my(t) = u(t) at the relative velocity w(t) = —wep, w > 0, and that the rocket moves
exactly against the Earth’s gravitational field with the gravitational constant g.

Solution of exercise 3.6. The mathematical model is

d
—h =
ar =Y
w
= —g+ —u(t
U= 9t ult)
%m:—u(t)

with the height h(t) of the rocket measured from the Earth’s surface, the rocket
velocity v(t), and the rocket mass m(t).

@ Solution in MAPLE: Aufgabe_3_6.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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3.4 Translational Kinetic Energy and Potential Energy

The starting point of the further considerations is again a point mass with mass m, the
position vector r = ze, + ye, + ze. from the origin 0 of the inertial system (0zyz), the
velocity v =1 = v,e, +v e, +v.e; and the sum of the forces fr = fr e, + fryey+ fr €2
acting on the point mass. Then, according to (3.33), the law of conservation of momentum

d

Syt 3.56
Ty T (3.56)

applies. The work done by the force fr at time ¢ per unit of time is called power (SI unit
Watt W = Nm/s).

P=fpv (3.57)

The corresponding energy E transferred in the time interval [to, ] (SI unit Joule J = Nm)
is
t t
E(t)—E(to)= | P(r)dr= | fr-vdr. (3.58)
to to
Substituting the left-hand side of (3.56) into (3.58), one obtains the kinetic energy stored
in the mass m at time ¢ as

v

T(t) = T(to) + t(mdv> vdr=T(o)+m [ v-dv

to dr vo
Vg Vy Vz
=T(to) +m / Uy d¥y + / Uy dy + / U, dv,
Vox Voy V0z
m m 1
=T(to) — B} (vgx + vgy + vgz) + 5(1}% + vz + vz) = imvTV , (3.59)

=0

where all integrals are evaluated along a solution trajectory of the system in the time
interval [to,t] with the corresponding velocity v(tg) = vy = [on,voy,UOZ]T and v(t) =
[V, Uy 02) T

The translational part of the kinetic energy of a rigid body is calculated as (center of
mass theorem)

1
T = §m1‘~§f~5 (3.60)

with the total mass m and the position vector rg to the center of gravity measured in the
inertial system (Oxyz).

2Here and in the following, fr - v denotes the inner product fr - v = fgv = fRr,2Vz + fRyVy + fR,2Vs.
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In the next step, the corresponding potential energy V shall be calculated for the class
of potential forces f,. For this purpose, (3.58) with v = 1 is reformulated as

V() = Vi(to) + ttf,, vdr = V(o) + / £() - df

r
=V (to) +/ (fpo(Z,9,2)dZ + fpy(Z,79,2)dg + fp(Z, 7, 2) d2), (3.61)
ro
where the integrals are again to be understood along a solution trajectory of the system
T
in the time interval [to,t] with the corresponding position r(ty) = rg = [330 70 zo}
T
and r(t) = [x y z} . The integral in (3.61) is path-independent if and only if* the
integrability conditions
0 o 0 R
Fﬂfp,w(xv Y, Z) = %fp,y(wa Y, Z) )
0 o 0 R
%fp,w(xﬂ% Z) = %fp,z(wvyaz) ) (362)
0 o 0 R
%fp,y(% g, 2) = @fp,z(wa ¥, %)

T
are fulfilled or the Jacobian matrix of f, = [fpyx(:i, 9,2) fou(@,9,2) fp-(Z,7, 2)} with
T
respect to T = [5; Y 2} is symmetric, i.e.
0 0 0
9 %fp,x (’Tgfp,z &fp,x 9 T
_ |0 0 0 _

wlr = |afey aglow w=fow| = (affp) ' (3.63)

L fpe Sfoe 2,

oz lpz  Bglpz Bzlp2
In this case, the force f, is also called conservative and has a potential (potential energy)

according to (3.61). If one now assumes that r; denotes the position at which V(r;) =0
(reference point), then

V(r) =V(r1)+/rj0 fp(f)-df+/r:f,,(f~)df«:/if,,(f).df. (3.64)

=V (ro)

Thus, the potential energy V depends exclusively on the final value r of the solution
trajectory and on the reference point r; and is independent of how one arrives at this

T
final value®. If f, = {f/p,z(x, Y, %) fpy(@,y,2) fp(z,y, z)} is conservative and thus the
integrability conditions (3.62) are fulfilled, the integration path can be chosen freely and
the corresponding potential can be calculated e.g. as follows

T Y z
V) = [ foal@r e dit [ foylegendit [ fapzds (365)
xr zr
T

2

withr:[a: Yy z} andrjz{xj Yr zI}T.

3Strictly speaking, this only holds in a star-shaped set (Poincaré lemma for differential forms).
“Note that a change of the reference point ry only causes a constant shift in V.
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Ezxample 3.7. An example is the potential energy due to gravity. If a person of mass
m climbs a mountain of height A, then this person has the potential energy® V' = mgh
at the top of the mountain, regardless of where they started the mountain tour and
which path they took to reach the top.

“Here it is assumed that the sea level was chosen as the reference point.

If V(z,y, z) denotes the potential energy, then V' can also be written in the form

rdv rr o o o 9
V= ., drd /r;[af‘/( )dx—i—? (Z,9, Z)dy+8~ (Z,9,2)dz (3.66)

and by comparison with (3.65) the following relations follow from the independence of
the spatial variables z, y and z

0 0 0
fp,x(CE,g, ) 8~ (I y7 ) fpy( Z) @V(j7g’§)’ fp7z(3~j7gvz) a~ (1" y’ )
(3.67)
or
f, =grad(V)=VV . (3.68)

FEzercise 3.7. Show that the force that can be calculated from a potential is always
irrotational, i.e. rot(fy) =V x f, = 0.

An essential element for the lossless storage of mechanical energy is a mechanical spring.
Figure 3.18 shows a mechanical spring and its nonlinear force-displacement characteristic.
In the unloaded state (spring force fr = 0), the spring element has the length sg, which
is also called the relazed length of the spring.

fr>0 A

fFZO F<O
—

S0 S

Figure 3.18: Spring element.

The potential energy of the spring with the spring force fr(s), fr(so) = 0, is calculated
according to (3.64) as

5) = / 0 fr(3)ds | (3.69)

In the linear case, i.e. fr(s) = c(s — sg) with the spring constant ¢ > 0, the potential

energy simplifies to

Vis) = %C(S —50)% . (3.70)
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Ezxercise 3.8. Figure 3.19 shows the series and parallel connection of two linear spring
elements with the spring constants c¢; and ¢y and the corresponding relaxed lengths

501, S02-
fr
A
S9 C2, 502 T fr
v T 1 A
A
C1, S01 €2, 502
s1 €1, 501 s
y y
7

Figure 3.19: Series and parallel connection of linear spring elements.

Calculate the overall stiffness ¢, and the corresponding relaxed length sg, of the
equivalent circuit according to Figure 3.19.

Solution of exercise 3.8.

. . C1C9
Series connection: soq = sp1 + S02, Cg =
1+ co
. €1501 + €2502
Parallel connection: sgg = —————, ¢4 =c1+c2

c1+c2

@ Solution in MAPLE: Aufgabe_3_8.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Ezxample 3.8. Consider the system in Figure 3.20 consisting of the two masses m; and
myo as well as the two linear spring elements with spring stiffnesses ¢; > 0 and ¢y > 0
and the corresponding relaxed lengths sg; and sg2. In the following, z; and zo denote
the displacement of mass mj or mso from the equilibrium position, i.e. z1 = s1 — so1
and zo = S3 — Sg2. As shown in Figure 3.20, the two masses are connected by a
leaf spring. This causes a spring force fio = c12(z1 — 22), c12 > 0, due to a relative
displacement of m, and mo.
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A mz A
21 /-
mq C12

2,802 | gy

22

S1 c1, 501

Figure 3.20: Masses with leaf spring.

Due to the cutting principle, this force must occur with different signs at the two
ends of the spring, i.e. fa; = — f12. Assuming that the potential energy V stored in
the springs is equal to zero for z; = 2o = 0 and combining the forces of the springs
according to the displacements into a vector fr

fp— [fFl(Zl,ZZ)] _

fra(z1,22) (3.71)

c1z1 + ciz(z1 — 22)1
Ccoz9 + 012(22 —21) ’

T
then V is calculated with z = [zl 22} in the form

V= /0 fr-dz = /0 [0121 + 012(21 — 52)] dz; + [6222 + 012(22 — 21)] dzs . (3.72)

fri(%1,22) fr2(Z1,22)

Analogous to (3.61), the path independence of the integration of (3.72) is given, since
the integrability condition

_ 0, %) _ 0fr (%1, %)
0% 0%

C192 = C12 (3.73)

is fulfilled. The potential energy V of the force fr = Kz is then given by

Z1 z2
V:/o fF1(5170)d51+/0 fra(z1, 22) d2Zo

Z1 z2
= / [c1Z1 + c12Z1] dZ; +/ [c2Z2 + c1222 — c1221] 22
0 0

% 23
= (1 + 012)? + (c2 + 012)5 — C122122

1
_ 1,7

-3 (3.74)

c1 + ci2 —C12 ]
Z

—C12 c2 + C12

K

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien



3.5 Dissipative Forces Page 41

The matrix K is symmetric and positive definite and is also called the stiffness matrix.
The symmetry of the stiffness matrix implies the integrability condition, so that a
potential energy exists for fz.

3.5 Dissipative Forces

A dissipative force fp is a force whose work is irreversibly converted into heat (dissipated),
i.e. fp(t) - v(t) <0 for all times ¢t. These can be forces acting over a volume, such as in
an eddy current brake, or forces acting over a surface, as occurs when a rigid body moves
through a fluid due to friction.

3.5.1 Motion of a Rigid Body through a Fluid

If one considers a rigid body moving uniformly with the velocity v without rotation
through a (resting) fluid medium, then the surface distributed forces exerted by the fluid
on the body can be expressed by a resultant force fp and a resultant torque T%Z) with
respect to an arbitrarily chosen point Z (see also the previous explanations on the topic

general force system). The resultant force fp can be decomposed into a component f4

€.

fluidic medium

Figure 3.21: Moving rigid body in a fluid medium.

(deflection force) perpendicular to v and a component fp (drag force) acting parallel in
the opposite direction of v, see Figure 3.21. The deflection force f, is also called dynamic
lift and is caused by the geometry of the rigid body. A simple relationship for the drag
force fp in a wide velocity range below the speed of sound is given by

fp = fpe, = —cWA%fv?ev (3.75)

with v = ||v||, and the direction vector of the velocity e,. Here, ¢y > 0 denotes the
(dimensionless) drag coefficient, A a suitable reference area and p; the density of the fluid
medium.

Exercise 3.9 (Free Fall). Create a mathematical model to describe the free fall of
an object of mass m, cross-sectional area A and drag coefficient ¢y in the Earth’s
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atmosphere. Consider the change in air density as a function of altitude h in the form

o) = poexn( 7 )

with the constants pg and k. Using MAPLE, determine a numerical solution of the
model for the initial conditions ~(0) = 39 km and v(0) = ~(0) = 0 and the following
parameters: pp = 1.2kg/m3, k = 9100m, A = 0.5m?, m = 100kg, ¢y = 0.5,

g=9.81m/s%

Solution of exercise 3.9.

d
Sh() =0

>
o~
\—/
-1
—
o~
S~—
[}

d
m&fu(t) = —mg + cwApo exp(—

@ Solution in MAPLE: Aufgabe_3_9.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.5.2 Friction between Solid Bodies

When two contacting solid bodies perform relative movements, then tangential friction
forces acting over the area arise due to the roughness of the surfaces in the contact area.
In the following, consider a mass m which is moved on a rough surface by an external
horizontal force f., see Figure 3.22. If one cuts the mass free, then in addition to f., the

€ €z

E x

fe

m |

. =SS S

]

Figure 3.22: On static friction.

normal force fn and the friction force f, act on the mass. From experience one knows
that the mass m only moves when the force f. exceeds a certain value f, i.e. as long as
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the inequality” | f.| < fg is satisfied, the static equilibrium conditions
e fe—fr=0 (3.76a)
e, :fn—mg=0 (3.76b)
apply and the mass remains stuck in place. In this context, f,. is therefore called the

static friction force and represents a reaction force, as is already known from the cutting
principle. In a first approximation, fz can be expressed in the form

fo=npufn, for fn >0, (3.77)

where the static friction coefficient pr > 0 depends only on the roughness of the contacting
surfaces. If the external force f. is increased so that the static friction is overcome, then
the mass begins to move and the friction force f. = fo due to dry sliding friction is

fo = ncfnsen(i), for fy >0, (3.78)

with the sliding friction coefficient uc > 0. In this case, the equilibrium condition
fn = mg still holds for the e, direction and the law of conservation of momentum (3.33)
for the e, direction becomes

mi = fo — pemgsgn(i). (3.79)

The mathematical model of the mass of Figure 3.22 is therefore characterized by a
structural change, i.e.

. 0
Sticking: if |f.| < fg and & = 0 {fc . (3.80a)
v =

- N =0
Sliding: otherw1se{ ) (3.80b)
mi = fo— pcmgsgn(v) .

The friction law (3.77), (3.78) is also known as Coulomb’s law of friction and is essentially
considered as an elementary approximation theory for dry friction between solid bodies.
The friction coefficients prr and pe generally have to be determined from experimental
investigations. Typical values for some material pairings can be found in handbooks, see
for example Table 3.1.

In the sticking state, one can introduce an angle ¢ according to Figure 3.22 in the form

tan(p) = ﬁ (3.81)
I
Substituting the limit value f = pgfn for f., one obtains the relationship
tan(om) = pn (3.82)

with the angle of static friction . This allows a clear geometrical interpretation of static
friction: If a body is subjected to an arbitrarily directed load, it remains at rest as long
as the reaction force fp at the contact surface lies within the so-called friction cone. The
friction cone describes the cone of revolution around the normal e,, of the contact surfaces
with the opening angle 2¢p, see Figure 3.23.

®Note that in general fg can take different values for different signs of f., which is not considered here.
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Table 3.1: Typical friction coefficients.

Material pairing H Static friction py | Sliding friction pc
Bronze on bronze 0.18 0.2
Cast iron on bronze 0.28 0.2
Steel on steel 0.15 0.12
Pneumatic tire on asphalt || 0.55 0.3
Oak on oak 0.54 0.34
ACn

Figure 3.23: Friction cone.

Ezxercise 3.10. A mass m lies on an inclined plane and is pulled upwards by a person
with the force fg (see Figure 3.24). Calculate the necessary pulling force fg as a
function of the angles o and g as well as the mass m and the static friction coefficient
wir, so that the mass can be moved.

g NG/
Is

7

Figure 3.24: Mass on an inclined plane.
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Solution of exercise 3.10.

mg(p cos(a) + sin(a))
cos(f — a) + pgsin(f — a)

@ Solution in MAPLE: Aufgabe_3_10.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

fs >

Exercise 3.11. A person of mass m climbs a 21-step ladder of length [ which is leaning
against a wall, see Figure 3.25. How many steps can the person climb up the ladder
without the ladder slipping away if the static friction coefficient between the ladder
and the wall is zero and between the ladder and the floor is puy = 1/107

Figure 3.25: Person on a ladder.

Solution of exercise 3.11. The number of steps corresponds to the number rounded

down to the nearest integer
20pH

Note that tan(arcsin(z)) = z/v/1 — 22 was used here.

@ Solution in MAPLE: Aufgabe_3_11.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

If there is a continuous layer of lubricant between the two solid bodies, then the forces
acting between the bodies essentially depend on the flow established in the gap between
the two bodies. Very often, a simple model of the form

fr = pyAv (3.83)
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is used in this context for the friction force f,., with the viscous friction coefficient py > 0
and the relative velocity Av of the two contacting surfaces of the rigid bodies. In the
general case of mixed friction, Coulomb friction (3.77), (3.78) and viscous friction (3.83)
are combined.

There are now components, called dampers, which realize a given (nonlinear) force-
velocity characteristic fp(Av) with fp(Av)Av > 0 according to Figure 3.26. In the
linear case, the damping force is given by fp = dAv with the damping coefficient d > 0
proportional to the velocity.

fD fDn
—
0—3—0
v >
—L. Av =19 — 11
V2

Figure 3.26: Nonlinear damper.
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Ezxample 3.9. A massless rope is guided around a stationary cylinder with a wrap
angle o according to Figure 3.27, where fgo > fs1.

[s2 ‘
PO

Figure 3.27: On rope friction.

If one now takes out an infinitesimal rope element, then the equilibrium conditions
under the assumption of sufficiently small angles de/2 (i.e. sin(dy/2) ~ dg/2,
cos(dp/2) =~ 1) are

e, fe+df— (fs + dfs) =0 (3.84&)
e. v~ fs%F — (fs +dfs) T = 0 (3.84D)

or, neglecting d fs dy/2, it follows

df, =dfs and dfy = fsdp. (3.85)

With Coulomb’s law of friction according to (3.77), (3.78), in particular df, = pdfn,
one obtains

45 _ g (3.86)

or by integrating over the wrap angle from ¢ = 0 to ¢ = a one obtains the rope
friction equation as

fs2 1

T dfs = /Oa,udgo or fsa = fs1exp(pa) . (3.87)

For the case fs1 > fg2, the relation fg1 = fs2 exp(ua) can be derived analogously. If
u = pp now denotes the static friction coefficient, then the system is in equilibrium
as long as the inequality

fs1exp(—pra) < fso < fs1exp(pmo) (3.88)
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is satisfied. The rope slips to the right for fg; > fs2exp(uga) and to the left for
fs2 > fs1exp(pna).

Ezxercise 3.12. A mass with the weight force mg hangs on a (massless) rope, which
was wrapped once around a stationary cylinder (wrap angle 360°) and can be held
in equilibrium with a force of 10 N. How many times do you have to wrap the rope
around the cylinder so that 10 times the mass can also be held in equilibrium by the
static friction of the rope with a force of 10 N?

Solution of exercise 3.12. The desired wrap angle « is
< 10mg)
In(| —=
10
(%)
In( —
10

@ Solution in MAPLE: Aufgabe_3_12.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

o =27

3.5.3 Rolling Friction

If a rigid wheel rolls on a rigid surface without slipping, then theoretically there is no
rolling resistance. In reality, however, every rolling process is accompanied by deformations,
which are associated with partial sliding processes in the contact area. Figure 3.28 shows
the respective force ratios for a running wheel and a driven wheel. In the case of the

Figure 3.28: Running wheel and driven wheel.

running wheel, the horizontally acting force fr must be introduced into the wheel via the
axle in order to compensate for the rolling resistance. From the equilibrium conditions for
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very small angles ¢ = arctan(fg/fv)
fu—fr=0, fyn—fr=0 and rfg—1ULfn=0 (3.89)

the rolling resistance force fr follows to

fr= %fN = urfv (3.90)

with the rolling friction coefficient ugp = l,/r > 0. For the same material pairing,
the rolling friction coefficient is significantly smaller than the sliding friction coeffi-
cient.

Fzercise 3.13. Show that for the driven wheel, the driving torque 74 = [, fy must be
applied to overcome the rolling resistance and that the pulling force is calculated as

fz=r1a/T — prfv.

Remark: The equilibrium conditions for the driven wheel under the assumption
of very small angles ¢ = arctan(fz/fy) are

fz—fr=0, fn—fr=0 and 74—rfr—Il,fn=0.

3.6 Spring-Mass-Damper System

Many real technical systems can be described as a combination of rigid bodies with
springs and dampers (e.g. wheel suspensions in vehicles, the micro-mechanical gyroscope
from Example 1.3). Based on the previous results, the equations of motion of such
spring-mass-damper systems can already be derived. To this end, consider the following
example.

FEzample 3.10. Consider the spring-mass-damper system of Figure 3.29 with the
masses mi1, mg and mg, the linear damper elements with the positive damping
constants di1, dog and di3 as well as the linear spring elements with the positive
spring constants c11, c22, c13 and ca3 and the relaxed lengths sg11, Sp22, So13 and sgo3.
Furthermore, let the force f; act on the mass mg and let g denote the acceleration
due to gravity.
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fr
g
m
3 A
d13 C13 C23
5013 5023
53
m m
A 1 2 A
511 dyy c11 dy c22 |82
S011 8022

Figure 3.29: Spring-mass-damper system with three masses.

Applying the law of conservation of momentum (3.33) for each mass, one obtains
three second-order differential equations

m181 = —mig — c11(s1 — So11) — d1181 + c13(83 — 51 — s013) — d13(31 — 83) (3.91a)

made = —mag — c22(S2 — So22) — d22$2 + ca3(S3 — S2 — S023) (3.91b)

ms383 = —mgg — c13(s3 — 51 — s013) + d13(51 — $3) — ca3(s3 — 82 — S023) — f1. -
(3.91c)

The mathematical model (3.91c) can also be written more compactly in matriz
notation in the form
Mg +Dg+Kq=k+bf; (3.92)

T
withq = [51 S92 53} , the symmetric, positive definite mass matric M = diag(my, ma, ms),

the symmetric, positive (semi-)definite damping matriz

din+diz 0 —dis
D=| 0 dy 0|, (3.93)
—d13 0 dis
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the symmetric, positive definite stiffness matriz

c11 + c13 0 —C13
K= 0 c2+c3 —ca3 |, (3.94)
—C13 —C23 €13 + C23

the constant vector k and the constant input vector b

—m1g + €118011 — €135013 0
k = —Mmag + €225022 — €235023 | » b= 0 . (3.95)
—ma3g + 135013 + €235023 -1

FEzercise 3.14. Show the definiteness properties of the matrices K and D.

To calculate the equilibrium position qg for fr, = 0, one sets ¢ = q = 0 in (3.92) and
solves the resulting linear system of equations Kqgr = k for qr. Due to the positive
definiteness, K is invertible and it follows

ar =K'k . (3.96)

Introducing the deviation Aq of q from the equilibrium position (rest position) qg,
i.e. Aq =q — qg, then the equation of motion (3.92) follows in the form

MAqGq +DAg+ KAq+Kqr =k +bf . (3.97)
——
k
The numerical simulation of this spring-mass- Bl

damper  system in  MATLAB/SIMULINK is  shown
Beispiel_3_10.zip, which can  be downloaded from _ 2y
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
among other things, the influence of the parameters of the system on the
solution properties can be analyzed.

The result of the previous example can be generalized in that every linear spring-mass-
damper system can be written in the form

Mg + Dg + Kq = Bf, (3.98)

with the vector of position coordinates q (relative to the equilibrium position), the
symmetric, positive definite mass matrix M, the symmetric, positive semi-definite damping
matriz D, the symmetric, positive definite stiffness matriz K, the input matrix B and
the vector of external forces f..

The energy stored in the system consists of the kinetic energy
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1
T = 5qTMq (3.99)
and the potential energy stored in the springs
1
V= 5qTKq. (3.100)

If one now calculates the temporal change of the total energy £ =T 4+ V along a solution
trajectory of (3.98), then it follows

d 1. .1 I 1 . . )
3P =34 Ma+ a4’ Ma+ 54" Ka+ 59 Ka=q Md+aq'Kq
=q'(-Dq - Kq+Bf.)+ q'Kqg=—-¢'Dq + q'Bf, . (3.101)

The first term —qTD¢q < 0 indicates the power dissipated in the damper elements and the
second term qTBf, describes the energy flows to or from the system due to the external
forces f..

Exercise 3.15. Show that the change of the total energy is calculated as in (3.101)
also for the spring-mass-damper system according to (3.92).

3.7 Conservation of Angular Momentum

In (3.10) it was shown that the torque 7(°) of a force f with the position vector r is
calculated as 7(©) = r x f. If one now considers a point mass with mass m, the position
vector r(t) from the origin of the inertial system (0zyz) and the velocity v(t) = £(¢), then
the angular momentum is defined as

19 =r xp=1rxmv. (3.102)

Forming the cross product of both sides of the law of conservation of momentum (3.33)
with the position vector r, one obtains

r X %p:rx %(mv) —rxf=70 (3.103)
With d d d
&(rxp):&rx\p;%—rx P (3.104)
~  mv
L,_/

=0

it follows from (3.103) that the law of conservation of angular momentum (theorem of
angular momentum,) is

d d

—10 = Z(r xp) =7© 3.105

S10 = Z(rxp) =70, (3.105)
i.e., the temporal change of angular momentum 19 with respect to an arbitrary fized
point in space 0 is equal to the torque 7(9) of the resultant force f acting on the point
mass with respect to the same point 0.
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Ezample 3.11. If the force vector always points to a point 0 (the center) during a
motion, then it is called a central motion. This is the case, for example, in planetary
motion, where the Sun forms the center. Since the torque 7(©) with respect to the
center vanishes in a central motion, the angular momentum 1) must be constant
according to (3.105).

The area swept by the position vector r in time df can be described by the
area vector dA(®) = nydA = %r x dr, where n4 describes the normal vector and
dA = J||r x dr||, the corresponding size of the area element. If one now introduces
the so-called wvectorial areal velocity

a = 51‘ X &r == 51‘ X \"7 (3106)

then the angular momentum (3.102) can also be written in the form

10 = 9y LA (3.107)
dt
From 1 =constant it follows according to (3.107) that the areal velocity %A(O)
is also constant for a central motion. This statement corresponds to Kepler’s second
law. This states that a ‘radius vector’ drawn from the Sun to the planet sweeps out
equal areas in equal times, see Figure 3.30.

109
dr
m
dA© "
/ time At
trajectory
time At planet
(a) (b)

Figure 3.30: On the conservation of angular momentum (a) and Kepler’s second law (b).

Example 3.12. Consider the mathematical pendulum of Figure 3.31 with the point
mass m and the massless rigid pendulum of length [ under the influence of gravity
with the acceleration due to gravity g in the negative e, direction.
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€,
g l ez(I Sy
@ ! z \J\

S w [s

v=1p

mg

Figure 3.31: Mathematical pendulum.

If one cuts the pendulum open and introduces the cutting force fg, then the law of
conservation of momentum for the mass m reads as

ey, : mjj = — fgsin(y) (3.108a)
e,:miZ=—mg+ fscos(y) . (3.108b)

Substituting the relations
y =1Isin(p), §=1lcos(p)p, ij=—Isin(p)g®+1lcos(p)p (3.109a)
z=—lcos(p), z=Isin(p)p, %=Ilcos(p)p*+ Isin(p)p (3.109b)

into (3.108), one obtains

m(—l sin(p)p? + lcos(gp)c,b) = —fgsin(y) (3.110a)
m(l cos(p)@? +1 sin(g@)gb) = —mg + fscos(p). (3.110b)

From the two equations (3.110), a differential equation for ¢
mi*@ = —mgl sin(p) (3.111)
and the cutting force fg in the form

fs = mgcos(p) + mip? (3.112)

can now be calculated. The differential equation (3.111) can also be obtained directly
via the law of conservation of angular momentum (3.105) with respect to the origin 0
of the coordinate system (0zxyz). The corresponding angular momentum 10) according
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to (3.102) is (see also Figure 3.31)

0 0 mil?¢
19 = x mv = Isin(p) | xm|lpcos(p)| = | O (3.113)
—lcos(ip) lpsin(yp) 0

and thus the law of conservation of angular momentum with respect to the e, axis
becomes

d
alvfco) =mi%p =70 = —mglsin(y) . (3.114)

The quantity
19 = mi? (3.115)

is also called the moment of inertia.
@ Solution in MAPLE: Beispiel_3_12.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

The numerical simulation of the mathemati-
cal  pendulum in  MATLAB/SIMULINK is shown in
Beispiel_3_12.zip and can be downloaded from
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
gate here the influence of the initial conditions, the mass m and the chosen
integration method on the solution behavior.

The previous example can now be easily extended to the rotation of a rigid body with the
angular velocity w = ¢ about a fixed axis of rotation e, (in the present case e, = e, ), see
Figure 3.32.

If one writes down the temporal change of the angular momentum about the axis of
rotation for a mass element dm = p(z,y,2)dV with the volume element dV and the
density p(z,y, z), which is located at a distance r(x,y, z) from the axis of rotation, with

r cos(p) —rsin(p)w
r= [rsin(p)| and v=| rcos(p)w |, (3.116)
z 0

one obtains
—zdmr cos(p)w

%(r x dmv) = Tl dmrsin(p)w | . (3.117)

r2 dmw

For the description of the rotation about the axis of rotation e, only the corresponding
part of (3.117) about this axis is of interest in the following, i.e., the part

d d
o — = — . A1
w3 (r x dmv) i dmw (3.118)
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dy

\/

€

Figure 3.32: On the moment of inertia.

By integrating (3.118) over the entire rigid body volume V, the theorem of angular
momentum follows as

Lw= Izsz S (3.119)
with the total external torque 7, acting about the e, axis and the moment of inertia
I, = / r2dm = / (wz + yz) dm . (3.120)
v v
The rotational kinetic energy stored in the rotating mass is
1
T, = §Izng2 : (3.121)

Example 3.13. The moment of inertia of a cylinder with radius R, constant density p
and length [ is (see Figure 3.33)

l r2m (R R4 1
I, = / / / rprdrdpdz = p—ﬂl = —mR?. (3.122)
0Jo Jo 2 2
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Figure 3.33: On the moment of inertia of a cylinder.

FExercise 3.16. Calculate the moment of inertia I of a homogeneous sphere with radius
R and density p about an axis through the center of the sphere.

Solution of exercise 3.16.
8 2
I = " 71oR° = SmR2 3.123
5P £ (3.123)

@ Solution in MAPLE: Aufgabe_3_16.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Figure 3.34: On Steiner’s Theorem.

system (Sa:(s)y(s)z(s)) describes the center of gravity of the body (see also (3.28)) and

the moment of inertia about the e,(zs) axis can be calculated using the relation
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9 — / )2 am = /( (2’ y<s>)2) dm. (3.124)

(4)

If one now wants to calculate the moment of inertia I,’ of the same body with respect
to the parallel e axis of the coordinate system (Ax(A)y(A)z(A)) (see Figure 3.34), then

I§§‘>:/V G "dm= /( + (y) )dm (3.125)

or with () = 245 4+ 29 and y) = yas + %) one obtains

I = /((CCAS) + (yas) )dm + 2/ 25z +yasy® )) dm

+/( + (y) >dm

= <(xAs) + (yas) )m + QxAs/ 2 dm + 2yA5/ y(S) dm + Iéf) . (3.126)
1% 1%

=0 =0
Equation (3.126) shows that the moment of inertia I. éf) with respect to the e,(zA) axis

S)

results from the sum of the moment of inertia I ,S) about the e;(z axis through the
center of gra\nty S and the multiplication of the total mass m by the squared distance
(A (5)

(245)* + (yas)? from the axis e} ) to the axis e!™”). This relationship can also be found in
the literature under the name Steiner’s Theorem.

Example 3.14. Figure 3.35 shows a rigid body consisting of four symmetrically
arranged solid cylinders, each with mass m and radius R, whose centers are located
at a distance H from the axis of rotation e,.

Figure 3.35: Rigid body consisting of four symmetrical cylinders.

It is assumed that the connecting bars between the cylinders are massless. The
moment of inertia of a solid cylinder with respect to the e, axis through the center

of gravity is I ,§§) = %mR2 according to (3.122). According to Steiner’s Theorem, one
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thus obtains for the moment of inertia of the entire body

1
L. = 45mR* + 4Hm = 2m (R? + 2H?) . (3.127)

Ezample 3.15. Figure 3.36 shows a frictionlessly mounted, cuboid pendulum rod with
homogeneous density pg and geometrical dimensions length lg, width bg and height
hs.

Figure 3.36: Pendulum rod.

Two variants will be presented in the following for calculating the kinetic energy.
A)

In the first variant, one calculates the moment of inertia [ é
about the axis of rotation (e, axis)

hs/2 bs/2
—ps/ /l / 2+ dmdydz:ps< Bbshs + bslsh5>
S

2 of the pendulum rod

hs/2 bs/2
(3.128)
and thus the kinetic energy is calculated according to (3.121) as
1 (a) .
T=3 150 0% (3.129)

In the second variant, one first sets up the position vector rg from the origin 0 of the
inertial system (0xyz) to the center of gravity S of the pendulum rod

ls/2sin(p)
rg = |—lg/2cos(y) (3.130)
0

and calculates the translational part of the kinetic energy according to (3.60) as
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1 1 l
T, = ierSrS = img A S 52 (3.131)

with the pendulum mass mg = pglgbshg. If one now supplements the translational
part of the kinetic energy T; with the rotational part of the kinetic energy according
0 (3.121), one has to note that now the moment of inertia / ész)z must be calculated
with respect to the center of gravity S (i.e., with respect to an axis of rotation parallel

to the e, axis through the center of gravity S)

hs/2  rls/2 bs/2
Szz = ps/ / / ac + y dac dydz = pg (lsbshs + nglsh5>

hs/2J—ls/2J—bg/2
(3.132)
and thus the rotational part of the kinetic energy follows as
1 ,
T, = 5159290.2 (3.133)
The kinetic energy of the pendulum rod is therefore
T=T+T,
1 . 1 1 1 .
=3 psbshsldp? + 2ps(12ngsh5 + mb?glghg) ?
1/1 3 1
= 3 gPSbShSls + 12pgbsl5h5 . (3.134)
=I§7.
It should be noted that the relation
(4) _ () 5
IS,ZZ = IS,zz + mg— (3135)

corresponds exactly to Steiner’s Theorem, see (3.126).

In general, it should be noted that when calculating the kinetic energy as the sum
of a translational and a rotational part, the moment of inertia must always be used
with respect to the axis of rotation shifted parallel to the center of gravity. This is of
essential importance, especially in the following derivation of the equations of motion
using the Euler-Lagrange equations!
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Example 3.16. As an example, consider the drive train of Figure 3.37.

I, Tm
AN c
Motor 7 i, I I,
o A ma m m
! 2
P 3\ %
@1 ©2
) d
— 4) Tl(m)
T1) —

Figure 3.37: Drive train.

A motor with moment of inertia I,,, generates a torque 7, and drives a mass with
moment of inertia I; via a lossless gear with gear ratio i, (ratio of input speed to

output speed)

, 1,

©1 = —Pm- (3.136)

g
This mass is connected via a linear torsional spring with spring constant ¢ > 0

and a rotational damper proportional to the angular velocity with damping constant
d > 0 to another mass with moment of inertia Is, on which the load torque 7; acts. If
one cuts the gear open (see Figure 3.37), the torque Tl(m) acts on the primary side.
Since the gear was assumed to be lossless, the torque on the output side is

(m)

T1¢1 _ 7_lm (m) .

$m Or TI =Ty 'ig, (3.137)

due to the gear ratio. Applying the law of conservation of angular momentum (3.105)
separately for the two masses and the motor, it follows that

Iyom = Tm — Tl(m) (3138&)
Ligr =11 — c(p1 — p2) — d(p1 — ¢2) (3.138b)
Irpo = c(p1 — p2) +d(p1 — p2) — 7 (3.138c¢)

or, by eliminating Tl(m), 71 and @, it follows
L= Tl(m)ig = Timig — Imi 1 (3.139)

and

(I + i2Ln) $1 = Tindg — (o1 — p2) — d(p1 — 2) (3.140a)
Iypa = c(p1r — p2) +d(p1 — @2) — 71 . (3.140b)
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In matrix notation, (3.140) can be written compactly in the form
Mg + Dq+ Kq = b7+ by (3.141)

with q = [(,01, QOQ]T, M = diag([l + ’LzIm, I2) and

K:[C _c],D:ld _dl,be:lol,buzﬁ (3.142)
—c ¢ —-d d -1 0

according to (3.98).

@ Solution in MAPLE: Beispiel_3_16.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

FExercise 3.17. A sphere of mass m with radius R rolls down an inclined plane,
see Figure 3.38. Give the equation of motion for ¢ neglecting rolling friction and
determine the static friction coefficient py for which rolling is possible.

Figure 3.38: Rolling sphere.

Solution of exercise 3.17.

2
& gsin(a) for pupg > ?tan(a)

TR

Remark: Cut the sphere free and set up the law of conservation of momentum
in the e,- and e,-direction of the indicated coordinate system as well as the law
of conservation of angular momentum about the center of the sphere.
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@ Solution in MAPLE: Aufgabe_3_17.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

@ All solutions to the examples and Exercises in MAPLE and MAT- [¥EEaME
LAB/SIMULINK can also be downloaded collectively in Kapitel_3.zip
from https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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4 Rigid Body Kinematics

Chapter 2 described the kinematics of point masses, and Chapter 3 extended this to the
description of planar motion. This chapter deals with the basics of the kinematics of
general rigid body motion, which is used, for example, to describe the motion of robots.
In doing so, any rigid body motion can be described as a combination of translational
and rotational motion.

4.1 Rotation

Figure 4.1 shows a rigid body S with a body-fixed coordinate system (01x1y121) and
a spatially fixed coordinate system (inertial system) (Opxoyoz0). It is assumed that

A 2

iy Yo
Figure 4.1: On the rotation matrix.

{ez,, ey, €.} and {ey,, ey, €, } each represent an orthonormal basis according to (2.1).
The vector from the common origin of the coordinate systems to a point P of the rigid
body can now be expressed either in the body-fixed coordinate system in the form

P1 = P1z€z; + D1y€y; + P12€2, (41)
or in the spatially fixed coordinate system by

P0 = P0z€zy + PoyCyo T P02€2,- (42)

!Note that in this and the following chapter, the variable p is used to describe the position of points of a
rigid body. Wherever necessary, it will be explicitly indicated that this does not refer to momentum.
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Since p1 and pg represent the same vector in different coordinate systems, the following
relationship holds for their components

T T T T T
Doz = €;,P0 = €, P1 = P12€; €z, + P1y€y €y, + D12€; €z - (4.3)

If this is done analogously for pg, and pg., one obtains the relation for a pure rotation of
the coordinate system

T T T
Doz exo exl exo ey1 emo e21 Dla
— T T T
Poy €y0C€r1 ©yCy1 €y | |Ply| - (4.4)
Doz T T T D1z
—— ezo €y ezo €y ezo €| =
Po R(l) P1

The (3 x 3) matrix R} gives the transformation of the coordinates of a vector in the
coordinate system (0171y121) (superscript in RY) to the coordinates in the coordinate
system (Opzoyoz0) (subscript in R{). Analogously, the following applies

P1z = egl P1 = e;Fl Po = pOxe;Fl €z +p0yegleyo + pOzeg‘lezo (45)
or
T T T
Pl ezlexo exleyo e:mezo Doz
Py| = €€ €€y €€ [Poy| - (4.6)
p1 T T T Po
\ : , ezl €0 ezl eyo ezleZO — ,_/Z
P1 Po
R{
Now obviously the following must hold
po = Rjp1 = RgR{py or p1 = Ripy = R{Rgp: (4.7)
and because of the commutativity of the dot product efl ey, = eZ’Tloex1 follows the orthogo-
nality of the matrix RY, i.e.
=1 T
Ry = (R)) =(R}) . (4.8)

If one now assumes a right-handed coordinate system, then additionally det(R}) = +1
holds. In this context, all orthogonal (3 x 3) matrices with determinant +1 are called
rotation matrices of R3. Frequently, the notation SO(3) is used for special orthogonal
group of order 3.

Now there are three elementary rotation matrices, each describing the rotation about
one of the three coordinate axes. Figure 4.2 shows the position of the coordinate sys-
tems (0121y121) and (Opzoyozo) for a rotation about the zp axis by the angle ¢. The
corresponding rotation matrix Ré is

cos(¢) —sin(¢) 0 ¢y —s¢ 0
Ry =R., = |sin(¢) cos(¢) 0= s¢ Co Of. (4.9)
0 0 1 0 0 1
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21 <0

Y1

0 X1 Yo

Figure 4.2: Elementary rotation about the zy axis with the angle ¢.

Analogously, for the elementary rotations about the yo- and zg-axes with the respective
angles # and 1), one obtains the rotation matrices

[ cos(d) 0 sin(6) co 0 s¢

Ry =R,g= 0 1 0 |=l0 1 0 (4.10a)
| —sin(fd) 0 cos(9) —sp 0 cp
10 0 1 0 0

Ry=Ryyp= |0 cos(v) —sin(e)| = [0 cy —sy] - (4.10Db)
0 sin(y)  cos() 0 sy ¢y

Ezxercise 4.1 (Elementary Rotation Matrices). Calculate the elementary rotation
matrices using (4.4).

Solution of exercise 4.1.

@ Solution in MAPLE: Aufgabe_4_1.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Now consider three coordinate systems (0gzoyoz0), (0121y121) and (02z2y222), which
are connected by rotation. The vector p from the common origin of the coordinate systems
to a point P can be represented in the coordinates of the respective coordinate systems
(denoted by po, p1 and p2). The following relationships apply

po=Rjp1 and p; =Rips (4.11)

and for the concatenation of two rotations one obtains
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po = R{R?p, = R2ps or RZ =R/}R?. (4.12)

Furthermore, it is easy to see that the following relations also hold for the inverse
T T T T
po=Ripy with R{=(R3) = (RR}) = (R}) (Rj) =RIR{. (4.13)

Note that the concatenation of rotations is not a commutative operation, i.e. in general
R4Rp # RpR 4 holds for two rotation matrices R4 and Rp. As an example, consider
the concatenation of two elementary rotations, first by the angle ¢ about the instantaneous
z-axis and then by the angle § about the (rotated) instantaneous y-axis. The rotation
matrix in this case is

Cop =S4 Off[co 0 sp CoCyp —S¢ CeSo
Rzy = RZ@R%@ = S¢ C¢ 0 0 1 0 = S¢C9 C<Z5 S¢Sg . (4.14)
0 0 1/ |—sg 0 cy —Sg 0 Co

If one changes the order, i.e., first a rotation by the angle § about the instantaneous y-axis
and then a rotation by the angle ¢ about the (rotated) instantaneous z-axis, one obtains

cog 0 sg||cp —s¢ O CoChp  —CoSy  So
Ry.=RypR.s=| 0 1 0]||sy ¢4 0= S¢ Co 0fj . (4.15)
—Sg 0 Co 0 0 1 —SgCy 50S¢ Co

It can be seen directly from (4.14) and (4.15) that R,. # R, holds, see Figure 4.3.
The concatenation of two rotations according to (4.14) or (4.15) implies that the second
rotation is always performed with respect to the already rotated coordinate system. In
comparison, assume now that the coordinate system (0pzoyoz0) is rotated by the angle ¢
about the zp-axis and the resulting rotated coordinate system (01x1y;21) is rotated by the
angle 0 about the yp-axis (in contrast to (4.14), where the rotation was about the y;-axis),
resulting in the coordinate system (O2z2y222). If one denotes by pg, p1 and py one and
the same vector in the different coordinate systems, then the following relations hold

Po = RZ7¢p1 and p; = RZ7_¢Ry79RZy¢p2 #* Ry,9P2 (4.16)
or
po =Ry oR; 4p2 . (4.17)
The expression R, 4R, R 4 in (4.16) shows that first the rotation by the angle —¢ is
performed about the zj-axis (which is identical to the zp-axis) (this brings us back to
the original (Opxoypz0) system), then the rotation by the angle # about the yp-axis, and
finally the rotation back by the angle ¢.

4.2 Parameterization of a Rotation

The nine entries of a (3 x 3) rotation matrix R are of course not linearly independent.
Rather, the orientation of a rigid body can be determined by three rotational degrees
of freedom, which is why the rotation matrix is generally characterized by only three
linearly independent quantities. In the following, two commonly used parameterizations
of a rotation are given.
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Figure 4.3: On the concatenation of rotations: R,. # R.,.

€2

4.2.1 Euler Angles

To this end, consider the body-fixed coordinate system (0121y121) rotated with respect
to a spatially fixed coordinate system (inertial system) (Opxoyoz0). In the Euler angle
parameterization, the orientation of the coordinate system (0ix1y121) with respect to
(0pxoyoz0) is represented by three successive rotations with the angles (¢, 0,1): First, a
rotation about the zp-axis by the angle ¢, then a rotation about the (rotated) instantaneous
y-axis by the angle 0, and finally a rotation about the (rotated) instantaneous z-axis by
the angle . Thus, the rotation matrix is

_ch =8¢ Of|co O sp|fcy —sy O
Ri=R.,R,oR.yp= 154 ¢4 O[| 0 1 0f[sy cp 0

0 0 1 —Sg 0 Co 0 0 1
- (4.18)
CpChCyhp — SpSyy  —CpCPSy — SepCqyp  CpSh

= |S¢CACY T CpSy  —SepCeSy + CyCy  SpSe

—SgCy) 50Sq) Co

4.2.2 Roll-Pitch-Yaw Angles

A parameterization of the rotation matrix in terms of rotation angles (¢, 8,1) about the
coordinate axes of the spatially fixed coordinate system (0pzoyoz0) such that a rotation
by the angle v is performed first about the zg-axis, then a rotation by the angle 8 about
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the yo-axis, and finally a rotation by the angle ¢ about the zp-axis (see Figure 4.4), results

in the rotation matrix

Ry =R. 4R, oRsy =

Cp —S¢ 0 Co 0 Sg 1 0 0

S¢ C¢ 0 0 1 0 0 C¢ —S¢
0 0O 1||[—sg O co||0 s ¢
v (4.19)
CpCo  —SpCy + CySeSy S¢Sy + CpSeCy
SpCo  CpCy T 84898y  —CeSy + SeSeCy
—Sg CoSy CoCyp

Here, v is called the roll angle, 8 the pitch angle, and ¢ the yaw angle.

Z
A0

J>¢

> P
@\
S

Figure 4.4: Parameterization of the rotation matrix using roll-pitch-yaw angles.

4.3 Translation

In addition to the pure rotation of a coordinate system discussed so far, the next step
is to address the pure translation of a coordinate system. Consider the two coordinate
systems (Opzoyozo) and (01x1y121) of Figure 4.5, which are not rotated with respect to
each other, whose coordinate origins 0y and 0; are connected by the vector dj.

Note 4.1 (Notation). The vector dj describes the translational displacement of
the coordinate system (01x1y121) with respect to the coordinate system (0gzoyozo)
expressed in the coordinate system (Opzoyozo). For all further considerations, it holds
that the quantities (displacement vector, vector of angular velocities, etc.) are always
represented with respect to the coordinate system indicated by the lower right index.

Furthermore, let pg and p; denote the vectors from the origins 0y and 0; of the
coordinate systems (Opzoyozo) and (01z1y121) to a point P. For a pure translational
displacement dj of the two coordinate systems, the following relation holds

po=p1+dj. (4.20)
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Figure 4.5: On the translational displacement.

4.4 Combined Rotation and Translation

As mentioned in the introduction, a rigid body motion generally consists of rotational and
translational movements. Combining (4.7) with (4.20), one obtains the following relation
for a combined translational and rotational motion

Po = Rop1 +dg - (4.21)

It can be shown directly that for the coordinate systems (Opzoyozo), (0121y121) and
(022y222) shown in Figure 4.6, the relations

po=Rop1+dy and p;=Rip;+d; (4.22)

or
po = Ry(Rips + df) + dj = Rips + Rid} + dj (4.23)

apply.

Figure 4.6: On the combined translational and rotational motion.

If one wants to describe the motion of a rigid body with respect to the inertial system
(0pxoyo20), one attaches a coordinate system (01z1y;21) rigidly to the rigid body (body-
fized coordinate system). Thus, the motion of the rigid body is described equivalently by
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the transformation (4.21) of the coordinate system. Therefore, a transformation of the
form (4.21) with an orthogonal matrix R{ is also called a rigid body motion. The location
of the body-fixed coordinate system is arbitrary. However, it is often useful to place the
body-fixed coordinate system at the center of rotation or the center of gravity of the rigid
body.

Rigid body motions can be efficiently represented in terms of homogeneous transforma-

tions of the form
_ |Rg dg| . |
H; = 0 1 with Ry € SO(3). (4.24)

Consider a configuration Pg of a rigid body

e L (4.25)
1
then by rotation by R} and translation by dj one obtains the configuration
p, = |© (4.26)
1
in the form (compare with (4.21))
Py = H}P; . (4.27)

It is easy to see that the configuration of the rigid body resulting from another rigid body
motion (rotation by R? and translation by d?)

p, = |P? (4.28)
1
satisfies the following relation
R? d}
P, = H’P, = 01 jpz. (4.29)

To prove this, one combines (4.27) with (4.29). One obtains with

po| [R§ dg| [R} di| [p2| [RgRI Rgdi+dg| [p2 (430)
1] o 1)lo 1||1] | o 1 1 '
N—— N—— N~

Py H(l) H% Po H(Q) Po

directly the result of (4.23). Furthermore, for the inverse homogeneous transformation we

have
T T
HY = (H}))*1 = l(Ré)) _(R‘? d(l’] . (4.31)

The description of a rigid body motion by means of homogeneous transformations proves
to be particularly advantageous for kinematic chains, as they occur frequently in robots,
for example.
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Example 4.1 (Planar Manipulator). Figure 4.7 shows a simple planar manipulator
consisting of two links. Link 1 (length I, distance to the center of gravity ls1) is
rotatably mounted at one end about the z-axis (angle ;). At the other end, link 2
with length I3 and distance ls9 to the center of gravity is rotatably mounted about
the z-axis. The angle o denotes the relative rotation of link 2 with respect to link 1.

Figure 4.7: Planar manipulator with 2 degrees of freedom.

To calculate the position of the centers of gravity as well as the end-effector attached
to the end of link 2, the rotation matrices are calculated to describe the rotations
of the coordinate systems (0121y121) and (02x2y222) with respect to the inertial
coordinate system (Opzoyozo). These follow directly from the elementary rotation
matrices according to (4.9) to

Cp; —Sp; 0 Cpy —Spy 0
Rj=|[s, cp 0| and Ri=|s,, c,, (4.32)
0 0 1 0 0

The vectors of displacement of the coordinate systems with respect to each other are
calculated as

0 I
d)=|0| and d?= 0 (4.33)
0 0

and the positions of the centers of gravity as well as the end-effector in the respective
body-fixed coordinate systems are given by

ls1 ls2 P
pi'=10|, ps?=|0]| and p5*=|0]. (4.34)
0 0 0

The absolute position of these points relative to the chosen inertial coordinate
system (0pxoyoz0) (and expressed in this inertial system) is calculated according to
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(4.21) to
ls1 cos(1)
pgl — Répil + d(l) — lsl Sin(g(?l) (435&)
0

A cos(p1) + lsa cos(p1 + 902)_

P2 = R} (d% + R%p§2) +dg = |lysin(pr) + Lo sin(pr + ¢2) (4.35b)
. 0 =
A cos(p1) + lea cos(p1 + p2)

p2 =R} (df + R%p?) +dj = | lisin(p1) + Lo sin(p1 + p2) | - (4.35¢)

0

@ The MAPLE file Planar_Manipulator.mw on Eid i

https://www.acin.tuwien.ac.at/bachelor/modellbildung/ T
shows the solution of this example using homogeneous transforma- W
tions.

Note 4.2. To simplify the representation of rigid body kinematics, a symbolic descrip-
tion is often used in the literature. Figure 4.8 shows a common representation of
translational and rotational joints of a rigid body kinematic.

Translation Rotation

4 s —?ﬁs /ﬁ @ w

Figure 4.8: Symbolic representation of translational and rotational joints.

Ezample 4.2 (Tower Crane). The planar manipulator represents a mechanical rigid
body system whose motion is described solely by rotations about the axes of rotation.
In the case of the tower crane sketched in Figure 4.9, the motion of the load results
from a combination of rotations (angles ¢1, ¢3) with a translation (displacement s3).
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Figure 4.9: Sketch and kinematics of a tower crane for Example 4.2.

The system has 3 degrees of freedom: a rotation of the tower about the z-axis of
the inertial coordinate system (Opxoyozo) by the angle (1, a translation of the trolley
along the z-axis of the coordinate system (0;21y121) by se2, and a rotation of the cable
about the y-axis of the coordinate system (02x2y222) by the angle ¢3. For simplicity,
it has been assumed that the cable length [ is constant and that only a rotation of
the cable with the load about the y-axis of the coordinate system (02x2y222) occurs.

The rotation matrices describing the rotations of the coordinate systems in this
example are

Co; —Sp O Co; 0 sy
Ry=|s, ¢, 0|, RI=E, Rj=|0 1 0], (4.36)
0 0 1 —Sps 0 Cyy

with the identity matrix E. The displacements of the coordinate systems relative to
each other are described by

0 0
0 0
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and the vector pg to the load is calculated in the coordinate system (03z3ysz3) to

pi=10]. (4.38)

This immediately allows to calculate the position of the load in the inertial coordi-
nate system by applying

pf = df + Rf(d} + R}(d} + Rip)) (4.39)
to
Coy (82 — Spsls)
pg = [Se1 (82 - Sgogls) . (4.40)
h1 — C<p3l5

Note that the position so, as well as the angles (1 and 3 are time-dependent variables.

@ Solution in MAPLE: Turmdrehkran einfach.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/ e

Ezxercise 4.2 (Tower Crane 2). Extend the kinematic model of the tower crane to
include the change of the cable length as well as an additional rotation of the cable
about the r3-axis, see Figure 4.10. Calculate the position p§ of the load as a function
of the degrees of freedom of the system.

Figure 4.10: Schematic representation of the kinematics of the tower crane with 5
degrees of freedom.
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Solution of exercise 4.2. 'The position of the load is calculated as

82Ce, + 85(—S418ps — Cp1503Cpy)
L
Po = | S28p; + 55(C5018<P4 - S@lsmcw) . (4.41)

hi = 85C5Cp,

@ Solution in MAPLE: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

4.5 Angular Velocity

The elements of the rotation matrices are functions of the rotation angles, which in turn
are generally functions of time, see for example (4.9) and (4.10). If one calculates the
total time derivative of a rotation matrix R € SO(3) and assumes for simplicity that the
rotation matrix depends only on one rotation angle 6(t), then it follows

R(6) = %Ré : (4.42)

Due to the orthogonality of the rotation matrix R, the following relations hold

d . .
RR"=E and - (RRT) =RR" + RR" = 0. (4.43)
This shows that the matrix
S=RRT = —RRT (4.44)
is a skew-symmetric (3 x 3) matrix and thus there always exists a unique vector of angular
velocities wT = [wx Wy wz] such that S can be written in the form
0 —w, Wy
S(w) = | w, 0 —wgl- (4.45)
—Wy  Wg 0

For the elementary rotation matrices (4.9) and (4.10), one obtains for example

0 —¢ 0
S.o=R.oRI,=1s 0 0 (4.46)
0 0 0
or
0 0 6 00 0
Syo=RyeRyp=1]0 0 0| and S,y =R,yR;,=[0 0 —¢|. (447
-6 0 0 0 ¢ 0
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Combining (4.43) and (4.44), then

(4.48)

Figure 4.11: On the angular velocity.

Assume now that p; represents a fixed (time-invariant) vector from the origin of the
coordinate system (01x1y121) to a point P, see Figure 4.11. The coordinate system
(01x1y121) performs translational and rotational motions with respect to a spatially fixed
coordinate system (inertial system) (Opxzoyoz0). The velocity pg of the point P measured
in the inertial system is then given by the relation (compare (4.21))

po = Rip1 + Rj p1_+d = S(wh)Rip1 + dj (4.49)
~—
=0
or
po = wj x (R§p1) +dp. (4.50)

To show this, consider a general angular velocity vector w’ = [wx Wy wz} and a vector

ri = [Ta: Ty Tzi|- Then it holds

0 —Ww, Wy Ty WyTy — WzTy Wy Ty
S(w)r=| w, 0 —wz||ry| = |Werz —warz| = |wy| X [1y| =w XT. (4.51)
—Wy Wy 0 T, WyTy — WyTg Wy T,

The next step is to calculate how the angular velocities are calculated for multiple
coordinate systems that are rotated relative to each other. To this end, consider the
rotation matrix R3 according to the relation (4.12) with R3 = R{R? and differentiate it
with respect to time. On the one hand, according to (4.48), one obtains the relation

R} = S(w} )R (4.52)
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and on the other hand, applying the product rule yields

R = RIR? + RIR? = S(w})RIR? + RIS(w?) (RY) RART.  (453)
E

To further simplify (4.53), one uses the following relation, which holds for any 3-dimensional
vector k

RS (w?) (R}))Tk ~ R} (w% x (Rg)Tk> = (Rfw?) x R (Rg)Tk

(4.54)
= (Rjw?) x k = S(Rjwi)k
as well as the addition property of two skew-symmetric matrices
0 —a. ay 0 —b. by 0 —a;—b, ay+by
a 0 —ag|+| b, 0 —by|=1a,+b, 0 —az — by | . (4.55)
—ay Ay 0 —by by 0 —ay —by az+ by 0
S(a) S(b) S(a+b)
With (4.54), (4.55) and RZ = RyR?, (4.53) reduces to
R = (S(wh) +S(Riw?) )RE = S(wh + Rjw? )R (4.56)

and comparing (4.52) with (4.56) yields the following relationship for the vector of angular
velocities

wi = w) + Riw? . (4.57)

As can be seen in (4.57), it only makes sense to add the vectors of angular velocities if
these vectors are expressed with respect to the same coordinate system. The expression
R(l)w% transforms the vector of angular velocity w% into the coordinate system (0gzoyoz0)
and can only then be added to w§. The relations just derived can be consistently extended
to the general case in the form

Ry = S(wi)RS with R} =R{R?...R" , (4.58)
and
Wl = wd + R{w? + R2w3 + ... + R 1w ;. (4.59)

4.6 Manipulator Jacobian Matrix

Assume that the homogeneous transformation

Hj.(q) =

R} (q) décl(CI) with RL(q) € SO(3) (4.60)

0
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describes the motion of a coordinate system (0;2;y;2;) relative to the coordinate system
(Oxzrykzr) and can be parameterized by the independent variables (generalized coordinates
q in the form of angles and positions) ¢, j = 1,...,n. The vector of angular velocities

w! associated with H. can be obtained using (4.44), (4.45) from the following relation

S(uh) = Rit@Ri@" = 32 R | RéG@" (461
J=1\"H
in the form

wh = (Ju)p(Q)q. (4.62)

Fzercise 4.3. Calculate the matrix (Jw)g(q) for the case that the rotation of the
coordinate system (0sx3ysz3) with respect to the coordinate system (Ogzoyozo) is
given by the concatenation of rotations by the angles ¢, # and vy according to the
definition of the Euler angles in Section 4.2.1.

Solution of exercise 4.3. The Jacobian matrix is calculated as

0 —S¢  CeSe
(Jw)g(Q) = |0 Co  S¢So (4.63)
1 0 Cp

@ Solution in MAPLE: Aufgabe_4_3.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Analogously, the translational velocity V% can also be parameterized by q and ¢ in the
form

=t =3 (7 dhia )is = [kl ke o aia]a (oo
j=1

(JV)Q(Q)

In summary, the vector of angular velocity wfe and the vector of translational velocity vgc

can be written as follows
l l
Vi (Jv)i(a)
[ ] = [ a=Ji(a)a. (4.65)

wh]  [@u)i(@

The matrix J{(q) is often referred to as the Manipulator Jacobian Matriz (Geometric
Jacobian Matrix).
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Remark: In the English literature, the term Manipulator Jacobian Matrix often
refers to the Jacobian matrix associated with the velocities and angular velocities
of the end-effector, while the Jacobian matrices associated with the components of
the manipulator are often referred to as Body Jacobian Matrices. In this lecture,
this distinction is not made, and therefore the Jacobian matrix of any component of
a manipulator (end-effector, components) is always referred to as the Manipulator
Jacobian Matrix.

Ezample 4.3 (Continuation Planar Manipulator). In Example 4.1, the kinematics
of the planar manipulator shown in Figure 4.7 was calculated. In this example, the
translational and rotational velocities of the centers of gravity of the links of the
planar manipulator are to be calculated. These will be needed later, for example, for
the calculation of the kinetic energy.

From the rotation matrices R§ and R? according to (4.32), one obtains with (4.44)
the matrices

0 —W1 0 0 —Ww9 0
Si=1lws 0 o], S=|w, 0 0], (4.66)
0 0 0 0 0 0

where w; = ¢1 and we = ¢2 was used. The corresponding vectors w(l) and w% are

T
obtained from the components of S} and S?, respectively, as w} = [0 0 wl} and

T
w? = [O 0 wQ} . The angular velocity of link 2 can be calculated according to

wi = w} + Rjw? (4.67)

to w3 = [0 0 wp —|—w2}T.

Remark: Note that the same result for w3 is obtained if one calculates S3
directly from R3 = RiR?.

The Manipulator Jacobian Matrices are then obtained by partial differentiation of

T
the angular velocity vectors with respect to the time derivatives q = [wl wg} of

T
the degrees of freedom q = [4,01 @2}
0 0 0
o, @u2=10 ol. (4.68)
0 11

It is easy to verify that w) = (Ju,)5q and wi = (Jw)gq holds.
The translational velocities v§' and v§2 of the centers of gravity required for further
calculations are calculated according to (4.64) with the corresponding Manipulator
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Jacobian Matrices

. _8@1181 0 ) _5@111 - S¢1+<P2l82 _S¢1+902182
(J)g = | colst 0, (Iv)g” = | Corlst + Cortmlsr Cortplsa |- (4.69)
0 0 0 0

Furthermore, the translational velocity of the end effector v§? can be obtained using
the Manipulator Jacobian Matrix

_5@111 - S¢1+<P2l2 _SW1+<P2Z2

()52 = | corlst + Cortonls  Cortpnla | - (4.70)
0 0

@ Solution in MAPLE: Planarer_Manipulator.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezxercise 4.4 (Continuation Tower Crane 2). In this exercise we again consider the
tower crane from Exercise 4.2. For the later calculation of the equations of motion of
the system, the velocities and angular velocities, or the corresponding Manipulator
Jacobian Matrices of the center of gravity of the tower, the trolley, and the load are
required. The position of the center of gravity of the tower p5’ in the coordinate

T
system (0171y121) is given by p5! = [lmT 0 lst} . The centers of gravity of the
trolley and the (point-shaped) load lie at the coordinate origins of the corresponding

T
coordinate systems, i.e. pgK = pé = [0 0 0| . Calculate the Manipulator Jacobian
Matrices for these three components of the tower crane.

Solution of exercise 4.4. The Manipulator Jacobian Matrices of the center of gravity
of the tower are calculated as

_S<p1 lwsT 0 0 0O 00 0 0 o0
JOF" = cpulusr 0 0 0 0|, F)gF =10 00 0 0 (4.71)
0 0 00O 100 00
The Manipulator Jacobian Matrices of the trolley are
—Sp182 Cp 0 0 0 0 00O0O
(JV)SK = Cipp 52 Sy 0 0 0], (Jw)(S)K =10 0 0 (472)
0 0 0 00 1 0
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Finally, the Manipulator Jacobian Matrices of the load are given by

(JV)(S)L =

(%3%455 —52)54’1 T Cp18py S5 Cpq “Cp1Cp3Cpy S5 Cp15p35p4 ~Sp1Cpy )55 TSp1Spy T Cp18p3Cey
TSp3CeaS5 T 82 JCp1 T Sp 80455 Sp1 TSe1%p3Cpa55  (Se1Se3Seq TCp1Ces )95 Co1Sp4 T Se15¢3%0y
0 0 Se3Cp4 S5 350455 TCe3Cps
and
0 0 —sp CpCpy O
sL
Ju)og =10 0 cp,  SpCps Of - (4.74)
10 0 —s, 0

@ Losung in MAPLE: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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5 Rigid Body Dynamics

5.1 Kinetic and Potential Energy

In Chapter 3.4 the translational kinetic energy and the potential energy were introduced.
In this section these results are systematically extended for general rigid bodies. The
resulting formulation of the kinetic and potential energy forms the basis for determining
the equations of motion of rigid body systems using the Euler-Lagrange equations in the
next section.

Consider now a rigid body S according to Figure 5.1 with a mass density p(zo, yo, 20)
in the inertial coordinate system (0gzoyozo). The velocity of a point P of the rigid body

Ry(t) 21

Figure 5.1: Calculation of the kinetic energy.

is given by po(zo, Y0, 20). Then the total kinetic energy is obtained by integration over
the volume V of the rigid body S in the form

1

T= 2Lpg(ﬁoayo,ZO)Po(ﬁo,yo,Zo)p(xo,ymzo)dﬂfodyodZO . (5.1)

dm

Compare this to the considerations in Chapter 3.4. This expression can be simplified by
additionally defining a body-fixed coordinate system (01z1y121) whose origin 0; coincides
with the center of mass of the rigid body S. The position of the center of mass pj3 in the
coordinate system (Opzoyoz0) is calculated according to (3.28) via the relation

1

S

== d 2
Po m/vpo m, (5 )

where the mass of the rigid body S is defined by m = [;, dm. According to Figure 5.1 and
(4.21), the following applies to the chosen position of the origin 0;

po = Rjp1 +dj = R{p1 + p; - (5.3)
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With (4.49) and (4.50) follows for the velocity po
po = S(wh)Rip1 + bf = S(wh)r + v = wf x4+ v§ (5.4)

with the abbreviations r = Répl and Vg = pOS . In order to keep the equations clear
T = {wm Wy wz].
Substituting the expression (5.4) for pg into the kinetic energy (5.1) gives

2/ +v0 T(S(w)r-i-vg)dm
— 2/\) r'S"(w)S(w )rdm+;/V<rTST(w)Vg+ (VoS)TS(w)r)dm+;/V<v§)Tvosdm |

T, T

for the further derivation, w} = w is used with the components w

(5.5)

If we now consider that S(w) and v§ are pure time functions and do not depend on the
integration variables, then the expressions of (5.5) can be further simplified.
The third term T} of (5.5) then reads

1 T 1 T 1 T
:§/V(vg) vgdmzé(vos) vg/vdmzim(vg) Vi (5.6)
and describes the translational part of the kinetic energy. This expression can be interpreted
in such a way that the total mass m of the rigid body is combined into a point mass at
the center of gravity pg, cf. (3.60).
The second term T}, in (5.5) vanishes identically for the chosen position of the coordinate
system (01x1y121) in the center of gravity. To show this, one uses the relation r = pg — pg
(compare (5.3)) and T}, simplifies due to the definition of the center of gravity (5.2) to

_ ;/V(rTST(w)vg + (vOS)Ts(w)r>dm - (vg)Ts(w) /V<p0 ~ ) dm

N—— ——
=p*gm because of (5.2) =m

It should be pointed out again that this expression only disappears because the body-fixed
coordinate system (0;x1y;121) has been placed at the center of gravity of the rigid body.
For the simplification of the term 7). of (5.5), one needs the relationship

hy h?c hzhy  hzh,
h'h = {hx hy hZ} hy| = Spur(hhT) = spur | hyhy h?/ hyh |- (5.8)
hs hihe hihy B2

Thus 7, from (5.5) can be equivalently expressed in the form

T, = % /V rTST ()8 (w)rdm — ;Spur<S(w) /v rermST(w)>. (5.9)
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With the matrix

[ / ridm / TTydm / rmrzdm_
v v v
J= / rrldm = / rarydm / rodm / ryrodm (5.10)
1% 1% 1% v
/ rer,dm / ryr.dm / ngm
Ly v % -
and the simplification
0 W, Wy | -Jm Joy  Jzz 0 W,  —wy
spur (S(w)JST(w)) =spur| | w, 0 —wel||Jay Jyy Jyz||—wz O Wy
—Wy Wy 0 | _Jm Jyz: 2| | wy —wr 0
= w2 (Jyy + Jzz2) + Wi (Jaw + Joz) + W3 (Jax + Jyy) — 2wewy Joy — 2wyw.Jy: — 2waw. o
Jyy + Jzz _Ja:y _Jzz Wy
= [wx,wvaz] _J:L"y o i _Jyz Wy | = wTIOw
—Jz _Jyz Jrz + Jyy_ | Wz
(5.11)
the rotational part of the kinetic energy results in
1 T
T, = 5(;03) Tow} (5.12)

with

_/ (ri—i—r?)dm —/ rzTydm —/ reT,dm |
% % v

I, = —/errydm /V(rg-l-ri)dm —/Vryrzdm . (5.13)

— [ rpr,dm —/ Tyl dm / 7“320+7“2 dm
L /v v? v( y) J

Here, Iy describes the so-called inertia matriz.

Note that for the calculation of Iy according to (5.13), the vector r = pg — pg is
represented in the coordinate system (0pzoyoz0). This can make the calculation of the
integrals in the definition of Iy very complex, especially the definition of the integration
limits. A simpler form of calculation of Iy and thus 7} is obtained if one uses the definition
r = R{p; in J according to (5.10)

T T
J= / rridm = / Ripipl (Ré) dm = Ré/ plplem(R(l)) . (5.14)
1% 1% v
If one applies the same steps as in (5.11) to this representation of J, one obtains
T T T
spur(8(w3)3(5(wh)) ) = () RiT (R3) " b (5.15)
I
0
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Therein, the representation of the inertia matrix I; in the body-fixed coordinate system is
calculated from

/ (p%,y + piz)dm - / Prap1ydm - / P1ap1,zdm
% v v
_ 2 2
L= - / P1ap1ydm / (pl,m+p17z)dm - / pryp1zdm | . (5.16)
v % v
- / praprzdm / P1yP1,zdm / (P + 2, )dm
L 1% 1% % J

This calculation is often much easier than the direct calculation of Iy. I; is independent
of the motion of the rigid body and thus a constant matrix. With a suitable choice of the
body-fixed coordinate system (0;x1y121) in the direction of the so-called principal axes of
inertia, Iy simplifies to a diagonal matrix. In this case the so-called products of inertia
(off-diagonal elements of I;) vanish.

Remark: The expression
Nt 1 0,1 1
(RO) wy = Riwy = 1wy (5.17)

corresponds to the transformation of the vector of angular velocities from the inertial
coordinate system to the body-fixed coordinate system. The rotational part 7T, of
the kinetic energy can therefore also be represented in the form

1 T
Note that in the definition of wj it was implicitly used that this vector is described
in the coordinate system (Ogzoyozo), i-e. wé = ow(l). However, in order to avoid
ambiguities in the notation, the representations gw{ and jwg will not be used further
in the remainder of the script.

In total, the kinetic energy of a rigid body is given by
1 NT ¢ 1 T
= Em(vo) vy + 5(0.:(1)) Tow} . (5.19)

It should be pointed out again that this formulation of the kinetic energy of a rigid body
assumes that Vf? is the velocity of the center of gravity and Iy is the inertia matrix about
this center of gravity. The potential energy due to the gravitational field in e, direction
with the gravitational constant g is easily obtained using (5.2) in the form

V= —/Vgenggdm = —mgegpg. (5.20)

In Chapter 4.6, the translational velocity vf) and the angular velocity wé of a point of
the rigid body S; were represented as a function of the generalized coordinates q and
. . . . . . . . l l
their time derivatives q with the help of the Jacobian matrices (Jv)y(q) and (Jo)y(q),

see (4.65). This representation can now be used in (5.19) to obtain
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L. T T .1 .
T= _qT<((Jv)é) m(Jv)(l) + ((Jw)(lJ) IO(Jw)(1)>q = §qTM(q)q . (5.21)
Therein M(q) denotes the so-called mass matriz. One can now show that the mass matrix
is positive definite, i.e. M(q) > 0. This leads directly to the fact that the kinetic energy

T is positive for every q # 0.

Remark: The following procedure is recommended for setting up the kinetic and
potential energies of a system of rigid bodies:

(A) Define an inertial coordinate system (0pzoyoz0) and a body-fixed coordinate
system (0;z7y;2;) for each rigid body S;. If reasonable and possible, the body-
fixed coordinate systems should be aligned with the respective principal axes of
inertia.

(B) Define the generalized coordinates . Determine the rotation matrices and
displacement vectors that connect the coordinate systems. Write down the
position vectors pg ! from the origin of the inertial system to the centers of mass
of the rigid bodies as functions of the generalized coordinates.

(C) Determine the translational and rotational parts of the kinetic energy according
o (5.6) and (5.13). Calculate the mass matrix M(q) as the sum of the mass
matrices of the individual rigid bodies according to (5.21). Determine the
potential energy due to a gravitational field according to (5.20). Calculate the
potential energy of other potential forces such as spring elements according to
(3.69).

Ezample 5.1 (Continuation Planar Manipulator). The systematics for the calculation
of the kinetic and potential energy just presented will be applied in this example to
the planar manipulator from Examples 4.1 and 4.3. As can be seen in Figure 5.2, the
structure has been extended by a linear spring (spring stiffness c., relaxed length sg.)
and a linear damper (damping coefficient d.), which are installed between the end
effector and the fixed bearing A.
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loa

Figure 5.2: Sketch of the planar manipulator in Example 5.1

In the first step, the translational parts T; of the kinetic energy are determined
according to (5.6). This yields for the first rod

1 .s1\ T 1
Tt = Sma(B3') By = 5l (5.22)

where w; = ¢1 and pgl is defined in (4.35a). Similarly, we calculate

1 Lo\ T 1
5% = 3m2 <p82) Pt = 5m2 (l%w% + 2111 s0w1 (W1 4 w2) cos(p2) + 12 (wr + OJQ)Q),
(5.23)

with we = 9 and p§? from (4.35h).

To calculate the rotational part of the kinetic energy, in the first step the inertia
matrices I§! and I52 of the rods around the respective center of gravity s1 and s2
and in the respective body-fixed coordinate systems are defined. Due to the chosen
orientation of the body-fixed coordinate systems in the direction of the principal axes
of inertia, these result in the form of the diagonal matrices

h,o0 0 2, 0 0

1 2

'=| o0 l, o, I¥=|o0 2, 0. (5.24)
0o 0 Iz 0o 0 I2,

The formulation of the inertia matrices I§', I5? in the inertial system required in
(5.12) are calculated using the respective rotation matrices R} or R3 according to
(5.15). This gives

T Ijm 1C<p1 + Isy lscpl (sz 1 I;; 1)S¢1C<P1 0
1 1ysl 1
L' =R (RY) = (I8 = Igh ) )spncon  Ihas2, +I5hic2, 0 | (5:25)
0 0 I3,

z
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The resulting inertia matrix I§? = R3I5> (Rg)T is relatively large and is therefore not
shown here for reasons of space. With I§!, I5? as well as w} and w3 from Example
4.3, one obtains

1 T 1

T = §(w(1)> lw) = 5[5;71(,0% (5.26a)
1 T 1

Tﬁz = 5(&)%) 182w% = 5[52’2((4}1 =+ w2)2 . (526b)

An equivalent calculation of the kinetic energy can be obtained using the mass
matrix from (5.21). For the system under consideration, this is calculated to be

M — mllgl + mao (l% + 2l1l52C¢2 + l§2) + IZS;J + Igg’Q mglsg(ZSQ + llcm) + 15372
malsa(ls2 + licy,) + 152, malZy + 152 5
(5.27)

A simple calculation shows that the expression for T' determined with (5.21) and
(5.27) corresponds to the sum T = T + T2 + TSt + T2

The potential energy components V', V52 due to gravity are given by (5.20) in
the form

vl = —mlgegpgl = migls sin(pr) (5.28a)
V2 = —mage] Py’ = mag(l1 sin(p1) + L sin(io1 + ¢2)), (5.28b)

where e; = [O -1 0} describes the unit vector in the direction of gravity and ¢
the acceleration due to gravity.

To calculate the potential energy of the linear spring, the length of the spring is
needed. For this purpose, the vector p()4 is drawn from the origin of the inertial
system to the bearing A and the vector r. is obtained from the end effector e2 to the

bearing A

loa — 11 cos(p1) — la cos(p1 + p2)
re =pj — P’ = |hoa — lisin(pr) — lasin(pr + ¢2) | - (5.29)
0

Thus, the length s, of the spring is s, = y/rIr. and the potential energy of the spring
is calculated according to (3.70) to

1
V, = 5@2(56 — 50e)” . (5.30)

@ Solution in MAPLE: Planarer_Manipulator.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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Ezample 5.2 (Continuation Tower Crane 2). In this example the kinetic and potential
energy are calculated for the tower crane from Exercises 4.2 and 4.4. The first rigid
body of the tower crane is the tower with the firmly attached jib. It is assumed that
the tower is in the form of a solid cylinder (height h;, radius 71, density p;), while
the jib is approximated by a cuboid (dimensions l1, liy [1-, density p1).

The centers of gravity of the two rigid bodies in the body-fixed coordinate system
(01x1y121) are

hg
2

0
pi?=|0|, pi®=]0 (5.31)
by l

2 1z
and the masses result from my = r%whlpl or mqg = lizl1yli2p1. The inertia matrices

about the respective centers of gravity in the body-fixed coordinate system can be
taken from a formula collection in the form

Z, 0 o0 £¢ 0 0

=10 7 o L 9= o0 2 o | (5.32)
with I$Z, = 7, = (3r} + h3)mz/12, IsZ1 = rim./2, 2 = (B, +1B.)mo/12,
32 = (1B, + 8.)mo/12 and 32, = (13, + 13, )mq/12.

There are now two possible approaches to Calculate the kinetic energy of the tower:
The first possibility is to calculate the common center of gravity pj’ of the two rigid
bodies and to determine the total inertia matrix I57 about the common center of
gravity using Steiner’s Theorem. The second, much simpler possibility is to determine
the kinetic energy for each of the two rigid bodies separately. In the solution in
MAPLE both approaches are presented. Here, the steps for the second possibility,
i.e. the separate determination of the kinetic energy of the two rigid bodies, are
presented. Starting from the position pj? of the center of gravity of the cylinder
in the body-fixed coordinate system, the position pij in the inertial system can be
determined by applying the homogeneous transformation H} from Exercise 4.2. The
corresZponding velocity V(S]Z = pgz is immediately obtained with the Jacobian matrix
(Jv)g~ to

w1
000 0 0]|v
viZ =(3)%a=10 0 0 0 0| |ws| =0 (5.33)
000 0 0] |ws
Us
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and thus 7% = 0. The rotational part T5Z results in the form

17 = L () RI (RY) u)ia = 17wt (5.34)
cf. (5.12). Therein, the Jacobian matrix (J w)gz corresponds to the Jacobian matrix
(Jw)gT calculated in Exercise 4.4, since, of course, the cylinder rotates at the same
speed as the entire tower with jib.

In an analogous way, the components of the kinetic energy of the cuboid can be
determined to be

1 iz \?

9 = 50 (12””> w? (5.35a)
1

759 = iljglw% : (5.35b)

A further representation of the kinetic energy is possible by the mass matrix M*T
of the tower, see (5.21) This is calculated for the considered subsystem with

M*T(q) = ((JV)SZ)T(JV)SZmZ + ((JV)8Q>T(JV)(S)QmQ

sZ T Z sZ sQ T sQ sQ (536)
+(@2)7) 17077 + ((30)5%) T3
to
lemo+ 132, +1°% 0 0 0 0
0 000 0
M*T(q) = 0 00 0 0l (5.37)
0 000 0
I 0 00 0 0

and T = Tp% + ;9 + To7 + T390 = 34" (q)a.

For the trolley it is assumed that the center of gravity pgX lies at the origin of
the coordinate system (02z2y222). The inertia matrix in this body-fixed coordinate
system is given by the diagonal matrix I$¥ = diag([ﬁﬁQ,ijEf% ;’52) The mass

matrix M* (q) of the trolley is calculated analogously to (5.36) with

M () = ((3055) @0 me + ((@59) O 639)
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to
[s3mg + 5K, 0 0 0 0]
0 mg 0 0 0
M*E(q) = 0 0 00 0 (5.39)
0 0 0 00
i 0 0 0 0 0]
Thus, the kinetic energy can be calculated to
1 1
T = Syl + 3 (macs3 + 1555 )t (5.40)

Finally, it is assumed for the load that it can be described as a point mass my. This
means that the inertia matrix of the load vanishes (I£L = 0), whereby the rotational
part of the kinetic energy of the load also becomes zero. The calculation of the mass
matrix is done according to (5.21) by

M (q) = ()5) (3)sEms (5.41)

and the kinetic energy is calculated from T = %qTMSL (q)q. The resulting expres-
sion is relatively extensive, which is why it is not given in the lecture notes.

Since the position of the centers of gravity pg’ and p§¥ of the tower and the trolley
do not change in zo-direction (i.e. in the direction of gravity) due to the motion, their
potential energy is constant and can be chosen to be zero, i.e. VST = VK = 0. To
calculate the potential energy of the load, one defines the unit vector eg = [0 0 —1}

in the direction of gravity and obtains according to (5.20)

Vsl — —nge;fpSL =mrg(h1 — s5 cos(p3) cos(pa)) - (5.42)

@ Solution in MAPLE: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

5.2 Euler-Lagrange Equations

The Euler-Lagrange equations derived in this section allow the determination of the
equations of motion of rigid body systems based on the kinetic and potential energy. The
starting point of the derivation is the conservation of momentum (3.33) applied to a point
mass m in the Cartesian inertial coordinate system (0pzoy0z0)

mp = f, (5.43)
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where fT = [ fz 1y fz} denotes the sum of all forces acting on the point mass and

pl = {pgc Dy pz] denotes the position vector from the coordinate origin 0y to the point
mass. The position of a point mass whose motion is not subject to any constraints is
uniquely determined by specifying the three translational displacements p,, p, and p,
with respect to the inertial coordinate system. One then also says that the point mass
has 8 degrees of freedom. In contrast, the configuration of a freely movable rigid body
is described by 6 degrees of freedom, namely 3 degrees of freedom for the translational
displacement and 3 degrees of freedom of rotation to describe the orientation of the rigid
body relative to the inertial system.

Now, in general, the motion of a rigid body system is subject to constraints that must
be taken into account. Consider, for example, the motion of a mass on an inclined plane
according to Figure 5.3(a) with the constraint p, = a(1 — p,/b) or the spherical pendulum
according to Figure 5.3(b) with the constraint

pitpi+pi=1. (5.44)

ey €y

a_
0o

Dz N €,
l / z
Py
Dz Dy
Oo b €x e,

(a) (b)

Figure 5.3: Constraints.

Another example are two mass particles ¢ and j of a rigid body, which can be thought
of as being connected by a line of fixed length [;;. Thus, the positions p; and p; of the
two mass particles must satisfy the constraint ||p; — pjﬂg = (pi — pj)T(pi - pj) = l?j.

If a constraint can be expressed in the form

f(P1,p2,...,t) =0, (5.45)

then one speaks of a holonomic constraint. Constraints that cannot be represented in this
way are called nonholonomic. These include inequality constraints

f(plaPQa---vt)Zoa (546)

as they occur, for example, when a point mass moves in a spherical shell with radius a in
the form a? — ||p||3 > 0. Also, constraints that explicitly depend on the velocity and are
not integrable, i.e,

f(P1,P2s -+, P1, P2y, 1) =0, (5.47)

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien



5.2 Euler-Lagrange Equations Page 97

are nonholonomic. In some literature, constraints according to (5.45) and (5.47) are
also classified as geometric and kinematic constraints. A typical case of a nonholonomic
(kinematic) constraint is the rolling of a disk on a plane.

One can easily see that a system of N point masses that is free of constraint has
3N independent coordinates or degrees of freedom. If, for example, there are (3N — n)
holonomic constraints of the form

fj(pl,pQ,...,pN,t):O, jzl,...,(SN—n) y (548)
then it is immediately obvious that
(A) the coordinates are no longer linearly independent of each other, and

(B) constraint forces must occur in order to comply with the constraints, which are not
known a priori.

With the help of the (3N — n) holonomic constraints, it is now possible to eliminate
(3N —n) of the 3N coordinates or to introduce n new independent coordinates ¢;, i =
1,...,n, by which all (old) coordinates can be expressed in the form

p]:p](ql)q27)qn>t):p](q7t)7 ]Zl)aN (549)

One then also says that the system has n degrees of freedom and the n new independent

coordinates ¢;, i =1,...,n, or qT = g - qn} are called generalized coordinates.

If one decomposes the forces f; acting on the mass particles into (external) applied forces
£° and constraint forces £ according to (B), then the equations of motion (5.43) for the
system of N point masses are

Note that (5.48) and (5.50) provide only (6N —n) equations for determining the 6NV
unknowns p; and f7, i = 1,..., N. If one considers, for example, the frictionlessly sliding
mass on the inclined plane according to Figure 5.4(a), then one has two equations of
motion and one constraint for the unknown quantities p;, py and f7, f7. The missing
equation is given by the fact that the constraint force f* is perpendicular to the inclined
plane.

In general, the missing equations are obtained from the principle of virtual work. This
states that the sum of the work done by the constraint forces is equal to zero. Note,
however, that this statement is not valid if the constraints are time-dependent, e.g. the
inclined plane changes with time. For this reason, we introduce the concept of virtual
displacement of a system. The system is held fixed at a time ¢ and in this fixed state an
arbitrary infinitesimal displacement dp; compatible with the constraints (5.45) is then
performed. For the spherical pendulum of Figure 5.4(b), for example, this means that the
following relation

(pz + 51’:0)2 + (py + 5py)2 + (P2 + 5p2)2 = (5.51)
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must be fulfilled. Taking into account (5.44) and neglecting second-order terms, i.e.
(52990)2 = (5Py)2 = (5pz)2 =0, (5.51) follows to

P2Ope + pyépy +p.0p. =0 . (5.52)
€y
0o R
€y éx
Dz ¥ Pz
/ f& Dy
eZ
I
£2—-\ 47
R
/ VR z
> / zZ
S 7Y
mg

Figure 5.4: Constraint forces.

The principle of virtual work now states that the sum of the work dW# done by the
constraint forces f7 during a virtual displacement is equal to zero, i.e., for the system of

N point masses
N

W= = "(f)"op; = 0. (5.53)
i=1
Considering again the spherical pendulum of Figure 5.4(b), then according to (5.53)
obviously the condition
f20ps + fyopy + f20p. =0 (5.54)

must be fulfilled. Now, assuming p, # 0, solve (5.52) for dp, and substitute this into
(5.54), this yields

(72 22 )ama + (£ - 222 ), =0 (5.55)

and because of the independence of dp, and dp, the conditions

VA pl‘ VA Z p VA
faz = ;fz and fy = ZTyfz (556)

T
must hold. This means that the constraint force f* = [ Iz 1 fz} must point in the

z
direction of the massless rod of length I, compare Figure 5.4(b). In an analogous way, one
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can show that the constraint force in the case of the frictionlessly sliding mass on the
inclined plane is perpendicular to the plane, see Figure 5.4(a).

Usually, one is not interested in the constraint forces, which is why they are calculated
from (5.50) and substituted into (5.53). This gives the so-called D’Alembert’s principle in
the form

N

> (mip; —£)'0p; = 0 . (5.57)

i=1
Now, if we assume that the system has n degrees of freedom and can be described according
to (5.49) by the generalized coordinates g;, j = 1,...,n, then for the virtual displacement
(note that time ¢ is kept constant during the virtual displacement)

opi = 5 “0q; (5.58)
=194
and (5.57) follows to
n N p n
Z Z mZpT Z j = Z fqd'(sqj' (5.59)
j=1l1=1 7j=1
with
Y TOPi
7
foj =D (&) 5~ (5.60)
i=1 4
T
Here, fq,j = 1,...,n, denotes a component of the generalized force f;, = [qu fa2 - fqyn}

This does not necessarily have the dimension of a force, since the associated general-
ized coordinate g; does not necessarily have the dimension of a length (hence the term
generalized). However, the product ¢;f,; must in any case result in a power

Now applying the product rule of differentiation to the left side of (5.59) gives

N N
oot Slalat i) matisiy) o
Using the velocities v;
Z 3pz q 8pl (5.62)
" 0 0 d o nooH2 5?2 P
a;’; ) af; e dtag; - Z 8‘]]gzlk ' 8qf<;t - 8:1’; (5.63)

(5.61) follows to

ap N (d ov; ov; d o )
5 =L = — [ mvi = viz—|=——T---T 64
Zmz ;<dt< i 94 ) Vi 5, ) doq,  0q; (5.64)

]
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with the translational part of the kinetic energy T according to (5.6)
1
T=3 ; mivivi . (5.65)

Substituting (5.64) into (5.59) yields

“(d 8 d )
——T ——T— f,;]dg; =0. (5.66)
j;l <dt 8(]j aq]' &J J
Since the virtual displacements dg;, j = 1,...,n, are independent of each other, one

immediately obtains n ordinary differential equations of second order (Fuler-Lagrange
equations), which describe the motion of the system
d 0 0

——T ——T=f,; =1,... 5.67

with the generalized coordinates q; and the generalized velocities ;.

Note 5.1. This derivation of the Euler-Lagrange equations can be generalized to rigid
body systems, i.e., for bodies performing both translational and rotational motion.
Using the total kinetic energy of the rigid body system according to (5.19), one
obtains the same expression as in (5.67).

The generalized forces f; can be described as the sum of generalized forces, which can be
derived from a scalar potential function V(q) (see e.g. (5.20)), and from externally applied
generalized forces as well as dissipative generalized forces (see Section 3.5), summarized
in the vector f;'P. Thus

0
= - =V 5.68
fq7] fq,] aqj ( )
holds. The Euler-Lagrange equations (5.67) can thus be formulated in the form
d 0 0
—— - —L=f" i=1... 5.69
dt9g;~ ~ Bgy - e Tt (5.69)

with the Lagrangian L =T —V (Lagrangian = kinetic energy minus potential energy).

In (5.60) the generalized force f; of an external force f¢ was calculated. To generalize
this formulation to external forces and torques, consider an external force f¢ or an external
torque 7°. The power supplied by the force £¢ or the torque 7° is calculated to

Pe=(f)Tve or Pr=(r9)"w" (5.70)

with the corresponding velocity vector v¢ = p© at the point of application p® of the force.
Furthermore, w® denotes the vector of the angular velocity of the rigid body on which the
external torque acts. Note that the components of £f¢ and v® or of 7¢ and w® must be
expressed with respect to the identical coordinate system. In Section 4.6 it was shown
that v® and w® can be written using the manipulator Jacobian matrices in the form

v = (I)%(@a and wf = () (a)d , (5.71)
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see (4.65). Substituting (5.71) into (5.70), one obtains from

Pe=()TJI)%q)q or Pr=(9)"J,)(q)q (5.72)
T T

immediately the generalized forces corresponding to f¢ and 7¢

f6= (3 and £, = ((J,)°) 7. (5.73)

The Euler-Lagrange equations allow a very systematic calculation of the equations of
motion based on the kinetic and potential energy of the rigid body system. In the context
of control engineering questions, this formulation is also chosen because the energies play
an important role in the (nonlinear) control design.

Note 5.2. The Euler-Lagrange equations (5.69) still lead to the correct equations of
motion even if the generalized forces do not originate from a potential of the form
V(q), but from a generalized potential V' (q, q) that satisfies the following condition

0 - df 0 -
o [ = . .74

This is the case, for example, when describing electromagnetic forces on moving
charges.

Note 5.3. The Euler-Lagrange equations (5.67) can also be derived via a variational
principle, the Hamilton’s principle. In its integral formulation for conservative systems,
this states that the motion of a system between times ¢; and o takes place in such
a way that the line integral fttf Ldt with L =T —V is an extremum for the path
traversed or the variation of the integral vanishes. Although this will not be discussed
further here, it should be pointed out that this formulation can be formally extended
very elegantly to the case of distributed-parameter systems (systems with infinitely
many degrees of freedom, described by partial differential equations).

Ezample 5.3 (Spherical Pendulum). As a simple example, consider the spherical
pendulum of Figure 5.5 with the point mass m and the length [ as well as an external
force f¢ always acting in the direction of the negative e, axis. The point mass has
three degrees of freedom and the rigid rod of length [ gives a holonomic constraint
P2+ pg + p? = I%. Thus, the spherical pendulum has two degrees of freedom (n = 2)
and the two angles 6 and ¢ are chosen as generalized coordinates.
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Figure 5.5: Spherical pendulum with external force f°.

The position vector p from the origin 0 of the inertial coordinate system (Opxoy020)
to the point mass m is calculated in the form

T
p = [Isin(6) cos() —lcos(0) Isin(0)sin(g)| - (5.75)

The kinetic energy is then obtained according to (5.65) to

IR S P SV P RN S
T—§mp p—iml (9 + p*sin (0)) (5.76)

If one defines that for # = 0 the potential energy V is equal to zero, then with the
acceleration due to gravity g the potential energy follows to

V =mgl(1 — cos(0)) . (5.77)
T
The external force is f¢ = [— fs O O] and therefore the generalized forces

according to (5.60) follow to

19p _
00

T0p

fo = (£°) -

—folcos(@) cos(p) , fo=(f°) = folsin(f)sin(p) . (5.78)
The Euler-Lagrange equations (5.69) can now be formulated with the help of the

Lagrangian L =T — V in the form

d o 0 d 9 o
atog” " aet =l md g 25" " Do fe (5.79)
or
mi20 — mi?p? cos(0) sin(0) + mgl sin(0) = — f2 cos(6) cos() (5.80a)
ml2 (('Q Sln2(6) + 2@0 COS(Q) Sll’l(e)) = f;l Sln(&) SIH(QD) (580b)
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As a result of the Euler-Lagrange equations, ordinary differential equations of second
order are always obtained which contain the second time derivatives of the generalized
coordinates. For a state space representation of the form x = f(x,u), x(tp) = xo with
the state x and the input u according to (1.5), one typically chooses the generalized
coordinates ¢gj, j = 1,...,n and the generalized velocities ¢;, j = 1,...,n as state
variables. For the example of the spherical pendulum, the state variables are given by

T .
Xx=10 wy o w@} , with wg = 0, w, = ¢ and the input variable by u = f7. The
system of explicit ordinary differential equations of first order equivalent to (5.80) is
then

1
To = T (—ul cos(z1) cos(z3) + ml2x3 cos(zy) sin(z;) — mgl sin($1)> (5.81b)
m
T3 = x4 (5.81c¢)
1
Eq4 = 2 sin(y) (ul sin(z1) sin(z3) — 2mi%z4zy cos(x) Sin(m1)> . (5.81d)

@ Solution in MAPLE: SphaerischesPendel .mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezample 5.4 (Ball on Beam). Figure 5.6 shows a ball with mass my and radius rg
rolling on a rotatably mounted beam. The moment of inertia of the beam about the
axis of rotation (z axis) is IZ and the input variable is given by the external torque
7¢ about the axis of rotation. The system has two mechanical degrees of freedom
and the beam angle ¢ and the distance r of the center of the ball from the y axis of
the beam-fixed coordinate system (01z1y121) are chosen as generalized coordinates.

‘ Referenz
Y1 Y Referenz “% /

T

To

Figure 5.6: Ball on beam.
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The kinetic energy of the system is composed of the translational part T} g and
the rotational part 7). g of the ball as well as the rotational part T;. p of the beam.
To calculate T} g, the vector from the origin 0 of the inertial coordinate system
(0pxoyoz0) to the center of the ball (center of gravity) is first written in the form

rcos(p1) — ri sin(e1)
pl = rsin(p1) + ri cos(p1)| - (5.82)
0

The translational part of the kinetic energy of the ball T} k is then calculated according
to (5.6) to
Tk = 1mK (pSK>TPSK = 1mK (7‘%2 + (7 — TK<P1)2) (5.83)
bR 2 ! ' '
For the rotational part of the kinetic energy of the ball 7} i, note that the moment
of inertia of the ball IX about the axis of rotation (parallel to the z-axis through
the center of the ball) according to (3.123) is as follows

2
sk = 5mKr%{ . (5.84)
Now, to calculate the angular velocity of the ball about the axis of rotation (zp-axis),
note that due to the rolling motion of the ball, the relationship

T=—-TKgYs , (5.85)

holds. With respect to the beam-fixed coordinate system (0pzoyo20), the ball rotates
with the angular velocity ¢o about the z; axis. However, since the beam also rotates
about the zg-axis with the angular velocity 1, the effective angular velocity of the
ball results from the sum of both rotations to ;1 + 2. The rotational part of the
kinetic energy is then

1 . . 1 . 7\ 2
Trx = I35 (o1 + $o)? = -IK (901 - ) . (5.86)
2 2 K

The rotational part of the kinetic energy of the beam is calculated to be

1 ,
Top =500 - (5.87)

)

Assuming that for 7 = 0 the potential energy V is equal to zero, then with the
acceleration due to gravity g the potential energy follows to

V =mgg(rsin(pr) + rix cos(p1)) — migri . (5.88)
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With the Lagrangian
L((plv 1,7, T) = Tt,K + TT,K + Tr,B -V (589)

the equations of motion are obtained (see (5.69))

d/o 9 o
dt(@ L((,O1,g01,7’ T)) _EL(QOMOLT}T) =0 (590&)
;i(aaL(% P15, T)) - azlL(cm, 1,7, 7) =T7° (5.90Db)
or
ISK sK
(mK + )7" - ( e + mKTK> @1 — mirdr +migsin(er) =0 (5.91a)

!

@ Solution in MAPLE: KugelaufBalken.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

)7‘* + (Iif + 155 —|—mK(r2 +r%()>gb1

+2mgrirgr + mig(rcos(p1) — rrsin(py)) = 7° . (5.91Db)

FEzercise 5.1. Bring the system (5.91) into state space representation x = f(x,u),

T
x(tp) = x¢ with the state x = [gpl pr=wi r 1= v} and the input u = 7°.
Furthermore, calculate the stationary equilibrium points of the system.

Solution of exercise 5.1. The equilibrium points of the system are ¢ p = 0, w1,z =0,
rg is arbitrary, vg = 0 and 73 = gmgkrg.

FEzercise 5.2 (Cart with Pendulum). Given is the mechanical system of Figure 5.7.
The cart has the mass myy, is driven by a driving force f€ and is attached to the
inertial system with a linear spring (spring constant cyy > 0, relaxed length syyq).
Furthermore, assume that the friction can be approximately expressed by a velocity-
proportional force fr = —dr$, dg > 0. The frictionlessly mounted pendulum rod is
homogeneous with density pg and cuboid-shaped with length lg, width bg and height
hg. Calculate the equations of motion using the Euler-Lagrange equations (5.69).
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e, G—gw

Z Z
Z Z
7Kl z

Figure 5.7: Cart with pendulum.

Solution of exercise 5.2. The mass of the pendulum is calculated to be mg =
pslsbshg and the moment of inertia about the center of gravity S is I, = 1—12m5 (l% + b%)
The equations of motion are obtained to

.1 .1 ) ) o )
(mw + mg)s + imsls cos(p)p — §m5l5 51n(<p)<p2 + cew (s — swo) = ¢ — dg$
(5.92a)

1 1 1
imsls cos(p)§ + (I;S; + 4m5l§>¢ + imsglg sin(p) =0. (5.92b)

@ Solution in MAPLE: WagenmitPendel.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

So far it has been shown that the equations of motion of a mechanical rigid body
T

system with the generalized coordinates q* = {ql qQ ... qn] can be calculated from
the Euler-Lagrange equations (5.69). Furthermore, it has been shown that for rigid
body systems the kinetic energy can be represented using the mass matrix M(q) in the
form (5.21). Finally, the potential energy for rigid body systems is independent of q, i.e.
vV =V(q).

Under these assumptions, the equations of motion (5.69) can be written in matrix
notation in the form

M(q)g + C(q,9)q +g(q) = f,” (5.93)
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or in component notation as follows
n n n
j=1 j=1i=1
with the so-called Christoffel symbols of the first kind

o 1[0Myj(a)  OMy(q)  0Mij(q)
ijh(q) = 2( dq; + 0q; Iqx, .

(5.95)

As can be seen from (5.93), the equations of motion on the left-hand side contain three
different terms: (i) acceleration terms in which the second time derivative of the generalized
coordinates appears, (ii) terms in which the product ¢;¢; occurs (centrifugal terms for
i = j and Coriolis terms for i # j) and (iii) the terms of the potential forces which only
depend on q. The potential forces are calculated directly from the potential energy V(q)
via the relationship

8W®_
Oqx,

8@ = [gu(a@) @@ .. gu@] with gla)= (5.96)

By comparing (5.94) with (5.93) one can see that the (k,j)th element Cj; of the matrix
C(q,q) can be calculated in the form

Coylard) = (@i (5.97)
=1

from the Christoffel symbols of the first kind (5.95).

Note 5.4. For £ = 0 in (5.69) or (5.93), one speaks of a conservative system, a
system in which the total energy £ =T 4+ V does not change due to the motion or
no dissipation occurs in the system. To show that for £7 = 0 the total energy E' is
constant, one calculates the time derivative in the form

d 1 . ov

SEp_¢ TM . 1. TM . ov .

% q M(q)4 + 54 (@) + 9q 4

; L YT (5.98)
N N (AT ov .
q ( (01)q+2 (Q)q+(8q> )
Substituting the equation of motion (5.93) gives

d , N 1., .. oV T
—FE=4"|-C(a,4)4q —g(a) + =M(q)q + ()

— 2" (M(a) - 2C(a.))a = 14" N(a.4)a .

This expression vanishes because N(q, q) is a skew-symmetric matrix.
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To prove this, write the (j, k)th component of N(q, q) in the form
= (OMjy, )
Njk = Z( = zcikj)%'
~\ ¢
" (5.100)
_ Z OMj,  OMjy,  OMj; N OM;y, i
~\ 94 0q; 0qx, oq; )™
which gives
“ OM;;  OMyy
Njj, = ——L 4+ g . 5.101
’ z;( dg, ~ 0q; ) (5101
By interchanging the indices j and k one obtains analogously
- OMy;  OM;;
Ny = — + 2 g 5.102
’ ;( dq; O )" (5.102)
and considering t}}e symmetry of the mass matrix My; = M;;, this leads to Nj;, = —Np;.
This shows that £ = 0 and thus the total energy F is constant in a conservative rigid
body system.

Ezercise 5.3 (Rotatory Two-Mass Oscillator). In this example, a rotatory two-mass
oscillator as shown in Figure 5.8 is considered. It consists of two rigid bodies with
moments of inertia I;;J and Ijgg, respectively, about the respective axis of rotation
in z-direction of the coordinate system 0. It is assumed that the axes of rotation
of bodies 1 and 2 simultaneously correspond to a principal axis of inertia, so that
no products of inertia occur. The rigid bodies are coupled to each other or to the
inertial system by linear torsional springs (stiffnesses ¢; or c¢;2, relaxed positions for
©1 =0 or 1 — ps = 0) and viscous rotary dampers (damping constants d; or dj2).
Furthermore, an external torque 7 or 7 acts on each of the bodies.

Yo dy = T @12 —
c o <<€ 7] I_L612 o <€ T2
0o o 1 I5 o AN 2,
\)’ SOl \1902

Figure 5.8: Rotatory two-mass oscillator.

Determine the equations of motion of this system in the representation (5.93).

Solution of exercise 5.3. The rotatory kinetic energies of the two rigid bodies result
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in

1 1
51356 1(,(}]_ and T2 il—‘ix 2&.)2 (5103)
with w; = 1 and we = Y3. The potential energy of the torsional springs is given by

L 1 2
Vcl = 5614,01 and Vclg = 5612(@2 — ng) . (5.104)
The torques on the rigid bodies result in

Tel — —T1 — d1w1 — d12<wl — CUQ) (5.105&)
Tep = —T2 + di2 (w1 — w2) (5.105b)

The vector of generalized forces f;7 due to these torques without potential can then
be calculated directly to

Te2

£rr — [7611 . (5.106)

Thus the equations of motion can be specified in the form

d

grr=w (5.107a)

d 1

&1 = i (Tewpr — diwn + a2 — 1) + dia(we —wi) = 71) (5.107b)
rx,l

d

ag@g = W2 (5.107C)

d 1

dt w9 = I ( C12(g02 — gol) dlg(wg — wl) — TQ) (5107(1)
rx,2

If a representation according to (5.93) is used to calculate the equations of motion,
then the mass matrix M, the Coriolis matrix C and the vector of potential forces g
are calculated to be

c1p1 + ci2(p1 — 2)

I 0
M = [”1 ) ] C=0, and g=
0 Iz, —c12(¢1 — p2)

Z

@ Solution in MAPLE: RotatorischerZweimassenschwinger.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezample 5.5 (Continuation Planar Manipulator). This example continues the planar
manipulator from Example 5.1. Starting from the mass matrix and the potential
energy of the system, the equations of motion of the system are now determined. It is
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now assumed that motors are installed in both joints, which introduce the torques 7
and 79 about the z-axis of the joints. Furthermore, it is assumed that viscous friction
with the friction coefficient do occurs in the second joint.

loa

Figure 5.9: Sketch of the planar manipulator.

In the first step, the vector of generalized forces without potential is determined.
The force of the damper at the end of the arm can be specified using r. from (5.29)
in the form

lasin(p1 + p2) (w1 + w2) + I sin(p1)wr
fie = dete = de | =l cos(p1 + p2) (w1 + wa) — 11 cos(pr)wr | - (5.109)
0

With the manipulator Jacobian matrix (J V)82 the corresponding vector of generalized
forces is calculated to

T — Py — 1o (2 B
£ = ((3V)F) fae = del 1w — hla(2wr + wp) cos(ioz) = b +w2)] . (5.110)

0 —l1lawq COS((,OQ) — l%(wl + CUQ)

The vector of generalized forces due to the torques of the motors 77 = [0 0 7'1],

T;f = [0 0 7'2} is obtained using the manipulator Jacobian matrices from Example

4.3 to

fo1 = ((Jw)é)TTl = [701]’ fi0 = —((Jw)(l))sz + ((Jw)g>TT2 = LOJ . (5.111)

It must be taken into account in the calculation of f; o that the torque 72 acts on
rod 1 and rod 2 according to the cutting principle. In the same way, the vector of

the generalized force due to the viscous friction 7'32 = [O 0 —d2w2} is calculated

to be fng = [0 —d2w2:|.
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Thus, all intermediate quantities for the determination of the equations of motion
with the help of (5.93) are available. The results are not given due to the relatively
extensive expressions. For checking, the Coriolis matrix C is given

C— [ —malyls .Sin(<P2)w2 —malilso sin(pa) (w1 + wo) ' (5.112)
—malyls sin(p2)(wr) 0

Solution in MAPLE: Planarer_Manipulator.mw R
In this Maple file all calculation steps and the intermediate and final 3 :

results are shown. Furthermore, you will find here a representatlon L

of the numerical solution of the equations of motion as well as a calculation of

the equilibrium points of the system.
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

FEzercise 5.4 (Continuation Tower Crane 2). This Exercise again considers the tower
crane from Exercises 4.2, 4.4 and Example 5.2. It is now assumed that the tower
(angle ¢1) is driven by a motor with the torque 7. Furthermore, the trolley (position
s9) is actuated by a motor with the force frx and the rope (position s5) by a motor
with the force fg. For all degrees of freedom, viscous friction is assumed with the
damping coefficients dr of the tower, dpx of the trolley, dg; of the translational
motion of the rope (s5) and dg, of the rotational motion of the rope (3 and ¢y).

Calculate the equations of motion of the system! Determine all equilibrium points
of the system and analyze the dynamic behavior of the tower crane by numerical
simulation in MAPLE!

Solution of exercise 5.4.

@ Solution in MAPLE: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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A Exercises

This appendix contains several exercises and their solutions to support self-study.

Ezxercise A.1 (Drawbridge). To enable crossing the channel as well as the passage
of ships, the bridge shown in Figure A.1 can be raised by pulling on rope 2. The
bridge with mass mp and center of gravity Sp is rotatably mounted at point B.
The girder with mass myp is rotatably mounted at point A, outside its center of
gravity S7. The length of rope 1 is chosen so that the girder and bridge are
always oriented parallel to each other. To reduce the tensile force in rope 2, a
counterweight m is mounted at the left end of the girder. Rope 2 wraps around the
cylindrical part of the girder with radius R and is fixed at point C. For the following
considerations, both ropes are assumed to be massless and all bearings are assumed to
be ideally frictionless. The acceleration due to gravity g acts as shown in Figure A.1.

rope 1
m 9
bridge
[s2
roll
7

Figure A.1: Drawbridge.

The aim is to determine the bearing forces at A and B as well as the tensile forces
in ropes 1 and 2 such that the system is in equilibrium. Based on these results, the
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mass m should be determined so that the system is in equilibrium for fgs = 0.

Solution of exercise A.1. From Figure A.1 it can be seen that the bridge and the
girder only influence each other via rope 1. If the bridge is cut free as shown in Figure
A.2, the only force acting on it, besides the bearing forces at B and the gravitational
force mpg, is the rope force fg.

Bz %

fB,y

Figure A.2: Free-body diagram of the bridge.

With Figure A.2, the force balances in the z- and y-directions are obtained as

e;:0=fps (A.1a)
ey: 0= fpy—mpg+ fs1. (A.1Db)

From the force balance, two equations are obtained for the three unknowns fg ., fBy
and fg1. To uniquely determine these three quantities, a third equation in the form
of the torque balance is therefore necessary. A reference point must be chosen for the
formulation of the torque balance. In order to minimize the number of unknowns and
thus the effort for solving the resulting system of equations, it is advisable to choose
bearing B as the reference point (analogously, the point of application of the rope
force fs1 could have been chosen). The torque balance about the z-axis is obtained
as

e, :0=—mpglpcos(pp)+ fs1ls cos(¢p). (A.2)

Simple rearrangement of the force and torque balance leads to

l

fs1 = mBglE (A.3)
for the tensile force in the rope and
0
£y — [f B:x] _ . (A.4)
fou)  |mea(1-12)
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for the bearing force at point B.
To calculate the bearing force f4 at point A and the tensile force fgo in rope 2,
the girder is now cut free according to Figure A.3.

Figure A.3: Free-body diagram of the girder.

From the sketch, the force balances can be immediately read as
e :0=fa, (A.5a)
ey:0=—mg— fso+ fay —mrg— fs1 (A.5D)

Since fg; is already known from the previous calculations, two equations are obtained
for three unknowns, as was the case for the bridge. To calculate fa ., fay and fgo, it
is therefore again necessary to formulate the torque balance. Again, it is advantageous
to choose the bearing as the reference point for the torque balance. The torque
balance about point A in the z-direction is obtained as

e, : 0 =mgl,, cos(pp) + fsaR — mrpgly cos(pp) — fs1ls cos(pp). (A.6)
Rearranging the force and torque balance yields

mpglp + mrglr — mgly,

fs2 = N cos(¢p) (A7)
and
£ 0
A= mBg(ll—fj + % cos(ng)) + ng<1 + % cos(ch)) — mg(l + e cos(ng))
(A.8)
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If the girder is now to be in equilibrium for fgo = 0, the torque balance gives

m = mBlB+mrlr (A.9)

I,

@ Solution in MAPLE: Klappbruecke.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.2 (Rotating Rigid Body). In Fig. A.4 a rigid body system is shown,
consisting of a frame (homogeneous mass density p, thickness d, width b) that is
rotatably mounted at point A and a mass m,, (point mass). The frame is connected
to the ground at its left end by a linear spring with stiffness c. The system is subjected
to gravity g in the negative e, direction.

lo d

Figure A.4: Sketch of a rotatably mounted rigid body system.

For this system, the support forces and the preload of the spring are to be determined
for the case ¢ = 0 such that the system is in equilibrium. Furthermore, the equations
of motion for the rotational motion of the rigid body system are to be determined
using the principle of conservation of angular momentum.

Solution of exercise A.2. In the first step, the support forces and the necessary
spring preload are determined for ¢ = 0. For this purpose, the support (at point A)
must be removed and replaced conceptually by the forces and toruges occurring at
the support. The support shown in Fig. A.4 does not allow movement in the z- and
y-directions, but only a rotation about the z-axis. Therefore, this support can be
equivalently replaced by the forces f, and f,, see Fig. A.5. The effect of the spring is
replaced by the spring force f..
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Je

Jy

Figure A.5: Sketch of a rotatably mounted rigid body system.

To take into account the effect of gravity, the gravitational force mgyg, with the
total mass m,, must be applied at the center of gravity of the rigid body system. For
efficient calculation, it proves useful to divide the entire rigid body system into four
sub-bodies, see Fig. A.5. For each of these sub-bodies, the position of the center of
gravity, the mass, and the gravitational force can then be easily determined.

If we first consider the sub-body framed in blue, its mass is calculated from (3.24)
to be

my = / pdV = ladbp. (A.10)
1%

The center of gravity of the body framed in blue is calculated according to (3.28).
For the position of the center of gravity in the x direction, one obtains according to
(3.29), under the initially assumed condition ¢ = 0,

1 b/2 l14+2d 0 l2
TSmlz = 7/ / / rzpdrdydz = ——. (A.11)
my Je=—b/2 Jy=l1+d Jo=—1I» 2

Remark: Of course, the position of the center of gravity of the homogeneous
cuboid of mass m; can be read directly from the sketch without evaluating these
integrals!

In an analogous manner, one obtains the position of the center of gravity in the y-
and z-directions. Thus, we have

Pom1 = |l + 5|, (A.12)

where the index 0 has been used to denote the case ¢ = 0.
The masses of sub-bodies 2 and 3 are mg = d(l1 + 2d)bp and ms = lodbp and the
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positions of their centers of gravity can be determined to be

3d d+ 3l d+ ln,
Pome = |d+ 20|, 8= L |, =] d | (A.13)
0 0 0

Note that the mass m,, is modeled as a point mass acting directly on the rotating
rigid body, as described in the problem statement.

For the further calculations, we still need the point of application r(}c of the spring
force f.. This is given by

—ly
9. = |d+0|. (A.14)
0

For the system to be in equilibrium according to Fig. A.5, the force equilibrium and
the torque equilibrium according to (3.12) must be satisfied. The force equilibrium
in the x-direction yields

e:: fo=0, (A.15)
i.e., the support force in the x-direction must vanish. For the y-direction we obtain
ey: fot+ fy —mig—mag —msg —mmg = 0. (A.16)

To establish the torque equilibrium for a rotation about the z-axis, a possible pivot
point must be chosen. In the system under consideration, it is natural to choose
point A, i.e., the actual pivot point of the system. Note, however, that the torque
equilibrium must hold for any freely selectable pivot point of the free-body diagram
shown in Fig. A.5. By appropriately choosing the pivot point, it can be achieved
that certain unknown forces do not appear in the torque equilibrium, which can
significantly simplify the calculation.

If point A is chosen as the pivot point in the considered system, it is recognized
that the forces f, and f, do not contribute to the torque about this point. If, on
the other hand, the point of application of the spring force were chosen as the pivot
point, then f. would not appear in the torque equilibrium.

For the chosen pivot point A, the torque Tr(rﬁ) is obtained by applying (3.10) to
—3ls 0 0
T7(71141)70 = I‘g’ml X fom1 = |1 + %d X |—mig| = 0 , (A17)
0 0 m1g§l2
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and thus T(?)ZO = mlgllg Again, the index 0 denotes the case ¢ = 0. The corre-
sponding torques of the other partial masses or the sprmg force are T ( )’ = —magd/2,
A (A),0
7513)2 = —mgzg(d +12/2), Tmﬁ)n iz = —Mmmg(d + ly) and 7 fcz _fcl2

Remark: Of course, for the considered case, where all forces are directed either
in the z- or y-direction, an evaluation of the cross product is not absolutely
necessary. Instead, one can simply use the rule force times lever arm to determine
the resulting torque. However, one must pay attention to the correct sign of the
torque when using this procedure.

If we now apply the torque equilibrium, we immediately obtain

1 l d lo

fe= (m192 — Mag; — M3y (d + ) — mmg(d + lm))- (A.18)
ly 2 2 2

The necessary spring preload [;y can be easily calculated with the length l(} of the

spring for the case ¢ = 0 from the equation

fo=—c(1} = 150), (A.19)

with f. from (A.18). Substituting the solution for f. into the force equilibrium in the
y-direction yields the support force f,.

To determine the equations of motion of the system, the degrees of freedom of the
system must be identified. From Fig. A.4 it can be seen that the bearing at point A
only allows rotation about the z-axis, so that a rotation by the angle ¢ represents
the only degree of freedom of the system. The motion of the system can thus be
described directly in terms of the conservation of angular momentum according to
(3.119). This requires the effective torque of inertia of the system about the pivot
point A and the torques acting about this point.

To determine the moment of inertia I§’Z4) about the pivot point, the moments
of inertia of the sub-bodies according to Fig. A.5 are first determined about their
respective centers of gravity. According to (3.124), one obtains for sub-body 1

b/2 d/2 l2/2 my
= 24 3?)dadgds = — (12 + d2), A.20
zz ml P/ —b/2 _—d/2 __12/2 CC Yy ) raydz 12 (2 ) ( )

where Z, § and Z denote the distances from the center of gravity of sub-body 1. Using
Steiner’s theorem (3.126), the moment of inertia of sub-body 1 about the pivot point
A can be determined as

A S
Iéz,)ml = Iéz,)ml +my (T?Q’ml,ac + T?@’ml,y) . (AQl)

The moments of inertia of the other sub-bodies can be obtained in an analogous

(5)

manner. Since the mass m,, is modeled as a point mass, we have I.;7mm = 0. Note,
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however, that due to Steiner’s theorem, this does not imply [ §;“)mm = 0, but rather
I(A) ( 2

_ 2
zz;mm = Mim rSmm,x + rSmm,yﬂ

Remark: It would be possible to directly determine the moment of inertia
I z(f) by using the distances to the pivot point instead of the distances Z, § and
Z. However, in general, this approach leads to significantly more complicated
expressions for the integrals. Furthermore, the moments of inertia about the
center of gravity are available in tables for many geometric bodies and can be

adopted directly.

As the second part of the angular momentum balance, the sum of the torques
is required. To determine this, the position of the centers of gravity and the point
of application of the spring force must be described as a function of the angle .
Starting from the position of the center of gravity r%, , for ¢ = 0, one obtains from
geometrical considerations (or by using the rotation matrix of a rotation about the
z-axis)

T%ml,x COS(QO) - Tg'ml,y sin(gp)

rsm1(P) = |18 0 sin(9) + 78,1, cos(@) |- (A.22)
0

With this result, the torque T,gﬁ)jz(w) results from

0
T (9) = Tom1 () X fom1 = 0 . (A23)
- (T%ml,:p COS(SO) - rg'ml’y Sln(tp))mlg
The torques TT(,LA;’Z(@), T,Sg),z(go) and Tf(,qé,zb7z(<p) can be determined in the same way.

The determination of the torque due to the spring force f., which changes as a
function of the angle ¢ due to the change in length of the spring, is somewhat more
difficult. The point of application of the spring results from the above considerations
as

r?”c,z COS(@) - T(}c,y Sin(@)
ric(p) = T?”c,z sin(p) + T?‘c,y cos(p) | - (A.24)
0

To determine the current length of the spring, the base point ry.y, is determined in
the form

—Iy
Tefp = |d+11 — 1} (A.25)
0
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and the length of the spring can be determined from

(@) = lIrfe(@) = rpefplly- (A.26)

The spring force is of course directed along the connecting line between the base
point and the point of application, so that one immediately obtains

1) = elyle) = o) Lt (A21)

The associated torque about the pivot point A is then given by T;‘;‘)(cp) =rs(p) x

fe(p).
With these intermediate results, the angular momentum balance for the rotation
about point A can now be stated:

d2
I§f>@go =74, (A.28)

(4)

Here, I §;“) denotes the sum of all moments of inertia and 72" is the sum of all torques
about point A, cf. (3.119).

@ Solution in MAPLE: DrehbarerStarrkoerper.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezxercise A.3 (Holding Device). In a holding device according to Fig. A.6, a plate is
clamped in a housing with the help of a small roller. The plate has the mass m and
the width b. The roller with the diameter d has a negligible mass. At the contact
point between the roller and the housing A as well as at the contact point between
the roller and the plate B, the coefficient of static friction py occurs. Between the
plate and the housing wall, there is an ideally smooth (frictionless) contact. The
angle « is known.
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A
Y

N

Figure A.6: Structure of a holding device.

The minimum required coefficient of static friction gy and the minimum clamping
length h of the plate are sought, so that it is fixed in the holding device. In addition,
the maximum permissible mass of the plate, which can be fixed by the friction in the
device, is sought.

Solution of exercise A.3. Under the assumption that the plate is fixed in the device,
the considered system is in static equilibrium. Based on the force and torque balances
for the roller and the plate, the required coefficient of friction and the required
clamping length can be calculated.

The first step is to free the roller, the plate, and the housing. Fig. A.7 shows the
free body diagrams and the forces acting on them. The force at points A and B is
composed of a normal component f4, and fg,, respectively, as well as a tangential
component due to static friction f4; and fp, respectively. Due to the ideally smooth
contact of the plate and the wall, there is no friction between these two bodies. As a
result, only the normal force fc, acts at point C.
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Figure A.7: Free body diagram of the housing, roller and plate of the holding device
and the forces acting on them.

The force balance on the roller results in

€y fancos(a)+ fagsin(a) — fpn =0 (A.292)
ey : fansin(a) — fascos(a) — fpr =0 (A.29D)

for the z-direction and for the y-direction, respectively, under the angle a. With the
center of the roller as the reference point, the torque balance in the z-direction results
in

d d
e,: fA,t§ — fB,t§ =0 (A.30)

directly fa: = fps+. Substituting this relationship into (A.29b) and then rearranging
yields the relationship between the normal and frictional force at point A to

sin («)

1+ cos (a) fan- (4.31)

far=
A comparison with (3.77) shows that the fraction in (A.31) can be interpreted as
the coefficient of friction. In order for the roller and also the plate to adhere, the

static friction coefficient pg at points A and B must be greater than the coefficient
of friction from (A.31). This results in the condition

sin ()

PH = 1 cos () (A.32)

for the static friction coefficient.
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Analogous to the previous approach, the determination of the minimum clamping
length h is carried out via the force and torque balance of the plate. The force balance
in the z-direction and in the y-direction is

e [Bn—fon=0 (A.33a)
e, : fgr—mg=0. (A.33Db)

The torque balance in the z-direction with the reference point B results in

b
e.: focnh — mgy = 0. (A.34)
From equation (A.33b) it can be seen that only the friction between the roller and
the plate counteracts the weight of the plate. Furthermore, it follows from (A.30)

fBt = far=mg. (A.35)

An analogous relationship results for the normal forces. Substituting equations
(A.29a) and (A.31) into (A.33a) yields

1+ cos (o)

sin () (A.36)

fC,n = fB,n = fA,n =

By substituting this normal force into the torque balance (A.34), the minimum
clamping length of the plate follows after rearranging to

bsin ()

h= 2(1 + cos (o))

(A.37)

From equations (A.32) and (A.37) it can be seen that neither the static friction
coefficient nor the clamping length depends on the mass of the plate. This property of
the holding device is also known as self-locking. Theoretically, the mass of the plate
can be arbitrarily large. This consideration is valid as long as there is no mechanical
deformation of the individual rigid bodies due to the acting forces.

@ Solution in MAPLE: Haltevorrichtung.mw = .‘" ]
https://www.acin.tuwien.ac.at/bachelor/modellbildung/ %
EEAEE

Ezxercise A4 (Quarter-car vertical model). Figure A.8 shows a quarter-car vertical
model. The wheel is modeled by a spring-damper system consisting of a spring
(stiffness cr) and a damper (viscous damping dr). The wheel mass is given by mpg,
and the vehicle body is modeled as a lumped mass m 4. The suspension is described by
a spring (stiffness c4) and a damper (velocity-dependent damping coefficient d4(vgra)
with vpa = vg—wv4a). For x4 = xg = xy = 0, all springs are unstretched. To describe
road unevenness, the ground is parameterized by the displacement z(¢). The vertical
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coordinates of the wheel and the body are defined by zr and x4, respectively.
Determine the equations of motion and the static deflections for z¢;(t) = 0 for the
masses my and mg)!

TrA

9 ma

dA(vRA) L] CA

TR

] 1

dr L=l CR U

T

Figure A.8: Vertical model of a suspension.

Solution of exercise A.4. To determine the equations of motion of the substitute
masses of the wheel and the vehicle body, the principle of conservation of linear
momentum is applied. For this purpose, the substitute masses are cut free, and the
corresponding spring and damper forces are applied to them. For the representation
according to Fig. A.9, it is assumed that xy > xr and xr > z4. For xy > zp,
the wheel spring is compressed, and the spring force acts against the compression.
Therefore, an upward force f.r acts on the wheel. For &y > @R, the ground moves
upwards faster than the substitute mass of the wheel. The damping force fyr acts
against the relative displacement and thus upwards on the wheel. The directions of
the spring and damper force between the body and the wheel are defined analogously.
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Figure A.9: Free body diagrams of the suspension masses.

far

The spring and damper forces are calculated as

fea=calzr —xa) faa = da(vra)(Zr — T a) (A.38a)
fcR = cR(a:U — xR) de = dR(.i’U - iZR). (A38b)
After determining the forces acting on the substitute masses, the conservation of

linear momentum can be applied. This results in the equations of motion of the
substitute masses according to

d

maA A = fea + faa —mag (A.39a)
d

MR VR = fer + far — fea — faa — mRg, (A.39Db)

with the velocities vq4 = £ 4 and vg = Tp.

The static deflections of the masses m4 and mp can be determined for xyy = 0
from the conservation of linear momentum for 4 = tp = 2y = £4 = &g = 0. Then,
it holds

0= fea —mag (A.40a)
0= fer — fea — mRg. (A.40Db)

Substituting the spring forces and solving for the unknown positions xp and x 4 yields

g = —mAT MR (A.41)

CR
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and

pq = —mATMR)g mag (A.42)

CR CA

@ Solution in MAPLE: VertikalmodellFahrzeug.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezercise A.5 (Suspension). The arrangement shown in Fig. A.10 represents a suspen-
sion as used in racing. This suspension consists of the control arms Q1 and Q2, as
well as the pushrod D. These are hinged to the vehicle. The normal force fy and the
lateral force fg act on the wheel. It is assumed that these two forces act as point
loads on the wheel, as shown in the figure. The forces in the control arms Q1 and Q2
as well as in the pushrod D are to be determined. Note that the control arms and the
pushrod can only absorb forces in the respective axis of the rod due to their bearings.

L QL ( W Y
A .
I
1 @ L
aV - Q2 :‘
Is
a |/

Figure A.10: Suspension of a race car.

Solution of exercise A.5. The control arms Q1 and Q2 as well as the pushrod D
are considered as rods in this exercise. In order to be able to calculate the forces
in the rods Q1, Q2 and D, the suspension must be cut free from the vehicle. It is
recommended to make the cut directly through the rods, as shown in Fig. A.11.
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fs

In

Figure A.11: Free body diagram of the suspension.

After cutting free the suspension, the equilibrium conditions can be formulated.
The force balances in z- and y-direction read

e;: 0= fo1+ fo2— fs+ fpcos(a) (A.43a)
e,: 0=—fpsin(a)+ fn. (A.43Db)
The torque balance can be written around any point. To simplify further calculations,
it is advantageous to write the torque balance around a point through which the
largest number of unknown forces pass. In this example, it is the intersection of

fo2 and fp, whereby the torque balance only contains fgi as an unknown. The
corresponding torque balance reads

e,: 0= —leb — fsa+ fnd (A.44)

Solving the three equilibrium conditions for the forces in the rods yields

_ N
fp= sin(a) (A.45a)
for= L;fsa (A.45b)
fa=Ts (1 + Z) —In <cot(a) + Z) (A.45c¢)

@ Solution in MAPLE: Radaufhaengung.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.6 (Rotating Plate with Mass). Consider the rotating plate shown in
Figure A.12, which rotates with a constant angular velocity w. The mass is denoted
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by m, the coefficient of static friction between the surface and the mass by pp, the
inclination angle of the rotating plate by 3, the distance of the mass to the spring
suspension point by s,,, the unstretched length of the spring by sg, the distance
between the spring suspension point and the axis of rotation with respect to the
surface by [, and the acceleration due to gravity by g.

HH

surface

Figure A.12: Sketch of the rotating plate with mass.

In the following investigations, a stationary point is considered, i.e., the velocity
$m and the acceleration §,, of the mass m are zero. For this system, all acting forces
should be sketched and named, whereby the forces should be expressed as functions
of the given quantities. Furthermore, the static friction conditions that apply to the
mass m should be determined. Finally, the critical angular velocity wg,;; is to be
determined, at which the mass m would start to move.

Solution of exercise A.6. In the first step, the centrifugal force acting on the mass
m is calculated. In general, a centrifugal force can be expressed as f; = mrw?, where
m represents the mass, r the distance with respect to the axis of rotation, and w the
angular velocity about the axis of rotation (see Figure 2.5). Applied to the rotating
plate, the distance is r = (s, + ) cos(3). Thus, the centrifugal force of the mass m
can be expressed in the form

fr = m(sm +1) cos(B)w?’. (A.46)

In addition, due to the gravitational field, a gravitational force f; acts on the mass
m7

fq =mg. (A.47)

Since the mass m is also coupled to the rotating plate via a spring, the spring force
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fc acts,
fo = elsm — s0), (A.48)

with the unstretched length sqg of the spring.

Furthermore, a frictional force f, acts on the mass. To describe this force, it
is advantageous to separate the previous forces into their normal and tangential
components with respect to the surface. The components of the gravitational force
fg can be described by

fgn = mgcos(B) (A.49a)
fgt = mgsin(3). (A.49D)

The centrifugal force f; is equivalently composed of

Frn = m(sm +1) cos(3) sin(B)w? (A.50a)
fri=m(sm + 1) cos®(B)w?. (A.50b)
The spring force is already aligned tangentially to the surface.
Thus, the frictional force f. can be expressed in the form
fr = a1 (Fom+ Frn) = pm(geos(8) + (sm + 1) cos(B) sin(B)w?). (A.51)

Figure A.13 shows the forces and their normal and tangential components.

Ire g l

ff,n

Figure A.13: Forces acting on the mass.

This makes it possible to establish the static friction conditions. Due to the angle g
and the coupling of the mass m with the spring, the mass can move inwards even with
a rotational movement despite the centrifugal forces. Therefore, when considering
the static friction conditions, a distinction is made between outward and inward
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movement. These conditions can be expressed for outward movement in the form

fra—Tor = fe < pu(fgn + fin) (A.52)
f

and for inward movement by

ff,t _fg,t - fc > _NH(fg,n+ff,n)' (A'53)
—_—
Ir
In the next step, the critical angular velocities wy,;; are calculated. The basis for

this are the static friction conditions from (A.52) and (A.53). Starting with (A.52),
substituting the normal and tangential components yields the inequality

m(sm + 1) cos?(B)w? — mgsin(f) — c(sy, — s9) >

A.54
uHm(g cos(f3) + (xm + 1) cos(p) sin(ﬁ)wQ). (A.54)

It is important to note that in this case the static frictional force f. must be smaller
than the resultant forces from f;, f4+ and f.. From this, the condition for Wl%m’t can
be easily determined according to

9 mgsin(B) + pgmg cos(S) + c(Sm — S0)

Vhrit = m(sm + 1) cos?(8) — pwgm (s, + 1) cos(B) sin(B)’ (A.55)

whereby immediately

o mgsin(f) + ppmg cos(S) + c(Sm — s0)
Whrit = i\/m(sm + 1) cos?(B) — pagm(sm + 1) cos(B) sin(3) (A.56)

follows. The procedure for determining the critical angular velocity wg,;; for inward
movement is completely analogous. The basis is the static friction condition according
to (A.53). Substituting the normal and tangential components accordingly leads to
the inequality

m(Sm + 1) cos®(B)w? — mgsin(B) — c(sm — s0) >

A.57
—,uHm(g cos(f3) + (sm + 1) cos(p) sin(ﬁ)cﬂ), ( )
and thus
o mgsin(B) — pgmg cos(8) + ¢(sm — So)
Whrit = i\/m(sm + 1) cos?(B) + prm(sm + 1) cos(B) sin(8) (4.58)
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@ Solution in MAPLE: DrehtellermitMasse.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.7 (Centrifugal Governor). This exercise deals with a so-called centrifugal
governor, which was first used in 1788 by James Watt to regulate a steam engine.
The schematic representation in Figure A.14 shows a massless linkage that rotates
about the e.-axis with the angular velocity ¢ = w, and is driven by the external
torque 7. At the ends of the rods with length [, two point masses m are fixed, which
influence the angle o due to the centrifugal force. Through the mechanism, point
A slides up and down along the e,-axis. The height hy of point A represents the
output of the governor.

€4 ©y
¥

Figure A.14: Structure of the centrifugal governor.

Find the equations of motion of the centrifugal governor as well as the steady-state
angle o, which is established for a constant angular velocity ¢ = wy .

Solution of exercise A.7. A systematic derivation of the equation of motion
is possible via the Euler-Lagrange equations. For this purpose, in the first step,
the total kinetic and potential energy of the system is calculated as a function of
the generalized coordinates. For the centrifugal governor shown, the generalized
coordinates correspond to the two degrees of freedom ¢ and «, which are combined

T
in the vector q(t) = [go(t) a(t)} . From this, the vector of generalized velocities is

. . . . T T
derived as q(t) = [(p(t) a(t)} = {ww(t) wa(t)]
Due to the assumption of a massless linkage, the kinetic and potential energy result
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only from the energies of the point masses. Because of the symmetrical structure with
respect to the z-axis, the two point masses each have the same kinetic and potential
energy. Therefore, it is sufficient to consider only a single mass for the calculation of
the energies. For the point mass, which is rotated by the angle ¢ with respect to the
x-axis, the position vector from the origin of the coordinate system is

Isin () cos ()
Py’ = |Isin(a)sin (p) (A.59)
h — lcos (a)

and the derived velocity vector follows to

q Weq €08 () cos () — wy sin (o) sin ()
py = gpgh” =l |wq cos () sin (¢) + w, sin (o) cos (¢) | - (A.60)

wq sin («)

The total kinetic energy of both point masses is calculated using

L o T
T =2;m(pj ) D (A.61)
with the velocity (A.60) as
T = mi? (wi + wi sin’ (a)). (A.62)

Assuming that the potential energy is zero for pi’, = 0 (deflection of the point masses
in z-direction), then with the acceleration due to gravity g, the total potential energy
is

V= 2mg(h —lcos (a)). (A.63)

The Lagrange function is obtained from the difference between the kinetic energy
(A.62) and the potential energy (A.63) as

L = mil? (wi + wg, sin? (a)) — 2mg (h —lcos (a)). (A.64)

T
The external torque is 7. = [() 0 T] and therefore the generalized forces follow as

fo=71 and f,=0. (A.65)
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Substituting (A.64) and (A.65) into the Euler-Lagrange equation (5.69) yields

2mi%(@sin? (o) + 2¢pasin (o) cos (a))  — 0 =T
< | .
Givsl 7
2. . .2 .
2ml“a — 2mlsin (a)(lgo cos () — g) =0,
49
dt & B%L
(A.66)

from which the equations of motion of the centrifugal governor directly follow as

T — 4mil?pcsin (o) cos (o)
2ml? sin? ()
sin (@) <lgb2 cos (o) — g)

G = z (A.67b)

(A.67a)

Sb:

The steady-state deflection for a constant angular velocity ¢ = w, s follows by
substituting &5 = 0 and é&s = ¢5 = 0 into (A.67). From the first equation (A.67a),
setting the time derivatives to zero directly gives the external torque as 7, = 0. This
result follows from the assumption that there is no friction in the system, which would
have to be compensated by the external torque at the steady-state point. In the
steady-state case, from (A.67b), the condition for the steady-state angle o follows as

sin(ay) (12 cos (a;) = g) = 0 (A.68)

In addition to the trivial solution as = 0, another equilibrium position results in
Qs = arccos <92) (A.69)
lps

under the condition that ¢, = w, s > \/% holds for the angular velocity. If this
inequality is not satisfied, then no other equilibrium position exists. The steady-state
angle (A.69) can alternatively be determined by freeing the point mass and setting
up the force balance, with the centrifugal force f; = mwz,l cos ().

@ Solution in MAPLE: Fliehkraftregler.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezxercise A.8 (Drum hoist). A block of mass mp hangs from a massless rope according
to Fig. A.15. The rope runs frictionlessly over a massless pulley and is wound onto
a drum (mass my, moment of inertia Ir). The drum rolls over the contact surface
without slipping. In addition, a spring with the unstretched length s;y and the
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constant spring stiffness ¢ counteracts the motion of the drum. The entire system is
located in the earth’s gravitational field.

N

drum M7 Ip
roll g
v
A\
NN
M
3 \O
block |7
mpg -

Figure A.15: Sketch of a drum hoist with load.

In the following, the following tasks should be solved:

a) In the first step, the bearing forces, the rope force and the spring force in the
stationary state should be determined.

b) Subsequently, the equations of motion of the system should be specified using
the conservation of linear and angular momentum. The position x7 of the drum
should be used as the degree of freedom.

Solution of exercise A.8. To determine the bearing forces, the rope force, and the
spring force, the drum, the pulley, and the block are cut free and the acting forces
are drawn. In Fig. A.16 these cutting forces are shown for the given system.
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Figure A.16: Cut-free bodies and cutting forces.

The weight force f;p = mpg and the rope force fg act on the block of mass mp
in the y-direction. At the deflection pulley, the bearing forces f, and f, as well
as the forces of the cut-free rope occur. The forces acting on the drum are the
normal force f,, the tangential force f;, the weight force f,7 = mrg, the spring force
fr = c(xr — s50) and the rope force fg.

The force balance in the y-direction for the block yields

fs = fgp = mpy, (A.70)

and the force balance for the pulley results in

fe = fs =mpyg (A.71a)
fy=1Ffs=mpg. (A.71b)

The normal force f,, can be determined directly from the force balance in the
y-direction at the drum in the form

fn= ng =mrg (A72)
The force balance in the z-direction reads
fs—=fr—fi=0. (A.73)

To determine the unknown forces fy and f;, one uses the torque balance, written
down e.g. around point S

fsri+ fira =0, (A.74)
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wherewith immediately
r r
fi = ——Fs=——mpg (A.75)
Ta Ta
follows. If this result is inserted into the force balance in the x-direction, the unknown
spring force is obtained

i+ Tq

fr=fs—fi= <1 + f)mBg = mpgg. (A.76)

a a

Remark: Note that the same result would have been obtained if, instead of the
force balance in the z-direction, the torque balance around point M had been
additionally written down at the drum. This reads

fs(n' + Ta) — ffT’a =0, (A.77)

which obviously implies fr = (r; + r4)/rampyg.

To determine the equations of motion of the system, the number of degrees of
freedom must first be determined. It can be seen that when the block moves in the
y-direction, the rope passing over the deflection pulley leads to a rotation ¢ of the
drum. Since it was further assumed that the drum rolls without slipping, a rotation
of the drum simultaneously leads to a displacement 7 in the z-direction. Thus, the
system has one degree of freedom, and this should be chosen to be 7 according to
the specification.

In the first step, therefore, the angle ¢ and the position of the block yp must be
expressed as a function of the degree of freedom. Considering the rolling cylinder, it
is obvious that the unrolled length (and thus the displacement of the drum in the
x-direction) follows ¢r,. Thus, we have

xrT
Ta

Y= (A.78)

The change in rope length (and thus the change in position yp of the block) results
from the sum of the displacement of the drum zp at point S and the unrolled rope
due to the rotation of the drum, i.e.

i+ Tq

r:
Yp = X7 + 10 = X7 + rr = TT. (A.79)

Ta Ta
The determination of the equations of motion of the system can now be done
either by using the conservation of linear and angular momentum or by applying the
Euler-Lagrange formalism. In this example, the conservation of linear and angular
momentum will be used. For this purpose, one formulates the conservation of linear
and angular momentum for the drum and the block. Since the pulley and the rope
were assumed to be massless, the momentum for these parts vanishes.
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With the velocity vp = yp of the block, the conservation of linear momentum
follows

d
MpB VB = MBY — fs (A.80)
and thus follows
d ri+re d
I — _ Tl A .81
fs deth-i-mBg mB(g . dth)’ (A.81)

with the velocity of the drum vr. Note that the rope force fg from the above equation
differs from the rope force in the static case!

The conservation of angular momentum for the drum written around point S results
in

d
ITaw = for; + firg (A.82)
and thus
1 d

holds, where w = ¢ denotes the angular velocity of the drum. Substituting the rope
force and the relationship between ¢ and x7 gives

1 . i
fe=—5(ri(ri + ra)mp + Ir)or — —~mpg. (A.84)

In the last step, one formulates the conservation of linear momentum for the drum
in the z-direction in the form

mT%"UT:fS_ff_ft:fS_c(wT_SfO)_ft- (A.85)

The desired equation of motion of the system is obtained by substituting the interme-
diate results for fg and f; and solving for o7. This yields

(ri + ra)mpgre — c(xr — Sf0)72
(T‘,‘ + T‘a)QmB + It + mTTCZL

@ Solution in MAPLE: Seiltrommel .mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

v =

Ezxercise A.9 (Cable Pulley System). Given is the cable pulley system shown in
Fig. A.17, consisting of a load L (mass my ), a frictionless mounted pulley R; (mass my,
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moment of inertia I; about the axis of rotation, outer radius r;, inner radius r2) and
a movable pulley Ry (mass ms, moment of inertia Is about the axis of rotation, radius
r9) on which an external vertical force f acts. The load is positioned on an inclined
plane (angle «), whereby dry friction with a coefficient of friction u. occurs between
the load and the plane. At time t( the load possesses the velocity vy (uphill). The
load shall be accelerated to the velocity v; within the distance s; by the force f. The
radii 71 and 75 of the pulley Ry can be assumed to be constant and the ropes massless.
Consider the following quantities as given: s1,vg, v1, mp, mi, mo, I, Io, 71,72, 0, le.

i

Figure A.17: Sketch of a cable pulley system.

We are looking for the time-constant force f which accelerates the mass my with
the initial velocity vy within the distance s; — sg to the velocity v1. Assume that the
position s at the beginning is s(tg) = so = 0.

Solution of exercise A.9. An elegant way to calculate the required force is by
applying the principle of conservation of energy in the form of comparing the energy
at time tg and at time ¢1, when the load reaches the velocity v1. Due to the principle
of conservation of energy, the following applies

T(to) + V(to) +Wp —Wpg = T(tl) + V(tl) R (A.87)

where T is the kinetic energy and V the potential energy of the system. Wr denotes
the work done by the force f and Wpg the dissipated energy due to the occurring
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friction.

As a first step to solve the problem, a consideration of the kinematics, especially
the determination of the degrees of freedom of the system, is necessary. If there were
no tensioned rope, then the following 4 degrees of freedom would result: the position
s of the load, the angle @R of the pulley R; as well as the position spe and the angle
pRro of the pulley Ro. For each rope connection one degree of freedom is lost and thus
for 3 connections between the objects 1 degree of freedom results. Thus, it is possible
to express the entire kinematics of the system by one independent variable (degree of
freedom). For solving the problem it is advantageous to choose the position s of the
load.

The kinetic energy T of the system results in

2 2 2 2
mrv n Lwg,  Dwhy  Movpy

5 5 5 5 (A.88)

For the angular velocity wgy of the pulley R; the following relationship applies

wr = — (A.89)
T2

and for the exit velocity vs of the rope from the pulley Ry one obtains

Vg = MWR] = UT—I . (A.90)
T2
At the movable pulley Rs the relations for a pulley system apply (see Fig. 3.17),
i.e.

VR2 = = VU5 —, WR2= —_— =

V2 1 UR2 1
— . A.91
2 21”2 ’ 2 v 27"% ( )

The potential energy of the system at time ¢;

1

V(t1) = mpgsisin(a) — magsy + Vity) , (A.92)

27’2
is composed of the rise of the load and the lowering of the pulley Rs. Since V(ty) is
canceled out in the energy balance, V' (tp) = 0 can be chosen. The work done by the
force f is calculated as

s1r1/(2r2) 1
Wy = / Fdi = fo 2L, (A.93)
i 279

where a constant force f was assumed.
To calculate the dissipated energy Wg due to the occurring friction, one needs the
normal force f,, which the load exerts on the inclined plane:

fn=mpgcos(a) . (A.94)
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The work done results with the tangential force f; = fhu. to
Wg = s1fi = s1uempgcos(a) . (A.95)

Substituting the expressions for the energy balance and rearranging yields the
sought expression for the force f:

2 2 _ 42 #1)? — wh (t)? t1)* — wha(to)”
Y +Ilwm( 1) — wri(to) +IZCUR2( 1) — wr2(to)
S17T1 2 2 2
vra(t1)* — vRa(to) L -
g R mgs (sin(a) + pe cos(a) —magsi g )
2

with the previously defined quantities wr1, wre and vgs.

Remark: This problem can also be solved with the help of the equations
of motion of the system. This approach, however, is much more complex and
requires the solution of the differential equation of motion. This solution path is
also shown in the sample solution in MAPLE.

@ Solution in MAPLE: Seilzug.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezercise A.10 (Toggle Press). Fig. A.18 shows a sketch of a toggle press as it is used,
for example, in the massive forming of steel. By applying a force f to the knee of the
press, the slide can be moved horizontally. The advantage of this construction is that
very large forces can be built up in the horizontal direction when the knee is almost
fully extended. The two legs have masses m; and mo and moments of inertia I; and
I, about the z-axis. The lengths L; and Lo between the joints are also known. It
can be assumed that the centers of gravity of the legs are located in their middle.
The return spring has the spring constant cr and a relaxed length sgo. Gravity with
the acceleration due to gravity g acts in the negative y-direction.
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slider

Figure A.18: Sketch of a toggle press.

The task is to determine the potential and kinetic energy of the system, the vector
of generalized forces, and the equations of motion.

Solution of exercise A.10. Before beginning with the mathematical description of
the toggle press, some considerations must be made regarding the degrees of freedom
of the system. The first leg is rotatably mounted at the origin of the coordinate
system but cannot be moved in either the z- or y-direction. Thus, it only has one
degree of freedom. The second leg is rotatably connected to the first leg at the knee.
Without the slide, this leg would also have one degree of freedom, but its movement is
restricted by the slide. This constraint makes the rotation of the second leg dependent
on the movement of the first. Consequently, one degree of freedom is sufficient to
completely describe the movement of the system.

The choice of coordinates to describe the system is not unique. So far, it has
only been determined that one degree of freedom is sufficient to describe the system
completely. For example, the angle @1 or the z-coordinate of the slide can be used
to describe the system. However, it turns out that a suitable choice of the degree of
freedom can greatly simplify the derivation of the equations of motion.

In the further steps, the angle

q=p1(t) (A.97)

of the first leg will be used to describe the movement of the toggle press. Since only
one generalized coordinate is needed, the angle s must be dependent on it. The
constraint of the slide now states that the endpoint of the second leg

cos(1) cos(p2)
P = L1 |sin(p1) | + L2 | —sin(p2) (A.98)
0 0
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remains on the z-axis for all times, i.e., that the equation
Lisin(p1) — Lasin(p2) =0 (A.99)

must be satisfied. The angle @2 can thus be expressed by

wa(q) = arcsin(g sin(q)) (A.100)

To derive the equations of motion using the Euler-Lagrange equations, the Lagrange
function of the system and the generalized forces must be determined. First, the
position vectors to the centers of gravity of the two legs are determined. Since
the centers of gravity are located in the middle of the legs (i.e., at L1/2 and Lo /2,
respectively), the expressions

cos(q)
P = % sin(q) (A.101a)
0
cos(q) cos(p2(q))
P32 = Ly |sin(q) | + 72 —sin(pa(q)) (A.101b)
0 0

can be given for the center of gravity vectors. The translational velocities of the
centers of gravity are obtained by taking the time derivative of the position vectors:

—sin(q)
vi' =5 | cos(a) |4 (A.102a)
0
—sin(q) —sin(e2(a) |
2 _ g e w2(a) , A.102b
Vo = L cos(q) |+ 57— cos(ea(q))| =5 =4 (A.102b)
0 0
and the angular velocities of the legs are
w) =q (A.103a)
dpa(q) .
= — . A.103b
w2 9q ¢ ( )

For the sake of clarity, the derivative of p2(q) was not evaluated here.
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The kinetic energy is then given by

1
T :§m1L%q2+

1 o1 dpa(9)\* .0 1 dpa(q)
2m2L%q2+8mzL%< 94 ) q2—§m2L1L2 cos(q + ¢2(q)) 94 G+
1, 1. (dp(q) .)2

—h* 4 =T

5 19”7 + 5 2( g q

(A.104)
where the trigonometric functions that occur can be greatly simplified using sin(gpl)2 +

cos(p1)? = 1 and cos(ip1) cos(pa) — sin(ep1) sin(pa) = cos(¢1 + ©2).
The potential energy due to the weights of the legs is given by

L L
Vy = mlggl sin(q) + mag <L1 sin(q) — 72 sin(ch(q))) + Vo (A.105)

and the potential energy of the spring follows from (3.70) and the x-coordinate of
the endpoint pg:

1
Vi = 5cF(Ll cos(q) + Lo cos(pa(q)) — SF70)2 . (A.106)

The generalized forces due to the knee force f and the load force f;, are calculated
as

L cos(q)
for = [0 —F 0} % Lysin(q) | = —fL1cos(q) (A.107a)
0
I 0]%‘? — 1 (Lrsina) + Ly sin(@(q))afq@) (A10Tb)

With this, the Euler-Lagrange equations can be written using the Lagrange function
L =T —V,; — VF and the generalized forces f, r and f, ¢, .

@ Solution in MAPLE: Kniehebelpresse.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezxercise A.11 (Planar Robot). In this exercise, the mechanical system (planar robot)
from Figure A.19 is considered. The setup consists of three segments ¢ = {1,2,3}
with the lengths [;, the masses m;, and the moments of inertia I; about the z-axis
with respect to the respective center of gravity S;. Segment 1 is rotatably mounted at
the constant height . The bearing can be assumed to be ideally frictionless. At both
ends of segment 1, segments 2 and 3 are again rotatably mounted without friction.
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For all segments, a homogeneous density can be assumed both over the cross-section
and over the length. As can be seen from Figure A.19, the acceleration due to gravity

T
g acts in the negative e, direction. In addition, an external force f, = [— fex O 0}
acts on the free end of segment 2.

ma, Io

€z
- > h 4

Figure A.19: Simple planar manipulator.

For the given mechanical system, the equations of motion are to be derived using the
Fuler-Lagrange formalism.

Solution of exvercise A.11. The system under consideration has three degrees
of freedom (the rotations of the three segments). In the first step, the vector of
generalized coordinates is defined. With regard to a simple calculation of the kinetic
and potential energy, the choice of

QZ{LH q2 %}T:[(Pl ¥2 <P3}T (A-108)

proves to be useful.
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Remark: The choice of generalized coordinates is not unique. In the present
example, the choice of

T T
q= [(h 7 Q3] = [901 P2 — 1 P3— 901} (A.109)

would also be conceivable.

The central quantity for the application of the Euler-Lagrange equations is the
Lagrangian L =T — V. The kinetic energy in the system is calculated from the sum
of the kinetic energies of the individual bodies as

3
T => (Tii+ T.), (A.110)
i=1
with the translational energies
1 5\ T s
Ty = M (po ) Py (A.111)
and the rotational energies
1 .9
Ty = 51 (A.112)

The position vectors to the centers of gravity of the segments result from Figure
A.19 as

0 cos(q1)
S L.
Py = |h| + 5 sin(q1) (A.113a)
0] 0
0] cos(q1) cos(gz)
Sy _ 20y | lo| .
Py’ = |h| + R sin(q1) | + 3 sin(q2) (A.113Db)
0 0 0
0] —cos(q1) Ll cos(qs)
Py’ = |h| + 51 —sin(qq) | + 53 —sin(gs3) (A.113c)
0 0 0
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wherewith the velocities of the centers of gravity are obtained as

—sin(q1)
Dy’ = gl cos(q1) | (A.114a)
0
o, | Sin(a)) —sin(g2)
: 1 . 2 .
Py’ = 3 cos(q1) |q1 Ty cos(q2) |42 (A.114b)
0 0
sin(q1) sin(gs)
! .13 .
P’ =3 —cos(q1) |1 + 5 — cos(qs) | 43 (A.1l4c)
0 0

For the squares of the velocity vectors, one obtains after a short calculation

.5\ L. Ih\?,

(b6") 8" = <é> @ (A.115a)
5\ T 201\ 2. IL\2., 2 o

(p) 00 = (31) Qi + (;) @3 + Shizcos(q1 = @2)drd (A.115b)
5\ T.. 2. I5\2, 1 o

where the trigonometric identity cos(q1 — ¢;) = cos(q1) cos(¢;) + sin(q1) sin(g;) for
i = {2,3} was used to simplify the expressions.
With these preparations, the kinetic energy in the system is now calculated as

1 )2 201\ Ih\? ,
+3 m2<l2>2+f2 B+ m3<l3>2+13 i3 (A.116)
2 2 2712 2 3
1 . 1 .
+ §m21112 cos(q1 — q2)G1G2 + 6m3l113 cos(q1 — q3)d143
The potential energy of the system results only from gravitation. If the reference

potential is chosen at y = 0, the potential energy is obtained with the acceleration
due to gravity g according to Figure A.19 as

V = mlgegpgl + nge;fpffg + m3995pg3
ll . 2ll . l2 .
= mlg<h ty sm(ql)> +mag (h T3 sin(q1) + B SlH(CI2)) (A.117)
Iy . I3 .
+ m3g (h - gl sin(q1) — ;’Sln(qs))
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To describe the equation of motion, the generalized forces are still needed. According
to (5.60) one obtains the generalized forces from

e\ T
f, = (%‘?) f, (A.118)

with the position vector of the point of application of the force

0 o cos(q1) cos(q2)
po= |h —I-?l sin(qq) | + {2 | sin(g2) (A.119)
0 0 0
to
% sin(q1)
fg=| lasin(g2) | fea (A.120)
0

With these preparations, the equations of motion of the system can be calculated
from

d oL OL
S T ie{1,2,3 A121
dt a(h an' fq,z ¢ { } ( )
These can be compactly written as
M(q)d + C(a,9)a +g(a) = £, (A.122)
with
l2
36(m1 + 16ma + 4m3) + Iy %mg cos(q1 — q2) %mg cos(q1 — ¢3)
M(q) = il ) cos(q1 — o) By + I 0
2
Wamsg cos(q1 — gs) 0 By + Iy
(A.123a)
0 bl s sin(gr — g2)de - “Bmgsin(qr — g3)ds
C(q,q) = |—12mysin(gr — g2)do 0 0
bfma sin(q1 — g3)ds 0 0
(A.123b)
%mlg cos(q1) + %mgg cos(q1) — %mgg cos(q1)
g(q) = %mgg cos(q2) (A.123c)
—%mgg cos(qs)

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien



A Exercises Page 149

@ Solution in MAPLE: PlanarerRoboter.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezercise A.12 (Rotationally Constrained Hollow Cylinder). A hollow cylinder (mass
myq, length [y, outer diameter dy, inner diameter dy) is mounted on a pivot at point K
and subjected to an external torque 7., as shown in Fig. A.20. A second cylindrical
rod (mass mg, length lo, diameter dg) is connected to the hollow cylinder via a spring
element (spring constant ¢, unstretched length sp).

During relative motion of the two cylinders, a velocity-proportional friction force fy
acts, with the friction coefficient d(s). The friction coefficient is proportional to the
contact area between the cylinders, with d(s) = dyA(s). Both cylinders are subjected

to gravitational acceleration g. The moments of inertia I g)z and Iés;)z of the cylinders
about their respective eJ-axes are assumed to be known. For the determination of

the center of gravity of the hollow cylinder, the base area can be neglected.

€y

€ €y

Figure A.20: Setup of the rotationally constrained hollow cylinder.

For this configuration, the equations of motion are to be derived using the Euler-
Lagrange formalism. Furthermore, the stationary point (equilibrium position) of the
system is to be determined for 7. = 0.

Solution of exercise A.12. As a first step, a suitable choice of generalized coordinates
q (i.e., the degrees of freedom of the system) must be made. The present system
consists of two rigid bodies, each of whose unrestricted planar motion has three
degrees of freedom (displacements in the z- and y-directions and rotation about the
z-axis). In the case under consideration, the system is subject to 4 constraints: (i)
The x- and y-positions of cylinder 1 are fixed, leaving it with only the rotation about
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the angle ¢ as a degree of freedom. (2) Cylinder 2 is connected to cylinder 1, so
it must undergo the same rotation. The only remaining degree of freedom for this

cylinder is movement in the direction of the degree of freedom s.
From these considerations, the following possible choice of generalized coordinates

(degrees of freedom) results

q:

S

(A.124)

In the next step, the position vectors to the centers of mass of the respective
cylinders are formulated. The position vector p§! to the center of gravity of the
hollow cylinder results from geometrical considerations to

0 ; sin(yp)
pil = |h| + 51 —cos(p) |, (A.125)
0 0
and the position vector p§? to the second cylinder is calculated as
0 ; sin(y)
pi? = |h| + (s + 22> —cos(p) |- (A.126)
0 0

The translational velocities v§! and v§? of the centers of gravity of the two cylinders,
which are necessary for the calculation of the kinetic energy, are obtained as

cos(y)
0 -
sin(¢) | 1 [eose)
viZ =piZ = |—cos(p)| s+ (s + 22> sin(p) | ¢. (A.127b)
0 | 0
The rotational part of the kinetic energy is obtained directly as
1ros )Y .
T, = 5 (B2 + B2 )¢, (A.128)
where it should be noted that the moments of inertia [ g)z and Iéi)z are defined about

the respective center of gravity of the cylinders.
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The translational part results with the velocities vgl and VSQ to Ty = Ty + Tyo,
with

1 T 1 )
Th = 3 (vgl) vil = gmllfapz (A.129a)
1 T 1 2, . Ip\?

The potential energy Vy of the linear spring results in
1 2
Vi = Qc(s —50)°, (A.130)

where sg describes the unstretched length of the spring. The potential energies due
to gravity can be written in the form

Vi =miyg (h - l2lcos(g0)> (A.131a)
Vo = mag (h — <s + l22> cos(gp)). (A.131Db)

This expression is obtained directly by using the y component of the center of gravity
vectors. The total potential energy is thus calculated to be V. =V, + Vj + V5.
Using the Lagrange function

L=T(q,9) - V(q) (A.132)

the equations of motion of the mechanical system can be calculated. The essential
intermediate results are calculated as follows:

o 1 . Ib\?, S) . ()

%L = Zmlllw + mg (8 + 2) 2 + (Il,zz + IQ,ZZ)SO7 (A133a)
d/o 1 . \?. l2\ .. S S)Y -

(A.133b)

iL —mi1g—sin(p) —m (s + lz) sin(ep) (A.133c)

Do = 19 9 ¥ 29 9 ¥)s .

0

L= . Al

oL = mas, (A.133d)
d/o
“(=L) =mos Al
gy (85 ) maé, (A.133e)

iL = mo¢? (s + l;) —¢(s — sg) + mag cos(p) (A.133f)

To account for the effect of the friction force f4, the principle of virtual work is
used. The friction force was assumed to be proportional to the relative velocity
of the surfaces of cylinders 1 and 2, i.e. proportional to §. Furthermore, it was
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assumed that the friction is proportional to the contact area A(s). This results in
A(s) = (1 — s)dam, where dy is the diameter of cylinder 2. This gives

—sin(yp) —sin(yp)
fi=do(ly — s)dams| cosp | = fa| cosp |. (A.134)
0 0

The point of application pd of the friction force f; can be assumed to be at the
beginning of cylinder 2 (forces can be shifted along their line of action). Thus we
have

ssin(y)
pf]l = |h—scos(p)|- (A.135)
0

If we now use D’Alembert’s principle, the generalized forces with respect to the
degrees of freedom are calculated as

ftas =—1a (A.136a)
Jtie =0 (A.136D)

This result could also have been derived directly (with some practice in dealing with
the calculation of generalized forces) from the fact that a change in the degree of
freedom ¢ does not produce a displacement of the friction force and thus no (virtual)
work.

By analogous considerations, one obtains the generalized forces due to the external
torque 7.. Here, a displacement with respect to the degree of freedom s does no
virtual work, while a rotation with respect to the degree of freedom ¢ directly results
in work with the external torque 7.. Thus one obtains

Jres =0 (A.137a)
f‘re,ap = Te (A.137b)
and finally
fs = fras + fres = = Ja (A.138a)
Jo = Trap T+ frep = Te (A.138b)
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The equations of motion are obtained by assembling the intermediate results to

— 2 L2 [ Iy
( m1l1 —+ mo (s + ) 1(:9) [2(,5;)z> 5+ 2mo (5 + *2 )L,Os
(A.139a)

l l
+g <m121 + ma (s + 22>> sin(p) = 7e

Mok + c(s — sg) — mageos(p) — mop? (3 + l22) =—fa (A.139b)

The equilibrium positions (stationary points) of a system are characterized by
4 = q = 0. Thus, the equilibrium positions of the system for 7. = 0 follow as

vr=km with ke€Z, (A.140)
o = mRgcosen) | Mg (A.141)
C

Obviously the spring is stretched in the lower equilibrium position pr =0 (sg > so)
and compressed in the upper equilibrium position ¢ = 7 (sg < sp). Furthermore,
it is immediately clear that a rotation of the mechanism by k27, k € Z, does not
change the stationary conditions. Thus, although the system has an infinite number
of equilibrium positions, the stationary behavior can be completely characterized by
the two essential equilibrium positions (upper and lower equilibrium position).

@ Solution in MAPLE: DrehgelagerterHohlzylinder.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

FEzxercise A.13 (Rigid Body with Torsional Spring). Given is the mechanical system
shown in Figure A.21. A beam is mounted at the origin, rotatable by an angle ¢, and
consists of two rigidly connected rods. The rods have the lengths Lg and Ls/2 and
the masses m and m/2, respectively. The mass moment of inertia of a rod about its
center of gravity can be approximated by 1. ,§§,)s = mf; 2. The gravitational acceleration
g acts in the negative e, direction, and the spring is relaxed at ¢ = 0. The force f

with magnitude f acts in the direction of the second rod’s axis.
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Figure A.21: Rigid body system with torsional spring.

For this system, the first step is to calculate the location of the center of gravity and
the total moment of inertia about this center of gravity. Subsequently, the equations
of motion of the system are to be determined using the Euler-Lagrange equations.

Solution of exercise A.15. In the first step, the vector p{j of the entire beam for
¢ = 0 and the mass moment of inertia of the beam about its center of gravity are
determined. First, the center of gravity vectors and the mass moments of inertia of
the individual rods are specified. The center of gravity vectors of the two rods of the
beam for ¢ = 0 can be read directly from the sketch and are

0

pyl =& (A.142)
0

and

L
4

pi? = |Ls|, (A.143)
0

respectively. Applying formula (3.31), the resulting center of gravity of the beam can
be determined as

Ls
1 m . .s2 12
s mp8 + 2 Po 2L A
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The mass moments of inertia of the two rods about their respective centers of gravity
are given by

2
(s1) _ MLy
It > (A.1452)
2
(s2) _ MLs A.145b

The total mass moment of inertia of the beam about the total center of gravity is
calculated by applying formula (3.126) as

19m L2
9% ’

19 =169 + m(xg,sl + y?,sl) +I62 + 5 ( Ty s T Ys 52> = (A.146)

where the variables x 51, ys,s1 and xs s, Ys,s2 denote the x and y coordinates of the
vectors

%
Psst =P)— Py = | % (A.147a)
0
L
6
Pss2 =P5 — Py = |— %, (A.147b)
0

respectively.

In the next step, the center of gravity vector and the center of gravity velocity
are determined as a function of the generalized coordinate ¢. The center of gravity
vector can be expressed, starting from pg for ¢ = 0 via geometric considerations or
using the rotation matrix, as

f; cos(p) + 2LS sin(y)
Py = —% sin(p) + 2Ls os(p) |- (A.148)
0

The translational velocity of the center of gravity is then obtained by taking the time
derivative of the center of gravity vector:

— 5 sin(p)@ + 5= cos()
vh = | =% cos(p)p — % sin(p)p| - (A.149)
0

The translational kinetic energy is

13m

t =
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and the rotational energy is

Lo 19

T —
"7 L) 192

—m@?LA (A.151)

The potential energy is composed of the potential energy in the gravitational field
and the potential spring energy and can be calculated as

L 1
V=V,+Vr= —gsmg sin(y) + mgLs cos(p) + §ch02. (A.152)

The generalized force due to the force f is f, y = fLs. This is obtained directly from
the fact that the force f always acts in the direction of rod 2 (and thus orthogonal to
rod 1). The generalized force f, ¢ thus corresponds to the moment acting about the
pivot point. This result would also be obtained by applying D’Alembert’s principle
(5.57). The point of application pg of the force f is calculated as

Lgsin(yp)
J = | Ly cos(p) |, (A.153)

and the force can be calculated as a function of the angle ¢ in the form

[ cos()
f=|—fsin(y)]. (A.154)
0

The generalized force can thus be determined via
foy = TR0 Bpo = fL,. (A.155)

In the last step, the equation of motion of the system is calculated using the
Fuler-Lagrange equations. For this purpose, the Lagrangian

7 L 1
L=T,+T,-V = 1—6mgb2L§ + gsmg sin(yp) — mgLs cos(p) — 50F<p2 (A.156)

is used and inserted into the Euler-Lagrange equations (5.69)

d 9 0
———L - —L= . A1l
dt 99 B fq,f ( 57)

Evaluating the Euler-Lagrange equations yields the equation of motion of the system

1
gmngb - gmgLs cos(p) — mgLgsin(p) + cpp = fLs. (A.158)
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@ Solution in MAPLE: StarrkoerpermitDrehfeder.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezxercise A.14 (Elastically Mounted Cantilever Beam). A beam B (piecewise rect-
angular, constant thickness d and homogeneous density p, moment of inertia Ij(gsiz
about the center of gravity) is, as shown in Figure A.22, rotatably mounted in a
joint A on a carriage S (mass mg). Viscous friction (proportional to the angular
velocity ¢) occurs in the bearing A with the constant friction parameter ds > 0. A
torsional spring acts between the beam B and the carriage .S, whose torque increases
linearly with the deflection ¢ of the beam (spring constant co > 0). The carriage
S is mounted on the carriage guide SF, which only allows a translational degree
of freedom in the direction s. In the carriage bearing there is velocity-proportional
friction with the constant friction parameter d; > 0. Between the carriage S and the
ground there is a linear spring with the constant spring stiffness ¢; > 0. An external
force £¢ with ||f¢|| = f¢ acts on the beam, which is always perpendicular to the beam.
Figure A.22 shows the system with relaxed springs (s = s19, = 0).

Consider the following quantities as given for the calculations: my, p, Ig;z, b1, bo,
b3, d, l1, l2, I3, c1, 510, C2, d1, da, f€. 7

by| bs bgi . . @;42 A A

S10| s

fe B 1
Y SF

Figure A.22: Elastically mounted cantilever beam.

For this system, the equations of motion are to be determined using the Euler-Lagrange
equations.

Solution of exercise A.1. To set up the equations of motion, the Lagrange function
L =T —V with the kinetic energy 7' and the potential energy V must be determined.
The generalized coordinates (degrees of freedom) are given by qT = {3 90}.

In the first step, the potential energy V' = V; + V is determined. This is composed
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of the potential energy V; due to gravity and the potential energy V; stored in the
two springs.

The mass mp of the beam B required for calculating the energies is obtained from
(3.24) to

mp = /VpdV = pd(b1l1 + boly + b3l3). (A159>

Due to the constant thickness d, the homogeneous density p and the vertical symmetry
for ¢ = 0, the center of gravity of the beam B lies on the horizontal line passing
through the bearing A. The distance I of the center of gravity of the beam B from
the joint axis A (pivot point) is obtained from (3.29) to
2 2
(1) + 2 o

o b1l + bala + b3ls

(A.160)

Thus, the vector piP to the center of gravity of the beam as a function of the

generalized coordinates q! = [s gp} is
—ls cos(yp)
pif = |s+ lssin(p) | (A.161)
0

With these results, the potential energy due to gravity with the reference level
y = 0 can be calculated for the beam to

Vg8 = gmp(s + lssin(p)) (A.162)

and for the carriage S to
Vg5 = gmgs. (A.163)

Since the springs were defined as linear in this example, i.e. ¢; = const. and
c9 = const., their potential energy is given by

1

Ve = 501(8 — 810)2 (A.164a)
1

Vig = §cw2. (A.164b)

The total potential energy is finally
V=Vyp+Vgs+Ver + Voo (A.165)

The kinetic energy T'= T} s + 1} p + T} p is composed of the translational kinetic
energy of the carriage T} g, the translational kinetic energy of the beam T} p, and the

Lecture and Exercises Mathematical Modeling (20255)
©A. Kugi, W. Kemmetmiiller, Automation and Control Institute, TU Wien



A Exercises Page 159

rotational kinetic energy of the beam 7 p. The translational kinetic energy of the
carriage follows to

1
Tis = imSSQ (A.166)
and that of the beam to
1 T 1
Tip = 5mp (pr) By’ = 5ms (<p21§ + 82 4 20,8 COS((p)) . (A.167)

The moment of inertia Igiz of the beam B is defined about an axis passing through

the center of gravity. Thus, one obtains for the rotational part of the kinetic energy
of the beam

1
Trp =3 )% (A.168)

With these results, the Lagrange function L = T — V is completely determined.

Now, the vector of generalized forces fT { fas fq#,} is still missing, which is
composed of the effect of the external force f ¢ and the dissipative forces. The external
force can be represented in the form

fesin(p)
£ = | fecos(p) (A.169)
0

and the vector pg to the point of application of the external force f¢ results in

—(l1 4 12) cos(p) — & sm(go)
pg = |s+ (i + o) sin(p) — & cos(p) | - (A.170)
0

The contributions to the generalized force due to the external force f¢ are calculated
as

8pf 5
fas.pe = (aso> £ = fcos(p) (A.171a)

opl\ "
fappe = (;:f) £=r+12) . (A.171D)

Since the friction is assumed to be proportional to velocity with constant friction
parameters, the proportion of the generalized force due to the friction forces or
torquess is obtained as

fo,5,0=—d1$ (A.172a)
fopd = —dagp . (A.172D)
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In sum, the vector of the generalized force results in

fq,s — fq,s7f5 —'I_ fq7s,d (A173a)
Jae = Jap e + Jaed - (A.173Db)

The Euler-Lagrange equations for the rotatably mounted cantilever beam from
Figure A.22 are therefore

ag - % - fq,s (A174a)
d oL OL
G0 9, =T (A.174D)

A presentation of the evaluation of (A.174) is omitted here, as it is very extensive.
For control, these can be taken from the sample solution in MAPLE.

@ Solution in MAPLE: ElastischgelagerterAusleger.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Ezercise A.15 (Trebuchet). To win the pumpkin throwing competition, the dynamics
of the catapult used for this purpose should be analyzed. It is known that a trebuchet,
as sketched in Fig. A.23, has the best efficiency of all throwing machines. A heavy
counterweight of mass M accelerates the projectile (pumpkin) with mass m. The
throwing arm has the length L 4 and the counterweight is connected to the throwing
arm by a pendulum mechanism of length h. A sling with length r provides additional
range. For simplification, it can be assumed that the moment of inertia of the
throwing arm, the counterweight and the projectile can be neglected. Furthermore,
the ropes are assumed to be massless.
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Figure A.23: Sketch of the trebuchet: Starting position blue, position during the
acceleration phase red.

For this system, the equations of motion should be derived.

Remark: To better understand the dynamics of the catapult, a typical motion
sequence should first be discussed:

In the starting position, which is shown in blue in the sketch, the tip of the
throwing arm is on the ground and the counterweight M is accordingly at the
highest possible point. If the release mechanism, which is not considered here, is
now actuated, the counterweight moves downwards and the throwing arm begins
to rotate around the pivot point (here the origin of the coordinate system). The
rope attached to the end of the arm transfers this movement to the projectile
m, which is now accelerated along a certain path until launch. Note that the
projectile first slides along the ground and only leaves it at a certain point.

The motion sequence of the machine can thus be divided into three phases:

1. In the first phase after release, the projectile slides along the ground until
the time it leaves the ground.

2. In the second phase, the projectile has left the ground and is accelerated
until it is decoupled from the rope.

3. In the third phase, the projectile is separated from the throwing machine.
The arm and the counterweight perform a pendulum motion until the
catapult has come to rest again.

In the context of this example, only the first and second phases will be
considered.

Solution of exercise A.15.  In the first step, the necessary degrees of freedom
(generalized coordinates) to describe the system are determined. The throwing arm
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rotates around the y-axis with the angle 6, whereby 6 = 6y should apply in the
initial state. The counterweight M is rotatably attached to the short end of the
arm by the angle . This is measured here relative to the vertical. The projectile is
rotatably attached to the end of the throwing arm by a rope at an angle 1) (again
defined relative to the vertical). To describe the dynamics of the system, the following
generalized coordinates are chosen:

9
a= |yl . (A.175)
¥

In the next step, the vectors p}! and pJ* from the origin of the coordinate system
to the counterweight M and projectile m, respectively, are determined. As shown in
the sketch A.23, the origin of the coordinate system is located at the pivot point of
the throwing arm. The vectors pé\/[ and pg' are thus obtained by

[1cos(6) — hsin(y)
Py = 0 (A.176a)
|[sin(0) — hcos(p)

—Lcos(#) + rsin(y)
Py = 0 : (A.176Db)
—Lsin(0) — rcos(y)

In the first phase of the movement, the projectile m moves along the ground. Thus,
there is a constraint in this phase of the motion. With the height h,,, = —L sin(6p)
of the projectile at the beginning of the motion, this constraint el pJ* = h,, can be
formulated as an equation of the form

Lsin(#) + r cos(¢) = Lsin(6y) (A.177)

This constraint must be fulfilled throughout the first phase, whereby the angles ¥ and
f are not independent of each other in this phase. If the angle @ is now used as an
independent coordinate (degree of freedom) in this phase, then 1) can be determined
in the form

w(0) = arccos<f(sin(9o) - sin(e))> (A.178)

This relationship must be taken into account in the further derivation of the equations
of motion for phase 1.

Remark: A much more systematic approach to describing this constraint is to
use Lagrange multipliers. However, since these are not part of this course, their
use will be dispensed with.
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The velocities of the projectile and the counterweight, respectively, are obtained in
phase 2 by taking the total time derivative of the position vectors:

[—1sin(0)0 — hcos(p)¢
vl = 0 (A.179a)
I lcos(@)é + hsin(p)p
[ Lsin(0) + r cos(1)¥
vt = 0 : (A.179b)
|—L cos(0) + rsin(v)e

The velocity vector for phase 1 is calculated by substituting the constraint (A.178):

Lsin(0)6 + r cos(v)i
vl = 0 : (A.180)
0

The kinetic energies for phase 1 and 2 are calculated to be:

T = }]\4(l292 + h2p% 4 21hfp sin(0 + go)) + %m(L sin(6)0 + rcos(w)z/})Q

2
(A.181a)
1 . . 1 . : ..
=3 M(l202 + 2% + 20hp sin(0 + (p)) i §m(L202 + 122 + 2Lr6y sin(6 — w)),
(A.181b)
where, for clarity, the substitution of the relationship
. O
=—0 A.182
in Ty for phase 1 has been omitted.
The potential energies of the projectile and the counterweight result in:
Ve = Mg(lsin(6) — hcos(y)) + Varo (A.183)
Vi = mg(—Lsin(8) — rcos(¥)) + Vino (A.184)

and the total potential energy of the system results, depending on the phase, in

Vi=Vy (A.185)
Vo=Vy + Vi, (A.186)

since in phase 1 only the potential energy of the counterweight has to be considered
(the potential energy of the projectile is constant in this phase).

The equations of motion of the system can now be determined directly by applying
the Euler-Lagrange formalism. A further detailed derivation of the equations of motion
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using the Lagrange formalism is omitted due to the rather unwieldy expressions. The
equations of motion of the catapult for phase two are therefore

M(q)d + g(q,q) =0 (A.187)
with the mass matrix

L>m +1?M  Mlhsin(0 4+ ¢) mLrsin(0 — 1)
M(q) = | Mihsin(0 + ) Mh? 0 (A.188)
mLrsin(0 — ) 0 mr?

and the remaining terms

—mLr cos(0 — )% + Mlhcos(0 + p)¢? — g(mL — MI) cos(6)
glq,q) = Mlh cos(0 + ¢)6% + Mghsin(y)
mLr cos(0 — )62 + mgr sin (1))

The entire equation of motion is presented in MAPLE in the sample solution.

@ Solution in MAPLE: Trebuchet.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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