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1 Introduction

This lecture deals with the modeling of technical systems. As a first step, it is therefore
necessary to clarify what is meant by a system. Simply put, a system is the connection of
different components that are interconnected to form a whole for the purpose of performing
certain tasks. The interaction of a system with the system environment takes place via
the so-called input or output variables, see Figure 1.1.
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Figure 1.1: On the concept of systems.

The input variables u1, u2, . . . , up are variables that act on the system from the system
environment and are not influenced by the behavior of the system itself. A distinction
is made between input variables with which the system can be influenced in an control
engineering sense (manipulated variables) and input variables that are not under our
control (disturbance variables). The output variables y1, y2, . . . , yq are variables that are
generated by the system and in turn influence the system environment. Output variables
that can be measured are also called measured variables.

A model is essentially a limited representation of reality that takes into account the
essential properties of the system for the task at hand. In a mathematical model, the
behavior of the real system is represented in an abstract form, for example by algebraic
equations, ordinary or partial differential equations. At this point it is important to
emphasize that no mathematical model can represent a system exactly. Rather, a math-
ematical model is always a compromise between model complexity and model accuracy
with respect to the desired properties. In order to develop a mathematical model that is
suitable for the respective question, various steps of decomposition (breaking down the
system into individual subsystems and components), reduction and abstraction (omitting
details that are irrelevant for the task and transferring to a simpler substitute system) and
aggregation (combining components and subsystems into a whole) must be carried out,
sometimes in recurring loops. These steps can only be systematized to a limited extent,
which is why the creation of a suitable mathematical model is at least partly an art and
always will be. The mathematical model forms the basis not only for system analysis, in
which the static and dynamic behavior of the system is investigated as a function of the
input variables and system parameters, but also for system synthesis, i.e. the design of the

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



1 Introduction Page 2

overall system. The latter point includes in particular the design of suitable sensors and
actuators up to the control design, which will be dealt with in detail in the Automation
lecture next semester.

Basically, a distinction is made between theoretical and experimental modeling. In
experimental modeling, the mathematical model is created on the basis of the measured
input and output variables in such a way that the input-output behavior is reproduced
as well as possible. This type of modeling is also called system identification and models
that are based exclusively on experimental information are called black box models. Since
black box models are based solely on experimental results and use no (or very little) a
priori knowledge of the system, the model obtained in this way is only valid for the data
set covered by the identification. The main advantage is that relatively little knowledge
about the system is required. In contrast, in theoretical modeling, the mathematical
models are derived on the basis of fundamental physical laws. In this context, one also
speaks of white box models or first-principles models. Between the black box and white
box models, there are different degrees of gray box models, depending on the ratio of
experimental to physically based model information. It should be mentioned here that it is
generally not possible to derive a mathematical model exclusively from physical laws and
to parameterize it completely. Some so-called constitutive parameters (friction parameters,
leakage inductances, leakage oil flow coefficients) have to be determined from experiments,
even if the model approach is physically motivated. The advantages of these latter models
(white box models with few experimentally determined constitutive parameters) are the
very good extrapolatability of the model beyond the data obtained by experiments, a high
reliability, a good insight into the model, as well as the fact that the model is scalable
and also applicable to systems not yet realized (prototyping). The disadvantage is that
this type of modeling is generally relatively time-consuming and requires a thorough
understanding of the system. In this lecture, we will focus exclusively on the latter type
of mathematical models.

i(t)i(t)

u(t)u(t)
R C

Figure 1.2: On static and dynamic systems.

In the following, consider the two simple electrical systems of Figure 1.2, namely a
resistor and an ideal capacitor, with the input variable i(t) (current), the output variable
u(t) (voltage) and time t. For the resistor R, the output variable at any time t is uniquely
determined by the input variable at time t, namely

u(t) = Ri(t) . (1.1)

Systems of this type, whose output variables depend only on the instantaneous value of
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1 Introduction Page 3

the input variables, are called static systems. In contrast, to calculate the voltage u(t) of
the capacitor C at time t, the input current i(τ) for the entire past τ ≤ t must be known,
since

u(t) = 1
C

∫ t

−∞
i(τ) dτ = 1

C

∫ t0

−∞
i(τ) dτ

︸ ︷︷ ︸
u(t0)=u0

+ 1
C

∫ t

t0
i(τ) dτ . (1.2)

If the input variable i(τ) is known only for the time interval t0 ≤ τ ≤ t, then the voltage
of the capacitor at time t0 must also be known as the initial condition u(t0) = u0. As can
be seen from (1.2), the initial condition contains all the information about the past τ < t0.
One also says that u(t0) describes the internal state of the capacitor system at time t0.
Systems of this type, whose output variables depend not only on the instantaneous value
of the input variables but also on their past, are called dynamic systems.

If, for a system according to Figure 1.1, as in the case of the resistor and the capacitor,
the values of the output variables y1, y2, . . . , yq at time t depend exclusively on the course
of the input variables u1(τ), u2(τ), . . . , up(τ) for τ ≤ t, then the system is called causal.
Since all technically realizable systems are causal, we will restrict ourselves to this case in
the following.

The previous considerations now allow us to give the general definition of the state
variables of a dynamic system:

Definition 1.1 (State). If for a dynamic system there exist variables x1, . . . , xn
with the property that the output variables y1, y2, . . . , yq at any time t are uniquely
determined by the course of the input variables u1(τ), u2(τ), . . . , up(τ) on the interval
t0 ≤ τ ≤ t and the values of x1(t0), . . . , xn(t0) for any t0, then the variables x1, . . . , xn
are called state variables of the system.

Exercise 1.1. Which variable would you choose as the state variable for an inductor?
Justify your answer.

Solution of exercise 1.1. The current or the flux linkage of the inductor.

Dynamic systems that can be characterized by a finite number n of state variables are
also called finite-dimensional systems of order n. These finite-state systems, often also
called lumped-parameter systems, are described by mathematical models in the form of
ordinary differential equations and algebraic equations. Within the scope of this lecture,
we restrict ourselves to the class of finite-state systems that can be described by an explicit
mathematical model of the following form:

d
dtx1 = f1(x1, . . . , xn, u1, . . . up, t), x1(t0) = x1,0

d
dtx2 = f2(x1, . . . , xn, u1, . . . up, t), x2(t0) = x2,0

...
d
dtxn = fn(x1, . . . , xn, u1, . . . up, t), xn(t0) = xn,0





State differen-
tial equations
with initial
conditions

(1.3a)
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1 Introduction Page 4

y1 = h1(x1, . . . , xn, u1, . . . up, t)
y2 = h2(x1, . . . , xn, u1, . . . up, t)

...
yq = hq(x1, . . . , xn, u1, . . . up, t)





Output equations (1.3b)

If the input, output, and state variables are combined into column vectors

u =
[
u1 u2 . . . up

]T
(1.4a)

y =
[
y1 y2 . . . yq

]T
(1.4b)

x =
[
x1 x2 . . . xn

]T
(1.4c)

and, to simplify the notation, a dot is written above the variable to be derived instead of
d
dt , then (1.3) can be written in compact vector notation in the form

ẋ = f(x,u, t), x(t0) = x0 (1.5a)
y = h(x,u, t) (1.5b)

The variables u, y and x are called the input, output and state of the dynamic mathematical
model.

If the state x is considered as an element of an n-dimensional vector space, then this
vector space is also called the state space. The state of a system at time t can then be
represented as a point in the n-dimensional state space. The curve of all these points in
state space for variable time t in a time interval is also called a trajectory, see Figure 1.3
for an illustration of a trajectory in 3-dimensional state space.
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x1

x2

x3

x(t)

x(t0)

x1(t)
x2(t)

x3(t)

Figure 1.3: On the concept of trajectory.

For the sake of completeness, it should be mentioned that systems with infinite-
dimensional state, also called distributed-parameter systems, are described by partial
differential equations. Examples are beams, plates, flow fields, and electromagnetic
fields.

Example 1.1. As a simple example of modeling, consider the electrical series resonant
circuit from Fig. 1.4.

u

il

ul

L

ur

R

ir

C

ic

uc

Figure 1.4: Series resonant circuit.
In the first step, the component equations are formulated. The (linear) electrical

resistance R is described by

ur(t) = Rir(t) (1.6)

cf. (1.1). According to (1.2), the capacitor C can be modeled by

d
dtQ(t) = d

dt(Cuc(t)) = C
d
dtuc(t) = ic(t), uc(0) = uc0 (1.7)
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and the inductor L by

d
dtψ(t) = d

dt(Lil(t)) = L
d
dt il(t) = ul(t), il(0) = il0 (1.8)

Furthermore, the balance equations, i.e., the node and mesh equations, must be
satisfied in the electrical network. These are

ir(t) = il(t) (1.9a)
ic(t) = il(t) (1.9b)
ul(t) = −ur(t) − uc(t) + u(t) (1.9c)

and inserted into (1.6)-(1.8) follows

ẋ = d
dt

[
il(t)
uc(t)

]
=
[ 1
L(−uc(t) −Ril(t) + u(t))

1
C il(t)

]
= f(x, u), x(0) = x0. (1.10)

As output of the system one can choose e.g. the voltage uc at the capacitor, i.e.
y = uc.

Based on this model, the behavior of the system can be analyzed.
For example, the influence of the parameters of the system (R, L,
C), the initial values x(0)T =

[
il(0) uc(0)

]
and the input variable

u(t) on the dynamic system behavior can be calculated. Today, very advanced
computer programs, such as Maple or Matlab, are available for this purpose.
The creation and analysis of the model using Maple can be found in the
file Serienschwingkreis.mw, which can be downloaded from the institute’s
homepage https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

This lecture focuses on the systematic modeling of mechanical rigid body systems, which
occur in many real systems (at least as subsystems). Two typical applications with rigid
body systems are shown below as examples.

Example 1.2 (Robot). One of the most important technical applications of rigid body
systems are (industrial) robots. Fig. 1.5 shows a lightweight robot from KUKA. This
robot has 7 degrees of freedom and is designed for direct interaction with humans.
For this purpose, it has a sensor for the torque in each joint, which enables, for
example, the detection of collisions with obstacles. Typical applications of this robot
are manipulation tasks or assembly tasks that are performed in cooperation with
humans.
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robot

force sensor

object
(a) (b)

Figure 1.5: KUKA lightweight robot: (a) Sketch of the system, (b) Photo of the
robot.

The (optimal) planning and control of the position and orientation of the end-
effector are challenging tasks that are based on a mathematical model of the robot.
One goal of this lecture is therefore to model the kinematics and dynamics of such
robots.

Videos of applications of the robot can be viewed at
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
The video Kollaborative Synchronisation eines 7 Achsrobot-
ers shows the interaction of the robot with a target moved by a human.
The video Pfadfolgeregelung mit Konzepten für den Pfadfortschritt
shows possible ways of interaction between humans and robots. The
application of adhesive tape on a complex 3D surface is shown in the
video Oberflächen-basierte Pfadfolgeregelung für das Ablegen von
Klebestreifen. Finally, the use of the robot for the swing-up and stabi-
lization of a spherical pendulum is shown in the video Aufschwingen eines
sphärischen Pendels.

Example 1.3 (Gyroscope). Another application with mechanical rigid body systems as
an essential part are micro-mechanical gyroscopes. Gyroscopes are required in many
current applications, such as mobile phones, game consoles or navigation systems.
In the automotive sector, gyroscopes are used to measure the rotation of the vehicle
around the vertical and lateral axis. These measured values are used (in combination
with other sensors), for example, for the electronic stability control (ESP) of vehicles,
see Fig. 1.6.
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Sensorcluster

Drehratensensor

Figure 1.6: Application of a gyroscope in the automotive sector.
A possible design of a micro-mechanical gyroscope is shown in Fig. 1.7. It consists

of a number of rigid bodies coupled to each other by elastic elements (springs).
These rigid bodies can be set into vibration in the x-direction by means of capacitive
actuators. The working principle of this gyroscope is essentially based on the fact
that when a rotational speed occurs, additional vibrations in the y- or z-direction
are excited due to the Coriolis effect. These are detected with capacitive sensors,
whereby the amplitude is a measure of the angular velocity. The entire sensor has an
extension of 1000 µm × 2000 µm × 100 µm and is manufactured in silicon by etching
techniques.

x

y

z

kapazitive Aktoren kapazitive Sensoren

Figure 1.7: Mechanical structure of the micro-mechanical gyroscope.
This example shows that mechanical rigid body systems also occur in very small

applications.

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



1.1 References Page 9

1.1 References
[1.0] R. Cannon, Dynamics of Physical Systems. New York: McGraw-Hill, 1967.
[1.0] F. E. Cellier, Continuous System Modeling. New York: Springer, 1991.
[1.0] S. W. Director and R. A. Rohrer, Introduction to Systems Theory. New York:

McGraw-Hill, 1972.
[1.0] O. Föllinger and D. Franke, Einführung in die Zustandsbeschreibung dynamischer

Systeme. München, Wien: Oldenbourg, 1982.
[1.0] R. Isermann, Mechatronische Systeme: Grundlagen. Berlin Heidelberg: Springer,

2008.
[1.0] D. Karnopp, D. Margolis, and R. Rosenberg, System Dynamics. New Jersey: John

Wiley & Sons, 2006.
[1.0] G. Ludyk, Theoretische Regelungstechnik 1. Berlin, Heidelberg: Springer, 1995.
[1.0] D. G. Luenberger, Introduction to Dynamic Systems. New York: John Wiley &

Sons, 1979.
[1.0] L. Padulo and M. A. Arbib, System Theory. Philadelphia: W.B. Saunders Company,

1974.
[1.0] J. L. Shearer and B. T. Kulakowski, Dynamic Modeling and Control of Engineering

Systems. New York: Macmillan Publishing Company, 1990.

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



2 Point Kinematics
Kinematics describes the motion of bodies or individual material points in space with
respect to a reference frame. This chapter describes the basics of point kinematics, i.e., the
description of the motion of point masses in space. If one considers the inertial Cartesian
coordinate system (0xyz) with the origin 0 and the orthonormal basis vectors ex, ey, and
ez as the reference frame, i.e.,




eT
x ex eT

x ey eT
x ez

eT
y ex eT

y ey eT
y ez

eT
z ex eT

z ey eT
z ez


 =




1 0 0
0 1 0
0 0 1


 , (2.1)

then the position vector r from the origin 0 to a material point P can be described in the
form

r(t) = rx(t)ex + ry(t)ey + rz(t)ez (2.2)
with the time-parameterized components rx(t), ry(t), and rz(t), see Figure 2.1. The

ey

ex

ez

ry(t)

rx(t)

rz(t)

r(t)
trajectory

P

0

Figure 2.1: Trajectory in a Cartesian coordinate system.

velocity v(t) and the acceleration a(t) of the material point P are obtained by time
differentiation in the form

v(t) = vxex + vyey + vzez = ṙxex + ṙyey + ṙzez (2.3)

and
a(t) = axex + ayey + azez = r̈xex + r̈yey + r̈zez , (2.4)

respectively, where vx, vy, vz and ax, ay, az describe the respective components with
respect to the basis vectors ex, ey, and ez. It should be noted that in the following the
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total time derivative of a function x(t) is denoted by ẋ(t) = d
dtx(t) and ẍ(t) = d2

dt2x(t),
respectively. In the simplest case, if the coordinate system can be chosen such that
the position vector r(t) coincides with a coordinate axis for all times t, one speaks of a
rectilinear motion.

Example 2.1. A mass is accelerated linearly by a motor according to the acceleration
profile shown in Figure 2.2.

a(t)

t

amax

amin

t0 t1 t2 t3

Figure 2.2: Acceleration a(t) as a function of time.
How large must the time t3 and the minimum acceleration amin be chosen so that at
time t = t3 the velocity is zero and the position assumes a given value xsoll? It is
assumed that at time t = t0 we have v(t0) = v0 = 0, x(t0) = x0 = 0.

For the time interval t0 ≤ t ≤ t1 the velocity and position profiles are calculated as

v1(t) = v(t0) +
∫ t

t0
amax dτ = v0︸︷︷︸

=0

+ amax(t− t0) (2.5a)

x1(t) = x(t0) +
∫ t

t0
amax(τ − t0) dτ = x0︸︷︷︸

=0

+ 1
2amax(t− t0)2 , (2.5b)

for t1 ≤ t ≤ t2 it follows

v2(t) = v1(t1) +
∫ t

t1
0 dτ = amax(t1 − t0) (2.6a)

x2(t) = x1(t1) +
∫ t

t1
amax(t1 − t0) dτ = 1

2amax(t1 − t0)2 + amax(t1 − t0)(t− t1)

(2.6b)

and for t2 ≤ t ≤ t3 we obtain

v3(t) = v2(t2) +
∫ t

t2
amin dτ = amax(t1 − t0) + amin(t− t2) (2.7a)

x3(t) = x2(t2) +
∫ t

t2
v3(τ) dτ = 1

2amax
(
t20 − t21

)
+ amax(t1 − t0)t+ 1

2amin(t− t2)2 .

(2.7b)
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With the velocity at time t = t3

v3(t3) = amax(t1 − t0) + amin(t3 − t2) (2.8)

the desired time t3 is calculated from the condition v3(t3) = 0 to be

t3 = t2 − amax
amin

(t1 − t0) (2.9)

and the desired position x3(t3) = xsoll, with

x3(t3) = 1
2amin

amax(t1 − t0)(amin(2t2 − t0 − t1) + amax(t0 − t1)), (2.10)

is reached by the acceleration

amin = −a2
max(t1 − t0)2

amax(t1 − t0)(t1 + t0 − 2t2) + 2xsoll
(2.11)

The position and velocity profiles are shown in Figure 2.3.

v(t)

tt

x(t)

t0t0 t1t1 t2t2 t3t3

xsoll

Figure 2.3: Velocity profile v(t) and position profile x(t).

The solution of this example using Maple is
shown in the file Beispiel_2_1.mw, which can
be downloaded from the institute’s homepage
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

In the following, the motion of a material point P in the xy-plane with respect to
the inertial coordinate system (0xy) is considered and described with the aid of polar
coordinates

rx(t) = r(t) cos(φ(t)) and ry(t) = r(t) sin(φ(t)) (2.12)

see Figure 2.4. Thus, the position vector from the origin 0 to a material point P is

r(t) = r(t) cos(φ(t))ex + r(t) sin(φ(t))ey . (2.13)

The velocity v(t) according to (2.3) is obtained by applying the chain rule of differentiation
in the form

v(t) =
(
∂

∂r
r
)
ṙ +

(
∂

∂φ
r
)
φ̇ , (2.14)
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ex

ey

eϕ er

rx(t)

ry(t)
r(t)

trajectory
P

0

ϕ(t)

Figure 2.4: Trajectory in a polar coordinate system.

where the basis vectors of the polar coordinates are

ẽr = ∂

∂r
r = cos(φ)ex + sin(φ)ey (2.15a)

ẽφ = ∂

∂φ
r = −r sin(φ)ex + r cos(φ)ey . (2.15b)

The vectors ẽr and ẽφ form a valid basis of a coordinate system if and only if the matrix

J =
[

cos(φ) sin(φ)
−r sin(φ) r cos(φ)

]
(2.16)

is non-singular, i.e., det(J) = r ≠ 0. This is the case everywhere except at the point r = 0.
If one normalizes the basis vectors to a length of 1

er = ẽr
∥ẽr∥2

and eφ = ẽφ
∥ẽφ∥2

(2.17)

with
∥ẽr∥2 =

√
cos2(φ) + sin2(φ) = 1 and ∥ẽφ∥2 = r , (2.18)

then (2.14) can be written in the form

v(t) = vrer + vφeφ = ṙer + rφ̇eφ (2.19)

with the components vr = ṙ (radial component) and vφ = rφ̇ (circular component) of
the velocity v(t) with respect to the basis vectors er and eφ. In the time dt the position
vector r(t) sweeps over an angle dφ and the time rate of change of the angle ω = φ̇ is
called angular velocity. For a pure circular motion (see Figure 2.5) the radial velocity
component is vr = 0 and for the circular velocity component we have vφ = rω.

Exercise 2.1. Show that the velocity components of a material point P in space with
respect to the normalized basis vectors er, eθ and eφ in spherical coordinates

rx = r sin(θ) cos(φ), ry = r sin(θ) sin(φ), rz = r cos(θ) (2.20)
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eyey

exex

ϕ(t)
r

v(t) = rϕ̇(t)

PP

aϕ = rϕ̈

ar = rϕ̇2

00

Figure 2.5: Circular path in a polar coordinate system.

can be calculated as

vr = ṙ, vθ = rθ̇, vφ = r sin(θ)φ̇ . (2.21)

The solution to this exercise using Maple is presented in
the file Aufgabe_2_1_und_2_2.mw, which can be downloaded at
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

The components of the acceleration a(t) in polar coordinates with respect to the basis
vectors er and eφ are obtained by total time differentiation of v(t) according to (2.19)

a(t) = arer + aφeφ = v̇rer + vrėr + v̇φeφ + vφėφ , (2.22)

where it must be noted that the basis vectors (see (2.15) and (2.17))

er = cos(φ)ex + sin(φ)ey (2.23a)
eφ = − sin(φ)ex + cos(φ)ey (2.23b)

also change over time. One now tries to express ėr and ėφ in terms of er and eφ. To do
this, (2.23) is inverted

ex = cos(φ)er − sin(φ)eφ (2.24a)
ey = sin(φ)er + cos(φ)eφ (2.24b)

and substituted into ėr and ėφ, i.e.

ėr = − sin(φ)φ̇ex + cos(φ)φ̇ey
= − sin(φ)φ̇(cos(φ)er − sin(φ)eφ) + cos(φ)φ̇(sin(φ)er + cos(φ)eφ)
= φ̇eφ (2.25)
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and

ėφ = − cos(φ)φ̇ex − sin(φ)φ̇ey
= − cos(φ)φ̇(cos(φ)er − sin(φ)eφ) − sin(φ)φ̇(sin(φ)er + cos(φ)eφ)
= −φ̇er . (2.26)

Substituting (2.25) and (2.26) into (2.22)

a(t) = v̇rer + vrėr + v̇φeφ + vφėφ
= r̈er + ṙφ̇eφ + (ṙφ̇+ rφ̈)eφ + rφ̇(−φ̇er)

=
(
r̈ − rφ̇2

)
er + (rφ̈+ 2ṙφ̇)eφ , (2.27)

then the radial acceleration is ar = r̈− rφ̇2 and the circular acceleration is aφ = rφ̈+ 2ṙφ̇.
For a pure circular motion, the tangential component simplifies to aφ = rφ̈ and the radial
component ar = −rφ̇2 is also called centripetal acceleration, see Figure 2.5.

It should be mentioned at this point that in the general case of a coordinate transfor-
mation, the time derivatives of the basis vectors can be expressed very elegantly using the
so-called Christoffel symbols with the help of the basis vectors themselves. Efficient ways
to calculate these Christoffel symbols can be found e.g. in [2.0].

Exercise 2.2. Show that the acceleration components of a material point P in space
with respect to the normalized basis vectors er, eθ and eφ in spherical coordinates

rx = r sin(θ) cos(φ), ry = r sin(θ) sin(φ), rz = r cos(θ)

can be calculated as

ar = r̈ − rθ̇2 − r sin2(θ)φ̇2

aθ = 2ṙθ̇ + rθ̈ − r sin(θ) cos(θ)φ̇2

aφ = (rφ̈+ 2ṙφ̇) sin(θ) + 2rφ̇θ̇ cos(θ) .

Remark: Use a computer algebra system to solve this exercise!

The solution to this exercise using Maple is presented in
the file Aufgabe_2_1_und_2_2.mw, which can be downloaded at
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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3 Newton’s Laws

3.1 Force Systems
In the context of this lecture, only point forces acting at discrete points (points of
application) of a rigid body are considered. A rigid body has the property that under the
action of forces the distance between any two points of the body always remains the same.
The direction of the force is described by its line of action and by the direction of the
force vector. The SI unit of force is Newton (N = kg m/s2).

In a so-called central force system, all individual forces fi, i = 1, . . . , n, act at the same
point of application and the resulting force fR is given by (see Figure 3.1)

fR =
n∑

i=1
fi . (3.1)

ex

ey

ez

0

f1

f2

f3

f4

fR

line of application

point of application

Figure 3.1: Central force system.

If the forces fi are expressed in terms of their components in the coordinate system
(0xyz) with the orthonormal basis vectors ex, ey and ez, i.e. fi = fi,xex + fi,yey + fi,zez,
i = 1, . . . , n, then (3.1) becomes

fR =
n∑

i=1
(fi,xex + fi,yey + fi,zez) =

n∑

i=1
fi,x

︸ ︷︷ ︸
fR,x

ex +
n∑

i=1
fi,y

︸ ︷︷ ︸
fR,y

ey +
n∑

i=1
fi,z

︸ ︷︷ ︸
fR,z

ez . (3.2)

A central force system is now in equilibrium if the resulting force vanishes

fR = 0 or fR,x = 0, fR,y = 0, fR,z = 0. (3.3)
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The third Newton’s law (law of interaction) states that for every force there is always
an equal and opposite reaction force (actio equals reactio). For example, if you press your
finger on the table top, then an equal and opposite force acts from the table top on your
finger. This can be illustrated by cutting the two bodies apart at the point of contact
finger/table top and drawing the corresponding forces (cutting principle), see Figure 3.2.

contact plane
(cutting plane)

finger

finger f = f

Figure 3.2: Forces between the table top and the hand pressing on it.

g

roll

rope

fS

fS

fS

fS

mg

m m

Figure 3.3: Force in a rope.

Another example is shown in Figure 3.3. Assuming that the weight of the rope is
negligible and the pulley is frictionless, then the rope force fS acts on the mass m and
the person must also apply the force fS to hold the load.

Example 3.1. A cylinder of mass m with radius r is held on a smooth plane by a rope
of length l attached to its center, see Figure 3.4(a). The forces acting on the isolated
cylinder are shown in Figure 3.4(b).
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Since the central force system is in equilibrium, according to (3.2) it must hold
that

ex :fN − fS sin(α) = 0 (3.4a)
ez :fS cos(α) −mg = 0 (3.4b)

with the acceleration due to gravity g ≈ 9.81 m/s2 and the angle α = arcsin(r/l).
From (3.4) the forces fS and fN can now be calculated in the form

fS = mg

cos(α) and fN = mg tan(α) (3.5)

ex

ez

0
r

l

α

(a) (b)

fS

fS

fNfN

mg

Figure 3.4: Cylinder on a rope.

Exercise 3.1. A vertical mast M is braced by ropes according to Figure 3.5. What
are the magnitudes of the forces fS1 and fS2 in ropes 1 and 2 and the force fM in
the mast when the tensile force fS3 is applied to rope 3?

1

2

3

A

B

C

D

Mα
α

β

γ

fS3

Figure 3.5: Vertical mast with three ropes.
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Solution of exercise 3.1.

fS1 = fS2 = fS3
cos(γ)

2 cos(α) cos(β) and fM = −fS3
sin(β + γ)

cos(β)

The solution to this Exercise using Maple is shown in
the file Aufgabe_3_1.mw, which can be downloaded at
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

In a general force system, the individual forces do not act at a single point of application
and therefore can no longer be combined into a single resultant force, see Figure 3.6.
In this case, the forces – if they are not in equilibrium – cause not only a translational

ex

ey

ez

0
f1

f2
f3

f4

point of application

Figure 3.6: General force system.

displacement of the rigid body but also a rotation. In the simplest case, consider the
rigid body of Figure 3.7, where the two forces fz,1ez and fz,2ez produce a resulting torque
about the axis of rotation ey and thus rotate the rigid body about this axis, if the lever
rule fz,1l1 = fz,2l2 (force times lever arm equals load times lever arm) is not satisfied.
The torque about the axis of rotation is counted positive if the effect of the torque is in

ex

ey

ez

l1 l2

0

fz,1 fz,2

Figure 3.7: Beam mounted on a pivot.
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the direction of the directional vector belonging to the axis, according to the right-hand
rule. For positive force components fz,1 and fz,2, the torque τ (0)

y,1 = fz,1l1 about the axis
of rotation ey is positive and the torque τ (0)

y,2 = −fz,2l2 is negative for Figure 3.7. The SI
unit of torque is Newton-meter (Nm = kg m2/s2).

The torque
τ (0) = τ (0)

x ex + τ (0)
y ey + τ (0)

z ez (3.6)

of the force
f = fxex + fyey + fzez (3.7)

with respect to point 0 in the Cartesian coordinate system (0xyz) with the position vector
r from point 0 to the point of application of the force P , see Figure 3.8,

r = rxex + ryey + rzez (3.8)

is given by

τ (0)
x = (ryfz − rzfy), τ (0)

y = (rzfx − rxfz), τ (0)
z = (rxfy − ryfx) . (3.9)

ex

ey

ez

r

P

0

f

rx

ry

rz

fx
fy

fz

Figure 3.8: On the torque of the force f with respect to the point 0.

It can be seen immediately that the torque can be written in the form1.

τ (0) = r × f =




rx

ry

rz


×




fx

fy

fz


 =




ryfz − rzfy

rzfx − rxfz

rxfy − ryfx


 (3.10)

1For a simplified and more compact notation, the components of the vector quantities are often combined
in a single vector, i.e. with fT =

[
fx fy fz

]
or rT =

[
rx ry rz

]
, f = fxex + fyey + fzez or

r = rxex + ryey + rzez is meant.
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If several torques τ
(A)
i , i = 1, . . . , n with respect to the same point A act on a rigid body,

then the resulting torque τ
(A)
R is calculated as

τ
(A)
R =

n∑

i=1
τ

(A)
i =

n∑

i=1
τ

(A)
i,x

︸ ︷︷ ︸
τ

(A)
R,x

ex +
n∑

i=1
τ

(A)
i,y

︸ ︷︷ ︸
τ

(A)
R,y

ey +
n∑

i=1
τ

(A)
i,z

︸ ︷︷ ︸
τ

(A)
R,z

ez . (3.11)

A general force system according to Figure 3.6 can always be reduced with respect to an
arbitrarily chosen reference point A by a resulting force fR at the point of application
A and a resulting torque τ

(A)
R with respect to this point A. A general force system is

now in equilibrium if both the resulting force fR and the resulting torque τ
(A)
R vanish,

i.e.

Balance of forces: fR = 0 or fR,x = 0, fR,y = 0, fR,z = 0 (3.12a)

Balance of torques: τ
(A)
R = 0 or τ

(A)
R,x = 0, τ (A)

R,y = 0, τ (A)
R,z = 0 . (3.12b)

Example 3.2. Consider the rigid body of Figure 3.9 with the forces

fA =




fA,x

fA,y

fA,z


, fB =




fB,x

fB,y

fB,z


, fC =




fC,x

fC,y

fC,z


 (3.13)

at the points of application A, B and C as well as the reference point D with the
corresponding position vectors

r0A =




ax/2
0

az/2


, r0B =




ax/2
ay/2
az


, r0C =




0
0
0


, r0D =




ax

0
0


 . (3.14)
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ex

ey

ez

0
ax

ay

az

ax
2

ay

2

az
2

r0A

r0B

r0D

fA

fB

fC

A

B

C D

Figure 3.9: Reduction of a general force system.
For the reference point D, the torques follow as

τ
(D)
A = (r0A − r0D)︸ ︷︷ ︸

rDA

× fA =




−ax/2
0

az/2


×




fA,x

fA,y

fA,z


 =




−fA,yaz/2
fA,zax/2 + fA,xaz/2

−fA,yax/2


 (3.15a)

τ
(D)
B = (r0B − r0D)︸ ︷︷ ︸

rDB

× fB =




−ax/2
ay/2
az


×




fB,x

fB,y

fB,z


 =




fB,zay/2 − fB,yaz

fB,zax/2 + fB,xaz

−fB,yax/2 − fB,xay/2


 (3.15b)

τ
(D)
C = (r0C − r0D)︸ ︷︷ ︸

rDC

× fC =




−ax
0
0


×




fC,x

fC,y

fC,z


 =




0
axfC,z

−axfC,y


 (3.15c)

and the general force system fA, fB and fC can be replaced by the resulting force
fR = fA + fB + fC and by the resulting torque τ

(D)
R = τ

(D)
A + τ

(D)
B + τ

(D)
C . Thus, the

equilibrium conditions result from the balance of forces (fR = 0)

ex : fA,x + fB,x + fC,x = 0 (3.16a)
ey : fA,y + fB,y + fC,y = 0 (3.16b)
ez : fA,z + fB,z + fC,z = 0 (3.16c)

and the balance of torques (τ (D)
R = 0)

ex : − fA,yaz/2 + fB,zay/2 − fB,yaz = 0 (3.17a)
ey : fA,zax/2 + fA,xaz/2 + fB,zax/2 + fB,xaz + fC,zax = 0 (3.17b)
ez : − fA,yax/2 − fB,yax/2 − fB,xay/2 − fC,yax = 0 . (3.17c)
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Exercise 3.2. Give the balance of torques for the example in Figure 3.9 about the
reference point C.

Solution of exercise 3.2.

τ
(C)
A =




−fA,yaz/2
−fA,zax/2 + fA,xaz/2

fA,yax/2


, τ

(C)
B =




fB,zay/2 − fB,yaz

−fB,zax/2 + fB,xaz

fB,yax/2 − fB,xay/2


, τ

(C)
C = 0

Solution in Maple: Beispiel_Aufgabe_3_2.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Example 3.3. The mechanism shown in Figure 3.10(a) is pivotally mounted at point
A and held at points B and C by a rope. It is assumed that the rope pulleys are
mounted frictionless and that the rope mass as well as the thickness of the individual
beams can be neglected. If the mechanism is cut free, one obtains the forces shown
in Figure 3.10(b).

exey

ez

(a) (b)

a a

a

A

B

C
αα

fextfext

fS

fS

fA,x

fA,z

Figure 3.10: Simple mechanism.
In equilibrium, the balance of forces

ex : fA,x + fS cos(α) = 0 (3.18a)
ez : fA,z + fS + fS sin(α) − fext = 0 (3.18b)

and the balance of torques (chosen reference point A)

ey : −afS + 2afext − afS(sin(α) + cos(α)) = 0 (3.19)

must be fulfilled.
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Solution in Maple: Beispiel_3_3.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.2 Center of Gravity
The previous considerations now allow the definition of the so-called center of gravity of a
rigid body. For this purpose, consider in a first step a massless rigid rod which connects the
point masses mi, i = 1, . . . , n according to Figure 3.11. Due to the acceleration of gravity

exey

ez

g

x1 x2 xi xi+1 xn

xS

S

m1g m2g mig mi+1g mng
fS

Figure 3.11: Definition of the center of gravity: Massless rod with point masses.

g in the negative ez direction, the gravitational forces fi = −migez, i = 1, . . . , n act on
the rod. It is now known that the forces fi, i = 1, . . . , n with respect to an arbitrarily
chosen reference point A can be replaced by a resultant force fR at the point of application
A and a resultant torque τ

(A)
R with respect to this point A. The center of gravity now

describes that point of application S at which the resultant torque τ
(S)
R vanishes and thus

the rod can be held in equilibrium solely by suspending it at point S with the holding
force fS . From the balance of torques

ey :
n∑

i=1
migxi − fSxS = 0 (3.20)

and the balance of forces
ez : −

n∑

i=1
mig + fS = 0 (3.21)

one can calculate xS in the form

xS =

n∑
i=1

mixi

n∑
i=1

mi

. (3.22)
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Exercise 3.3. Show that for a general system consisting of n rigidly coupled point
masses with masses mi and position vectors ri from the origin 0 of the coordinate
system (0xyz) to the point masses, the position vector rS to the center of gravity is
calculated as follows

rS =

n∑
i=1

miri
n∑
i=1

mi

. (3.23)

This can now be directly transferred to a general rigid body. Assume that the rigid body
has the volume V and the (position-dependent) density ρ(x, y, z). The mass m of the rigid
body is then given by

m =
∫

V
ρ(x, y, z) dV . (3.24)

The center of gravity S with the position vector rS measured in the coordinate system
(0xyz) is now that point at which the body would have to be suspended (holding force
fS) so that the body is in equilibrium independent of the direction of the acceleration
due to gravity g. Assuming that the acceleration due to gravity acts in the direction
of eg, then the volume element dV is acted upon by the force gρ(x, y, z) dVeg due to
the acceleration of gravity and by the torque r × gρ(x, y, z) dVeg = rgρ(x, y, z) dV × eg
with respect to the coordinate origin 0, see Figure 3.12. The equilibrium conditions are

ex

ey

ez

0

geg

Sr

rS

fSeg

V
dV

ρ(x, y, z)

Figure 3.12: Definition of the center of gravity of a rigid body.

obtained by integration over the rigid body volume V again from the balance of forces

−fSeg + g

∫

V
ρ(x, y, z) dV

︸ ︷︷ ︸
m

eg = 0 (3.25)

and the balance of torques

−(rS × fSeg) + g

∫

V
rρ(x, y, z) dV × eg = 0 . (3.26)

Substituting fS = mg from (3.25) into (3.26) yields
(

−mgrS + g

∫

V
rρ(x, y, z) dV

)
× eg = 0 (3.27)
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and since eg is arbitrary, the expression in parentheses must vanish identically, i.e.

rS =

∫
V

rρ(x, y, z) dV

m
(3.28)

or in component notation rS = rS,xex + rS,yey + rS,zez

rS,x =

∫
V
xρ(x, y, z) dV

m
, rS,y =

∫
V
yρ(x, y, z) dV

m
, rS,z =

∫
V
zρ(x, y, z) dV

m
. (3.29)

If a body is composed of several sub-bodies j = 1, . . . , N with volumes Vj and density
ρj(x, y, z), then the position vectors rSj to the centers of gravity of the sub-bodies measured
in the same coordinate system (0xyz) are calculated as

rSj =

∫
Vj

rρj(x, y, z) dVj

mj
with mj =

∫

Vj

ρj(x, y, z) dVj . (3.30)

From this it can be seen immediately that the center of gravity of the entire body according
to (3.28) can be calculated in the form

rS =

∫
V1

rρ1(x, y, z) dV1 + . . .+
∫
Vj

rρj(x, y, z) dVj + . . .+
∫

VN

rρN (x, y, z) dVN

m

=

N∑
j=1

rSjmj

N∑
j=1

mj

.

(3.31)
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Example 3.4. For the homogeneous rigid body (density ρ is constant) of Figure 3.13,
the position vector to the center of gravity is sought.

ex

ey

ez

0
l

l

l

l/3

l/4

V1

V2

Figure 3.13: Calculation of the center of gravity of composite bodies.
For this purpose, the centers of gravity are first calculated separately for the two
volumes V1 and V2 according to (3.30). For the first part of the body with volume V1
follows

rS1,x = ρ

m1

∫ l

l/4

∫ l

0

∫ l/3

0
x dx dy dz = ρ

ρ l3
3l
4 l

l4

24 = l

6

rS1,y = ρ

m1

∫ l

l/4

∫ l

0

∫ l/3

0
y dx dy dz = 4

l3
l4

8 = l

2

rS1,z = ρ

m1

∫ l

l/4

∫ l

0

∫ l/3

0
z dx dy dz = 4

l3
5l4
32 = 5l

8

and for the second sub-body V2 follows

rS2,x = ρ

m2

∫ l/4

0

∫ l

0

∫ l

0
x dx dy dz = ρ

ρ l4 l
2
l4

8 = l

2

rS2,y = ρ

m2

∫ l/4

0

∫ l

0

∫ l

0
y dx dy dz = 4

l3
l4

8 = l

2

rS2,z = ρ

m2

∫ l/4

0

∫ l

0

∫ l

0
z dx dy dz = 4

l3
l4

32 = l

8 .

Hence, according to (3.31), the position vector of the center of gravity of the entire
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body is

rS = 1
m1 +m2

(m1rS1 +m2rS2) = 1
ρ
4 l

3 + ρ
4 l

3



ρ

4 l
3




l
6
l
2
5l
8


+ ρ

4 l
3




l
2
l
2
l
8





 =




l
3
l
2
3l
8


 . (3.32)

Solution in Maple: Beispiel_3_4.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Exercise 3.4. Calculate the center of gravity of a homogeneous hemisphere according
to Figure 3.14.

ex

ey

ez

0r

Figure 3.14: Center of gravity of a homogeneous hemisphere.

Solution of exercise 3.4.

rS =




0
0
3
8r




Solution in Maple: Aufgabe_3_4.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.3 Conservation of Momentum
The second Newton’s law (law of conservation of momentum) formulated for a point mass
states that the temporal change of momentum p = mv is equal to the force f acting on
the point mass, i.e.

d
dtp = d

dt(mv) = f (3.33)

with the mass m and the velocity v. Note that the formulation (3.33) is only valid
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with respect to a resting reference coordinate system (inertial system). For the systems
considered in this lecture, the Earth can be considered as an inertial system.

Example 3.5. A ball of mass m is launched from a height h above the ground with
the velocity v(0) = v0 > 0, see Figure 3.15.

ex

ez

0
t0 = 0 t1

x(t1)

h

α

g

v0

Figure 3.15: Projectile motion.
In the following, we want to calculate at which angle α the ball has to be launched

in order to maximize the throwing distance under the assumption of vanishing air
friction. Since the mass m is constant, the law of conservation of momentum in the
inertial system (0xyz) reads as

mẍ = 0 and mz̈ = −mg (3.34)

with the initial conditions x(0) = 0, ẋ(0) = v0 cos(α), z(0) = h, ż(0) = v0 sin(α).
From (3.34) with ẋ(t) = vx(t) and ż(t) = vz(t) one obtains

vx(t) = ẋ(0) = v0 cos(α) (3.35a)
x(t) = v0 cos(α)t (3.35b)
vz(t) = −gt+ v0 sin(α) (3.35c)

z(t) = −g t
2

2 + v0 sin(α)t+ h . (3.35d)

The time t can now be eliminated in the second equation and substituted into the
last equation, which results in the well-known projectile parabola

z = −g x2

2v2
0 cos2(α) + tan(α)x+ h. (3.36)

The time t1 at which the ball hits the ground is obtained from the condition z(t1) = 0
as

t1 =
v0 sin(α) +

√
v2

0 sin2(α) + 2gh
g

(3.37)
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and thus the throwing distance is

x(t1) = v0 cos(α)
v0 sin(α) +

√
v2

0 sin2(α) + 2gh
g

. (3.38)

To maximize the throwing distance, one differentiates x(t1) with respect to α and
sets the expression equal to zero. As a result one obtains

αmax = arctan


 v0√

v2
0 + 2gh


. (3.39)

One can easily convince oneself that for h = 0 the angle is αmax = 45◦ and the
maximum distance is xmax(t1) = v2

0/g.

Solution in Maple: Beispiel_3_5.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Exercise 3.5. Show the validity of (3.39).

Figure 3.16 shows two point masses mi and mj which are rigidly connected by a massless
rod. If one cuts the rod, it follows from the cutting principle that fij = −fji. The law of

ex

ey

ez

0

mimi

mjmj

fifi

fjfj

ri

rj

fji

fij

Figure 3.16: Two point masses connected by a massless rod.

conservation of momentum written separately for each point mass is

mi
d
dtvi = fi + fij and mj

d
dtvj = fj + fji (3.40)

or by summation and using the cutting principle fij = −fji one obtains

mi
d2

dt2 ri +mj
d2

dt2 rj = fi + fj︸ ︷︷ ︸
fR

+ fij + fji︸ ︷︷ ︸
=0

. (3.41)
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Substituting the relation for the center of gravity according to (3.23)

rS = miri +mjrj
mi +mj

(3.42)

into (3.41), (3.41) simplifies to

(mi +mj)︸ ︷︷ ︸
m

d2

dt2 rS = fi + fj︸ ︷︷ ︸
fR

. (3.43)

It can be seen immediately that this also holds for a rigid body with volume V, mass m
according to (3.24) and position vector to the center of gravity rS according to (3.28), see
Figure 3.12. Namely, if one writes the law of conservation of momentum (3.33) for a mass
element dm = ρ(x, y, z) dV with the corresponding position vector r and integrates over
the volume V, it follows that

∫

V

d2

dt2 rρ(x, y, z) dV = d2

dt2
∫

V
rρ(x, y, z) dV

︸ ︷︷ ︸
mrS

= m
d2

dt2 rS = fR . (3.44)

Equation (3.44) is known in the literature as the center of mass theorem and states
that the center of gravity with the position vector rS of a system of bodies behaves like a
point mass whose mass m is the sum of the masses of all the individual bodies, and on
which the vector sum fR of all the external forces acting on the individual bodies acts.

Example 3.6. Figure 3.17 shows a simple pulley system with two masses m1 and m2
connected by a massless rope over frictionless, massless pulleys.

ex

ey

ez

g

m1m1

m2m2

z1z1

z2z2 fS1

fS1

fS2

fS2

fS3

fS3

m1g

m2g

Figure 3.17: Pulley system with two masses.
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The corresponding equations of motion are

m1z̈1 = m1g − fS1 − fS2 (3.45a)
m2z̈2 = m2g − fS3 . (3.45b)

Due to the above assumptions, the force in the entire rope is the same, i.e.

fS1 = fS2 = fS3 = fS . (3.46)

Denoting by z10 and z20 the position of the masses m1 and m2 at time t = 0, then a
change of z2 by ∆z2 causes a displacement of mass m1 by −∆z2/2 (pulley system),
i.e.

z2(t) = z20 + ∆z2(t), z1(t) = z10 − ∆z2(t)
2 . (3.47)

Substituting (3.46) and (3.47) into (3.45), one obtains

−m1
2

d2

dt2 ∆z2 = m1g − 2fS (3.48a)

m2
d2

dt2 ∆z2 = m2g − fS , (3.48b)

from which the equation of motion of the coupled system and the rope force fS can
be calculated directly in the form

d2

dt2 ∆z2 = 2g2m2 −m1
m1 + 4m2

(3.49a)

fS = 3m1m2g

4m2 +m1
. (3.49b)

Solution in Maple: Beispiel_3_6.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.3.1 Bodies with Variable Mass
The law of conservation of momentum (3.33) also applies to bodies with variable mass
m(t). Assuming that the body has the mass m(t), the velocity v(t) at time t and is acted
upon by the force f . If the body now ejects the mass dm̄ with the ejection velocity w
during the time interval dt, then the body has the mass m(t+ dt) = m(t) − dm̄ and the
velocity v(t+ dt) at time t + dt. The momentum at time t is p(t) = m(t)v(t) and the
total momentum at time t+ dt is calculated as

p(t+ dt) = (m(t) − dm̄)︸ ︷︷ ︸
m(t+dt)

(v(t) + dv)︸ ︷︷ ︸
v(t+dt)

+ dm̄(v(t) + dv + w(t)) = p(t) + dp (3.50)
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or
dp = m(t) dv + dm̄w(t) . (3.51)

Thus, the law of conservation of momentum (3.33) becomes

d
dtp = m(t) d

dtv + w(t) d
dtm̄ = f . (3.52)

Here, d
dtm̄ = γ > 0 describes the ejection rate. With m(t+ dt) = m(t) + dm we have the

mass decrease of the body due to the ejected mass

d
dtm = − d

dtm̄ = −γ (3.53)

and the expression
fs = −γw(t) (3.54)

is called the thrust. The differential equations of a body with variable mass m(t) and
ejection rate γ > 0 can therefore be summarized as follows

m(t) d
dtv = f − γw(t) (3.55a)
d
dtm = −γ . (3.55b)

Exercise 3.6. Calculate the mathematical model of a single-stage rocket with time-
varying mass m(t) = m0 −mf (t), where m0 denotes the mass of the rocket before
launch (dead weight + payload + fuel mass) and mf (t) the burned fuel mass. Assume
that the burned fuel mass mf (t) is ejected from the rocket with the fuel ejection rate
ṁf (t) = u(t) at the relative velocity w(t) = −weh, w > 0, and that the rocket moves
exactly against the Earth’s gravitational field with the gravitational constant g.

Solution of exercise 3.6. The mathematical model is

d
dth = v

d
dtv = −g + w

m
u(t)

d
dtm = −u(t)

with the height h(t) of the rocket measured from the Earth’s surface, the rocket
velocity v(t), and the rocket mass m(t).

Solution in Maple: Aufgabe_3_6.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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3.4 Translational Kinetic Energy and Potential Energy
The starting point of the further considerations is again a point mass with mass m, the
position vector r = xex + yey + zez from the origin 0 of the inertial system (0xyz), the
velocity v = ṙ = vxex+vyey+vzez and the sum of the forces fR = fR,xex+fR,yey+fR,zez
acting on the point mass. Then, according to (3.33), the law of conservation of momentum

m
d
dtv = fR (3.56)

applies. The work done by the force fR at time t per unit of time is called power (SI unit
Watt W = N m/s)2.

P = fR · v (3.57)
The corresponding energy E transferred in the time interval [t0, t] (SI unit Joule J = N m)
is

E(t) − E(t0) =
∫ t

t0
P (τ) dτ =

∫ t

t0
fR · v dτ . (3.58)

Substituting the left-hand side of (3.56) into (3.58), one obtains the kinetic energy stored
in the mass m at time t as

T (t) = T (t0) +
∫ t

t0

(
m

d
dτ v

)
· v dτ = T (t0) +m

∫ v

v0
ṽ · dṽ

= T (t0) +m

(∫ vx

v0x

ṽx dṽx +
∫ vy

v0y

ṽy dṽy +
∫ vz

v0z

ṽz dṽz
)

= T (t0) − m

2
(
v2

0x + v2
0y + v2

0z
)

︸ ︷︷ ︸
=0

+ m

2
(
v2
x + v2

y + v2
z

)
= 1

2mvTv , (3.59)

where all integrals are evaluated along a solution trajectory of the system in the time
interval [t0, t] with the corresponding velocity v(t0) = v0 = [v0x, v0y, v0z]T and v(t) =
[vx, vy, vz]T.

The translational part of the kinetic energy of a rigid body is calculated as (center of
mass theorem)

T = 1
2mṙT

S ṙS (3.60)

with the total mass m and the position vector rS to the center of gravity measured in the
inertial system (0xyz).

2Here and in the following, fR · v denotes the inner product fR · v = f T
R v = fR,xvx + fR,yvy + fR,zvz.
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In the next step, the corresponding potential energy V shall be calculated for the class
of potential forces fp. For this purpose, (3.58) with v = ṙ is reformulated as

V (t) = V (t0) +
∫ t

t0
fp · v dτ = V (t0) +

∫ r

r0
fp(r̃) · dr̃

= V (t0) +
∫ r

r0
(fp,x(x̃, ỹ, z̃) dx̃+ fp,y(x̃, ỹ, z̃) dỹ + fp,z(x̃, ỹ, z̃) dz̃), (3.61)

where the integrals are again to be understood along a solution trajectory of the system
in the time interval [t0, t] with the corresponding position r(t0) = r0 =

[
x0 y0 z0

]T

and r(t) =
[
x y z

]T
. The integral in (3.61) is path-independent if and only if3 the

integrability conditions
∂

∂ỹ
fp,x(x̃, ỹ, z̃) = ∂

∂x̃
fp,y(x̃, ỹ, z̃) ,

∂

∂z̃
fp,x(x̃, ỹ, z̃) = ∂

∂x̃
fp,z(x̃, ỹ, z̃) ,

∂

∂z̃
fp,y(x̃, ỹ, z̃) = ∂

∂ỹ
fp,z(x̃, ỹ, z̃)

(3.62)

are fulfilled or the Jacobian matrix of fp =
[
fp,x(x̃, ỹ, z̃) fp,y(x̃, ỹ, z̃) fp,z(x̃, ỹ, z̃)

]T
with

respect to r̃ =
[
x̃ ỹ z̃

]T
is symmetric, i.e.

∂

∂r̃ fp =




∂
∂x̃fp,x

∂
∂ỹfp,x

∂
∂z̃fp,x

∂
∂x̃fp,y

∂
∂ỹfp,y

∂
∂z̃fp,y

∂
∂x̃fp,z

∂
∂ỹfp,z

∂
∂z̃fp,z


 =

(
∂

∂r̃ fp
)T

. (3.63)

In this case, the force fp is also called conservative and has a potential (potential energy)
according to (3.61). If one now assumes that rI denotes the position at which V (rI) = 0
(reference point), then

V (r) = V (rI) +
∫ r0

rI

fp(r̃) · dr̃
︸ ︷︷ ︸

=V (r0)

+
∫ r

r0
fp(r̃) · dr̃ =

∫ r

rI

fp(r̃) · dr̃ . (3.64)

Thus, the potential energy V depends exclusively on the final value r of the solution
trajectory and on the reference point rI and is independent of how one arrives at this
final value4. If fp =

[
fp,x(x, y, z) fp,y(x, y, z) fp,z(x, y, z)

]T
is conservative and thus the

integrability conditions (3.62) are fulfilled, the integration path can be chosen freely and
the corresponding potential can be calculated e.g. as follows

V (r) =
∫ x

xI

fp,x(x̃, yI , zI) dx̃+
∫ y

yI

fp,y(x, ỹ, zI) dỹ +
∫ z

zI

fp,z(x, y, z̃) dz̃ (3.65)

with r =
[
x y z

]T
and rI =

[
xI yI zI

]T
.

3Strictly speaking, this only holds in a star-shaped set (Poincaré lemma for differential forms).
4Note that a change of the reference point rI only causes a constant shift in V .
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Example 3.7. An example is the potential energy due to gravity. If a person of mass
m climbs a mountain of height h, then this person has the potential energya V = mgh
at the top of the mountain, regardless of where they started the mountain tour and
which path they took to reach the top.

aHere it is assumed that the sea level was chosen as the reference point.

If V (x, y, z) denotes the potential energy, then V can also be written in the form

V =
∫ r

rI

dV
dr dr =

∫ r

rI

[
∂

∂x̃
V (x̃, ỹ, z̃) dx̃+ ∂

∂ỹ
V (x̃, ỹ, z̃) dỹ + ∂

∂z̃
V (x̃, ỹ, z̃) dz̃

]
(3.66)

and by comparison with (3.65) the following relations follow from the independence of
the spatial variables x, y and z

fp,x(x̃, ỹ, z̃) = ∂

∂x̃
V (x̃, ỹ, z̃), fp,y(x̃, ỹ, z̃) = ∂

∂ỹ
V (x̃, ỹ, z̃), fp,z(x̃, ỹ, z̃) = ∂

∂z̃
V (x̃, ỹ, z̃)

(3.67)
or

fp = grad(V ) = ∇V . (3.68)

Exercise 3.7. Show that the force that can be calculated from a potential is always
irrotational, i.e. rot(fp) = ∇ × fp = 0.

An essential element for the lossless storage of mechanical energy is a mechanical spring.
Figure 3.18 shows a mechanical spring and its nonlinear force-displacement characteristic.
In the unloaded state (spring force fF = 0), the spring element has the length s0, which
is also called the relaxed length of the spring.

fF = 0 fF < 0

fF > 0 fF

0 s0 s

s

s
s = s0

Figure 3.18: Spring element.
The potential energy of the spring with the spring force fF (s), fF (s0) = 0, is calculated
according to (3.64) as

V (s) =
∫ s

s0
fF (s̃) ds̃ . (3.69)

In the linear case, i.e. fF (s) = c(s − s0) with the spring constant c > 0, the potential
energy simplifies to

V (s) = 1
2c(s− s0)2 . (3.70)
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Exercise 3.8. Figure 3.19 shows the series and parallel connection of two linear spring
elements with the spring constants c1 and c2 and the corresponding relaxed lengths
s01, s02.

fF

fF

fF
s2

s1 c1, s01

c2, s02

c2, s02

c1, s01 cg
s

s

Figure 3.19: Series and parallel connection of linear spring elements.
Calculate the overall stiffness cg and the corresponding relaxed length s0g of the
equivalent circuit according to Figure 3.19.

Solution of exercise 3.8.

Series connection: s0g = s01 + s02, cg = c1c2
c1 + c2

Parallel connection: s0g = c1s01 + c2s02
c1 + c2

, cg = c1 + c2

Solution in Maple: Aufgabe_3_8.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Example 3.8. Consider the system in Figure 3.20 consisting of the two masses m1 and
m2 as well as the two linear spring elements with spring stiffnesses c1 > 0 and c2 > 0
and the corresponding relaxed lengths s01 and s02. In the following, z1 and z2 denote
the displacement of mass m1 or m2 from the equilibrium position, i.e. z1 = s1 − s01
and z2 = s2 − s02. As shown in Figure 3.20, the two masses are connected by a
leaf spring. This causes a spring force f12 = c12(z1 − z2), c12 > 0, due to a relative
displacement of m1 and m2.
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z1

s1

m1

c1, s01

c12

m2

c2, s02

z2

s2

Figure 3.20: Masses with leaf spring.
Due to the cutting principle, this force must occur with different signs at the two
ends of the spring, i.e. f21 = −f12. Assuming that the potential energy V stored in
the springs is equal to zero for z1 = z2 = 0 and combining the forces of the springs
according to the displacements into a vector fF

fF =
[
fF1(z1, z2)
fF2(z1, z2)

]
=
[
c1z1 + c12(z1 − z2)
c2z2 + c12(z2 − z1)

]
, (3.71)

then V is calculated with z =
[
z1 z2

]T
in the form

V =
∫ z

0
fF · dz̃ =

∫ z

0
[c1z̃1 + c12(z̃1 − z̃2)]︸ ︷︷ ︸

fF 1(z̃1,z̃2)

dz̃1 + [c2z̃2 + c12(z̃2 − z̃1)]︸ ︷︷ ︸
fF 2(z̃1,z̃2)

dz̃2 . (3.72)

Analogous to (3.61), the path independence of the integration of (3.72) is given, since
the integrability condition

c12 = ∂fF1(z̃1, z̃2)
∂z̃2

= ∂fF2(z̃1, z̃2)
∂z̃1

= c12 (3.73)

is fulfilled. The potential energy V of the force fF = Kz is then given by

V =
∫ z1

0
fF1(z̃1, 0) dz̃1 +

∫ z2

0
fF2(z1, z̃2) dz̃2

=
∫ z1

0
[c1z̃1 + c12z̃1] dz̃1 +

∫ z2

0
[c2z̃2 + c12z̃2 − c12z1] dz̃2

= (c1 + c12)z
2
1
2 + (c2 + c12)z

2
2
2 − c12z1z2

= 1
2zT

[
c1 + c12 −c12

−c12 c2 + c12

]

︸ ︷︷ ︸
K

z (3.74)
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The matrix K is symmetric and positive definite and is also called the stiffness matrix.
The symmetry of the stiffness matrix implies the integrability condition, so that a
potential energy exists for fF .

3.5 Dissipative Forces
A dissipative force fD is a force whose work is irreversibly converted into heat (dissipated),
i.e. fD(t) · v(t) ≤ 0 for all times t. These can be forces acting over a volume, such as in
an eddy current brake, or forces acting over a surface, as occurs when a rigid body moves
through a fluid due to friction.

3.5.1 Motion of a Rigid Body through a Fluid
If one considers a rigid body moving uniformly with the velocity v without rotation
through a (resting) fluid medium, then the surface distributed forces exerted by the fluid
on the body can be expressed by a resultant force fR and a resultant torque τ

(Z)
R with

respect to an arbitrarily chosen point Z (see also the previous explanations on the topic
general force system). The resultant force fR can be decomposed into a component fA

ex

ey

ez

0

τ
(Z)
R

fR

fA

fD

v
Z

fluidic medium

Figure 3.21: Moving rigid body in a fluid medium.

(deflection force) perpendicular to v and a component fD (drag force) acting parallel in
the opposite direction of v, see Figure 3.21. The deflection force fA is also called dynamic
lift and is caused by the geometry of the rigid body. A simple relationship for the drag
force fD in a wide velocity range below the speed of sound is given by

fD = fDev = −cWA
ρf
2 v

2ev (3.75)

with v = ∥v∥2 and the direction vector of the velocity ev. Here, cW > 0 denotes the
(dimensionless) drag coefficient, A a suitable reference area and ρf the density of the fluid
medium.

Exercise 3.9 (Free Fall). Create a mathematical model to describe the free fall of
an object of mass m, cross-sectional area A and drag coefficient cW in the Earth’s
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atmosphere. Consider the change in air density as a function of altitude h in the form

ρ(h) = ρ0 exp
(

−h

k

)
,

with the constants ρ0 and k. Using Maple, determine a numerical solution of the
model for the initial conditions h(0) = 39 km and v(0) = ḣ(0) = 0 and the following
parameters: ρ0 = 1.2 kg/m3, k = 9100 m, A = 0.5 m2, m = 100 kg, cW = 0.5,
g = 9.81 m/s2.

Solution of exercise 3.9.

d
dth(t) = v(t)

m
d
dtv(t) = −mg + cWAρ0 exp

(
−h(t)

k

)
v(t)2

2

Solution in Maple: Aufgabe_3_9.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.5.2 Friction between Solid Bodies
When two contacting solid bodies perform relative movements, then tangential friction
forces acting over the area arise due to the roughness of the surfaces in the contact area.
In the following, consider a mass m which is moved on a rough surface by an external
horizontal force fe, see Figure 3.22. If one cuts the mass free, then in addition to fe, the

exex eyey

ezez

fr

fefe

fB

fN

mg

m

g
x

ϕ

Figure 3.22: On static friction.

normal force fN and the friction force fr act on the mass. From experience one knows
that the mass m only moves when the force fe exceeds a certain value fH , i.e. as long as
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the inequality5 |fe| ≤ fH is satisfied, the static equilibrium conditions

ex :fe − fr = 0 (3.76a)
ez :fN −mg = 0 (3.76b)

apply and the mass remains stuck in place. In this context, fr is therefore called the
static friction force and represents a reaction force, as is already known from the cutting
principle. In a first approximation, fH can be expressed in the form

fH = µHfN , for fN > 0, (3.77)

where the static friction coefficient µH > 0 depends only on the roughness of the contacting
surfaces. If the external force fe is increased so that the static friction is overcome, then
the mass begins to move and the friction force fr = fC due to dry sliding friction is

fC = µCfN sgn(ẋ), for fN > 0, (3.78)

with the sliding friction coefficient µC > 0. In this case, the equilibrium condition
fN = mg still holds for the ez direction and the law of conservation of momentum (3.33)
for the ex direction becomes

mẍ = fe − µCmg sgn(ẋ). (3.79)

The mathematical model of the mass of Figure 3.22 is therefore characterized by a
structural change, i.e.

Sticking: if |fe| ≤ fH and ẋ = 0
{
ẋ = 0
v̇ = 0

(3.80a)

Sliding: otherwise
{
ẋ = v

mv̇ = fe − µCmg sgn(v) .
(3.80b)

The friction law (3.77), (3.78) is also known as Coulomb’s law of friction and is essentially
considered as an elementary approximation theory for dry friction between solid bodies.
The friction coefficients µH and µC generally have to be determined from experimental
investigations. Typical values for some material pairings can be found in handbooks, see
for example Table 3.1.

In the sticking state, one can introduce an angle φ according to Figure 3.22 in the form

tan(φ) = fr
fN

. (3.81)

Substituting the limit value fH = µHfN for fr, one obtains the relationship

tan(φH) = µH (3.82)

with the angle of static friction φH . This allows a clear geometrical interpretation of static
friction: If a body is subjected to an arbitrarily directed load, it remains at rest as long
as the reaction force fB at the contact surface lies within the so-called friction cone. The
friction cone describes the cone of revolution around the normal en of the contact surfaces
with the opening angle 2φH , see Figure 3.23.

5Note that in general fH can take different values for different signs of fe, which is not considered here.
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Table 3.1: Typical friction coefficients.
Material pairing Static friction µH Sliding friction µC

Bronze on bronze 0.18 0.2
Cast iron on bronze 0.28 0.2
Steel on steel 0.15 0.12
Pneumatic tire on asphalt 0.55 0.3
Oak on oak 0.54 0.34

en

fr

fN

ϕHϕ

fB

Figure 3.23: Friction cone.

Exercise 3.10. A mass m lies on an inclined plane and is pulled upwards by a person
with the force fS (see Figure 3.24). Calculate the necessary pulling force fS as a
function of the angles α and β as well as the mass m and the static friction coefficient
µH , so that the mass can be moved.

α

β

fS

g

m

Figure 3.24: Mass on an inclined plane.
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Solution of exercise 3.10.

fS >
mg(µH cos(α) + sin(α))

cos(β − α) + µH sin(β − α)

Solution in Maple: Aufgabe_3_10.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Exercise 3.11. A person of mass m climbs a 21-step ladder of length l which is leaning
against a wall, see Figure 3.25. How many steps can the person climb up the ladder
without the ladder slipping away if the static friction coefficient between the ladder
and the wall is zero and between the ladder and the floor is µH = 1/10?

l

h

Figure 3.25: Person on a ladder.

Solution of exercise 3.11. The number of steps corresponds to the number rounded
down to the nearest integer

20µH√(
l

h

)2
− 1

+ 1 .

Note that tan(arcsin(x)) = x/
√

1 − x2 was used here.

Solution in Maple: Aufgabe_3_11.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

If there is a continuous layer of lubricant between the two solid bodies, then the forces
acting between the bodies essentially depend on the flow established in the gap between
the two bodies. Very often, a simple model of the form

fr = µV ∆v (3.83)
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is used in this context for the friction force fr, with the viscous friction coefficient µV > 0
and the relative velocity ∆v of the two contacting surfaces of the rigid bodies. In the
general case of mixed friction, Coulomb friction (3.77), (3.78) and viscous friction (3.83)
are combined.

There are now components, called dampers, which realize a given (nonlinear) force-
velocity characteristic fD(∆v) with fD(∆v)∆v > 0 according to Figure 3.26. In the
linear case, the damping force is given by fD = d∆v with the damping coefficient d > 0
proportional to the velocity.

v1

v2

fDfD

∆v = v2 − v1

Figure 3.26: Nonlinear damper.
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Example 3.9. A massless rope is guided around a stationary cylinder with a wrap
angle α according to Figure 3.27, where fS2 > fS1.

ez

exey

dϕ
2

dϕ
2

dϕ
2

dϕ
2

dfN

dfr

fS + dfS fS

fS2

fS1

α

ϕ

s ds

ds

Figure 3.27: On rope friction.
If one now takes out an infinitesimal rope element, then the equilibrium conditions
under the assumption of sufficiently small angles dφ/2 (i.e. sin(dφ/2) ≈ dφ/2,
cos(dφ/2) ≈ 1) are

ex :fS + dfr − (fS + dfS) = 0 (3.84a)

ez : dfN − fS
dφ
2 − (fS + dfS)dφ

2 = 0 (3.84b)

or, neglecting dfS dφ/2, it follows

dfr = dfS and dfN = fS dφ . (3.85)

With Coulomb’s law of friction according to (3.77), (3.78), in particular dfr = µ dfN ,
one obtains

dfS
dφ = µfS (3.86)

or by integrating over the wrap angle from φ = 0 to φ = α one obtains the rope
friction equation as

∫ fS2

fS1

1
fS

dfS =
∫ α

0
µ dφ or fS2 = fS1 exp(µα) . (3.87)

For the case fS1 > fS2, the relation fS1 = fS2 exp(µα) can be derived analogously. If
µ = µH now denotes the static friction coefficient, then the system is in equilibrium
as long as the inequality

fS1 exp(−µHα) ≤ fS2 ≤ fS1 exp(µHα) (3.88)
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is satisfied. The rope slips to the right for fS1 > fS2 exp(µHα) and to the left for
fS2 > fS1 exp(µHα).

Exercise 3.12. A mass with the weight force mg hangs on a (massless) rope, which
was wrapped once around a stationary cylinder (wrap angle 360◦) and can be held
in equilibrium with a force of 10 N. How many times do you have to wrap the rope
around the cylinder so that 10 times the mass can also be held in equilibrium by the
static friction of the rope with a force of 10 N?

Solution of exercise 3.12. The desired wrap angle α is

α = 2π
ln
(10mg

10

)

ln
(
mg

10

) .

Solution in Maple: Aufgabe_3_12.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

3.5.3 Rolling Friction
If a rigid wheel rolls on a rigid surface without slipping, then theoretically there is no
rolling resistance. In reality, however, every rolling process is accompanied by deformations,
which are associated with partial sliding processes in the contact area. Figure 3.28 shows
the respective force ratios for a running wheel and a driven wheel. In the case of the

ez

exey

fVfV

fH

rr

ϕ

v

fR

fR

fNfN lµlµ

fZ

τA

Figure 3.28: Running wheel and driven wheel.

running wheel, the horizontally acting force fH must be introduced into the wheel via the
axle in order to compensate for the rolling resistance. From the equilibrium conditions for
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very small angles φ = arctan(fH/fV )

fH − fR = 0, fN − fV = 0 and rfR − lµfN = 0 (3.89)

the rolling resistance force fR follows to

fR = lµ
r
fN = µRfV (3.90)

with the rolling friction coefficient µR = lµ/r > 0. For the same material pairing,
the rolling friction coefficient is significantly smaller than the sliding friction coeffi-
cient.

Exercise 3.13. Show that for the driven wheel, the driving torque τA = lµfV must be
applied to overcome the rolling resistance and that the pulling force is calculated as
fZ = τA/r − µRfV .

Remark: The equilibrium conditions for the driven wheel under the assumption
of very small angles φ = arctan(fZ/fV ) are

fZ − fR = 0, fN − fV = 0 and τA − rfR − lµfN = 0 .

3.6 Spring-Mass-Damper System
Many real technical systems can be described as a combination of rigid bodies with
springs and dampers (e.g. wheel suspensions in vehicles, the micro-mechanical gyroscope
from Example 1.3). Based on the previous results, the equations of motion of such
spring-mass-damper systems can already be derived. To this end, consider the following
example.

Example 3.10. Consider the spring-mass-damper system of Figure 3.29 with the
masses m1, m2 and m3, the linear damper elements with the positive damping
constants d11, d22 and d13 as well as the linear spring elements with the positive
spring constants c11, c22, c13 and c23 and the relaxed lengths s011, s022, s013 and s023.
Furthermore, let the force fL act on the mass m3 and let g denote the acceleration
due to gravity.
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fL

g

m3

d13 c13
s013

c23
s023

s1 d11 c11
s011

d22 c22
s022

s2

s3m1 m2

Figure 3.29: Spring-mass-damper system with three masses.
Applying the law of conservation of momentum (3.33) for each mass, one obtains
three second-order differential equations

m1s̈1 = −m1g − c11(s1 − s011) − d11ṡ1 + c13(s3 − s1 − s013) − d13(ṡ1 − ṡ3) (3.91a)
m2s̈2 = −m2g − c22(s2 − s022) − d22ṡ2 + c23(s3 − s2 − s023) (3.91b)
m3s̈3 = −m3g − c13(s3 − s1 − s013) + d13(ṡ1 − ṡ3) − c23(s3 − s2 − s023) − fL .

(3.91c)

The mathematical model (3.91c) can also be written more compactly in matrix
notation in the form

Mq̈ + Dq̇ + Kq = k + bfL (3.92)

with q =
[
s1 s2 s3

]T
, the symmetric, positive definite mass matrix M = diag(m1,m2,m3),

the symmetric, positive (semi-)definite damping matrix

D =




d11 + d13 0 −d13

0 d22 0
−d13 0 d13


 , (3.93)
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the symmetric, positive definite stiffness matrix

K =




c11 + c13 0 −c13

0 c22 + c23 −c23

−c13 −c23 c13 + c23


 , (3.94)

the constant vector k and the constant input vector b

k =




−m1g + c11s011 − c13s013

−m2g + c22s022 − c23s023

−m3g + c13s013 + c23s023


, b =




0
0

−1


 . (3.95)

Exercise 3.14. Show the definiteness properties of the matrices K and D.

To calculate the equilibrium position qR for fL = 0, one sets q̇ = q̈ = 0 in (3.92) and
solves the resulting linear system of equations KqR = k for qR. Due to the positive
definiteness, K is invertible and it follows

qR = K−1k . (3.96)

Introducing the deviation ∆q of q from the equilibrium position (rest position) qR,
i.e. ∆q = q − qR, then the equation of motion (3.92) follows in the form

M∆q̈ + D∆q̇ + K∆q + KqR︸ ︷︷ ︸
k

= k + bfL . (3.97)

The numerical simulation of this spring-mass-
damper system in Matlab/Simulink is shown in
Beispiel_3_10.zip, which can be downloaded from
https://www.acin.tuwien.ac.at/bachelor/modellbildung/. Here,
among other things, the influence of the parameters of the system on the
solution properties can be analyzed.

The result of the previous example can be generalized in that every linear spring-mass-
damper system can be written in the form

Mq̈ + Dq̇ + Kq = Bf e (3.98)
with the vector of position coordinates q (relative to the equilibrium position), the
symmetric, positive definite mass matrix M, the symmetric, positive semi-definite damping
matrix D, the symmetric, positive definite stiffness matrix K, the input matrix B and
the vector of external forces fe.

The energy stored in the system consists of the kinetic energy
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T = 1
2 q̇TMq̇ (3.99)

and the potential energy stored in the springs

V = 1
2qTKq. (3.100)

If one now calculates the temporal change of the total energy E = T + V along a solution
trajectory of (3.98), then it follows

d
dtE = 1

2 q̈TMq̇ + 1
2 q̇TMq̈ + 1

2 q̇TKq + 1
2qTKq̇ = q̇TMq̈ + qTKq̇

= q̇T(−Dq̇ − Kq + Bfe) + qTKq̇ = −q̇TDq̇ + q̇TBfe . (3.101)

The first term −q̇TDq̇ ≤ 0 indicates the power dissipated in the damper elements and the
second term q̇TBfe describes the energy flows to or from the system due to the external
forces fe.

Exercise 3.15. Show that the change of the total energy is calculated as in (3.101)
also for the spring-mass-damper system according to (3.92).

3.7 Conservation of Angular Momentum
In (3.10) it was shown that the torque τ (0) of a force f with the position vector r is
calculated as τ (0) = r × f . If one now considers a point mass with mass m, the position
vector r(t) from the origin of the inertial system (0xyz) and the velocity v(t) = ṙ(t), then
the angular momentum is defined as

l(0) = r × p = r ×mv. (3.102)
Forming the cross product of both sides of the law of conservation of momentum (3.33)
with the position vector r, one obtains

r × d
dtp = r × d

dt(mv) = r × f = τ (0) . (3.103)

With
d
dt(r × p) = d

dtr︸︷︷︸
v

× p︸︷︷︸
mv

︸ ︷︷ ︸
=0

+ r × d
dtp (3.104)

it follows from (3.103) that the law of conservation of angular momentum (theorem of
angular momentum) is

d
dt l

(0) = d
dt(r × p) = τ (0) , (3.105)

i.e., the temporal change of angular momentum l(0) with respect to an arbitrary fixed
point in space 0 is equal to the torque τ (0) of the resultant force f acting on the point
mass with respect to the same point 0.
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Example 3.11. If the force vector always points to a point 0 (the center) during a
motion, then it is called a central motion. This is the case, for example, in planetary
motion, where the Sun forms the center. Since the torque τ (0) with respect to the
center vanishes in a central motion, the angular momentum l(0) must be constant
according to (3.105).

The area swept by the position vector r in time dt can be described by the
area vector dA(0) = nA dA = 1

2r × dr, where nA describes the normal vector and
dA = 1

2∥r × dr∥2 the corresponding size of the area element. If one now introduces
the so-called vectorial areal velocity

d
dtA

(0) = 1
2r × d

dtr = 1
2r × v, (3.106)

then the angular momentum (3.102) can also be written in the form

l(0) = 2m d
dtA

(0). (3.107)

From l(0) =constant it follows according to (3.107) that the areal velocity d
dtA(0)

is also constant for a central motion. This statement corresponds to Kepler’s second
law. This states that a ‘radius vector’ drawn from the Sun to the planet sweeps out
equal areas in equal times, see Figure 3.30.

sun

planet

time ∆t

time ∆t

A

A

ex

ey

ez

0

l(0)

dA(0)
dA

r(t)

dr

v(t)

m

trajectory

(a) (b)

Figure 3.30: On the conservation of angular momentum (a) and Kepler’s second law (b).

Example 3.12. Consider the mathematical pendulum of Figure 3.31 with the point
mass m and the massless rigid pendulum of length l under the influence of gravity
with the acceleration due to gravity g in the negative ez direction.
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ex
ey

ez

m

g

mg

fS
fS

z

y

lϕ

v = lϕ̇

Figure 3.31: Mathematical pendulum.
If one cuts the pendulum open and introduces the cutting force fS , then the law of
conservation of momentum for the mass m reads as

ey : mÿ = −fS sin(φ) (3.108a)
ez : mz̈ = −mg + fS cos(φ) . (3.108b)

Substituting the relations

y = l sin(φ), ẏ = l cos(φ)φ̇, ÿ = −l sin(φ)φ̇2 + l cos(φ)φ̈ (3.109a)
z = −l cos(φ), ż = l sin(φ)φ̇, z̈ = l cos(φ)φ̇2 + l sin(φ)φ̈ (3.109b)

into (3.108), one obtains

m
(
−l sin(φ)φ̇2 + l cos(φ)φ̈

)
= −fS sin(φ) (3.110a)

m
(
l cos(φ)φ̇2 + l sin(φ)φ̈

)
= −mg + fS cos(φ). (3.110b)

From the two equations (3.110), a differential equation for φ

ml2φ̈ = −mgl sin(φ) (3.111)

and the cutting force fS in the form

fS = mg cos(φ) +mlφ̇2 (3.112)

can now be calculated. The differential equation (3.111) can also be obtained directly
via the law of conservation of angular momentum (3.105) with respect to the origin 0
of the coordinate system (0xyz). The corresponding angular momentum l(0) according
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to (3.102) is (see also Figure 3.31)

l(0) = r ×mv =




0
l sin(φ)

−l cos(φ)


×m




0
lφ̇ cos(φ)
lφ̇ sin(φ)


 =




ml2φ̇

0
0


 (3.113)

and thus the law of conservation of angular momentum with respect to the ex axis
becomes

d
dt l

(0)
x = ml2φ̈ = τ (0)

x = −mgl sin(φ) . (3.114)

The quantity
I(0)
xx = ml2 (3.115)

is also called the moment of inertia.

Solution in Maple: Beispiel_3_12.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

The numerical simulation of the mathemati-
cal pendulum in Matlab/Simulink is shown in
Beispiel_3_12.zip and can be downloaded from
https://www.acin.tuwien.ac.at/bachelor/modellbildung/. Investi-
gate here the influence of the initial conditions, the mass m and the chosen
integration method on the solution behavior.

The previous example can now be easily extended to the rotation of a rigid body with the
angular velocity ω = φ̇ about a fixed axis of rotation eω (in the present case eω = ez), see
Figure 3.32.

If one writes down the temporal change of the angular momentum about the axis of
rotation for a mass element dm = ρ(x, y, z) dV with the volume element dV and the
density ρ(x, y, z), which is located at a distance r(x, y, z) from the axis of rotation, with

r =




r cos(φ)
r sin(φ)

z


 and v =




−r sin(φ)ω
r cos(φ)ω

0


, (3.116)

one obtains

d
dt(r × dmv) = d

dt




−z dmr cos(φ)ω
−z dmr sin(φ)ω

r2 dmω


. (3.117)

For the description of the rotation about the axis of rotation eω, only the corresponding
part of (3.117) about this axis is of interest in the following, i.e., the part

eω · d
dt(r × dmv) = d

dtr
2 dmω. (3.118)
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ex
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ez = eω

0
r

r
dV

Vϕ, ϕ̇

v = rϕ̇

z

τz

Figure 3.32: On the moment of inertia.

By integrating (3.118) over the entire rigid body volume V, the theorem of angular
momentum follows as

Izzω̇ = Izzφ̈ = τz (3.119)
with the total external torque τz acting about the ez axis and the moment of inertia

Izz =
∫

V
r2 dm =

∫

V

(
x2 + y2

)
dm . (3.120)

The rotational kinetic energy stored in the rotating mass is

Tr = 1
2Izzφ̇

2 . (3.121)

Example 3.13. The moment of inertia of a cylinder with radius R, constant density ρ
and length l is (see Figure 3.33)

Izz =
∫ l

0

∫ 2π

0

∫ R

0
r2ρr dr dφdz = ρ

R4π

2 l = 1
2mR

2 . (3.122)
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ez

R

l

Figure 3.33: On the moment of inertia of a cylinder.

Exercise 3.16. Calculate the moment of inertia I of a homogeneous sphere with radius
R and density ρ about an axis through the center of the sphere.

Solution of exercise 3.16.
I = 8

15πρR
5 = 2

5mR
2 (3.123)

Solution in Maple: Aufgabe_3_16.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

In the following, consider the rigid body of Figure 3.34. The origin S of the coordinate

A

P
S e(S)

x

e(S)
y

e(S)
z

e(A)
x

e(A)
y

e(A)
z

(
x(S), y(S)

)

(
x(A), y(A)

)
(xAS, yAS)

Figure 3.34: On Steiner’s Theorem.

system
(
Sx(S)y(S)z(S)

)
describes the center of gravity of the body (see also (3.28)) and

the moment of inertia about the e(S)
z axis can be calculated using the relation
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I(S)
zz =

∫

V

(
r(S)

)2
dm =

∫

V

((
x(S)

)2
+
(
y(S)

)2
)

dm. (3.124)

If one now wants to calculate the moment of inertia I(A)
zz of the same body with respect

to the parallel e(A)
z axis of the coordinate system

(
Ax(A)y(A)z(A)

)
(see Figure 3.34), then

I(A)
zz =

∫

V

(
r(A)

)2
dm =

∫

V

((
x(A)

)2
+
(
y(A)

)2
)

dm (3.125)

or with x(A) = xAS + x(S) and y(A) = yAS + y(S) one obtains

I(A)
zz =

∫

V

(
(xAS)2 + (yAS)2

)
dm+ 2

∫

V

(
xASx

(S) + yASy
(S)
)

dm

+
∫

V

((
x(S)

)2
+
(
y(S)

)2
)

dm

=
(
(xAS)2 + (yAS)2

)
m+ 2xAS

∫

V
x(S) dm

︸ ︷︷ ︸
=0

+ 2yAS
∫

V
y(S) dm

︸ ︷︷ ︸
=0

+ I(S)
zz . (3.126)

Equation (3.126) shows that the moment of inertia I
(A)
zz with respect to the e(A)

z axis
results from the sum of the moment of inertia I

(S)
zz about the e(S)

z axis through the
center of gravity S and the multiplication of the total mass m by the squared distance
(xAS)2 + (yAS)2 from the axis e(A)

z to the axis e(S)
z . This relationship can also be found in

the literature under the name Steiner’s Theorem.
Example 3.14. Figure 3.35 shows a rigid body consisting of four symmetrically
arranged solid cylinders, each with mass m and radius R, whose centers are located
at a distance H from the axis of rotation ez.

R

Hez

Figure 3.35: Rigid body consisting of four symmetrical cylinders.
It is assumed that the connecting bars between the cylinders are massless. The
moment of inertia of a solid cylinder with respect to the ez axis through the center
of gravity is I(S)

zz = 1
2mR

2 according to (3.122). According to Steiner’s Theorem, one
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thus obtains for the moment of inertia of the entire body

Izz = 41
2mR

2 + 4H2m = 2m
(
R2 + 2H2

)
. (3.127)

Example 3.15. Figure 3.36 shows a frictionlessly mounted, cuboid pendulum rod with
homogeneous density ρS and geometrical dimensions length lS , width bS and height
hS .

ex

ey

ez

lS

ϕ

bS

A

S

Figure 3.36: Pendulum rod.
Two variants will be presented in the following for calculating the kinetic energy.
In the first variant, one calculates the moment of inertia I(A)

S,zz of the pendulum rod
about the axis of rotation (ez axis)

I
(A)
S,zz = ρS

∫ hS/2

−hS/2

∫ 0

−lS

∫ bS/2

−bS/2

(
x2 + y2

)
dx dy dz = ρS

(1
3 l

3
SbShS + 1

12b
3
SlShS

)

(3.128)
and thus the kinetic energy is calculated according to (3.121) as

T = 1
2I

(A)
S,zzφ̇

2 . (3.129)

In the second variant, one first sets up the position vector rS from the origin 0 of the
inertial system (0xyz) to the center of gravity S of the pendulum rod

rS =




lS/2 sin(φ)
−lS/2 cos(φ)

0


 (3.130)

and calculates the translational part of the kinetic energy according to (3.60) as
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Tt = 1
2mS ṙT

S ṙS = 1
2mS

l2S
4 φ̇

2 (3.131)

with the pendulum mass mS = ρSlSbShS . If one now supplements the translational
part of the kinetic energy Tt with the rotational part of the kinetic energy according
to (3.121), one has to note that now the moment of inertia I(S)

S,zz must be calculated
with respect to the center of gravity S (i.e., with respect to an axis of rotation parallel
to the ez axis through the center of gravity S)

I
(S)
S,zz = ρS

∫ hS/2

−hS/2

∫ lS/2

−lS/2

∫ bS/2

−bS/2

(
x2 + y2

)
dx dy dz = ρS

( 1
12 l

3
SbShS + 1

12b
3
SlShS

)

(3.132)
and thus the rotational part of the kinetic energy follows as

Tr = 1
2I

(S)
S,zzφ̇.

2 (3.133)

The kinetic energy of the pendulum rod is therefore

T = Tt + Tr

= 1
8ρSbShSl

3
Sφ̇

2 + 1
2ρS

( 1
12 l

3
SbShS + 1

12b
3
SlShS

)
φ̇2

= 1
2

(1
3ρSbShSl

3
S + 1

12ρSb
3
SlShS

)

︸ ︷︷ ︸
=I(A)

S,zz

φ̇2 . (3.134)

It should be noted that the relation

I
(A)
S,zz = I

(S)
S,zz +mS

l2S
4 (3.135)

corresponds exactly to Steiner’s Theorem, see (3.126).
In general, it should be noted that when calculating the kinetic energy as the sum

of a translational and a rotational part, the moment of inertia must always be used
with respect to the axis of rotation shifted parallel to the center of gravity. This is of
essential importance, especially in the following derivation of the equations of motion
using the Euler-Lagrange equations!
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Example 3.16. As an example, consider the drive train of Figure 3.37.

m1 m2

τm
Im

ϕm

ϕ1 ϕ2

I1 I2
τl

τ
(m)
1

τ1

c

d

ig
Motor

Figure 3.37: Drive train.
A motor with moment of inertia Im generates a torque τm and drives a mass with
moment of inertia I1 via a lossless gear with gear ratio ig (ratio of input speed to
output speed)

φ̇1 = 1
ig
φ̇m. (3.136)

This mass is connected via a linear torsional spring with spring constant c > 0
and a rotational damper proportional to the angular velocity with damping constant
d > 0 to another mass with moment of inertia I2, on which the load torque τl acts. If
one cuts the gear open (see Figure 3.37), the torque τ (m)

1 acts on the primary side.
Since the gear was assumed to be lossless, the torque on the output side is

τ1φ̇1 = τ
(m)
1 φ̇m or τ1 = τ

(m)
1 ig, (3.137)

due to the gear ratio. Applying the law of conservation of angular momentum (3.105)
separately for the two masses and the motor, it follows that

Imφ̈m = τm − τ
(m)
1 (3.138a)

I1φ̈1 = τ1 − c(φ1 − φ2) − d(φ̇1 − φ̇2) (3.138b)
I2φ̈2 = c(φ1 − φ2) + d(φ̇1 − φ̇2) − τl (3.138c)

or, by eliminating τ (m)
1 , τ1 and φm, it follows

τ1 = τ
(m)
1 ig = τmig − Imi

2
gφ̈1 (3.139)

and
(
I1 + i2gIm

)
φ̈1 = τmig − c(φ1 − φ2) − d(φ̇1 − φ̇2) (3.140a)

I2φ̈2 = c(φ1 − φ2) + d(φ̇1 − φ̇2) − τl . (3.140b)
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In matrix notation, (3.140) can be written compactly in the form

Mq̈ + Dq̇ + Kq = beτl + buτm (3.141)

with q = [φ1, φ2]T, M = diag
(
I1 + i2gIm, I2

)
and

K =
[
c −c

−c c

]
, D =

[
d −d

−d d

]
, be =

[
0

−1

]
, bu =

[
ig

0

]
(3.142)

according to (3.98).

Solution in Maple: Beispiel_3_16.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Exercise 3.17. A sphere of mass m with radius R rolls down an inclined plane,
see Figure 3.38. Give the equation of motion for φ neglecting rolling friction and
determine the static friction coefficient µH for which rolling is possible.

g

ex

ey

ez

R

m

α

ϕ

Figure 3.38: Rolling sphere.

Solution of exercise 3.17.

φ̈ = 5
7Rg sin(α) for µH ≥ 2

7 tan(α)

Remark: Cut the sphere free and set up the law of conservation of momentum
in the ex- and ez-direction of the indicated coordinate system as well as the law
of conservation of angular momentum about the center of the sphere.
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Solution in Maple: Aufgabe_3_17.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

All solutions to the examples and Exercises in Maple and Mat-
lab/Simulink can also be downloaded collectively in Kapitel_3.zip
from https://www.acin.tuwien.ac.at/bachelor/modellbildung/.
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4 Rigid Body Kinematics

Chapter 2 described the kinematics of point masses, and Chapter 3 extended this to the
description of planar motion. This chapter deals with the basics of the kinematics of
general rigid body motion, which is used, for example, to describe the motion of robots.
In doing so, any rigid body motion can be described as a combination of translational
and rotational motion.

4.1 Rotation
Figure 4.1 shows a rigid body S with a body-fixed coordinate system (01x1y1z1) and
a spatially fixed coordinate system (inertial system) (00x0y0z0). It is assumed that

x0 y0

z0

x1

y1z1

0

P

S

Figure 4.1: On the rotation matrix.

{ex1 , ey1 , ez1} and {ex0 , ey0 , ez0} each represent an orthonormal basis according to (2.1).
The vector from the common origin of the coordinate systems to a point P of the rigid
body can now be expressed either in the body-fixed coordinate system in the form

p1 = p1xex1 + p1yey1 + p1zez1 (4.1)

or in the spatially fixed coordinate system by 1

p0 = p0xex0 + p0yey0 + p0zez0 . (4.2)

1Note that in this and the following chapter, the variable p is used to describe the position of points of a
rigid body. Wherever necessary, it will be explicitly indicated that this does not refer to momentum.
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Since p1 and p0 represent the same vector in different coordinate systems, the following
relationship holds for their components

p0x = eT
x0p0 = eT

x0p1 = p1xeT
x0ex1 + p1yeT

x0ey1 + p1zeT
x0ez1 . (4.3)

If this is done analogously for p0y and p0z, one obtains the relation for a pure rotation of
the coordinate system




p0x

p0y

p0z




︸ ︷︷ ︸
p0

=




eT
x0ex1 eT

x0ey1 eT
x0ez1

eT
y0ex1 eT

y0ey1 eT
y0ez1

eT
z0ex1 eT

z0ey1 eT
z0ez1




︸ ︷︷ ︸
R1

0




p1x

p1y

p1z




︸ ︷︷ ︸
p1

. (4.4)

The (3 × 3) matrix R1
0 gives the transformation of the coordinates of a vector in the

coordinate system (01x1y1z1) (superscript in R1
0) to the coordinates in the coordinate

system (00x0y0z0) (subscript in R1
0). Analogously, the following applies

p1x = eT
x1p1 = eT

x1p0 = p0xeT
x1ex0 + p0yeT

x1ey0 + p0zeT
x1ez0 (4.5)

or



p1x

p1y

p1z




︸ ︷︷ ︸
p1

=




eT
x1ex0 eT

x1ey0 eT
x1ez0

eT
y1ex0 eT

y1ey0 eT
y1ez0

eT
z1ex0 eT

z1ey0 eT
z1ez0




︸ ︷︷ ︸
R0

1




p0x

p0y

p0z




︸ ︷︷ ︸
p0

. (4.6)

Now obviously the following must hold

p0 = R1
0p1 = R1

0R0
1p0 or p1 = R0

1p0 = R0
1R1

0p1 (4.7)

and because of the commutativity of the dot product eT
x1ey0 = eT

y0ex1 follows the orthogo-
nality of the matrix R0

1, i.e.

R1
0 =

(
R0

1
)−1

=
(
R0

1
)T

. (4.8)

If one now assumes a right-handed coordinate system, then additionally det
(
R1

0
)

= +1
holds. In this context, all orthogonal (3 × 3) matrices with determinant +1 are called
rotation matrices of R3. Frequently, the notation SO(3) is used for special orthogonal
group of order 3.

Now there are three elementary rotation matrices, each describing the rotation about
one of the three coordinate axes. Figure 4.2 shows the position of the coordinate sys-
tems (01x1y1z1) and (00x0y0z0) for a rotation about the z0 axis by the angle ϕ. The
corresponding rotation matrix R1

0 is

R1
0 = Rz,ϕ =




cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


 =




cϕ −sϕ 0
sϕ cϕ 0
0 0 1


 . (4.9)
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x0 y0

z0

x1

y1

z1

0
ex0

ey0

ez0 =ez1

ex1

ey1

φ
φ

Figure 4.2: Elementary rotation about the z0 axis with the angle ϕ.

Analogously, for the elementary rotations about the y0- and x0-axes with the respective
angles θ and ψ, one obtains the rotation matrices

R1
0 = Ry,θ =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


 =




cθ 0 sθ
0 1 0

−sθ 0 cθ


 (4.10a)

R1
0 = Rx,ψ =




1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)


 =




1 0 0
0 cψ −sψ
0 sψ cψ


 . (4.10b)

Exercise 4.1 (Elementary Rotation Matrices). Calculate the elementary rotation
matrices using (4.4).

Solution of exercise 4.1.

Solution in Maple: Aufgabe_4_1.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Now consider three coordinate systems (00x0y0z0), (01x1y1z1) and (02x2y2z2), which
are connected by rotation. The vector p from the common origin of the coordinate systems
to a point P can be represented in the coordinates of the respective coordinate systems
(denoted by p0, p1 and p2). The following relationships apply

p0 = R1
0p1 and p1 = R2

1p2 (4.11)

and for the concatenation of two rotations one obtains
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p0 = R1
0R2

1p2 = R2
0p2 or R2

0 = R1
0R2

1 . (4.12)

Furthermore, it is easy to see that the following relations also hold for the inverse

p2 = R0
2p0 with R0

2 =
(
R2

0
)T

=
(
R1

0R2
1
)T

=
(
R2

1
)T(

R1
0
)T

= R1
2R0

1. (4.13)

Note that the concatenation of rotations is not a commutative operation, i.e. in general
RARB ̸= RBRA holds for two rotation matrices RA and RB. As an example, consider
the concatenation of two elementary rotations, first by the angle ϕ about the instantaneous
z-axis and then by the angle θ about the (rotated) instantaneous y-axis. The rotation
matrix in this case is

Rzy = Rz,ϕRy,θ =




cϕ −sϕ 0
sϕ cϕ 0
0 0 1







cθ 0 sθ
0 1 0

−sθ 0 cθ


 =




cθcϕ −sϕ cϕsθ
sϕcθ cϕ sϕsθ
−sθ 0 cθ


 . (4.14)

If one changes the order, i.e., first a rotation by the angle θ about the instantaneous y-axis
and then a rotation by the angle ϕ about the (rotated) instantaneous z-axis, one obtains

Ryz = Ry,θRz,ϕ =




cθ 0 sθ
0 1 0

−sθ 0 cθ







cϕ −sϕ 0
sϕ cϕ 0
0 0 1


 =




cθcϕ −cθsϕ sθ
sϕ cϕ 0

−sθcϕ sθsϕ cθ


 . (4.15)

It can be seen directly from (4.14) and (4.15) that Ryz ̸= Rzy holds, see Figure 4.3.
The concatenation of two rotations according to (4.14) or (4.15) implies that the second

rotation is always performed with respect to the already rotated coordinate system. In
comparison, assume now that the coordinate system (00x0y0z0) is rotated by the angle ϕ
about the z0-axis and the resulting rotated coordinate system (01x1y1z1) is rotated by the
angle θ about the y0-axis (in contrast to (4.14), where the rotation was about the y1-axis),
resulting in the coordinate system (02x2y2z2). If one denotes by p0, p1 and p2 one and
the same vector in the different coordinate systems, then the following relations hold

p0 = Rz,ϕp1 and p1 = Rz,−ϕRy,θRz,ϕp2 ̸= Ry,θp2 (4.16)
or

p0 = Ry,θRz,ϕp2 . (4.17)
The expression Rz,−ϕRy,θRz,ϕ in (4.16) shows that first the rotation by the angle −ϕ is
performed about the z1-axis (which is identical to the z0-axis) (this brings us back to
the original (00x0y0z0) system), then the rotation by the angle θ about the y0-axis, and
finally the rotation back by the angle ϕ.

4.2 Parameterization of a Rotation
The nine entries of a (3 × 3) rotation matrix R are of course not linearly independent.
Rather, the orientation of a rigid body can be determined by three rotational degrees
of freedom, which is why the rotation matrix is generally characterized by only three
linearly independent quantities. In the following, two commonly used parameterizations
of a rotation are given.
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φ

φ
θ

θ

6=

x0x0

y0y0

z0z0
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x1

y1

y1

z1

z1

x2

x2

y2y2

z2

z2

Figure 4.3: On the concatenation of rotations: Ryz ̸= Rzy.

4.2.1 Euler Angles
To this end, consider the body-fixed coordinate system (01x1y1z1) rotated with respect
to a spatially fixed coordinate system (inertial system) (00x0y0z0). In the Euler angle
parameterization, the orientation of the coordinate system (01x1y1z1) with respect to
(00x0y0z0) is represented by three successive rotations with the angles (ϕ, θ, ψ): First, a
rotation about the z0-axis by the angle ϕ, then a rotation about the (rotated) instantaneous
y-axis by the angle θ, and finally a rotation about the (rotated) instantaneous z-axis by
the angle ψ. Thus, the rotation matrix is

R1
0 = Rz,ϕRy,θRz,ψ =




cϕ −sϕ 0
sϕ cϕ 0
0 0 1







cθ 0 sθ
0 1 0

−sθ 0 cθ







cψ −sψ 0
sψ cψ 0
0 0 1




=




cϕcθcψ − sϕsψ −cϕcθsψ − sϕcψ cϕsθ
sϕcθcψ + cϕsψ −sϕcθsψ + cϕcψ sϕsθ

−sθcψ sθsψ cθ


 .

(4.18)

4.2.2 Roll-Pitch-Yaw Angles
A parameterization of the rotation matrix in terms of rotation angles (ϕ, θ, ψ) about the
coordinate axes of the spatially fixed coordinate system (00x0y0z0) such that a rotation
by the angle ψ is performed first about the x0-axis, then a rotation by the angle θ about
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the y0-axis, and finally a rotation by the angle ϕ about the z0-axis (see Figure 4.4), results
in the rotation matrix

R1
0 = Rz,ϕRy,θRx,ψ =




cϕ −sϕ 0
sϕ cϕ 0
0 0 1







cθ 0 sθ
0 1 0

−sθ 0 cθ







1 0 0
0 cψ −sψ
0 sψ cψ




=




cϕcθ −sϕcψ + cϕsθsψ sϕsψ + cϕsθcψ
sϕcθ cϕcψ + sϕsθsψ −cϕsψ + sϕsθcψ
−sθ cθsψ cθcψ


 .

(4.19)

Here, ψ is called the roll angle, θ the pitch angle, and ϕ the yaw angle.

φ

θ
ψ

x0

y0

z0

Figure 4.4: Parameterization of the rotation matrix using roll-pitch-yaw angles.

4.3 Translation
In addition to the pure rotation of a coordinate system discussed so far, the next step
is to address the pure translation of a coordinate system. Consider the two coordinate
systems (00x0y0z0) and (01x1y1z1) of Figure 4.5, which are not rotated with respect to
each other, whose coordinate origins 00 and 01 are connected by the vector d1

0.

Note 4.1 (Notation). The vector d1
0 describes the translational displacement of

the coordinate system (01x1y1z1) with respect to the coordinate system (00x0y0z0)
expressed in the coordinate system (00x0y0z0). For all further considerations, it holds
that the quantities (displacement vector, vector of angular velocities, etc.) are always
represented with respect to the coordinate system indicated by the lower right index.

Furthermore, let p0 and p1 denote the vectors from the origins 00 and 01 of the
coordinate systems (00x0y0z0) and (01x1y1z1) to a point P . For a pure translational
displacement d1

0 of the two coordinate systems, the following relation holds

p0 = p1 + d1
0 . (4.20)
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01

00

d1
0

p0
p1

P
x0 y0

z0

x1 y1

z1

Figure 4.5: On the translational displacement.

4.4 Combined Rotation and Translation
As mentioned in the introduction, a rigid body motion generally consists of rotational and
translational movements. Combining (4.7) with (4.20), one obtains the following relation
for a combined translational and rotational motion

p0 = R1
0p1 + d1

0 . (4.21)

It can be shown directly that for the coordinate systems (00x0y0z0), (01x1y1z1) and
(02x2y2z2) shown in Figure 4.6, the relations

p0 = R1
0p1 + d1

0 and p1 = R2
1p2 + d2

1 (4.22)

or
p0 = R1

0
(
R2

1p2 + d2
1
)

+ d1
0 = R2

0p2 + R1
0d2

1 + d1
0 (4.23)

apply.

´

02

01

00

d1
0 d2

1

R1
0 R2

1

p0

p1

p2
P

x0 y0

z0 x1

y1

z1

x2

y2

z2

Figure 4.6: On the combined translational and rotational motion.

If one wants to describe the motion of a rigid body with respect to the inertial system
(00x0y0z0), one attaches a coordinate system (01x1y1z1) rigidly to the rigid body (body-
fixed coordinate system). Thus, the motion of the rigid body is described equivalently by
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the transformation (4.21) of the coordinate system. Therefore, a transformation of the
form (4.21) with an orthogonal matrix R1

0 is also called a rigid body motion. The location
of the body-fixed coordinate system is arbitrary. However, it is often useful to place the
body-fixed coordinate system at the center of rotation or the center of gravity of the rigid
body.

Rigid body motions can be efficiently represented in terms of homogeneous transforma-
tions of the form

H1
0 =

[
R1

0 d1
0

0 1

]
with R1

0 ∈ SO(3). (4.24)

Consider a configuration P0 of a rigid body

P0 =
[
p0

1

]
, (4.25)

then by rotation by R1
0 and translation by d1

0 one obtains the configuration

P1 =
[
p1

1

]
(4.26)

in the form (compare with (4.21))

P0 = H1
0P1 . (4.27)

It is easy to see that the configuration of the rigid body resulting from another rigid body
motion (rotation by R2

1 and translation by d2
1)

P2 =
[
p2

1

]
(4.28)

satisfies the following relation

P1 = H2
1P2 =

[
R2

1 d2
1

0 1

]
P2. (4.29)

To prove this, one combines (4.27) with (4.29). One obtains with
[
p0

1

]

︸ ︷︷ ︸
P0

=
[
R1

0 d1
0

0 1

]

︸ ︷︷ ︸
H1

0

[
R2

1 d2
1

0 1

]

︸ ︷︷ ︸
H2

1

[
p2

1

]

︸ ︷︷ ︸
P2

=
[
R1

0R2
1 R1

0d2
1 + d1

0
0 1

]

︸ ︷︷ ︸
H2

0

[
p2

1

]

︸ ︷︷ ︸
P2

(4.30)

directly the result of (4.23). Furthermore, for the inverse homogeneous transformation we
have

H0
1 =

(
H1

0
)−1

=
[(

R1
0
)T −(R1

0
)Td1

0
0 1

]
. (4.31)

The description of a rigid body motion by means of homogeneous transformations proves
to be particularly advantageous for kinematic chains, as they occur frequently in robots,
for example.
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Example 4.1 (Planar Manipulator). Figure 4.7 shows a simple planar manipulator
consisting of two links. Link 1 (length l1, distance to the center of gravity ls1) is
rotatably mounted at one end about the z-axis (angle φ1). At the other end, link 2
with length l2 and distance ls2 to the center of gravity is rotatably mounted about
the z-axis. The angle φ2 denotes the relative rotation of link 2 with respect to link 1.

x0

y0
x1

y1

x 2y2

ϕ1

ϕ2

ls1

l1

l s2 l 2

g

Figure 4.7: Planar manipulator with 2 degrees of freedom.

To calculate the position of the centers of gravity as well as the end-effector attached
to the end of link 2, the rotation matrices are calculated to describe the rotations
of the coordinate systems (01x1y1z1) and (02x2y2z2) with respect to the inertial
coordinate system (00x0y0z0). These follow directly from the elementary rotation
matrices according to (4.9) to

R1
0 =




cφ1 −sφ1 0
sφ1 cφ1 0
0 0 1


 and R2

1 =




cφ2 −sφ2 0
sφ2 cφ2 0
0 0 1


. (4.32)

The vectors of displacement of the coordinate systems with respect to each other are
calculated as

d1
0 =




0
0
0


 and d2

1 =




l1

0
0


 (4.33)

and the positions of the centers of gravity as well as the end-effector in the respective
body-fixed coordinate systems are given by

ps11 =




ls1

0
0


, ps22 =




ls2

0
0


 and pe22 =




l2

0
0


. (4.34)

The absolute position of these points relative to the chosen inertial coordinate
system (00x0y0z0) (and expressed in this inertial system) is calculated according to
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(4.21) to

ps10 = R1
0ps11 + d1

0 =




ls1 cos(φ1)
ls1 sin(φ1)

0


 (4.35a)

ps20 = R1
0
(
d2

1 + R2
1ps22

)
+ d1

0 =




l1 cos(φ1) + ls2 cos(φ1 + φ2)
l1 sin(φ1) + ls2 sin(φ1 + φ2)

0


 (4.35b)

pe20 = R1
0
(
d2

1 + R2
1pe22

)
+ d1

0 =




l1 cos(φ1) + le2 cos(φ1 + φ2)
l1 sin(φ1) + le2 sin(φ1 + φ2)

0


 . (4.35c)

The Maple file Planar_Manipulator.mw on
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
shows the solution of this example using homogeneous transforma-
tions.

Note 4.2. To simplify the representation of rigid body kinematics, a symbolic descrip-
tion is often used in the literature. Figure 4.8 shows a common representation of
translational and rotational joints of a rigid body kinematic.

ss s

ϕϕ

ϕ

Translation Rotation

Figure 4.8: Symbolic representation of translational and rotational joints.

Example 4.2 (Tower Crane). The planar manipulator represents a mechanical rigid
body system whose motion is described solely by rotations about the axes of rotation.
In the case of the tower crane sketched in Figure 4.9, the motion of the load results
from a combination of rotations (angles φ1, φ3) with a translation (displacement s2).
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x0x0

y0y0
z0

x1
z1

y1

ϕ1

ϕ1

h1

s2

s2

x2
z2

y2
x3

z3
y3

ϕ3ϕ3

ls

z0

Figure 4.9: Sketch and kinematics of a tower crane for Example 4.2.

The system has 3 degrees of freedom: a rotation of the tower about the z-axis of
the inertial coordinate system (00x0y0z0) by the angle φ1, a translation of the trolley
along the x-axis of the coordinate system (01x1y1z1) by s2, and a rotation of the cable
about the y-axis of the coordinate system (02x2y2z2) by the angle φ3. For simplicity,
it has been assumed that the cable length ls is constant and that only a rotation of
the cable with the load about the y-axis of the coordinate system (02x2y2z2) occurs.

The rotation matrices describing the rotations of the coordinate systems in this
example are

R1
0 =




cφ1 −sφ1 0
sφ1 cφ1 0
0 0 1


, R2

1 = E, R3
2 =




cφ3 0 sφ3

0 1 0
−sφ3 0 cφ3


, (4.36)

with the identity matrix E. The displacements of the coordinate systems relative to
each other are described by

d1
0 =




0
0
0


, d2

1 =




s2

0
h1


, d3

2 =




0
0
0


 (4.37)
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and the vector pL3 to the load is calculated in the coordinate system (03x3y3z3) to

pL3 =




0
0

−ls


 . (4.38)

This immediately allows to calculate the position of the load in the inertial coordi-
nate system by applying

pL0 = d1
0 + R1

0
(
d2

1 + R2
1
(
d3

2 + R3
2pL3

))
(4.39)

to

pL0 =




cφ1(s2 − sφ3 ls)
sφ1(s2 − sφ3 ls)
h1 − cφ3 ls


. (4.40)

Note that the position s2, as well as the angles φ1 and φ3 are time-dependent variables.
Solution in Maple: Turmdrehkran_einfach.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise 4.2 (Tower Crane 2). Extend the kinematic model of the tower crane to
include the change of the cable length as well as an additional rotation of the cable
about the x3-axis, see Figure 4.10. Calculate the position pL0 of the load as a function
of the degrees of freedom of the system.

x0

y0
z0

ϕ1

s2

ϕ3
ϕ4

s5

Figure 4.10: Schematic representation of the kinematics of the tower crane with 5
degrees of freedom.
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Solution of exercise 4.2. The position of the load is calculated as

pL0 =




s2cφ1 + s5(−sφ1sφ4 − cφ1sφ3cφ4)
s2sφ1 + s5(cφ1sφ4 − sφ1sφ3cφ4)

h1 − s5cφ3cφ4


 . (4.41)

Solution in Maple: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

4.5 Angular Velocity
The elements of the rotation matrices are functions of the rotation angles, which in turn
are generally functions of time, see for example (4.9) and (4.10). If one calculates the
total time derivative of a rotation matrix R ∈ SO(3) and assumes for simplicity that the
rotation matrix depends only on one rotation angle θ(t), then it follows

Ṙ(θ) = ∂

∂θ
Rθ̇ . (4.42)

Due to the orthogonality of the rotation matrix R, the following relations hold

RRT = E and d
dt
(
RRT

)
= ṘRT + RṘT = 0 . (4.43)

This shows that the matrix

S = ṘRT = −RṘT (4.44)

is a skew-symmetric (3 × 3) matrix and thus there always exists a unique vector of angular
velocities ωT =

[
ωx ωy ωz

]
such that S can be written in the form

S(ω) =




0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


. (4.45)

For the elementary rotation matrices (4.9) and (4.10), one obtains for example

Sz,ϕ = Ṙz,ϕRT
z,ϕ =




0 −ϕ̇ 0
ϕ̇ 0 0
0 0 0


 (4.46)

or

Sy,θ = Ṙy,θRT
y,θ =




0 0 θ̇

0 0 0
−θ̇ 0 0


 and Sx,ψ = Ṙx,ψRT

x,ψ =




0 0 0
0 0 −ψ̇
0 ψ̇ 0


 . (4.47)
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Combining (4.43) and (4.44), then

Ṙ(θ) = Ṙ RTR︸ ︷︷ ︸
E

= SR . (4.48)

d1
0(t)

R1
0(t)

p0(t)

p1

P

01

00

x0 y0

z0

x1

y1z1

Figure 4.11: On the angular velocity.

Assume now that p1 represents a fixed (time-invariant) vector from the origin of the
coordinate system (01x1y1z1) to a point P , see Figure 4.11. The coordinate system
(01x1y1z1) performs translational and rotational motions with respect to a spatially fixed
coordinate system (inertial system) (00x0y0z0). The velocity ṗ0 of the point P measured
in the inertial system is then given by the relation (compare (4.21))

ṗ0 = Ṙ1
0p1 + R1

0 ṗ1︸︷︷︸
=0

+ḋ1
0 = S

(
ω1

0
)
R1

0p1 + ḋ1
0 (4.49)

or

ṗ0 = ω1
0 ×

(
R1

0p1
)

+ ḋ1
0. (4.50)

To show this, consider a general angular velocity vector ωT =
[
ωx ωy ωz

]
and a vector

rT =
[
rx ry rz

]
. Then it holds

S(ω)r =




0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0







rx

ry

rz


 =




ωyrz − ωzry

ωzrx − ωxrz

ωxry − ωyrx


 =




ωx

ωy

ωz


×




rx

ry

rz


 = ω × r . (4.51)

The next step is to calculate how the angular velocities are calculated for multiple
coordinate systems that are rotated relative to each other. To this end, consider the
rotation matrix R2

0 according to the relation (4.12) with R2
0 = R1

0R2
1 and differentiate it

with respect to time. On the one hand, according to (4.48), one obtains the relation

Ṙ2
0 = S

(
ω2

0
)
R2

0 (4.52)
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and on the other hand, applying the product rule yields

Ṙ2
0 = Ṙ1

0R2
1 + R1

0Ṙ2
1 = S

(
ω1

0
)
R1

0R2
1 + R1

0S
(
ω2

1
) (

R1
0
)T

R1
0

︸ ︷︷ ︸
E

R2
1 . (4.53)

To further simplify (4.53), one uses the following relation, which holds for any 3-dimensional
vector k

R1
0S
(
ω2

1
)(

R1
0
)T

k = R1
0

(
ω2

1 ×
(
R1

0
)T

k
)

=
(
R1

0ω2
1
)

× R1
0
(
R1

0
)T

k

=
(
R1

0ω2
1
)

× k = S
(
R1

0ω2
1
)
k

(4.54)

as well as the addition property of two skew-symmetric matrices



0 −az ay

az 0 −ax
−ay ax 0




︸ ︷︷ ︸
S(a)

+




0 −bz by

bz 0 −bx
−by bx 0




︸ ︷︷ ︸
S(b)

=




0 −az − bz ay + by

az + bz 0 −ax − bx

−ay − by ax + bx 0




︸ ︷︷ ︸
S(a+b)

. (4.55)

With (4.54), (4.55) and R2
0 = R1

0R2
1, (4.53) reduces to

Ṙ2
0 =

(
S
(
ω1

0
)

+ S
(
R1

0ω2
1
))

R2
0 = S

(
ω1

0 + R1
0ω2

1
)
R2

0 (4.56)

and comparing (4.52) with (4.56) yields the following relationship for the vector of angular
velocities

ω2
0 = ω1

0 + R1
0ω2

1 . (4.57)

As can be seen in (4.57), it only makes sense to add the vectors of angular velocities if
these vectors are expressed with respect to the same coordinate system. The expression
R1

0ω2
1 transforms the vector of angular velocity ω2

1 into the coordinate system (00x0y0z0)
and can only then be added to ω1

0. The relations just derived can be consistently extended
to the general case in the form

Ṙn
0 = S(ωn

0 )Rn
0 with Rn

0 = R1
0R2

1 . . .Rn
n−1 (4.58)

and

ωn
0 = ω1

0 + R1
0ω2

1 + R2
0ω3

2 + . . .+ Rn−1
0 ωn

n−1. (4.59)

4.6 Manipulator Jacobian Matrix
Assume that the homogeneous transformation

Hl
k(q) =

[
Rl
k(q) dlk(q)
0 1

]
with Rl

k(q) ∈ SO(3) (4.60)
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describes the motion of a coordinate system (0lxlylzl) relative to the coordinate system
(0kxkykzk) and can be parameterized by the independent variables (generalized coordinates
q in the form of angles and positions) qj , j = 1, . . . , n. The vector of angular velocities
ωl
k associated with Hl

k can be obtained using (4.44), (4.45) from the following relation

S
(
ωl
k

)
= Ṙl

k(q)Rl
k(q)T =

n∑

j=1

(
∂

∂qj
Rl
k(q)

)
Rl
k(q)Tq̇j (4.61)

in the form

ωl
k = (Jω)lk(q)q̇. (4.62)

Exercise 4.3. Calculate the matrix (Jω)3
0(q) for the case that the rotation of the

coordinate system (03x3y3z3) with respect to the coordinate system (00x0y0z0) is
given by the concatenation of rotations by the angles ϕ, θ and ψ according to the
definition of the Euler angles in Section 4.2.1.

Solution of exercise 4.3. The Jacobian matrix is calculated as

(Jω)3
0(q) =




0 −sϕ cϕsθ
0 cϕ sϕsθ
1 0 cθ


 (4.63)

Solution in Maple: Aufgabe_4_3.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/.

Analogously, the translational velocity vlk can also be parameterized by q and q̇ in the
form

vlk = ḋlk(q) =
n∑

j=1

(
∂

∂qj
dlk(q)

)
q̇j =

[
∂
∂q1

dlk(q) ∂
∂q2

dlk(q) . . . ∂
∂qn

dlk(q)
]

︸ ︷︷ ︸
(Jv)l

k(q)

q̇. (4.64)

In summary, the vector of angular velocity ωl
k and the vector of translational velocity vlk

can be written as follows



vlk
ωl
k


 =




(Jv)lk(q)

(Jω)lk(q)


q̇ = Jlk(q)q̇. (4.65)

The matrix Jlk(q) is often referred to as the Manipulator Jacobian Matrix (Geometric
Jacobian Matrix).
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Remark: In the English literature, the term Manipulator Jacobian Matrix often
refers to the Jacobian matrix associated with the velocities and angular velocities
of the end-effector, while the Jacobian matrices associated with the components of
the manipulator are often referred to as Body Jacobian Matrices. In this lecture,
this distinction is not made, and therefore the Jacobian matrix of any component of
a manipulator (end-effector, components) is always referred to as the Manipulator
Jacobian Matrix.

Example 4.3 (Continuation Planar Manipulator). In Example 4.1, the kinematics
of the planar manipulator shown in Figure 4.7 was calculated. In this example, the
translational and rotational velocities of the centers of gravity of the links of the
planar manipulator are to be calculated. These will be needed later, for example, for
the calculation of the kinetic energy.

From the rotation matrices R1
0 and R2

1 according to (4.32), one obtains with (4.44)
the matrices

S1
0 =




0 −ω1 0
ω1 0 0
0 0 0


, S2

1 =




0 −ω2 0
ω2 0 0
0 0 0


, (4.66)

where ω1 = φ̇1 and ω2 = φ̇2 was used. The corresponding vectors ω1
0 and ω2

1 are
obtained from the components of S1

0 and S2
1, respectively, as ω1

0 =
[
0 0 ω1

]T
and

ω2
1 =

[
0 0 ω2

]T
. The angular velocity of link 2 can be calculated according to

(4.57) by
ω2

0 = ω1
0 + R1

0ω2
1 (4.67)

to ω2
0 =

[
0 0 ω1 + ω2

]T
.

Remark: Note that the same result for ω2
0 is obtained if one calculates S2

0
directly from R2

0 = R1
0R2

1.

The Manipulator Jacobian Matrices are then obtained by partial differentiation of
the angular velocity vectors with respect to the time derivatives q̇ =

[
ω1 ω2

]T
of

the degrees of freedom q =
[
φ1 φ2

]T

(Jω)1
0 =




0 0
0 0
1 0


, (Jω)2

0 =




0 0
0 0
1 1


. (4.68)

It is easy to verify that ω1
0 = (Jω)1

0q̇ and ω2
0 = (Jω)2

0q̇ holds.
The translational velocities vs10 and vs20 of the centers of gravity required for further

calculations are calculated according to (4.64) with the corresponding Manipulator

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



4.6 Manipulator Jacobian Matrix Page 83

Jacobian Matrices

(Jv)s10 =




−sφ1 ls1 0
cφ1 ls1 0

0 0


, (Jv)s20 =




−sφ1 l1 − sφ1+φ2 ls2 −sφ1+φ2 ls2

cφ1 ls1 + cφ1+φ2 ls2 cφ1+φ2 ls2

0 0


. (4.69)

Furthermore, the translational velocity of the end effector ve20 can be obtained using
the Manipulator Jacobian Matrix

(Jv)e20 =




−sφ1 l1 − sφ1+φ2 l2 −sφ1+φ2 l2

cφ1 ls1 + cφ1+φ2 l2 cφ1+φ2 l2

0 0


 . (4.70)

Solution in Maple: Planarer_Manipulator.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise 4.4 (Continuation Tower Crane 2). In this exercise we again consider the
tower crane from Exercise 4.2. For the later calculation of the equations of motion of
the system, the velocities and angular velocities, or the corresponding Manipulator
Jacobian Matrices of the center of gravity of the tower, the trolley, and the load are
required. The position of the center of gravity of the tower psT1 in the coordinate
system (01x1y1z1) is given by psT1 =

[
lxsT 0 lzsT

]T
. The centers of gravity of the

trolley and the (point-shaped) load lie at the coordinate origins of the corresponding
coordinate systems, i.e. psK2 = pL5 =

[
0 0 0

]T
. Calculate the Manipulator Jacobian

Matrices for these three components of the tower crane.

Solution of exercise 4.4. The Manipulator Jacobian Matrices of the center of gravity
of the tower are calculated as

(Jv)sT0 =




−sφ1 lxsT 0 0 0 0
cφ2 lxsT 0 0 0 0

0 0 0 0 0


, (Jω)sT0 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


 . (4.71)

The Manipulator Jacobian Matrices of the trolley are

(Jv)sK0 =




−sφ1s2 cφ1 0 0 0
cφ2s2 sφ1 0 0 0

0 0 0 0 0


, (Jω)sK0 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


 . (4.72)
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Finally, the Manipulator Jacobian Matrices of the load are given by

(Jv)sL0 =
[ (

sφ3 cφ4 s5 − s2
)

sφ1 − cφ1 sφ4 s5 cφ1 −cφ1 cφ3 cφ4 s5
(

cφ1 sφ3 sφ4 − sφ1 cφ4

)
s5 −sφ1 sφ4 − cφ1 sφ3 cφ4(

−sφ3 cφ4 s5 + s2
)

cφ1 − sφ1 sφ4 s5 sφ1 −sφ1 cφ3 cφ4 s5
(

sφ1 sφ3 sφ4 + cφ1 cφ4

)
s5 cφ1 sφ4 − sφ1 sφ3 cφ4

0 0 sφ3 cφ4 s5 cφ3 sφ4 s5 −cφ3 cφ4

]

(4.73)

and

(Jω)sL0 =




0 0 −sφ1 cφ1cφ3 0
0 0 cφ1 sφ1cφ3 0
1 0 0 −sφ3 0


 . (4.74)

Lösung in Maple: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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5 Rigid Body Dynamics

5.1 Kinetic and Potential Energy
In Chapter 3.4 the translational kinetic energy and the potential energy were introduced.
In this section these results are systematically extended for general rigid bodies. The
resulting formulation of the kinetic and potential energy forms the basis for determining
the equations of motion of rigid body systems using the Euler-Lagrange equations in the
next section.

Consider now a rigid body S according to Figure 5.1 with a mass density ρ(x0, y0, z0)
in the inertial coordinate system (00x0y0z0). The velocity of a point P of the rigid body

x0 y0

z0

00

d1
0(t)

p0(t)

R1
0(t)

P

p1

01x1
y1

z1

S

Figure 5.1: Calculation of the kinetic energy.

is given by ṗ0(x0, y0, z0). Then the total kinetic energy is obtained by integration over
the volume V of the rigid body S in the form

T = 1
2

∫

V
ṗT

0 (x0, y0, z0)ṗ0(x0, y0, z0) ρ(x0, y0, z0)dx0dy0dz0︸ ︷︷ ︸
dm

. (5.1)

Compare this to the considerations in Chapter 3.4. This expression can be simplified by
additionally defining a body-fixed coordinate system (01x1y1z1) whose origin 01 coincides
with the center of mass of the rigid body S. The position of the center of mass pS0 in the
coordinate system (00x0y0z0) is calculated according to (3.28) via the relation

pS0 = 1
m

∫

V
p0dm, (5.2)

where the mass of the rigid body S is defined by m =
∫

V dm. According to Figure 5.1 and
(4.21), the following applies to the chosen position of the origin 01

p0 = R1
0p1 + d1

0 = R1
0p1 + pS0 . (5.3)
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With (4.49) and (4.50) follows for the velocity ṗ0

ṗ0 = S
(
ω1

0
)
R1

0p1 + ṗS0 = S
(
ω1

0
)
r + vS0 = ω1

0 × r + vS0 (5.4)

with the abbreviations r = R1
0p1 and vS0 = ṗS0 . In order to keep the equations clear

for the further derivation, ω1
0 = ω is used with the components ωT =

[
ωx ωy ωz

]
.

Substituting the expression (5.4) for ṗ0 into the kinetic energy (5.1) gives

T = 1
2

∫

V

(
S(ω)r + vS0

)T(
S(ω)r + vS0

)
dm

= 1
2

∫

V
rTST(ω)S(ω)rdm

︸ ︷︷ ︸
Tr

+ 1
2

∫

V

(
rTST(ω)vS0 +

(
vS0
)T

S(ω)r
)

dm
︸ ︷︷ ︸

Tk

+ 1
2

∫

V

(
vS0
)T

vS0 dm
︸ ︷︷ ︸

Tt

.

(5.5)

If we now consider that S(ω) and vS0 are pure time functions and do not depend on the
integration variables, then the expressions of (5.5) can be further simplified.

The third term Tt of (5.5) then reads

Tt = 1
2

∫

V

(
vS0
)T

vS0 dm = 1
2
(
vS0
)T

vS0
∫

V
dm = 1

2m
(
vS0
)T

vS0 (5.6)

and describes the translational part of the kinetic energy. This expression can be interpreted
in such a way that the total mass m of the rigid body is combined into a point mass at
the center of gravity pS0 , cf. (3.60).

The second term Tk in (5.5) vanishes identically for the chosen position of the coordinate
system (01x1y1z1) in the center of gravity. To show this, one uses the relation r = p0 − pS0
(compare (5.3)) and Tk simplifies due to the definition of the center of gravity (5.2) to

Tk = 1
2

∫

V

(
rTST(ω)vS0 +

(
vS0
)T

S(ω)r
)

dm =
(
vS0
)T

S(ω)
∫

V

(
p0 − pS0

)
dm

=
(
vS0
)T

S(ω)




∫

V
p0dm

︸ ︷︷ ︸
=pS

0m because of (5.2)

−pS0
∫

V
dm

︸ ︷︷ ︸
=m




= 0 .
(5.7)

It should be pointed out again that this expression only disappears because the body-fixed
coordinate system (01x1y1z1) has been placed at the center of gravity of the rigid body.

For the simplification of the term Tr of (5.5), one needs the relationship

hTh =
[
hx hy hz

]



hx

hy

hz


 = spur

(
hhT

)
= spur




h2
x hxhy hxhz

hyhx h2
y hyhz

hzhx hzhy h2
z


. (5.8)

Thus Tr from (5.5) can be equivalently expressed in the form

Tr = 1
2

∫

V
rTST(ω)S(ω)rdm = 1

2 spur
(

S(ω)
∫

V
rrTdmST(ω)

)
. (5.9)
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With the matrix

J =
∫

V
rrTdm =




∫

V
r2
xdm

∫

V
rxrydm

∫

V
rxrzdm

∫

V
rxrydm

∫

V
r2
ydm

∫

V
ryrzdm

∫

V
rxrzdm

∫

V
ryrzdm

∫

V
r2
zdm




(5.10)

and the simplification

spur
(
S(ω)JST(ω)

)
= spur







0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0







Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz







0 ωz −ωy
−ωz 0 ωx

ωy −ωx 0







= ω2
x(Jyy + Jzz) + ω2

y(Jxx + Jzz) + ω2
z(Jxx + Jyy) − 2ωxωyJxy − 2ωyωzJyz − 2ωxωzJxz

= [ωx, ωy, ωz]




Jyy + Jzz −Jxy −Jxz
−Jxy Jxx + Jzz −Jyz
−Jxz −Jyz Jxx + Jyy







ωx

ωy

ωz


 = ωTI0ω

(5.11)

the rotational part of the kinetic energy results in

Tr = 1
2
(
ω1

0
)T

I0ω1
0 (5.12)

with

I0 =




∫

V

(
r2
y + r2

z

)
dm −

∫

V
rxrydm −

∫

V
rxrzdm

−
∫

V
rxrydm

∫

V

(
r2
x + r2

z

)
dm −

∫

V
ryrzdm

−
∫

V
rxrzdm −

∫

V
ryrzdm

∫

V

(
r2
x + r2

y

)
dm




. (5.13)

Here, I0 describes the so-called inertia matrix.
Note that for the calculation of I0 according to (5.13), the vector r = p0 − pS0 is

represented in the coordinate system (00x0y0z0). This can make the calculation of the
integrals in the definition of I0 very complex, especially the definition of the integration
limits. A simpler form of calculation of I0 and thus Tr is obtained if one uses the definition
r = R1

0p1 in J according to (5.10)

J =
∫

V
rrTdm =

∫

V
R1

0p1pT
1
(
R1

0
)T

dm = R1
0

∫

V
p1pT

1 dm
(
R1

0
)T

. (5.14)

If one applies the same steps as in (5.11) to this representation of J, one obtains

spur
(

S
(
ω1

0
)
J
(
S
(
ω1

0
))T

)
=
(
ω1

0
)T

R1
0I1
(
R1

0
)T

︸ ︷︷ ︸
I0

ω1
0 . (5.15)
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Therein, the representation of the inertia matrix I1 in the body-fixed coordinate system is
calculated from

I1 =




∫

V

(
p2

1,y + p2
1,z
)
dm −

∫

V
p1,xp1,ydm −

∫

V
p1,xp1,zdm

−
∫

V
p1,xp1,ydm

∫

V

(
p2

1,x + p2
1,z
)
dm −

∫

V
p1,yp1,zdm

−
∫

V
p1,xp1,zdm −

∫

V
p1,yp1,zdm

∫

V

(
p2

1,x + p2
1,y
)
dm




. (5.16)

This calculation is often much easier than the direct calculation of I0. I1 is independent
of the motion of the rigid body and thus a constant matrix. With a suitable choice of the
body-fixed coordinate system (01x1y1z1) in the direction of the so-called principal axes of
inertia, I1 simplifies to a diagonal matrix. In this case the so-called products of inertia
(off-diagonal elements of I1) vanish.

Remark: The expression
(
R1

0
)T

ω1
0 = R0

1ω1
0 = 1ω1

0 (5.17)

corresponds to the transformation of the vector of angular velocities from the inertial
coordinate system to the body-fixed coordinate system. The rotational part Tr of
the kinetic energy can therefore also be represented in the form

Tr = 1
2
(

1ω1
0
)T

I1
(

1ω1
0
)

. (5.18)

Note that in the definition of ω1
0 it was implicitly used that this vector is described

in the coordinate system (00x0y0z0), i.e. ω1
0 = 0ω1

0. However, in order to avoid
ambiguities in the notation, the representations 0ω1

0 and 1ω1
0 will not be used further

in the remainder of the script.

In total, the kinetic energy of a rigid body is given by

T = 1
2m

(
vS0
)T

vS0 + 1
2
(
ω1

0
)T

I0ω1
0 . (5.19)

It should be pointed out again that this formulation of the kinetic energy of a rigid body
assumes that vS0 is the velocity of the center of gravity and I0 is the inertia matrix about
this center of gravity. The potential energy due to the gravitational field in eg direction
with the gravitational constant g is easily obtained using (5.2) in the form

V = −
∫

V
geT

g p0dm = −mgeT
g pS0 . (5.20)

In Chapter 4.6, the translational velocity vl0 and the angular velocity ωl
0 of a point of

the rigid body Sl were represented as a function of the generalized coordinates q and
their time derivatives q̇ with the help of the Jacobian matrices (Jv)l0(q) and (Jω)l0(q),
see (4.65). This representation can now be used in (5.19) to obtain
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T = 1
2 q̇T

((
(Jv)1

0

)T
m(Jv)1

0 +
(
(Jω)1

0

)T
I0(Jω)1

0

)
q̇ = 1

2 q̇TM(q)q̇ . (5.21)

Therein M(q) denotes the so-called mass matrix. One can now show that the mass matrix
is positive definite, i.e. M(q) > 0. This leads directly to the fact that the kinetic energy
T is positive for every q̇ ̸= 0.

Remark: The following procedure is recommended for setting up the kinetic and
potential energies of a system of rigid bodies:

(A) Define an inertial coordinate system (00x0y0z0) and a body-fixed coordinate
system (0lxlylzl) for each rigid body Sl. If reasonable and possible, the body-
fixed coordinate systems should be aligned with the respective principal axes of
inertia.

(B) Define the generalized coordinates q. Determine the rotation matrices and
displacement vectors that connect the coordinate systems. Write down the
position vectors pSl

0 from the origin of the inertial system to the centers of mass
of the rigid bodies as functions of the generalized coordinates.

(C) Determine the translational and rotational parts of the kinetic energy according
to (5.6) and (5.13). Calculate the mass matrix M(q) as the sum of the mass
matrices of the individual rigid bodies according to (5.21). Determine the
potential energy due to a gravitational field according to (5.20). Calculate the
potential energy of other potential forces such as spring elements according to
(3.69).

Example 5.1 (Continuation Planar Manipulator). The systematics for the calculation
of the kinetic and potential energy just presented will be applied in this example to
the planar manipulator from Examples 4.1 and 4.3. As can be seen in Figure 5.2, the
structure has been extended by a linear spring (spring stiffness ce, relaxed length s0e)
and a linear damper (damping coefficient de), which are installed between the end
effector and the fixed bearing A.
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x0

y0
x1

y1

x 2y2

ϕ1

ϕ2

ls1

l1

l s2 l 2

g

de

ce

A

l0A

h
0A

Figure 5.2: Sketch of the planar manipulator in Example 5.1.

In the first step, the translational parts Tt of the kinetic energy are determined
according to (5.6). This yields for the first rod

T s1t = 1
2m1

(
ṗs10
)T

ṗs10 = 1
2m1l

2
s1ω

2
1, (5.22)

where ω1 = φ̇1 and ps10 is defined in (4.35a). Similarly, we calculate

T s2t = 1
2m2

(
ṗs20
)T

ṗs20 = 1
2m2

(
l21ω

2
1 + 2l1ls2ω1(ω1 + ω2) cos(φ2) + l2s2(ω1 + ω2)2

)
,

(5.23)

with ω2 = φ̇2 and ps20 from (4.35b).
To calculate the rotational part of the kinetic energy, in the first step the inertia

matrices Is11 and Is22 of the rods around the respective center of gravity s1 and s2
and in the respective body-fixed coordinate systems are defined. Due to the chosen
orientation of the body-fixed coordinate systems in the direction of the principal axes
of inertia, these result in the form of the diagonal matrices

Is11 =




Is1xx,1 0 0
0 Is1yy,1 0
0 0 Is1zz,1


, Is22 =




Is2xx,2 0 0
0 Is2yy,2 0
0 0 Is2zz,2


 . (5.24)

The formulation of the inertia matrices Is10 , Is20 in the inertial system required in
(5.12) are calculated using the respective rotation matrices R1

0 or R2
0 according to

(5.15). This gives

Is10 = R1
0Is11

(
R1

0
)T

=




Is1xx,1c2
φ1 + Is1yy,1s2

φ1

(
Is1xx,1 − Is1yy,1

)
sφ1cφ1 0(

Is1xx,1 − Is1yy,1
)
sφ1cφ1 Is1xx,1s2

φ1 + Is1yy,1c2
φ1 0

0 0 Is1zz,1


 . (5.25)
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The resulting inertia matrix Is20 = R2
0Is22

(
R2

0
)T is relatively large and is therefore not

shown here for reasons of space. With Is10 , Is20 as well as ω1
0 and ω2

0 from Example
4.3, one obtains

T s1r = 1
2
(
ω1

0
)T

Is10 ω1
0 = 1

2I
s1
zz,1ω

2
1 (5.26a)

T s2r = 1
2
(
ω2

0
)T

Is20 ω2
0 = 1

2I
s2
zz,2(ω1 + ω2)2 . (5.26b)

An equivalent calculation of the kinetic energy can be obtained using the mass
matrix from (5.21). For the system under consideration, this is calculated to be

M =
[
m1l2s1 +m2

(
l21 + 2l1ls2cφ2 + l2s2

)
+ Is1zz,1 + Is2zz,2 m2ls2(ls2 + l1cφ2) + Is2zz,2

m2ls2(ls2 + l1cφ2) + Is2zz,2 m2l2s2 + Is2zz,2

]
.

(5.27)

A simple calculation shows that the expression for T determined with (5.21) and
(5.27) corresponds to the sum T = T s1t + T s2t + T s1r + T s2r .

The potential energy components V s1, V s2 due to gravity are given by (5.20) in
the form

V s1 = −m1geT
g ps10 = m1gls1 sin(φ1) (5.28a)

V s2 = −m2geT
g ps20 = m2g(l1 sin(φ1) + ls2 sin(φ1 + φ2)), (5.28b)

where eT
g =

[
0 −1 0

]
describes the unit vector in the direction of gravity and g

the acceleration due to gravity.
To calculate the potential energy of the linear spring, the length of the spring is

needed. For this purpose, the vector pA0 is drawn from the origin of the inertial
system to the bearing A and the vector re is obtained from the end effector e2 to the
bearing A

re = pA0 − pe20 =




l0A − l1 cos(φ1) − l2 cos(φ1 + φ2)
h0A − l1 sin(φ1) − l2 sin(φ1 + φ2)

0


 . (5.29)

Thus, the length se of the spring is se =
√

rT
e re and the potential energy of the spring

is calculated according to (3.70) to

Ve = 1
2c2(se − s0e)2 . (5.30)

Solution in Maple: Planarer_Manipulator.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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Example 5.2 (Continuation Tower Crane 2). In this example the kinetic and potential
energy are calculated for the tower crane from Exercises 4.2 and 4.4. The first rigid
body of the tower crane is the tower with the firmly attached jib. It is assumed that
the tower is in the form of a solid cylinder (height h1, radius r1, density ρ1), while
the jib is approximated by a cuboid (dimensions l1x, l1y l1z, density ρ1).

The centers of gravity of the two rigid bodies in the body-fixed coordinate system
(01x1y1z1) are

psZ1 =




0
0
h1
2


, psQ1 =




l1x
2
0
l1z


 (5.31)

and the masses result from mZ = r2
1πh1ρ1 or mQ = l1xl1yl1zρ1. The inertia matrices

about the respective centers of gravity in the body-fixed coordinate system can be
taken from a formula collection in the form

IsZ1 =




IsZxx,1 0 0
0 IsZyy,1 0
0 0 IsZzz,1


, IsQ1 =




IsQxx,1 0 0
0 IsQyy,1 0
0 0 IsQzz,1


, (5.32)

with IsZxx,1 = IsZyy,1 =
(
3r2

1 + h2
1
)
mZ/12, IsZzz,1 = r2

1mz/2, IsQxx,1 =
(
l21y + l21z

)
mQ/12,

IsQyy,1 =
(
l21x + l21z

)
mQ/12 and IsQzz,1 =

(
l21x + l21y

)
mQ/12.

There are now two possible approaches to calculate the kinetic energy of the tower:
The first possibility is to calculate the common center of gravity psT1 of the two rigid
bodies and to determine the total inertia matrix IsT1 about the common center of
gravity using Steiner’s Theorem. The second, much simpler possibility is to determine
the kinetic energy for each of the two rigid bodies separately. In the solution in
Maple both approaches are presented. Here, the steps for the second possibility,
i.e. the separate determination of the kinetic energy of the two rigid bodies, are
presented. Starting from the position psZ1 of the center of gravity of the cylinder
in the body-fixed coordinate system, the position psZ0 in the inertial system can be
determined by applying the homogeneous transformation H1

0 from Exercise 4.2. The
corresponding velocity vsZ0 = ṗsZ0 is immediately obtained with the Jacobian matrix
(Jv)sZ0 to

vsZ0 = (Jv)sZ0 q̇ =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







ω1

v2

ω3

ω4

v5




= 0 (5.33)
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and thus T sZt = 0. The rotational part T sZr results in the form

T sZr = 1
2 q̇T

(
(Jω)sZ0

)T
R1

0IsZ1
(
R1

0
)T

(Jω)sZ0 q̇ = 1
2I

sZ
zz,1ω

2
1 (5.34)

cf. (5.12). Therein, the Jacobian matrix (Jω)sZ0 corresponds to the Jacobian matrix
(Jω)sT0 calculated in Exercise 4.4, since, of course, the cylinder rotates at the same
speed as the entire tower with jib.

In an analogous way, the components of the kinetic energy of the cuboid can be
determined to be

T sQt = 1
2mQ

(
l1x
2

)2
ω2

1 (5.35a)

T sQr = 1
2I

sQ
zz,1ω

2
1 . (5.35b)

A further representation of the kinetic energy is possible by the mass matrix MsT

of the tower, see (5.21) This is calculated for the considered subsystem with

MsT (q) =
(
(Jv)sZ0

)T
(Jv)sZ0 mZ +

(
(Jv)sQ0

)T
(Jv)sQ0 mQ

+
(
(Jω)sZ0

)T
IsZ0 (Jω)sZ0 +

(
(Jω)sQ0

)T
IsQ0 (Jω)sQ0

(5.36)

to

MsT (q) =




l21x
4 mQ + IsZzz,1 + IsQzz,1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, (5.37)

and T sT = T sZt + T sQt + T sZr + T sQr = 1
2 q̇TMsT (q)q̇.

For the trolley it is assumed that the center of gravity psK0 lies at the origin of
the coordinate system (02x2y2z2). The inertia matrix in this body-fixed coordinate
system is given by the diagonal matrix IsK2 = diag

(
IsKxx,2, I

sK
xx,2, I

sK
xx,2

)
. The mass

matrix MsK(q) of the trolley is calculated analogously to (5.36) with

MsK(q) =
(
(Jv)sK0

)T
(Jv)sK0 mK +

(
(Jω)sK0

)T
IsK0 (Jω)sK0 (5.38)
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to

MsK(q) =




s2
2mK + IsKzz,2 0 0 0 0

0 mK 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




. (5.39)

Thus, the kinetic energy can be calculated to

T sK = 1
2mKv

2
2 + 1

2
(
mKs

2
2 + IsKzz,2

)
ω2

1 . (5.40)

Finally, it is assumed for the load that it can be described as a point mass mL. This
means that the inertia matrix of the load vanishes (IsL5 = 0), whereby the rotational
part of the kinetic energy of the load also becomes zero. The calculation of the mass
matrix is done according to (5.21) by

MsL(q) =
(
(Jv)sL0

)T
(Jv)sL0 mL (5.41)

and the kinetic energy is calculated from T sL = 1
2 q̇TMsL(q)q̇. The resulting expres-

sion is relatively extensive, which is why it is not given in the lecture notes.
Since the position of the centers of gravity psT0 and psK0 of the tower and the trolley

do not change in z0-direction (i.e. in the direction of gravity) due to the motion, their
potential energy is constant and can be chosen to be zero, i.e. V sT = V sK = 0. To
calculate the potential energy of the load, one defines the unit vector eT

g =
[
0 0 −1

]

in the direction of gravity and obtains according to (5.20)

V sL = −mLgeT
g psL0 = mLg(h1 − s5 cos(φ3) cos(φ4)) . (5.42)

Solution in Maple: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

5.2 Euler-Lagrange Equations
The Euler-Lagrange equations derived in this section allow the determination of the
equations of motion of rigid body systems based on the kinetic and potential energy. The
starting point of the derivation is the conservation of momentum (3.33) applied to a point
mass m in the Cartesian inertial coordinate system (00x0y0z0)

mp̈ = f , (5.43)
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where fT =
[
fx fy fz

]
denotes the sum of all forces acting on the point mass and

pT =
[
px py pz

]
denotes the position vector from the coordinate origin 00 to the point

mass. The position of a point mass whose motion is not subject to any constraints is
uniquely determined by specifying the three translational displacements px, py and pz
with respect to the inertial coordinate system. One then also says that the point mass
has 3 degrees of freedom. In contrast, the configuration of a freely movable rigid body
is described by 6 degrees of freedom, namely 3 degrees of freedom for the translational
displacement and 3 degrees of freedom of rotation to describe the orientation of the rigid
body relative to the inertial system.

Now, in general, the motion of a rigid body system is subject to constraints that must
be taken into account. Consider, for example, the motion of a mass on an inclined plane
according to Figure 5.3(a) with the constraint py = a(1 − px/b) or the spherical pendulum
according to Figure 5.3(b) with the constraint

p2
x + p2

y + p2
z = l2 . (5.44)

ey

a

px

00

py

b ex

ey

ex

ez

px

pz

py

l

(a) (b)

00

Figure 5.3: Constraints.

Another example are two mass particles i and j of a rigid body, which can be thought
of as being connected by a line of fixed length lij . Thus, the positions pi and pj of the
two mass particles must satisfy the constraint ∥pi − pj∥2

2 = (pi − pj)T(pi − pj) = l2ij .
If a constraint can be expressed in the form

f(p1,p2, . . . , t) = 0 , (5.45)

then one speaks of a holonomic constraint. Constraints that cannot be represented in this
way are called nonholonomic. These include inequality constraints

f(p1,p2, . . . , t) ≥ 0 , (5.46)

as they occur, for example, when a point mass moves in a spherical shell with radius a in
the form a2 − ∥p∥2

2 ≥ 0. Also, constraints that explicitly depend on the velocity and are
not integrable, i.e,

f(p1,p2, . . . , ṗ1, ṗ2, . . . , t) = 0 , (5.47)

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



5.2 Euler-Lagrange Equations Page 97

are nonholonomic. In some literature, constraints according to (5.45) and (5.47) are
also classified as geometric and kinematic constraints. A typical case of a nonholonomic
(kinematic) constraint is the rolling of a disk on a plane.

One can easily see that a system of N point masses that is free of constraint has
3N independent coordinates or degrees of freedom. If, for example, there are (3N − n)
holonomic constraints of the form

fj(p1,p2, . . . ,pN , t) = 0, j = 1, . . . , (3N − n) , (5.48)

then it is immediately obvious that

(A) the coordinates are no longer linearly independent of each other, and

(B) constraint forces must occur in order to comply with the constraints, which are not
known a priori.

With the help of the (3N − n) holonomic constraints, it is now possible to eliminate
(3N − n) of the 3N coordinates or to introduce n new independent coordinates qi, i =
1, . . . , n, by which all (old) coordinates can be expressed in the form

pj = pj(q1, q2, . . . , qn, t) = pj(q, t), j = 1, . . . , N . (5.49)

One then also says that the system has n degrees of freedom and the n new independent
coordinates qi, i = 1, . . . , n, or qT =

[
q1 · · · qn

]
are called generalized coordinates.

If one decomposes the forces fi acting on the mass particles into (external) applied forces
f e
i and constraint forces f z

i according to (B), then the equations of motion (5.43) for the
system of N point masses are

mip̈i = f e
i + f z

i , i = 1, . . . , N . (5.50)

Note that (5.48) and (5.50) provide only (6N − n) equations for determining the 6N
unknowns pi and f z

i , i = 1, . . . , N . If one considers, for example, the frictionlessly sliding
mass on the inclined plane according to Figure 5.4(a), then one has two equations of
motion and one constraint for the unknown quantities px, py and f z

x, f z
y . The missing

equation is given by the fact that the constraint force f z is perpendicular to the inclined
plane.

In general, the missing equations are obtained from the principle of virtual work. This
states that the sum of the work done by the constraint forces is equal to zero. Note,
however, that this statement is not valid if the constraints are time-dependent, e.g. the
inclined plane changes with time. For this reason, we introduce the concept of virtual
displacement of a system. The system is held fixed at a time t and in this fixed state an
arbitrary infinitesimal displacement δpi compatible with the constraints (5.45) is then
performed. For the spherical pendulum of Figure 5.4(b), for example, this means that the
following relation

(px + δpx)2 + (py + δpy)2 + (pz + δpz)2 = l2 (5.51)
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must be fulfilled. Taking into account (5.44) and neglecting second-order terms, i.e.
(δpx)2 = (δpy)2 = (δpz)2 = 0, (5.51) follows to

pxδpx + pyδpy + pzδpz = 0 . (5.52)

ey

a
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py
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00
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f z
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f z
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mg

mg

Figure 5.4: Constraint forces.

The principle of virtual work now states that the sum of the work δW z done by the
constraint forces f zi during a virtual displacement is equal to zero, i.e., for the system of
N point masses

δW z =
N∑

i=1
(f z
i )Tδpi = 0 . (5.53)

Considering again the spherical pendulum of Figure 5.4(b), then according to (5.53)
obviously the condition

f z
xδpx + f z

yδpy + f z
z δpz = 0 (5.54)

must be fulfilled. Now, assuming pz ̸= 0, solve (5.52) for δpz and substitute this into
(5.54), this yields (

f z
x − px

pz
f z
z

)
δpx +

(
f z
y − py

pz
f z
z

)
δpy = 0 (5.55)

and because of the independence of δpx and δpy the conditions

f z
x = px

pz
f z
z and f z

y = py
pz
f z
z (5.56)

must hold. This means that the constraint force f z =
[
f z
x f z

y f z
z

]T
must point in the

direction of the massless rod of length l, compare Figure 5.4(b). In an analogous way, one
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can show that the constraint force in the case of the frictionlessly sliding mass on the
inclined plane is perpendicular to the plane, see Figure 5.4(a).

Usually, one is not interested in the constraint forces, which is why they are calculated
from (5.50) and substituted into (5.53). This gives the so-called D’Alembert’s principle in
the form

N∑

i=1
(mip̈i − f e

i )Tδpi = 0 . (5.57)

Now, if we assume that the system has n degrees of freedom and can be described according
to (5.49) by the generalized coordinates qj , j = 1, . . . , n, then for the virtual displacement
(note that time t is kept constant during the virtual displacement)

δpi =
n∑

j=1

∂pi
∂qj

δqj (5.58)

and (5.57) follows to
n∑

j=1

N∑

i=1
mip̈T

i

∂pi
∂qj

δqj =
n∑

j=1
fq,jδqj (5.59)

with

fq,j =
N∑

i=1
(f e
i )T∂pi

∂qj
. (5.60)

Here, fq,j , j = 1, . . . , n, denotes a component of the generalized force fq =
[
fq,1 fq,2 · · · fq,n

]T
.

This does not necessarily have the dimension of a force, since the associated general-
ized coordinate qj does not necessarily have the dimension of a length (hence the term
generalized). However, the product q̇jfq,j must in any case result in a power.

Now applying the product rule of differentiation to the left side of (5.59) gives

N∑

i=1
mip̈T

i

∂pi
∂qj

=
N∑

i=1

(
d
dt

(
miṗT

i

∂pi
∂qj

)
−miṗT

i

d
dt
∂pi
∂qj

)
. (5.61)

Using the velocities vi
vi = ṗi =

n∑

j=1

∂pi
∂qj

q̇j + ∂pi
∂t

(5.62)

or
∂vi
∂q̇j

= ∂pi
∂qj

and d
dt
∂pi
∂qj

=
n∑

k=1

∂2pi
∂qj∂qk

q̇k + ∂2pi
∂qj∂t

= ∂vi
∂qj

(5.63)

(5.61) follows to

N∑

i=1
mip̈T

i

∂pi
∂qj

=
N∑

i=1

(
d
dt

(
mivT

i

∂vi
∂q̇j

)
−mivT

i

∂vi
∂qj

)
= d

dt
∂

∂q̇j
T − ∂

∂qj
T (5.64)
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with the translational part of the kinetic energy T according to (5.6)

T = 1
2

N∑

i=1
mivT

i vi . (5.65)

Substituting (5.64) into (5.59) yields
n∑

j=1

(
d
dt

∂

∂q̇j
T − ∂

∂qj
T − fq,j

)
δqj = 0 . (5.66)

Since the virtual displacements δqj , j = 1, . . . , n, are independent of each other, one
immediately obtains n ordinary differential equations of second order (Euler-Lagrange
equations), which describe the motion of the system

d
dt

∂

∂q̇j
T − ∂

∂qj
T = fq,j , j = 1, . . . , n (5.67)

with the generalized coordinates qj and the generalized velocities q̇j .

Note 5.1. This derivation of the Euler-Lagrange equations can be generalized to rigid
body systems, i.e., for bodies performing both translational and rotational motion.
Using the total kinetic energy of the rigid body system according to (5.19), one
obtains the same expression as in (5.67).

The generalized forces fq can be described as the sum of generalized forces, which can be
derived from a scalar potential function V (q) (see e.g. (5.20)), and from externally applied
generalized forces as well as dissipative generalized forces (see Section 3.5), summarized
in the vector fnpq . Thus

fq,j = fnpq,j − ∂

∂qj
V (5.68)

holds. The Euler-Lagrange equations (5.67) can thus be formulated in the form
d
dt

∂

∂q̇j
L− ∂

∂qj
L = fnpq,j , j = 1, . . . , n, (5.69)

with the Lagrangian L = T − V (Lagrangian = kinetic energy minus potential energy).
In (5.60) the generalized force fq of an external force f e was calculated. To generalize

this formulation to external forces and torques, consider an external force f e or an external
torque τ e. The power supplied by the force f e or the torque τ e is calculated to

Pf = (f e)Tve or Pτ = (τ e)Tωe (5.70)

with the corresponding velocity vector ve = ṗe at the point of application pe of the force.
Furthermore, ωe denotes the vector of the angular velocity of the rigid body on which the
external torque acts. Note that the components of f e and ve or of τ e and ωe must be
expressed with respect to the identical coordinate system. In Section 4.6 it was shown
that ve and ωe can be written using the manipulator Jacobian matrices in the form

ve = (Jv)e(q)q̇ and ωe = (Jω)e(q)q̇ , (5.71)
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see (4.65). Substituting (5.71) into (5.70), one obtains from

Pf = (f e)T(Jv)e(q)︸ ︷︷ ︸
fT
q,f

q̇ or Pτ = (τ e)T(Jω)e(q)︸ ︷︷ ︸
fT
q,τ

q̇ (5.72)

immediately the generalized forces corresponding to f e and τ e

fq,f = ((Jv)e)Tf e and fq,τ = ((Jω)e)Tτ e . (5.73)

The Euler-Lagrange equations allow a very systematic calculation of the equations of
motion based on the kinetic and potential energy of the rigid body system. In the context
of control engineering questions, this formulation is also chosen because the energies play
an important role in the (nonlinear) control design.

Note 5.2. The Euler-Lagrange equations (5.69) still lead to the correct equations of
motion even if the generalized forces do not originate from a potential of the form
V (q), but from a generalized potential V̄ (q, q̇) that satisfies the following condition

fq,j = − ∂

∂qj
V̄ + d

dt

(
∂

∂q̇j
V̄

)
. (5.74)

This is the case, for example, when describing electromagnetic forces on moving
charges.

Note 5.3. The Euler-Lagrange equations (5.67) can also be derived via a variational
principle, the Hamilton’s principle. In its integral formulation for conservative systems,
this states that the motion of a system between times t1 and t2 takes place in such
a way that the line integral

∫ t2
t1
Ldt with L = T − V is an extremum for the path

traversed or the variation of the integral vanishes. Although this will not be discussed
further here, it should be pointed out that this formulation can be formally extended
very elegantly to the case of distributed-parameter systems (systems with infinitely
many degrees of freedom, described by partial differential equations).

Example 5.3 (Spherical Pendulum). As a simple example, consider the spherical
pendulum of Figure 5.5 with the point mass m and the length l as well as an external
force f e always acting in the direction of the negative ex axis. The point mass has
three degrees of freedom and the rigid rod of length l gives a holonomic constraint
p2
x + p2

y + p2
z = l2. Thus, the spherical pendulum has two degrees of freedom (n = 2)

and the two angles θ and φ are chosen as generalized coordinates.
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ex
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Figure 5.5: Spherical pendulum with external force f e.
The position vector p from the origin 0 of the inertial coordinate system (00x0y0z0)

to the point mass m is calculated in the form

p =
[
l sin(θ) cos(φ) −l cos(θ) l sin(θ) sin(φ)

]T
. (5.75)

The kinetic energy is then obtained according to (5.65) to

T = 1
2mṗTṗ = 1

2ml
2
(
θ̇2 + φ̇2 sin2(θ)

)
. (5.76)

If one defines that for θ = 0 the potential energy V is equal to zero, then with the
acceleration due to gravity g the potential energy follows to

V = mgl(1 − cos(θ)) . (5.77)

The external force is f e =
[
−f e

x 0 0
]T

and therefore the generalized forces
according to (5.60) follow to

fθ = (f e)T∂p
∂θ

= −f e
xl cos(θ) cos(φ) , fφ = (f e)T ∂p

∂φ
= f e

xl sin(θ) sin(φ) . (5.78)

The Euler-Lagrange equations (5.69) can now be formulated with the help of the
Lagrangian L = T − V in the form

d
dt

∂

∂θ̇
L− ∂

∂θ
L = fθ and d

dt
∂

∂φ̇
L− ∂

∂φ
L = fφ (5.79)

or

ml2θ̈ −ml2φ̇2 cos(θ) sin(θ) +mgl sin(θ) = −f e
xl cos(θ) cos(φ) (5.80a)

ml2
(
φ̈ sin2(θ) + 2φ̇θ̇ cos(θ) sin(θ)

)
= f e

xl sin(θ) sin(φ). (5.80b)
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As a result of the Euler-Lagrange equations, ordinary differential equations of second
order are always obtained which contain the second time derivatives of the generalized
coordinates. For a state space representation of the form ẋ = f(x,u), x(t0) = x0 with
the state x and the input u according to (1.5), one typically chooses the generalized
coordinates qj , j = 1, . . . , n and the generalized velocities q̇j , j = 1, . . . , n as state
variables. For the example of the spherical pendulum, the state variables are given by
x =

[
θ ωθ φ ωφ

]T
, with ωθ = θ̇, ωφ = φ̇ and the input variable by u = f e

x. The
system of explicit ordinary differential equations of first order equivalent to (5.80) is
then

ẋ1 = x2 (5.81a)

ẋ2 = 1
ml2

(
−ul cos(x1) cos(x3) +ml2x2

4 cos(x1) sin(x1) −mgl sin(x1)
)

(5.81b)

ẋ3 = x4 (5.81c)

ẋ4 = 1
ml2 sin2(x1)

(
ul sin(x1) sin(x3) − 2ml2x4x2 cos(x1) sin(x1)

)
. (5.81d)

Solution in Maple: SphaerischesPendel.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Example 5.4 (Ball on Beam). Figure 5.6 shows a ball with mass mK and radius rK
rolling on a rotatably mounted beam. The moment of inertia of the beam about the
axis of rotation (z axis) is IBzz and the input variable is given by the external torque
τ e about the axis of rotation. The system has two mechanical degrees of freedom
and the beam angle φ1 and the distance r of the center of the ball from the y axis of
the beam-fixed coordinate system (01x1y1z1) are chosen as generalized coordinates.

Referenz
Referenz

0

px

py

x0

y0

x1

y1

z0 = z1

rK

r

ϕ1

ϕ2

τ e

Figure 5.6: Ball on beam.
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The kinetic energy of the system is composed of the translational part Tt,K and
the rotational part Tr,K of the ball as well as the rotational part Tr,B of the beam.
To calculate Tt,K , the vector from the origin 0 of the inertial coordinate system
(00x0y0z0) to the center of the ball (center of gravity) is first written in the form

psK =




r cos(φ1) − rK sin(φ1)
r sin(φ1) + rK cos(φ1)

0


 . (5.82)

The translational part of the kinetic energy of the ball Tt,K is then calculated according
to (5.6) to

Tt,K = 1
2mK

(
ṗsK

)T
ṗsK = 1

2mK

(
r2φ̇2

1 + (ṙ − rKφ̇1)2
)

. (5.83)

For the rotational part of the kinetic energy of the ball Tr,K , note that the moment
of inertia of the ball IsKzz about the axis of rotation (parallel to the z-axis through
the center of the ball) according to (3.123) is as follows

IsKzz = 2
5mKr

2
K . (5.84)

Now, to calculate the angular velocity of the ball about the axis of rotation (z0-axis),
note that due to the rolling motion of the ball, the relationship

ṙ = −rKφ̇2 , (5.85)

holds. With respect to the beam-fixed coordinate system (00x0y0z0), the ball rotates
with the angular velocity φ̇2 about the z1 axis. However, since the beam also rotates
about the z0-axis with the angular velocity φ̇1, the effective angular velocity of the
ball results from the sum of both rotations to φ̇1 + φ̇2. The rotational part of the
kinetic energy is then

Tr,K = 1
2I

sK
zz (φ̇1 + φ̇2)2 = 1

2I
sK
zz

(
φ̇1 − ṙ

rK

)2
. (5.86)

The rotational part of the kinetic energy of the beam is calculated to be

Tr,B = 1
2I

sB
zz φ̇

2
1 . (5.87)

Assuming that for φ1 = 0 the potential energy V is equal to zero, then with the
acceleration due to gravity g the potential energy follows to

V = mKg(r sin(φ1) + rK cos(φ1)) −mKgrK . (5.88)
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With the Lagrangian

L(φ1, φ̇1, r, ṙ) = Tt,K + Tr,K + Tr,B − V (5.89)

the equations of motion are obtained (see (5.69))

d
dt

(
∂

∂ṙ
L(φ1, φ̇1, r, ṙ)

)
− ∂

∂r
L(φ1, φ̇1, r, ṙ) = 0 (5.90a)

d
dt

(
∂

∂φ̇1
L(φ1, φ̇1, r, ṙ)

)
− ∂

∂φ1
L(φ1, φ̇1, r, ṙ) = τ e (5.90b)

or
(
mK + IsKzz

r2
K

)
r̈ −

(
IsKzz
rK

+mKrK

)
φ̈1 −mKrφ̇

2
1 +mKg sin(φ1) = 0 (5.91a)

−
(
mKrK + IsKzz

rK

)
r̈ +

(
IsKzz + IsBzz +mK

(
r2 + r2

K

))
φ̈1

+2mKrṙφ̇1 +mKg(r cos(φ1) − rK sin(φ1)) = τ e . (5.91b)

Solution in Maple: KugelaufBalken.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise 5.1. Bring the system (5.91) into state space representation ẋ = f(x,u),
x(t0) = x0 with the state x =

[
φ1 φ̇1 = ω1 r ṙ = v

]T
and the input u = τ e.

Furthermore, calculate the stationary equilibrium points of the system.

Solution of exercise 5.1. The equilibrium points of the system are φ1,R = 0, ω1,R = 0,
rR is arbitrary, vR = 0 and τ e

R = gmKrR.

Exercise 5.2 (Cart with Pendulum). Given is the mechanical system of Figure 5.7.
The cart has the mass mW , is driven by a driving force f e and is attached to the
inertial system with a linear spring (spring constant cW > 0, relaxed length sW0).
Furthermore, assume that the friction can be approximately expressed by a velocity-
proportional force fR = −dRṡ, dR > 0. The frictionlessly mounted pendulum rod is
homogeneous with density ρS and cuboid-shaped with length lS , width bS and height
hS . Calculate the equations of motion using the Euler-Lagrange equations (5.69).
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ex

ey

ez

cW

g

f emW A

lS

dRṡ

s

ϕ

bS

S

Figure 5.7: Cart with pendulum.

Solution of exercise 5.2. The mass of the pendulum is calculated to be mS =
ρSlSbShS and the moment of inertia about the center of gravity S is ISzz = 1

12mS

(
l2S + b2

S

)
.

The equations of motion are obtained to

(mW +mS)s̈+ 1
2mSlS cos(φ)φ̈− 1

2mSlS sin(φ)φ̇2 + cW (s− sW0) = f e − dRṡ

(5.92a)
1
2mSlS cos(φ)s̈+

(
ISzz + 1

4mSl
2
S

)
φ̈+ 1

2mSglS sin(φ) = 0 . (5.92b)

Solution in Maple: WagenmitPendel.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

So far it has been shown that the equations of motion of a mechanical rigid body
system with the generalized coordinates qT =

[
q1 q2 . . . qn

]
can be calculated from

the Euler-Lagrange equations (5.69). Furthermore, it has been shown that for rigid
body systems the kinetic energy can be represented using the mass matrix M(q) in the
form (5.21). Finally, the potential energy for rigid body systems is independent of q̇, i.e.
V = V (q).

Under these assumptions, the equations of motion (5.69) can be written in matrix
notation in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = fnpq (5.93)
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or in component notation as follows
n∑

j=1
Mkj(q)q̈j +

n∑

j=1

n∑

i=1
cijk(q)q̇iq̇j + gk(q) = fnpq,k, k = 1, . . . , n (5.94)

with the so-called Christoffel symbols of the first kind

cijk(q) = 1
2

(
∂Mkj(q)
∂qi

+ ∂Mki(q)
∂qj

− ∂Mij(q)
∂qk

)
. (5.95)

As can be seen from (5.93), the equations of motion on the left-hand side contain three
different terms: (i) acceleration terms in which the second time derivative of the generalized
coordinates appears, (ii) terms in which the product q̇iq̇j occurs (centrifugal terms for
i = j and Coriolis terms for i ̸= j) and (iii) the terms of the potential forces which only
depend on q. The potential forces are calculated directly from the potential energy V (q)
via the relationship

g(q) =
[
g1(q) g2(q) . . . gn(q)

]T
with gk(q) = ∂V (q)

∂qk
. (5.96)

By comparing (5.94) with (5.93) one can see that the (k, j)th element Ckj of the matrix
C(q, q̇) can be calculated in the form

Ckj(q, q̇) =
n∑

i=1
cijk(q)q̇i (5.97)

from the Christoffel symbols of the first kind (5.95).

Note 5.4. For fnpq = 0 in (5.69) or (5.93), one speaks of a conservative system, a
system in which the total energy E = T + V does not change due to the motion or
no dissipation occurs in the system. To show that for fnpq = 0 the total energy E is
constant, one calculates the time derivative in the form

d
dtE = q̇TM(q)q̈ + 1

2 q̇TṀ(q)q̇ + ∂V

∂q q̇

= q̇T
(

M(q)q̈ + 1
2Ṁ(q)q̇ +

(
∂V

∂q

)T)
.

(5.98)

Substituting the equation of motion (5.93) gives

d
dtE = q̇T

(
−C(q, q̇)q̇ − g(q) + 1

2Ṁ(q)q̇ +
(
∂V

∂q

)T)

= 1
2 q̇T

(
Ṁ(q) − 2C(q, q̇)

)
q̇ = 1

2 q̇TN(q, q̇)q̇ .
(5.99)

This expression vanishes because N(q, q̇) is a skew-symmetric matrix.
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To prove this, write the (j, k)th component of N(q, q̇) in the form

Njk =
n∑

i

(
∂Mjk

∂qi
− 2cikj

)
q̇i

=
n∑

i

(
∂Mjk

∂qi
− ∂Mjk

∂qi
− ∂Mji

∂qk
+ ∂Mik

∂qj

)
q̇i

(5.100)

which gives

Njk =
n∑

i

(
−∂Mji

∂qk
+ ∂Mik

∂qj

)
q̇i . (5.101)

By interchanging the indices j and k one obtains analogously

Nkj =
n∑

i

(
−∂Mki

∂qj
+ ∂Mij

∂qk

)
q̇i (5.102)

and considering the symmetry of the mass matrixMki = Mik this leads toNjk = −Nkj .
This shows that Ė = 0 and thus the total energy E is constant in a conservative rigid
body system.

Exercise 5.3 (Rotatory Two-Mass Oscillator). In this example, a rotatory two-mass
oscillator as shown in Figure 5.8 is considered. It consists of two rigid bodies with
moments of inertia Is1xx,1 and Is2xx,2, respectively, about the respective axis of rotation
in x-direction of the coordinate system 0. It is assumed that the axes of rotation
of bodies 1 and 2 simultaneously correspond to a principal axis of inertia, so that
no products of inertia occur. The rigid bodies are coupled to each other or to the
inertial system by linear torsional springs (stiffnesses c1 or c12, relaxed positions for
φ1 = 0 or φ1 − φ2 = 0) and viscous rotary dampers (damping constants d1 or d12).
Furthermore, an external torque τ1 or τ2 acts on each of the bodies.

x0

y0

00

d1

c1

ϕ1

Is1
xx,1

τ1

d12

c12

ϕ2

Is2
xx,2

τ2

Figure 5.8: Rotatory two-mass oscillator.
Determine the equations of motion of this system in the representation (5.93).

Solution of exercise 5.3. The rotatory kinetic energies of the two rigid bodies result
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in
T1 = 1

2I
s1
xx,1ω

2
1 and T2 = 1

2I
s2
xx,2ω

2
2 (5.103)

with ω1 = φ̇1 and ω2 = φ̇2. The potential energy of the torsional springs is given by

Vc1 = 1
2c1φ

2
1 and Vc12 = 1

2c12(φ2 − φ1)2. (5.104)

The torques on the rigid bodies result in

τe1 = −τ1 − d1ω1 − d12(ω1 − ω2) (5.105a)
τe2 = −τ2 + d12(ω1 − ω2) (5.105b)

The vector of generalized forces fnpq due to these torques without potential can then
be calculated directly to

fnpq =
[
τe1

τe2

]
. (5.106)

Thus the equations of motion can be specified in the form

d
dtφ1 = ω1 (5.107a)
d
dtω1 = 1

Is1xx,1
(−c1φ1 − d1ω1 + c12(φ2 − φ1) + d12(ω2 − ω1) − τ1) (5.107b)

d
dtφ2 = ω2 (5.107c)
d
dtω2 = 1

Is2xx,2
(−c12(φ2 − φ1) − d12(ω2 − ω1) − τ2) (5.107d)

If a representation according to (5.93) is used to calculate the equations of motion,
then the mass matrix M, the Coriolis matrix C and the vector of potential forces g
are calculated to be

M =
[
Is1xx,1 0

0 Is2xx,2

]
, C = 0, and g =

[
c1φ1 + c12(φ1 − φ2)

−c12(φ1 − φ2)

]
. (5.108)

Solution in Maple: RotatorischerZweimassenschwinger.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Example 5.5 (Continuation Planar Manipulator). This example continues the planar
manipulator from Example 5.1. Starting from the mass matrix and the potential
energy of the system, the equations of motion of the system are now determined. It is
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now assumed that motors are installed in both joints, which introduce the torques τ1
and τ2 about the z-axis of the joints. Furthermore, it is assumed that viscous friction
with the friction coefficient d2 occurs in the second joint.

x0

y0
x1

y1

x 2y2

ϕ1

ϕ2

ls1

l1

l s2 l 2

g

de

ce

A

l0A

h
0A

Figure 5.9: Sketch of the planar manipulator.
In the first step, the vector of generalized forces without potential is determined.

The force of the damper at the end of the arm can be specified using re from (5.29)
in the form

fde = deṙe = de




l2 sin(φ1 + φ2)(ω1 + ω2) + l1 sin(φ1)ω1

−l2 cos(φ1 + φ2)(ω1 + ω2) − l1 cos(φ1)ω1

0


 . (5.109)

With the manipulator Jacobian matrix (Jv)e20 the corresponding vector of generalized
forces is calculated to

fq,de =
(
(Jv)e20

)T
fde = de

[
−l21ω1 − l1l2(2ω1 + ω2) cos(φ2) − l22(ω1 + ω2)

−l1l2ω1 cos(φ2) − l22(ω1 + ω2)

]
. (5.110)

The vector of generalized forces due to the torques of the motors τ T
1 =

[
0 0 τ1

]
,

τ T
2 =

[
0 0 τ2

]
is obtained using the manipulator Jacobian matrices from Example

4.3 to

fq,1 =
(
(Jω)1

0

)T
τ 1 =

[
τ1

0

]
, fq,2 = −

(
(Jω)1

0

)T
τ 2 +

(
(Jω)2

0

)T
τ 2 =

[
0
τ2

]
. (5.111)

It must be taken into account in the calculation of fq,2 that the torque τ 2 acts on
rod 1 and rod 2 according to the cutting principle. In the same way, the vector of
the generalized force due to the viscous friction τ T

d2 =
[
0 0 −d2ω2

]
is calculated

to be fT
q,d2 =

[
0 −d2ω2

]
.
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Thus, all intermediate quantities for the determination of the equations of motion
with the help of (5.93) are available. The results are not given due to the relatively
extensive expressions. For checking, the Coriolis matrix C is given

C =
[

−m2l1ls2 sin(φ2)ω2 −m2l1ls2 sin(φ2)(ω1 + ω2)
−m2l1ls2 sin(φ2)(ω1) 0

]
. (5.112)

Solution in Maple: Planarer_Manipulator.mw
In this Maple file all calculation steps and the intermediate and final
results are shown. Furthermore, you will find here a representation
of the numerical solution of the equations of motion as well as a calculation of
the equilibrium points of the system.
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise 5.4 (Continuation Tower Crane 2). This Exercise again considers the tower
crane from Exercises 4.2, 4.4 and Example 5.2. It is now assumed that the tower
(angle φ1) is driven by a motor with the torque τ1. Furthermore, the trolley (position
s2) is actuated by a motor with the force fLK and the rope (position s5) by a motor
with the force fS . For all degrees of freedom, viscous friction is assumed with the
damping coefficients dT of the tower, dLK of the trolley, dSt of the translational
motion of the rope (s5) and dSr of the rotational motion of the rope (φ3 and φ4).

Calculate the equations of motion of the system! Determine all equilibrium points
of the system and analyze the dynamic behavior of the tower crane by numerical
simulation in Maple!

Solution of exercise 5.4.

Solution in Maple: Turmdrehkran.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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A Exercises

This appendix contains several exercises and their solutions to support self-study.

Exercise A.1 (Drawbridge). To enable crossing the channel as well as the passage
of ships, the bridge shown in Figure A.1 can be raised by pulling on rope 2. The
bridge with mass mB and center of gravity SB is rotatably mounted at point B.
The girder with mass mT is rotatably mounted at point A, outside its center of
gravity ST . The length of rope 1 is chosen so that the girder and bridge are
always oriented parallel to each other. To reduce the tensile force in rope 2, a
counterweight m is mounted at the left end of the girder. Rope 2 wraps around the
cylindrical part of the girder with radius R and is fixed at point C. For the following
considerations, both ropes are assumed to be massless and all bearings are assumed to
be ideally frictionless. The acceleration due to gravity g acts as shown in Figure A.1.

girder

bridge

roll

lm

φB

ST

SB

lB

ls

m

rope 1

B

A g

ls

lT

fS2 rope 2
C

R

r

Figure A.1: Drawbridge.

The aim is to determine the bearing forces at A and B as well as the tensile forces
in ropes 1 and 2 such that the system is in equilibrium. Based on these results, the
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mass m should be determined so that the system is in equilibrium for fS2 = 0.

Solution of exercise A.1. From Figure A.1 it can be seen that the bridge and the
girder only influence each other via rope 1. If the bridge is cut free as shown in Figure
A.2, the only force acting on it, besides the bearing forces at B and the gravitational
force mBg, is the rope force fS1.

mBg

fB,y

fB,x

fS1

φB

Figure A.2: Free-body diagram of the bridge.

With Figure A.2, the force balances in the x- and y-directions are obtained as

ex : 0 = fB,x (A.1a)
ey : 0 = fB,y −mBg + fS1. (A.1b)

From the force balance, two equations are obtained for the three unknowns fB,x, fB,y
and fS1. To uniquely determine these three quantities, a third equation in the form
of the torque balance is therefore necessary. A reference point must be chosen for the
formulation of the torque balance. In order to minimize the number of unknowns and
thus the effort for solving the resulting system of equations, it is advisable to choose
bearing B as the reference point (analogously, the point of application of the rope
force fS1 could have been chosen). The torque balance about the z-axis is obtained
as

ez : 0 = −mBglB cos(φB) + fS1ls cos(φB). (A.2)

Simple rearrangement of the force and torque balance leads to

fS1 = mBg
lB
ls

(A.3)

for the tensile force in the rope and

fB =
[
fB,x

fB,y

]
=


 0
mBg

(
1 − lB

ls

)

 (A.4)
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for the bearing force at point B.
To calculate the bearing force fA at point A and the tensile force fS2 in rope 2,

the girder is now cut free according to Figure A.3.

mg

fA,y

fA,x

fS1

mT g
fS2

Figure A.3: Free-body diagram of the girder.

From the sketch, the force balances can be immediately read as

ex : 0 = fA,x (A.5a)
ey : 0 = −mg − fS2 + fA,y −mT g − fS1 (A.5b)

Since fS1 is already known from the previous calculations, two equations are obtained
for three unknowns, as was the case for the bridge. To calculate fA,x, fA,y and fS2, it
is therefore again necessary to formulate the torque balance. Again, it is advantageous
to choose the bearing as the reference point for the torque balance. The torque
balance about point A in the z-direction is obtained as

ez : 0 = mglm cos(φB) + fS2R−mT glT cos(φB) − fS1ls cos(φB). (A.6)

Rearranging the force and torque balance yields

fS2 = mBglB +mT glT −mglm
R

cos(φB) (A.7)

and

fA =


 0
mBg

(
lB
ls

+ lB
R cos(φB)

)
+mT g

(
1 + lT

R cos(φB)
)

−mg
(
1 + lm

R cos(φB)
)

.

(A.8)
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If the girder is now to be in equilibrium for fS2 = 0, the torque balance gives

m = mBlB +mT lT
lm

. (A.9)

Solution in Maple: Klappbruecke.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.2 (Rotating Rigid Body). In Fig. A.4 a rigid body system is shown,
consisting of a frame (homogeneous mass density ρ, thickness d, width b) that is
rotatably mounted at point A and a mass mm (point mass). The frame is connected
to the ground at its left end by a linear spring with stiffness c. The system is subjected
to gravity g in the negative ey direction.

mm

lm
l1

l2

l2 d

d

dA

g

ex

ey

ez

ϕcl0f

Figure A.4: Sketch of a rotatably mounted rigid body system.

For this system, the support forces and the preload of the spring are to be determined
for the case φ = 0 such that the system is in equilibrium. Furthermore, the equations
of motion for the rotational motion of the rigid body system are to be determined
using the principle of conservation of angular momentum.

Solution of exercise A.2. In the first step, the support forces and the necessary
spring preload are determined for φ = 0. For this purpose, the support (at point A)
must be removed and replaced conceptually by the forces and toruqes occurring at
the support. The support shown in Fig. A.4 does not allow movement in the x- and
y-directions, but only a rotation about the z-axis. Therefore, this support can be
equivalently replaced by the forces fx and fy, see Fig. A.5. The effect of the spring is
replaced by the spring force fc.
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fc

m1g

m2g

m3g
mmg

fx

fy

Figure A.5: Sketch of a rotatably mounted rigid body system.

To take into account the effect of gravity, the gravitational force mgg, with the
total mass mg, must be applied at the center of gravity of the rigid body system. For
efficient calculation, it proves useful to divide the entire rigid body system into four
sub-bodies, see Fig. A.5. For each of these sub-bodies, the position of the center of
gravity, the mass, and the gravitational force can then be easily determined.

If we first consider the sub-body framed in blue, its mass is calculated from (3.24)
to be

m1 =
∫

V
ρdV = l2dbρ. (A.10)

The center of gravity of the body framed in blue is calculated according to (3.28).
For the position of the center of gravity in the x direction, one obtains according to
(3.29), under the initially assumed condition φ = 0,

rSm1,x = 1
m1

∫ b/2

z=−b/2

∫ l1+2d

y=l1+d

∫ 0

x=−l2
xρ dx dy dz = − l2

2 . (A.11)

Remark: Of course, the position of the center of gravity of the homogeneous
cuboid of mass m1 can be read directly from the sketch without evaluating these
integrals!

In an analogous manner, one obtains the position of the center of gravity in the y-
and z-directions. Thus, we have

r0
Sm1 =




−1
2 l2

l1 + 3
2d

0


, (A.12)

where the index 0 has been used to denote the case φ = 0.
The masses of sub-bodies 2 and 3 are m2 = d(l1 + 2d)bρ and m3 = l2dbρ and the
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positions of their centers of gravity can be determined to be

r0
Sm2 =




1
2d

d+ 1
2 l1

0


, r0

Sm3 =




d+ 1
2 l2

1
2d

0


, r0

Smm =




d+ lm

d

0


. (A.13)

Note that the mass mm is modeled as a point mass acting directly on the rotating
rigid body, as described in the problem statement.

For the further calculations, we still need the point of application r0
fc of the spring

force fc. This is given by

r0
fc =




−l2
d+ l1

0


. (A.14)

For the system to be in equilibrium according to Fig. A.5, the force equilibrium and
the torque equilibrium according to (3.12) must be satisfied. The force equilibrium
in the x-direction yields

ex : fx = 0, (A.15)

i.e., the support force in the x-direction must vanish. For the y-direction we obtain

ey : fc + fy −m1g −m2g −m3g −mmg = 0. (A.16)

To establish the torque equilibrium for a rotation about the z-axis, a possible pivot
point must be chosen. In the system under consideration, it is natural to choose
point A, i.e., the actual pivot point of the system. Note, however, that the torque
equilibrium must hold for any freely selectable pivot point of the free-body diagram
shown in Fig. A.5. By appropriately choosing the pivot point, it can be achieved
that certain unknown forces do not appear in the torque equilibrium, which can
significantly simplify the calculation.

If point A is chosen as the pivot point in the considered system, it is recognized
that the forces fx and fy do not contribute to the torque about this point. If, on
the other hand, the point of application of the spring force were chosen as the pivot
point, then fc would not appear in the torque equilibrium.

For the chosen pivot point A, the torque τ (A)
m1 is obtained by applying (3.10) to

τ
(A),0
m1 = r0

Sm1 × fSm1 =




−1
2 l2

l1 + 3
2d

0


×




0
−m1g

0


 =




0
0

m1g
1
2 l2


, (A.17)
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and thus τ (A),0
m1,z = m1g

1
2 l2. Again, the index 0 denotes the case φ = 0. The corre-

sponding torques of the other partial masses or the spring force are τ (A),0
m2,z = −m2gd/2,

τ
(A),0
m3,z = −m3g(d+ l2/2), τ (A),0

mm,z = −mmg(d+ lm) and τ
(A),0
fc,z = −fcl2.

Remark: Of course, for the considered case, where all forces are directed either
in the x- or y-direction, an evaluation of the cross product is not absolutely
necessary. Instead, one can simply use the rule force times lever arm to determine
the resulting torque. However, one must pay attention to the correct sign of the
torque when using this procedure.

If we now apply the torque equilibrium, we immediately obtain

fc = 1
l2

(
m1g

l2
2 −m2g

d

2 −m3g

(
d+ l2

2

)
−mmg(d+ lm)

)
. (A.18)

The necessary spring preload lf0 can be easily calculated with the length l0f of the
spring for the case φ = 0 from the equation

fc = −c
(
l0f − lf0

)
, (A.19)

with fc from (A.18). Substituting the solution for fc into the force equilibrium in the
y-direction yields the support force fy.

To determine the equations of motion of the system, the degrees of freedom of the
system must be identified. From Fig. A.4 it can be seen that the bearing at point A
only allows rotation about the z-axis, so that a rotation by the angle φ represents
the only degree of freedom of the system. The motion of the system can thus be
described directly in terms of the conservation of angular momentum according to
(3.119). This requires the effective torque of inertia of the system about the pivot
point A and the torques acting about this point.

To determine the moment of inertia I
(A)
zz about the pivot point, the moments

of inertia of the sub-bodies according to Fig. A.5 are first determined about their
respective centers of gravity. According to (3.124), one obtains for sub-body 1

I
(S)
zz,m1 = ρ

∫ b/2

z̃=−b/2

∫ d/2

ỹ=−d/2

∫ l2/2

x̃=−l2/2

(
x̃2 + ỹ2

)
dx̃ dỹ dz̃ = m1

12
(
l22 + d2

)
, (A.20)

where x̃, ỹ and z̃ denote the distances from the center of gravity of sub-body 1. Using
Steiner’s theorem (3.126), the moment of inertia of sub-body 1 about the pivot point
A can be determined as

I
(A)
zz,m1 = I

(S)
zz,m1 +m1

(
r2
Sm1,x + r2

Sm1,y
)
. (A.21)

The moments of inertia of the other sub-bodies can be obtained in an analogous
manner. Since the mass mm is modeled as a point mass, we have I(S)

zz,mm = 0. Note,
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however, that due to Steiner’s theorem, this does not imply I(A)
zz,mm = 0, but rather

I
(A)
zz,mm = mm(r2

Smm,x + r2
Smm,y)!

Remark: It would be possible to directly determine the moment of inertia
I

(A)
zz by using the distances to the pivot point instead of the distances x̃, ỹ and
z̃. However, in general, this approach leads to significantly more complicated
expressions for the integrals. Furthermore, the moments of inertia about the
center of gravity are available in tables for many geometric bodies and can be
adopted directly.

As the second part of the angular momentum balance, the sum of the torques
is required. To determine this, the position of the centers of gravity and the point
of application of the spring force must be described as a function of the angle φ.
Starting from the position of the center of gravity r0

Sm1 for φ = 0, one obtains from
geometrical considerations (or by using the rotation matrix of a rotation about the
z-axis)

rSm1(φ) =




r0
Sm1,x cos(φ) − r0

Sm1,y sin(φ)
r0
Sm1,x sin(φ) + r0

Sm1,y cos(φ)
0


. (A.22)

With this result, the torque τ (A)
m1,z(φ) results from

τ
(A)
m1 (φ) = rSm1(φ) × fSm1 =




0
0

−
(
r0
Sm1,x cos(φ) − r0

Sm1,y sin(φ)
)
m1g


. (A.23)

The torques τ (A)
m2,z(φ), τ (A)

m3,z(φ) and τ
(A)
mm,z(φ) can be determined in the same way.

The determination of the torque due to the spring force fc, which changes as a
function of the angle φ due to the change in length of the spring, is somewhat more
difficult. The point of application of the spring results from the above considerations
as

rfc(φ) =




r0
fc,x cos(φ) − r0

fc,y sin(φ)
r0
fc,x sin(φ) + r0

fc,y cos(φ)
0


. (A.24)

To determine the current length of the spring, the base point rfcfp is determined in
the form

rfcfp =




−l2
d+ l1 − l0f

0


 (A.25)
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and the length of the spring can be determined from

lf (φ) = ∥rfc(φ) − rfcfp∥2. (A.26)

The spring force is of course directed along the connecting line between the base
point and the point of application, so that one immediately obtains

fc(φ) = c(lf (φ) − lf0)rfc(φ) − rfcfp
lf (φ) . (A.27)

The associated torque about the pivot point A is then given by τ
(A)
fc (φ) = rfc(φ) ×

fc(φ).
With these intermediate results, the angular momentum balance for the rotation

about point A can now be stated:

I(A)
zz

d2

dt2φ = τ (A)
z . (A.28)

Here, I(A)
zz denotes the sum of all moments of inertia and τ (A)

z is the sum of all torques
about point A, cf. (3.119).

Solution in Maple: DrehbarerStarrkoerper.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.3 (Holding Device). In a holding device according to Fig. A.6, a plate is
clamped in a housing with the help of a small roller. The plate has the mass m and
the width b. The roller with the diameter d has a negligible mass. At the contact
point between the roller and the housing A as well as at the contact point between
the roller and the plate B, the coefficient of static friction µH occurs. Between the
plate and the housing wall, there is an ideally smooth (frictionless) contact. The
angle α is known.
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ex

ey

ez

α
b

d
h

m

g A

B

C

Figure A.6: Structure of a holding device.

The minimum required coefficient of static friction µH and the minimum clamping
length h of the plate are sought, so that it is fixed in the holding device. In addition,
the maximum permissible mass of the plate, which can be fixed by the friction in the
device, is sought.

Solution of exercise A.3. Under the assumption that the plate is fixed in the device,
the considered system is in static equilibrium. Based on the force and torque balances
for the roller and the plate, the required coefficient of friction and the required
clamping length can be calculated.

The first step is to free the roller, the plate, and the housing. Fig. A.7 shows the
free body diagrams and the forces acting on them. The force at points A and B is
composed of a normal component fA,n and fB,n, respectively, as well as a tangential
component due to static friction fA,t and fB,t, respectively. Due to the ideally smooth
contact of the plate and the wall, there is no friction between these two bodies. As a
result, only the normal force fC,n acts at point C.
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ex

ey

ez

α
α

b

d

h

mg

AA

B

B

C C

fA,n

fA,n
fA,t

fA,t
fB,nfB,n

fB,t

fB,tfC,n

fC,n

Figure A.7: Free body diagram of the housing, roller and plate of the holding device
and the forces acting on them.

The force balance on the roller results in

ex : fA,n cos (α) + fA,t sin (α) − fB,n = 0 (A.29a)
ey : fA,n sin (α) − fA,t cos (α) − fB,t = 0 (A.29b)

for the x-direction and for the y-direction, respectively, under the angle α. With the
center of the roller as the reference point, the torque balance in the z-direction results
in

ez : fA,t
d

2 − fB,t
d

2 = 0 (A.30)

directly fA,t = fB,t. Substituting this relationship into (A.29b) and then rearranging
yields the relationship between the normal and frictional force at point A to

fA,t = sin (α)
1 + cos (α)fA,n. (A.31)

A comparison with (3.77) shows that the fraction in (A.31) can be interpreted as
the coefficient of friction. In order for the roller and also the plate to adhere, the
static friction coefficient µH at points A and B must be greater than the coefficient
of friction from (A.31). This results in the condition

µH ≥ sin (α)
1 + cos (α) (A.32)

for the static friction coefficient.
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Analogous to the previous approach, the determination of the minimum clamping
length h is carried out via the force and torque balance of the plate. The force balance
in the x-direction and in the y-direction is

ex : fB,n − fC,n = 0 (A.33a)
ey : fB,t −mg = 0. (A.33b)

The torque balance in the z-direction with the reference point B results in

ez : fC,nh−mg
b

2 = 0. (A.34)

From equation (A.33b) it can be seen that only the friction between the roller and
the plate counteracts the weight of the plate. Furthermore, it follows from (A.30)

fB,t = fA,t = mg. (A.35)

An analogous relationship results for the normal forces. Substituting equations
(A.29a) and (A.31) into (A.33a) yields

fC,n = fB,n = fA,n = 1 + cos (α)
sin (α) mg. (A.36)

By substituting this normal force into the torque balance (A.34), the minimum
clamping length of the plate follows after rearranging to

h = b sin (α)
2(1 + cos (α)) . (A.37)

From equations (A.32) and (A.37) it can be seen that neither the static friction
coefficient nor the clamping length depends on the mass of the plate. This property of
the holding device is also known as self-locking. Theoretically, the mass of the plate
can be arbitrarily large. This consideration is valid as long as there is no mechanical
deformation of the individual rigid bodies due to the acting forces.

Solution in Maple: Haltevorrichtung.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.4 (Quarter-car vertical model). Figure A.8 shows a quarter-car vertical
model. The wheel is modeled by a spring-damper system consisting of a spring
(stiffness cR) and a damper (viscous damping dR). The wheel mass is given by mR,
and the vehicle body is modeled as a lumped mass mA. The suspension is described by
a spring (stiffness cA) and a damper (velocity-dependent damping coefficient dA(vRA)
with vRA = vR−vA). For xA = xR = xU = 0, all springs are unstretched. To describe
road unevenness, the ground is parameterized by the displacement xU (t). The vertical
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coordinates of the wheel and the body are defined by xR and xA, respectively.
Determine the equations of motion and the static deflections for xU (t) = 0 for the

masses mA and mR!

mA

mR

cA

cR

dA(vRA)

dR

xA

xR

xU

g

Figure A.8: Vertical model of a suspension.

Solution of exercise A.4. To determine the equations of motion of the substitute
masses of the wheel and the vehicle body, the principle of conservation of linear
momentum is applied. For this purpose, the substitute masses are cut free, and the
corresponding spring and damper forces are applied to them. For the representation
according to Fig. A.9, it is assumed that xU > xR and xR > xA. For xU > xR,
the wheel spring is compressed, and the spring force acts against the compression.
Therefore, an upward force fcR acts on the wheel. For ẋU > ẋR, the ground moves
upwards faster than the substitute mass of the wheel. The damping force fdR acts
against the relative displacement and thus upwards on the wheel. The directions of
the spring and damper force between the body and the wheel are defined analogously.
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mAg

fdA fcA

fdA fcA

mRg

fdR fcR

Figure A.9: Free body diagrams of the suspension masses.

The spring and damper forces are calculated as

fcA = cA(xR − xA) fdA = dA(vRA)(ẋR − ẋA) (A.38a)
fcR = cR(xU − xR) fdR = dR(ẋU − ẋR). (A.38b)

After determining the forces acting on the substitute masses, the conservation of
linear momentum can be applied. This results in the equations of motion of the
substitute masses according to

mA
d
dtvA = fcA + fdA −mAg (A.39a)

mR
d
dtvR = fcR + fdR − fcA − fdA −mRg, (A.39b)

with the velocities vA = ẋA and vR = ẋR.
The static deflections of the masses mA and mR can be determined for xU = 0

from the conservation of linear momentum for ẋA = ẋR = ẋU = ẍA = ẍR = 0. Then,
it holds

0 = fcA −mAg (A.40a)
0 = fcR − fcA −mRg. (A.40b)

Substituting the spring forces and solving for the unknown positions xR and xA yields

xR = −(mA +mR)g
cR

. (A.41)
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and

xA = −(mA +mR)g
cR

− mAg

cA
. (A.42)

Solution in Maple: VertikalmodellFahrzeug.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.5 (Suspension). The arrangement shown in Fig. A.10 represents a suspen-
sion as used in racing. This suspension consists of the control arms Q1 and Q2, as
well as the pushrod D. These are hinged to the vehicle. The normal force fN and the
lateral force fS act on the wheel. It is assumed that these two forces act as point
loads on the wheel, as shown in the figure. The forces in the control arms Q1 and Q2
as well as in the pushrod D are to be determined. Note that the control arms and the
pushrod can only absorb forces in the respective axis of the rod due to their bearings.

fN

fS

α

d

a

b

Q1

Q2

D x

y

Figure A.10: Suspension of a race car.

Solution of exercise A.5. The control arms Q1 and Q2 as well as the pushrod D
are considered as rods in this exercise. In order to be able to calculate the forces
in the rods Q1, Q2 and D, the suspension must be cut free from the vehicle. It is
recommended to make the cut directly through the rods, as shown in Fig. A.11.
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fN

fS

fQ1

fQ2

fD

Figure A.11: Free body diagram of the suspension.

After cutting free the suspension, the equilibrium conditions can be formulated.
The force balances in x- and y-direction read

ex : 0 = fQ1 + fQ2 − fS + fD cos(α) (A.43a)
ey : 0 = −fD sin(α) + fN . (A.43b)

The torque balance can be written around any point. To simplify further calculations,
it is advantageous to write the torque balance around a point through which the
largest number of unknown forces pass. In this example, it is the intersection of
fQ2 and fD, whereby the torque balance only contains fQ1 as an unknown. The
corresponding torque balance reads

ez : 0 = −fQ1b− fSa+ fNd (A.44)

Solving the three equilibrium conditions for the forces in the rods yields

fD = fN
sin(α) (A.45a)

fQ1 = fNd− fSa

b
(A.45b)

fQ2 = fS

(
1 + a

b

)
− fN

(
cot(α) + d

b

)
. (A.45c)

Solution in Maple: Radaufhaengung.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.6 (Rotating Plate with Mass). Consider the rotating plate shown in
Figure A.12, which rotates with a constant angular velocity ω. The mass is denoted
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by m, the coefficient of static friction between the surface and the mass by µH , the
inclination angle of the rotating plate by β, the distance of the mass to the spring
suspension point by sm, the unstretched length of the spring by s0, the distance
between the spring suspension point and the axis of rotation with respect to the
surface by l, and the acceleration due to gravity by g.

β

surface µH

m

c, s0

sm

l

ω

g

Figure A.12: Sketch of the rotating plate with mass.

In the following investigations, a stationary point is considered, i.e., the velocity
ṡm and the acceleration s̈m of the mass m are zero. For this system, all acting forces
should be sketched and named, whereby the forces should be expressed as functions
of the given quantities. Furthermore, the static friction conditions that apply to the
mass m should be determined. Finally, the critical angular velocity ωkrit is to be
determined, at which the mass m would start to move.

Solution of exercise A.6. In the first step, the centrifugal force acting on the mass
m is calculated. In general, a centrifugal force can be expressed as ff = mrω2, where
m represents the mass, r the distance with respect to the axis of rotation, and ω the
angular velocity about the axis of rotation (see Figure 2.5). Applied to the rotating
plate, the distance is r = (sm + l) cos(β). Thus, the centrifugal force of the mass m
can be expressed in the form

ff = m(sm + l) cos(β)ω2. (A.46)

In addition, due to the gravitational field, a gravitational force fg acts on the mass
m,

fg = mg. (A.47)

Since the mass m is also coupled to the rotating plate via a spring, the spring force
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fc acts,

fc = c(sm − s0), (A.48)

with the unstretched length s0 of the spring.
Furthermore, a frictional force fr acts on the mass. To describe this force, it

is advantageous to separate the previous forces into their normal and tangential
components with respect to the surface. The components of the gravitational force
fg can be described by

fg,n = mg cos(β) (A.49a)
fg,t = mg sin(β). (A.49b)

The centrifugal force ff is equivalently composed of

ff,n = m(sm + l) cos(β) sin(β)ω2 (A.50a)
ff,t = m(sm + l) cos2(β)ω2. (A.50b)

The spring force is already aligned tangentially to the surface.
Thus, the frictional force fr can be expressed in the form

fr = µH(fg,n + ff,n) = µHm
(
g cos(β) + (sm + l) cos(β) sin(β)ω2

)
. (A.51)

Figure A.13 shows the forces and their normal and tangential components.

ff,t
ff,n

ff

fc

fg
fg,n

fg,t

fr

ω

g

Figure A.13: Forces acting on the mass.

This makes it possible to establish the static friction conditions. Due to the angle β
and the coupling of the mass m with the spring, the mass can move inwards even with
a rotational movement despite the centrifugal forces. Therefore, when considering
the static friction conditions, a distinction is made between outward and inward
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movement. These conditions can be expressed for outward movement in the form

ff,t − fg,t − fc < µH(fg,n + ff,n)
︸ ︷︷ ︸

fr

(A.52)

and for inward movement by

ff,t − fg,t − fc > −µH(fg,n + ff,n)
︸ ︷︷ ︸

fr

. (A.53)

In the next step, the critical angular velocities ωkrit are calculated. The basis for
this are the static friction conditions from (A.52) and (A.53). Starting with (A.52),
substituting the normal and tangential components yields the inequality

m(sm + l) cos2(β)ω2 −mg sin(β) − c(sm − s0) >

µHm
(
g cos(β) + (xm + l) cos(β) sin(β)ω2

)
.

(A.54)

It is important to note that in this case the static frictional force fr must be smaller
than the resultant forces from ff,t, fg,t and fc. From this, the condition for ω2

krit can
be easily determined according to

ω2
krit = mg sin(β) + µHmg cos(β) + c(sm − s0)

m(sm + l) cos2(β) − µHm(sm + l) cos(β) sin(β) , (A.55)

whereby immediately

ωkrit = ±
√

mg sin(β) + µHmg cos(β) + c(sm − s0)
m(sm + l) cos2(β) − µHm(sm + l) cos(β) sin(β) (A.56)

follows. The procedure for determining the critical angular velocity ωkrit for inward
movement is completely analogous. The basis is the static friction condition according
to (A.53). Substituting the normal and tangential components accordingly leads to
the inequality

m(sm + l) cos2(β)ω2 −mg sin(β) − c(sm − s0) >

−µHm
(
g cos(β) + (sm + l) cos(β) sin(β)ω2

)
,

(A.57)

and thus

ωkrit = ±
√

mg sin(β) − µHmg cos(β) + c(sm − s0)
m(sm + l) cos2(β) + µHm(sm + l) cos(β) sin(β) . (A.58)
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Solution in Maple: DrehtellermitMasse.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.7 (Centrifugal Governor). This exercise deals with a so-called centrifugal
governor, which was first used in 1788 by James Watt to regulate a steam engine.
The schematic representation in Figure A.14 shows a massless linkage that rotates
about the ez-axis with the angular velocity φ̇ = ωφ and is driven by the external
torque τ . At the ends of the rods with length l, two point masses m are fixed, which
influence the angle α due to the centrifugal force. Through the mechanism, point
A slides up and down along the ez-axis. The height hA of point A represents the
output of the governor.

ex

eyez

b

b

l hα

ϕ

τ
m

m

A

Figure A.14: Structure of the centrifugal governor.

Find the equations of motion of the centrifugal governor as well as the steady-state
angle αs, which is established for a constant angular velocity φ̇s = ωφ,s.

Solution of exercise A.7. A systematic derivation of the equation of motion
is possible via the Euler-Lagrange equations. For this purpose, in the first step,
the total kinetic and potential energy of the system is calculated as a function of
the generalized coordinates. For the centrifugal governor shown, the generalized
coordinates correspond to the two degrees of freedom φ and α, which are combined
in the vector q(t) =

[
φ(t) α(t)

]T
. From this, the vector of generalized velocities is

derived as q̇(t) =
[
φ̇(t) α̇(t)

]T
=
[
ωφ(t) ωα(t)

]T
.

Due to the assumption of a massless linkage, the kinetic and potential energy result
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only from the energies of the point masses. Because of the symmetrical structure with
respect to the z-axis, the two point masses each have the same kinetic and potential
energy. Therefore, it is sufficient to consider only a single mass for the calculation of
the energies. For the point mass, which is rotated by the angle φ with respect to the
x-axis, the position vector from the origin of the coordinate system is

pm0 =




l sin (α) cos (φ)
l sin (α) sin (φ)
h− l cos (α)


 (A.59)

and the derived velocity vector follows to

ṗm0 = d
dtp

m
0 = l




ωα cos (α) cos (φ) − ωφ sin (α) sin (φ)
ωα cos (α) sin (φ) + ωφ sin (α) cos (φ)

ωα sin (α)


. (A.60)

The total kinetic energy of both point masses is calculated using

T = 21
2m(ṗm0 )Tṗm (A.61)

with the velocity (A.60) as

T = ml2
(
ω2
α + ω2

φ sin2 (α)
)
. (A.62)

Assuming that the potential energy is zero for pm0,z = 0 (deflection of the point masses
in z-direction), then with the acceleration due to gravity g, the total potential energy
is

V = 2mg
(
h− l cos (α)

)
. (A.63)

The Lagrange function is obtained from the difference between the kinetic energy
(A.62) and the potential energy (A.63) as

L = ml2
(
ω2
α + ω2

φ sin2 (α)
)

− 2mg
(
h− l cos (α)

)
. (A.64)

The external torque is τ e =
[
0 0 τ

]T
and therefore the generalized forces follow as

fφ = τ and fα = 0. (A.65)

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



A Exercises Page 134

Substituting (A.64) and (A.65) into the Euler-Lagrange equation (5.69) yields

2ml2
(
φ̈ sin2 (α) + 2φ̇α̇ sin (α) cos (α)

)

︸ ︷︷ ︸
d
dt

∂
∂φ̇
L

− 0︸︷︷︸
∂

∂φ
L

= τ

2ml2α̈︸ ︷︷ ︸
d
dt

∂
∂α̇
L

− 2ml sin (α)
(
lφ̇2 cos (α) − g

)

︸ ︷︷ ︸
∂

∂α
L

= 0,

(A.66)

from which the equations of motion of the centrifugal governor directly follow as

φ̈ = τ − 4ml2φ̇α̇ sin (α) cos (α)
2ml2 sin2 (α) (A.67a)

α̈ =
sin (α)

(
lφ̇2 cos (α) − g

)

l
(A.67b)

The steady-state deflection for a constant angular velocity φ̇s = ωφ,s follows by
substituting α̇s = 0 and α̈s = φ̈s = 0 into (A.67). From the first equation (A.67a),
setting the time derivatives to zero directly gives the external torque as τs = 0. This
result follows from the assumption that there is no friction in the system, which would
have to be compensated by the external torque at the steady-state point. In the
steady-state case, from (A.67b), the condition for the steady-state angle αs follows as

sin(αs)
(
lφ̇2
s cos (αs) − g

)
= 0 (A.68)

In addition to the trivial solution αs = 0, another equilibrium position results in

αs = arccos
(
g

lφ̇2
s

)
(A.69)

under the condition that φ̇s = ωφ,s ≥
√

g
l holds for the angular velocity. If this

inequality is not satisfied, then no other equilibrium position exists. The steady-state
angle (A.69) can alternatively be determined by freeing the point mass and setting
up the force balance, with the centrifugal force ff = mω2

φl cos (α).

Solution in Maple: Fliehkraftregler.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.8 (Drum hoist). A block of mass mB hangs from a massless rope according
to Fig. A.15. The rope runs frictionlessly over a massless pulley and is wound onto
a drum (mass mT , moment of inertia IT ). The drum rolls over the contact surface
without slipping. In addition, a spring with the unstretched length sf0 and the
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constant spring stiffness c counteracts the motion of the drum. The entire system is
located in the earth’s gravitational field.

drum mT IT

roll g

yBblock
mB

spring c sf0

xT

A

S

M
ra

ri

Figure A.15: Sketch of a drum hoist with load.

In the following, the following tasks should be solved:

a) In the first step, the bearing forces, the rope force and the spring force in the
stationary state should be determined.

b) Subsequently, the equations of motion of the system should be specified using
the conservation of linear and angular momentum. The position xT of the drum
should be used as the degree of freedom.

Solution of exercise A.8. To determine the bearing forces, the rope force, and the
spring force, the drum, the pulley, and the block are cut free and the acting forces
are drawn. In Fig. A.16 these cutting forces are shown for the given system.
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xT

yB

ff

fS

fS

fSfSfS

ϕ

fy

fx

ft

fn

fgT

fgB

S

Figure A.16: Cut-free bodies and cutting forces.

The weight force fgB = mBg and the rope force fS act on the block of mass mB

in the y-direction. At the deflection pulley, the bearing forces fx and fy as well
as the forces of the cut-free rope occur. The forces acting on the drum are the
normal force fn, the tangential force ft, the weight force fgT = mT g, the spring force
ff = c(xT − sf0) and the rope force fS .

The force balance in the y-direction for the block yields

fS = fgB = mBg, (A.70)

and the force balance for the pulley results in

fx = fS = mBg (A.71a)
fy = fS = mBg . (A.71b)

The normal force fn can be determined directly from the force balance in the
y-direction at the drum in the form

fn = fgT = mT g (A.72)

The force balance in the x-direction reads

fS − ff − ft = 0. (A.73)

To determine the unknown forces ff and ft, one uses the torque balance, written
down e.g. around point S

fSri + ftra = 0, (A.74)
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wherewith immediately

ft = − ri
ra
FS = − ri

ra
mBg (A.75)

follows. If this result is inserted into the force balance in the x-direction, the unknown
spring force is obtained

ff = fS − ft =
(

1 + ri
ra

)
mBg = ri + ra

ra
mBg. (A.76)

Remark: Note that the same result would have been obtained if, instead of the
force balance in the x-direction, the torque balance around point M had been
additionally written down at the drum. This reads

fs(ri + ra) − ffra = 0, (A.77)

which obviously implies ff = (ri + ra)/ramBg.

To determine the equations of motion of the system, the number of degrees of
freedom must first be determined. It can be seen that when the block moves in the
y-direction, the rope passing over the deflection pulley leads to a rotation φ of the
drum. Since it was further assumed that the drum rolls without slipping, a rotation
of the drum simultaneously leads to a displacement xT in the x-direction. Thus, the
system has one degree of freedom, and this should be chosen to be xT according to
the specification.

In the first step, therefore, the angle φ and the position of the block yB must be
expressed as a function of the degree of freedom. Considering the rolling cylinder, it
is obvious that the unrolled length (and thus the displacement of the drum in the
x-direction) follows φra. Thus, we have

φ = xT
ra
. (A.78)

The change in rope length (and thus the change in position yB of the block) results
from the sum of the displacement of the drum xT at point S and the unrolled rope
due to the rotation of the drum, i.e.

yB = xT + riφ = xT + ri
ra
xT = ri + ra

ra
xT . (A.79)

The determination of the equations of motion of the system can now be done
either by using the conservation of linear and angular momentum or by applying the
Euler-Lagrange formalism. In this example, the conservation of linear and angular
momentum will be used. For this purpose, one formulates the conservation of linear
and angular momentum for the drum and the block. Since the pulley and the rope
were assumed to be massless, the momentum for these parts vanishes.
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With the velocity vB = ẏB of the block, the conservation of linear momentum
follows

mB
d
dtvB = mBg − fS (A.80)

and thus follows

fS = −mB
d
dtvB +mBg = mB

(
g − ri + ra

ra

d
dtvT

)
, (A.81)

with the velocity of the drum vT . Note that the rope force fS from the above equation
differs from the rope force in the static case!

The conservation of angular momentum for the drum written around point S results
in

IT
d
dtω = fSri + ftra (A.82)

and thus

ft = 1
ra

(
IT

d
dtω − fSri

)
(A.83)

holds, where ω = φ̇ denotes the angular velocity of the drum. Substituting the rope
force and the relationship between φ and xT gives

ft = 1
r2
a

(ri(ri + ra)mB + IT )v̇T − ri
ra
mBg. (A.84)

In the last step, one formulates the conservation of linear momentum for the drum
in the x-direction in the form

mT
d
dtvT = fS − ff − ft = fS − c(xT − sf0) − ft. (A.85)

The desired equation of motion of the system is obtained by substituting the interme-
diate results for fS and ft and solving for v̇T . This yields

v̇T = (ri + ra)mBgra − c(xT − sf0)r2
a

(ri + ra)2mB + IT +mT r2
a

. (A.86)

Solution in Maple: Seiltrommel.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.9 (Cable Pulley System). Given is the cable pulley system shown in
Fig. A.17, consisting of a load L (mass mL), a frictionless mounted pulley R1 (mass m1,
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moment of inertia I1 about the axis of rotation, outer radius r1, inner radius r2) and
a movable pulley R2 (mass m2, moment of inertia I2 about the axis of rotation, radius
r2) on which an external vertical force f acts. The load is positioned on an inclined
plane (angle α), whereby dry friction with a coefficient of friction µc occurs between
the load and the plane. At time t0 the load possesses the velocity v0 (uphill). The
load shall be accelerated to the velocity v1 within the distance s1 by the force f . The
radii r1 and r2 of the pulley R1 can be assumed to be constant and the ropes massless.
Consider the following quantities as given: s1, v0, v1,mL,m1,m2, I1, I2, r1, r2, α, µc.

g

R1

R2

L

s1

v0

v1

r1

r2

f
α

r2

Figure A.17: Sketch of a cable pulley system.

We are looking for the time-constant force f which accelerates the mass mL with
the initial velocity v0 within the distance s1 − s0 to the velocity v1. Assume that the
position s at the beginning is s(t0) = s0 = 0.

Solution of exercise A.9. An elegant way to calculate the required force is by
applying the principle of conservation of energy in the form of comparing the energy
at time t0 and at time t1, when the load reaches the velocity v1. Due to the principle
of conservation of energy, the following applies

T (t0) + V (t0) +WF −WR = T (t1) + V (t1) , (A.87)

where T is the kinetic energy and V the potential energy of the system. WF denotes
the work done by the force f and WR the dissipated energy due to the occurring
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friction.
As a first step to solve the problem, a consideration of the kinematics, especially

the determination of the degrees of freedom of the system, is necessary. If there were
no tensioned rope, then the following 4 degrees of freedom would result: the position
s of the load, the angle φR1 of the pulley R1 as well as the position sR2 and the angle
φR2 of the pulley R2. For each rope connection one degree of freedom is lost and thus
for 3 connections between the objects 1 degree of freedom results. Thus, it is possible
to express the entire kinematics of the system by one independent variable (degree of
freedom). For solving the problem it is advantageous to choose the position s of the
load.

The kinetic energy T of the system results in

T = mLv
2

2 + I1ω2
R1

2 + I2ω2
R2

2 + m2v2
R2

2 . (A.88)

For the angular velocity ωR1 of the pulley R1 the following relationship applies

ωR1 = v

r2
(A.89)

and for the exit velocity v2 of the rope from the pulley R1 one obtains

v2 = r1ωR1 = v
r1
r2

. (A.90)

At the movable pulley R2 the relations for a pulley system apply (see Fig. 3.17),
i.e.

vR2 = v2
2 = v

r1
2r2

, ωR2 = vR2
r2

= v
r1
2r2

2
. (A.91)

The potential energy of the system at time t1

V (t1) = mLgs1 sin(α) −m2gs1
r1
2r2

+ V (t0) , (A.92)

is composed of the rise of the load and the lowering of the pulley R2. Since V (t0) is
canceled out in the energy balance, V (t0) = 0 can be chosen. The work done by the
force f is calculated as

WF =
∫ s1r1/(2r2)

x̃=0
f dx̃ = fs1

r1
2r2

, (A.93)

where a constant force f was assumed.
To calculate the dissipated energy WR due to the occurring friction, one needs the

normal force fn which the load exerts on the inclined plane:

fn = mLg cos(α) . (A.94)
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The work done results with the tangential force ft = fnµc to

WR = s1ft = s1µcmLg cos(α) . (A.95)

Substituting the expressions for the energy balance and rearranging yields the
sought expression for the force f :

f = 2r2
s1r1

(
mL

v2
1 − v2

0
2 + I1

ωR1(t1)2 − ωR1(t0)2

2 + I2
ωR2(t1)2 − ωR2(t0)2

2

+m2
vR2(t1)2 − vR2(t0)2

2 +mLgs1(sin(α) + µc cos(α)) −m2gs1
r1
2r2

) (A.96)

with the previously defined quantities ωR1, ωR2 and vR2.

Remark: This problem can also be solved with the help of the equations
of motion of the system. This approach, however, is much more complex and
requires the solution of the differential equation of motion. This solution path is
also shown in the sample solution in Maple.

Solution in Maple: Seilzug.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.10 (Toggle Press). Fig. A.18 shows a sketch of a toggle press as it is used,
for example, in the massive forming of steel. By applying a force f to the knee of the
press, the slide can be moved horizontally. The advantage of this construction is that
very large forces can be built up in the horizontal direction when the knee is almost
fully extended. The two legs have masses m1 and m2 and moments of inertia I1 and
I2 about the z-axis. The lengths L1 and L2 between the joints are also known. It
can be assumed that the centers of gravity of the legs are located in their middle.
The return spring has the spring constant cF and a relaxed length sF,0. Gravity with
the acceleration due to gravity g acts in the negative y-direction.
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g

f

fL
x

y

z

ϕ1

ϕ2

cF

leg

slider

Figure A.18: Sketch of a toggle press.

The task is to determine the potential and kinetic energy of the system, the vector
of generalized forces, and the equations of motion.

Solution of exercise A.10. Before beginning with the mathematical description of
the toggle press, some considerations must be made regarding the degrees of freedom
of the system. The first leg is rotatably mounted at the origin of the coordinate
system but cannot be moved in either the x- or y-direction. Thus, it only has one
degree of freedom. The second leg is rotatably connected to the first leg at the knee.
Without the slide, this leg would also have one degree of freedom, but its movement is
restricted by the slide. This constraint makes the rotation of the second leg dependent
on the movement of the first. Consequently, one degree of freedom is sufficient to
completely describe the movement of the system.

The choice of coordinates to describe the system is not unique. So far, it has
only been determined that one degree of freedom is sufficient to describe the system
completely. For example, the angle φ1 or the x-coordinate of the slide can be used
to describe the system. However, it turns out that a suitable choice of the degree of
freedom can greatly simplify the derivation of the equations of motion.

In the further steps, the angle
q = φ1(t) (A.97)

of the first leg will be used to describe the movement of the toggle press. Since only
one generalized coordinate is needed, the angle φ2 must be dependent on it. The
constraint of the slide now states that the endpoint of the second leg

pe0 = L1




cos(φ1)
sin(φ1)

0


+ L2




cos(φ2)
− sin(φ2)

0


 (A.98)
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remains on the x-axis for all times, i.e., that the equation

L1 sin(φ1) − L2 sin(φ2) = 0 (A.99)

must be satisfied. The angle φ2 can thus be expressed by

φ2(q) = arcsin
(
L1
L2

sin(q)
)

(A.100)

To derive the equations of motion using the Euler-Lagrange equations, the Lagrange
function of the system and the generalized forces must be determined. First, the
position vectors to the centers of gravity of the two legs are determined. Since
the centers of gravity are located in the middle of the legs (i.e., at L1/2 and L2/2,
respectively), the expressions

ps10 = L1
2




cos(q)
sin(q)

0


 (A.101a)

ps20 = L1




cos(q)
sin(q)

0


+ L2

2




cos(φ2(q))
− sin(φ2(q))

0


 (A.101b)

can be given for the center of gravity vectors. The translational velocities of the
centers of gravity are obtained by taking the time derivative of the position vectors:

vs10 = L1
2




− sin(q)
cos(q)

0


q̇ (A.102a)

vs20 = L1




− sin(q)
cos(q)

0


q̇ + L2

2




− sin(φ2(q))
− cos(φ2(q))

0



∂φ2(q)
∂q

q̇ (A.102b)

and the angular velocities of the legs are

ω1 = q̇ (A.103a)

ω2 = −∂φ2(q)
∂q

q̇ . (A.103b)

For the sake of clarity, the derivative of φ2(q) was not evaluated here.
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The kinetic energy is then given by

T =1
8m1L

2
1q̇

2+

1
2m2L

2
1q̇

2 + 1
8m2L

2
2

(
∂φ2(q)
∂q

)2
q̇2 − 1

2m2L1L2 cos(q + φ2(q))∂φ2(q)
∂q

q̇2+

1
2I1q̇

2 + 1
2I2

(
∂φ2(q)
∂q

q̇

)2

(A.104)

where the trigonometric functions that occur can be greatly simplified using sin(φ1)2 +
cos(φ1)2 = 1 and cos(φ1) cos(φ2) − sin(φ1) sin(φ2) = cos(φ1 + φ2).

The potential energy due to the weights of the legs is given by

Vg = m1g
L1
2 sin(q) +m2g

(
L1 sin(q) − L2

2 sin(φ2(q))
)

+ Vg,0 (A.105)

and the potential energy of the spring follows from (3.70) and the x-coordinate of
the endpoint pe0:

VF = 1
2cF (L1 cos(q) + L2 cos(φ2(q)) − sF,0)2 . (A.106)

The generalized forces due to the knee force f and the load force fL are calculated
as

fq,f =
[
0 −F 0

] ∂
∂q




L1 cos(q)
L1 sin(q)

0


 = −fL1 cos(q) (A.107a)

fq,fL
=
[
−fL 0 0

]∂pe0
∂q

= fL

(
L1 sin(q) + L2 sin(φ2(q))∂φ2(q)

∂q

)
. (A.107b)

With this, the Euler-Lagrange equations can be written using the Lagrange function
L = T − Vg − VF and the generalized forces fq,f and fq,fL

.

Solution in Maple: Kniehebelpresse.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.11 (Planar Robot). In this exercise, the mechanical system (planar robot)
from Figure A.19 is considered. The setup consists of three segments i = {1, 2, 3}
with the lengths li, the masses mi, and the moments of inertia Ii about the z-axis
with respect to the respective center of gravity Si. Segment 1 is rotatably mounted at
the constant height h. The bearing can be assumed to be ideally frictionless. At both
ends of segment 1, segments 2 and 3 are again rotatably mounted without friction.
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For all segments, a homogeneous density can be assumed both over the cross-section
and over the length. As can be seen from Figure A.19, the acceleration due to gravity
g acts in the negative ey direction. In addition, an external force fe =

[
−fe,x 0 0

]T

acts on the free end of segment 2.

φ1

φ2

φ3
m1, I1

m3, I3

m2, I2

2
3 l1

1
3 l1

h

l2

l3

ex

ey

S1

S2

S3

fe

g

Figure A.19: Simple planar manipulator.

For the given mechanical system, the equations of motion are to be derived using the
Euler-Lagrange formalism.

Solution of exercise A.11. The system under consideration has three degrees
of freedom (the rotations of the three segments). In the first step, the vector of
generalized coordinates is defined. With regard to a simple calculation of the kinetic
and potential energy, the choice of

q =
[
q1 q2 q3

]T
=
[
φ1 φ2 φ3

]T
(A.108)

proves to be useful.
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Remark: The choice of generalized coordinates is not unique. In the present
example, the choice of

q =
[
q1 q2 q3

]T
=
[
φ1 φ2 − φ1 φ3 − φ1

]T
(A.109)

would also be conceivable.
The central quantity for the application of the Euler-Lagrange equations is the

Lagrangian L = T − V . The kinetic energy in the system is calculated from the sum
of the kinetic energies of the individual bodies as

T =
3∑

i=1
(Tt,i + Tr,i), (A.110)

with the translational energies

Tt,i = 1
2mi

(
ṗSi

0

)T
ṗSi

0 (A.111)

and the rotational energies

Tr,i = 1
2Iiφ̇

2
i (A.112)

The position vectors to the centers of gravity of the segments result from Figure
A.19 as

pS1
0 =




0
h

0


+ l1

6




cos(q1)
sin(q1)

0


 (A.113a)

pS2
0 =




0
h

0


+ 2l1

3




cos(q1)
sin(q1)

0


+ l2

2




cos(q2)
sin(q2)

0


 (A.113b)

pS3
0 =




0
h

0


+ l1

3




− cos(q1)
− sin(q1)

0


+ l3

2




− cos(q3)
− sin(q3)

0


 (A.113c)
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wherewith the velocities of the centers of gravity are obtained as

ṗS1
0 = l1

6




− sin(q1)
cos(q1)

0


q̇1 (A.114a)

ṗS2
0 = 2l1

3




− sin(q1)
cos(q1)

0


q̇1 + l2

2




− sin(q2)
cos(q2)

0


q̇2 (A.114b)

ṗS3
0 = l1

3




sin(q1)
− cos(q1)

0


q̇1 + l3

2




sin(q3)
− cos(q3)

0


q̇3 (A.114c)

For the squares of the velocity vectors, one obtains after a short calculation

(
ṗS1

0

)T
ṗS1

0 =
(
l1
6

)2
q̇2

1 (A.115a)
(
ṗS2

0

)T
ṗS2

0 =
(2l1

3

)2
q̇2

1 +
(
l2
2

)2
q̇2

2 + 2
3 l1l2 cos(q1 − q2)q̇1q̇2 (A.115b)

(
ṗS3

0

)T
ṗS3

0 =
(
l1
3

)2
q̇2

1 +
(
l3
2

)2
q̇2

3 + 1
3 l1l3 cos(q1 − q3)q̇1q̇3, (A.115c)

where the trigonometric identity cos(q1 − qi) = cos(q1) cos(qi) + sin(q1) sin(qi) for
i = {2, 3} was used to simplify the expressions.

With these preparations, the kinetic energy in the system is now calculated as

T = 1
2

(
m1

(
l1
6

)2
+m2

(2l1
3

)2
+m3

(
l1
3

)2
+ I1

)
q̇2

1

+ 1
2

(
m2

(
l2
2

)2
+ I2

)
q̇2

2 + 1
2

(
m3

(
l3
2

)2
+ I3

)
q̇2

3

+ 1
3m2l1l2 cos(q1 − q2)q̇1q̇2 + 1

6m3l1l3 cos(q1 − q3)q̇1q̇3

(A.116)

The potential energy of the system results only from gravitation. If the reference
potential is chosen at y = 0, the potential energy is obtained with the acceleration
due to gravity g according to Figure A.19 as

V = m1geT
y pS1

0 +m2geT
y pS2

0 +m3geT
y pS3

0

= m1g

(
h+ l1

6 sin(q1)
)

+m2g

(
h+ 2l1

3 sin(q1) + l2
2 sin(q2)

)

+m3g

(
h− l1

3 sin(q1) − l3
2 sin(q3)

)
(A.117)
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To describe the equation of motion, the generalized forces are still needed. According
to (5.60) one obtains the generalized forces from

fq =
(
∂pe0
∂q

)T
fe (A.118)

with the position vector of the point of application of the force

pe0 =




0
h

0


+ 2l1

3




cos(q1)
sin(q1)

0


+ l2




cos(q2)
sin(q2)

0


 (A.119)

to

fq =




2l1
3 sin(q1)
l2 sin(q2)

0


fe,x (A.120)

With these preparations, the equations of motion of the system can be calculated
from

d
dt
∂L

∂q̇i
− ∂L

∂qi
= fq,i , i ∈ {1, 2, 3} (A.121)

These can be compactly written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = fq (A.122)

with

M(q) =




l21
36(m1 + 16m2 + 4m3) + I1

l1l2
3 m2 cos(q1 − q2) l1l3

6 m3 cos(q1 − q3)
l1l2

3 m2 cos(q1 − q2) l22
4 m2 + I2 0

l1l3
6 m3 cos(q1 − q3) 0 l23

4 m3 + I3




(A.123a)

C(q, q̇) =




0 l1l2
3 m2 sin(q1 − q2)q̇2

l1l3
6 m3 sin(q1 − q3)q̇3

− l1l2
3 m2 sin(q1 − q2)q̇2 0 0

l1l3
6 m3 sin(q1 − q3)q̇3 0 0




(A.123b)

g(q) =




l1
6 m1g cos(q1) + 2l1

3 m2g cos(q1) − l1
3 m3g cos(q1)

l2
2 m2g cos(q2)

− l3
2 m3g cos(q3)


 (A.123c)
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Solution in Maple: PlanarerRoboter.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.12 (Rotationally Constrained Hollow Cylinder). A hollow cylinder (mass
m1, length l1, outer diameter d1, inner diameter d2) is mounted on a pivot at point K
and subjected to an external torque τe, as shown in Fig. A.20. A second cylindrical
rod (mass m2, length l2, diameter d2) is connected to the hollow cylinder via a spring
element (spring constant c, unstretched length s0).

During relative motion of the two cylinders, a velocity-proportional friction force fd
acts, with the friction coefficient d(s). The friction coefficient is proportional to the
contact area between the cylinders, with d(s) = d0A(s). Both cylinders are subjected
to gravitational acceleration g. The moments of inertia I(S)

1,zz and I(S)
2,zz of the cylinders

about their respective eSz -axes are assumed to be known. For the determination of
the center of gravity of the hollow cylinder, the base area can be neglected.

h

l1

l2

d1
d2

d(s)

g

ex

ey

ez

ϕ

s

τe

K

Figure A.20: Setup of the rotationally constrained hollow cylinder.

For this configuration, the equations of motion are to be derived using the Euler-
Lagrange formalism. Furthermore, the stationary point (equilibrium position) of the
system is to be determined for τe = 0.

Solution of exercise A.12. As a first step, a suitable choice of generalized coordinates
q (i.e., the degrees of freedom of the system) must be made. The present system
consists of two rigid bodies, each of whose unrestricted planar motion has three
degrees of freedom (displacements in the x- and y-directions and rotation about the
z-axis). In the case under consideration, the system is subject to 4 constraints: (i)
The x- and y-positions of cylinder 1 are fixed, leaving it with only the rotation about
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the angle φ as a degree of freedom. (2) Cylinder 2 is connected to cylinder 1, so
it must undergo the same rotation. The only remaining degree of freedom for this
cylinder is movement in the direction of the degree of freedom s.

From these considerations, the following possible choice of generalized coordinates
(degrees of freedom) results

q =
[
φ

s

]
. (A.124)

In the next step, the position vectors to the centers of mass of the respective
cylinders are formulated. The position vector ps10 to the center of gravity of the
hollow cylinder results from geometrical considerations to

ps10 =




0
h

0


+ l1

2




sin(φ)
− cos(φ)

0


, (A.125)

and the position vector ps20 to the second cylinder is calculated as

ps20 =




0
h

0


+

(
s+ l2

2

)



sin(φ)
− cos(φ)

0


. (A.126)

The translational velocities vs10 and vs20 of the centers of gravity of the two cylinders,
which are necessary for the calculation of the kinetic energy, are obtained as

vs10 = ṗs10 = l1
2




cos(φ)
sin(φ)

0


φ̇ (A.127a)

vs20 = ṗs20 =




sin(φ)
− cos(φ)

0


ṡ+

(
s+ l2

2

)



cos(φ)
sin(φ)

0


φ̇. (A.127b)

The rotational part of the kinetic energy is obtained directly as

Tr = 1
2
(
I

(S)
1,zz + I

(S)
2,zz

)
φ̇2, (A.128)

where it should be noted that the moments of inertia I(S)
1,zz and I(S)

2,zz are defined about
the respective center of gravity of the cylinders.
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The translational part results with the velocities vs10 and vs20 to Tt = Tt1 + Tt2,
with

Tt1 = 1
2m1

(
vs10
)T

vs10 = 1
8m1l

2
1φ̇

2 (A.129a)

Tt2 = 1
2m2

(
vs20
)T

vs20 = 1
2m2

(
ṡ2 + φ̇2

(
s+ l2

2

)2)
. (A.129b)

The potential energy Vf of the linear spring results in

Vf = 1
2c(s− s0)2, (A.130)

where s0 describes the unstretched length of the spring. The potential energies due
to gravity can be written in the form

V1 = m1g

(
h− l1

2 cos(φ)
)

(A.131a)

V2 = m2g

(
h−

(
s+ l2

2

)
cos(φ)

)
. (A.131b)

This expression is obtained directly by using the y component of the center of gravity
vectors. The total potential energy is thus calculated to be V = Vf + V1 + V2.

Using the Lagrange function

L = T (q, q̇) − V (q) (A.132)

the equations of motion of the mechanical system can be calculated. The essential
intermediate results are calculated as follows:

∂

∂φ̇
L = 1

4m1l
2
1φ̇+m2

(
s+ l2

2

)2
φ̇+

(
I

(S)
1,zz + I

(S)
2,zz

)
φ̇, (A.133a)

d
dt

(
∂

∂φ̇
L

)
= 1

4m1l
2
1φ̈+m2

(
s+ l2

2

)2
φ̈+ 2m2

(
s+ l2

2

)
φ̇ṡ+

(
I

(S)
1,zz + I

(S)
2,zz

)
φ̈,

(A.133b)
∂

∂φ
L = −m1g

l1
2 sin(φ) −m2g

(
s+ l2

2

)
sin(φ), (A.133c)

∂

∂ṡ
L = m2ṡ, (A.133d)

d
dt

(
∂

∂ṡ
L

)
= m2s̈, (A.133e)

∂

∂s
L = m2φ̇

2
(
s+ l2

2

)
− c(s− s0) +m2g cos(φ) (A.133f)

To account for the effect of the friction force fd, the principle of virtual work is
used. The friction force was assumed to be proportional to the relative velocity
of the surfaces of cylinders 1 and 2, i.e. proportional to ṡ. Furthermore, it was
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assumed that the friction is proportional to the contact area A(s). This results in
A(s) = (l1 − s)d2π, where d2 is the diameter of cylinder 2. This gives

fd = d0(l1 − s)d2πṡ




− sin(φ)
cosφ

0


 = fd




− sin(φ)
cosφ

0


. (A.134)

The point of application pd0 of the friction force fd can be assumed to be at the
beginning of cylinder 2 (forces can be shifted along their line of action). Thus we
have

pd0 =




s sin(φ)
h− s cos(φ)

0


. (A.135)

If we now use D’Alembert’s principle, the generalized forces with respect to the
degrees of freedom are calculated as

ffd,s = −fd (A.136a)
ffd,φ = 0 (A.136b)

This result could also have been derived directly (with some practice in dealing with
the calculation of generalized forces) from the fact that a change in the degree of
freedom φ does not produce a displacement of the friction force and thus no (virtual)
work.

By analogous considerations, one obtains the generalized forces due to the external
torque τe. Here, a displacement with respect to the degree of freedom s does no
virtual work, while a rotation with respect to the degree of freedom φ directly results
in work with the external torque τe. Thus one obtains

fτe,s = 0 (A.137a)
fτe,φ = τe (A.137b)

and finally

fs = ffd,s + fτe,s = −fd (A.138a)
fφ = ffd,φ + fτe,φ = τe (A.138b)
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The equations of motion are obtained by assembling the intermediate results to
(

1
4m1l

2
1 +m2

(
s+ l2

2

)2
+ I

(S)
1,zz + I

(S)
2,zz

)
φ̈+ 2m2

(
s+ l2

2

)
φ̇ṡ

+g
(
m1

l1
2 +m2

(
s+ l2

2

))
sin(φ) = τe

(A.139a)

m2s̈+ c(s− s0) −m2gcos(φ) −m2φ̇
2
(
s+ l2

2

)
= −fd (A.139b)

The equilibrium positions (stationary points) of a system are characterized by
q̈ = q̇ = 0. Thus, the equilibrium positions of the system for τe = 0 follow as

φR = kπ with k ∈ Z, (A.140)

sR = m2g cos(φR)
c

+ s0 = s0 ± m2g

c
. (A.141)

Obviously the spring is stretched in the lower equilibrium position φR = 0 (sR > s0)
and compressed in the upper equilibrium position φ = π (sR < s0). Furthermore,
it is immediately clear that a rotation of the mechanism by k2π, k ∈ Z, does not
change the stationary conditions. Thus, although the system has an infinite number
of equilibrium positions, the stationary behavior can be completely characterized by
the two essential equilibrium positions (upper and lower equilibrium position).

Solution in Maple: DrehgelagerterHohlzylinder.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.13 (Rigid Body with Torsional Spring). Given is the mechanical system
shown in Figure A.21. A beam is mounted at the origin, rotatable by an angle φ, and
consists of two rigidly connected rods. The rods have the lengths Ls and Ls/2 and
the masses m and m/2, respectively. The mass moment of inertia of a rod about its
center of gravity can be approximated by I(S)

zz,s = msL2
s

12 . The gravitational acceleration
g acts in the negative ey direction, and the spring is relaxed at φ = 0. The force f
with magnitude f acts in the direction of the second rod’s axis.
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cF

ey

ex

ϕ

g

Ls, m

f
Ls
2 , m

2

Figure A.21: Rigid body system with torsional spring.

For this system, the first step is to calculate the location of the center of gravity and
the total moment of inertia about this center of gravity. Subsequently, the equations
of motion of the system are to be determined using the Euler-Lagrange equations.

Solution of exercise A.13. In the first step, the vector ps0 of the entire beam for
φ = 0 and the mass moment of inertia of the beam about its center of gravity are
determined. First, the center of gravity vectors and the mass moments of inertia of
the individual rods are specified. The center of gravity vectors of the two rods of the
beam for φ = 0 can be read directly from the sketch and are

ps10 =




0
Ls
2
0


 (A.142)

and

ps20 =




Ls
4
Ls

0


, (A.143)

respectively. Applying formula (3.31), the resulting center of gravity of the beam can
be determined as

ps0 =
mps10 + m

2 ps20
m+ m

2
=




Ls
12

2Ls
3
0


. (A.144)
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The mass moments of inertia of the two rods about their respective centers of gravity
are given by

I(s1)
zz = mL2

s

12 (A.145a)

I(s2)
zz = mL2

s

96 . (A.145b)

The total mass moment of inertia of the beam about the total center of gravity is
calculated by applying formula (3.126) as

I(s)
zz = I(s1)

zz +m
(
x2
s,s1 + y2

s,s1
)

+ I(s2)
zz + m

2
(
x2
s,s2 + y2

s,s2
)

= 19mL2
s

96 , (A.146)

where the variables xs,s1, ys,s1 and xs,s2, ys,s2 denote the x and y coordinates of the
vectors

ps,s1 = ps0 − ps10 =




Ls
12
Ls
6
0


 (A.147a)

ps,s2 = ps0 − ps20 =




−Ls
6

−Ls
3

0


, (A.147b)

respectively.
In the next step, the center of gravity vector and the center of gravity velocity

are determined as a function of the generalized coordinate φ. The center of gravity
vector can be expressed, starting from ps0 for φ = 0 via geometric considerations or
using the rotation matrix, as

ps0 =




Ls
12 cos(φ) + 2Ls

3 sin(φ)
−Ls

12 sin(φ) + 2Ls
3 cos(φ)

0


. (A.148)

The translational velocity of the center of gravity is then obtained by taking the time
derivative of the center of gravity vector:

vs0 =




−Ls
12 sin(φ)φ̇+ 2Ls

3 cos(φ)φ̇
−Ls

12 cos(φ)φ̇− 2Ls
3 sin(φ)φ̇

0


. (A.149)

The translational kinetic energy is

Tt = 1
2

3m
2 (vs0)Tvs0 = 65

192mφ̇
2L2

s, (A.150)
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and the rotational energy is

Tr = 1
2I

(s)
zz φ̇

2 = 19
192mφ̇

2L2
s. (A.151)

The potential energy is composed of the potential energy in the gravitational field
and the potential spring energy and can be calculated as

V = Vg + VF = −Ls
8 mg sin(φ) +mgLs cos(φ) + 1

2cFφ
2. (A.152)

The generalized force due to the force f is fq,f = fLs. This is obtained directly from
the fact that the force f always acts in the direction of rod 2 (and thus orthogonal to
rod 1). The generalized force fq,f thus corresponds to the moment acting about the
pivot point. This result would also be obtained by applying D’Alembert’s principle
(5.57). The point of application pf0 of the force f is calculated as

pf0 =




Ls sin(φ)
Ls cos(φ)

0


, (A.153)

and the force can be calculated as a function of the angle φ in the form

f =




f cos(φ)
−f sin(φ)

0


. (A.154)

The generalized force can thus be determined via

fq,f = fT∂pf0
∂φ

= fLs. (A.155)

In the last step, the equation of motion of the system is calculated using the
Euler-Lagrange equations. For this purpose, the Lagrangian

L = Tr + Tt − V = 7
16mφ̇

2L2
s + Ls

8 mg sin(φ) −mgLs cos(φ) − 1
2cFφ

2 (A.156)

is used and inserted into the Euler-Lagrange equations (5.69)

d
dt

∂

∂φ̇
L− ∂

∂φ
L = fq,f . (A.157)

Evaluating the Euler-Lagrange equations yields the equation of motion of the system

7
8mL

2
sφ̈− 1

8mgLs cos(φ) −mgLs sin(φ) + cFφ = fLs. (A.158)

Lecture and Exercises Mathematical Modeling (2025S)
©A. Kugi, W. Kemmetmüller, Automation and Control Institute, TU Wien



A Exercises Page 157

Solution in Maple: StarrkoerpermitDrehfeder.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.14 (Elastically Mounted Cantilever Beam). A beam B (piecewise rect-
angular, constant thickness d and homogeneous density ρ, moment of inertia I(S)

B,zz

about the center of gravity) is, as shown in Figure A.22, rotatably mounted in a
joint A on a carriage S (mass ms). Viscous friction (proportional to the angular
velocity φ̇) occurs in the bearing A with the constant friction parameter d2 > 0. A
torsional spring acts between the beam B and the carriage S, whose torque increases
linearly with the deflection φ of the beam (spring constant c2 > 0). The carriage
S is mounted on the carriage guide SF , which only allows a translational degree
of freedom in the direction s. In the carriage bearing there is velocity-proportional
friction with the constant friction parameter d1 > 0. Between the carriage S and the
ground there is a linear spring with the constant spring stiffness c1 > 0. An external
force f e with ∥f e∥ = fe acts on the beam, which is always perpendicular to the beam.
Figure A.22 shows the system with relaxed springs (s = s10, φ = 0).

Consider the following quantities as given for the calculations: ms, ρ, I(S)
B,zz, b1, b2,

b3, d, l1, l2, l3, c1, s10, c2, d1, d2, fe.

b1 b2b3

l1 l2 l3

ϕ

g

A
c2

f e B c1

y

S

SF

s10 s

x

Figure A.22: Elastically mounted cantilever beam.

For this system, the equations of motion are to be determined using the Euler-Lagrange
equations.

Solution of exercise A.14. To set up the equations of motion, the Lagrange function
L = T −V with the kinetic energy T and the potential energy V must be determined.
The generalized coordinates (degrees of freedom) are given by qT =

[
s φ

]
.

In the first step, the potential energy V = Vg +Vf is determined. This is composed
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of the potential energy Vg due to gravity and the potential energy Vf stored in the
two springs.

The mass mB of the beam B required for calculating the energies is obtained from
(3.24) to

mB =
∫

V
ρ dV = ρd(b1l1 + b2l2 + b3l3). (A.159)

Due to the constant thickness d, the homogeneous density ρ and the vertical symmetry
for φ = 0, the center of gravity of the beam B lies on the horizontal line passing
through the bearing A. The distance ls of the center of gravity of the beam B from
the joint axis A (pivot point) is obtained from (3.29) to

ls =
b1l1

(
l1
2 + l2

)
+ b2l22

2 − b3l23
2

b1l1 + b2l2 + b3l3
. (A.160)

Thus, the vector psB0 to the center of gravity of the beam as a function of the
generalized coordinates qT =

[
s φ

]
is

psB0 =




−ls cos(φ)
s+ ls sin(φ)

0


. (A.161)

With these results, the potential energy due to gravity with the reference level
y = 0 can be calculated for the beam to

Vg,B = gmB(s+ ls sin(φ)) (A.162)

and for the carriage S to
Vg,S = gmSs. (A.163)

Since the springs were defined as linear in this example, i.e. c1 = const. and
c2 = const., their potential energy is given by

Vc1 = 1
2c1(s− s10)2 (A.164a)

Vc2 = 1
2c2φ

2. (A.164b)

The total potential energy is finally

V = Vg,B + Vg,S + Vc1 + Vc2. (A.165)

The kinetic energy T = Tt,S + Tt,B + Tr,B is composed of the translational kinetic
energy of the carriage Tt,S , the translational kinetic energy of the beam Tt,B , and the
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rotational kinetic energy of the beam Tr,B. The translational kinetic energy of the
carriage follows to

Tt,S = 1
2mS ṡ

2 (A.166)

and that of the beam to

Tt,B = 1
2mB

(
ṗsB0

)T
ṗsB0 = 1

2mB

(
φ̇2l2s + ṡ2 + 2lsφ̇ṡ cos(φ)

)
. (A.167)

The moment of inertia I(S)
B,zz of the beam B is defined about an axis passing through

the center of gravity. Thus, one obtains for the rotational part of the kinetic energy
of the beam

Tr,B = 1
2I

(S)
B,zzφ̇

2 . (A.168)

With these results, the Lagrange function L = T − V is completely determined.
Now, the vector of generalized forces fT

q =
[
fq,s fq,φ

]
is still missing, which is

composed of the effect of the external force f e and the dissipative forces. The external
force can be represented in the form

f e =




fe sin(φ)
fe cos(φ)

0


 (A.169)

and the vector pf0 to the point of application of the external force f e results in

pf0 =




−(l1 + l2) cos(φ) − b1
2 sin(φ)

s+ (l1 + l2) sin(φ) − b1
2 cos(φ)

0


 . (A.170)

The contributions to the generalized force due to the external force f e are calculated
as

fq,s,fe =
(
∂pf0
∂s

)T

f e = fe cos(φ) (A.171a)

fq,φ,fe =
(
∂pf0
∂φ

)T

f e = fe(l1 + l2) . (A.171b)

Since the friction is assumed to be proportional to velocity with constant friction
parameters, the proportion of the generalized force due to the friction forces or
torquess is obtained as

fq,s,d = −d1ṡ (A.172a)
fq,φ,d = −d2φ̇ . (A.172b)
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In sum, the vector of the generalized force results in

fq,s = fq,s,fe + fq,s,d (A.173a)
fq,φ = fq,φ,fe + fq,φ,d . (A.173b)

The Euler-Lagrange equations for the rotatably mounted cantilever beam from
Figure A.22 are therefore

d
dt
∂L

∂ṡ
− ∂L

∂s
= fq,s (A.174a)

d
dt
∂L

∂φ̇
− ∂L

∂φ
= fq,φ . (A.174b)

A presentation of the evaluation of (A.174) is omitted here, as it is very extensive.
For control, these can be taken from the sample solution in Maple.

Solution in Maple: ElastischgelagerterAusleger.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/

Exercise A.15 (Trebuchet). To win the pumpkin throwing competition, the dynamics
of the catapult used for this purpose should be analyzed. It is known that a trebuchet,
as sketched in Fig. A.23, has the best efficiency of all throwing machines. A heavy
counterweight of mass M accelerates the projectile (pumpkin) with mass m. The
throwing arm has the length L+ l and the counterweight is connected to the throwing
arm by a pendulum mechanism of length h. A sling with length r provides additional
range. For simplification, it can be assumed that the moment of inertia of the
throwing arm, the counterweight and the projectile can be neglected. Furthermore,
the ropes are assumed to be massless.
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m

M
L

l h

r

x

z

g

ϕ
θ

θ0

ψ

Figure A.23: Sketch of the trebuchet: Starting position blue, position during the
acceleration phase red.

For this system, the equations of motion should be derived.

Remark: To better understand the dynamics of the catapult, a typical motion
sequence should first be discussed:

In the starting position, which is shown in blue in the sketch, the tip of the
throwing arm is on the ground and the counterweight M is accordingly at the
highest possible point. If the release mechanism, which is not considered here, is
now actuated, the counterweight moves downwards and the throwing arm begins
to rotate around the pivot point (here the origin of the coordinate system). The
rope attached to the end of the arm transfers this movement to the projectile
m, which is now accelerated along a certain path until launch. Note that the
projectile first slides along the ground and only leaves it at a certain point.

The motion sequence of the machine can thus be divided into three phases:

1. In the first phase after release, the projectile slides along the ground until
the time it leaves the ground.

2. In the second phase, the projectile has left the ground and is accelerated
until it is decoupled from the rope.

3. In the third phase, the projectile is separated from the throwing machine.
The arm and the counterweight perform a pendulum motion until the
catapult has come to rest again.

In the context of this example, only the first and second phases will be
considered.

Solution of exercise A.15. In the first step, the necessary degrees of freedom
(generalized coordinates) to describe the system are determined. The throwing arm
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rotates around the y-axis with the angle θ, whereby θ = θ0 should apply in the
initial state. The counterweight M is rotatably attached to the short end of the
arm by the angle φ. This is measured here relative to the vertical. The projectile is
rotatably attached to the end of the throwing arm by a rope at an angle ψ (again
defined relative to the vertical). To describe the dynamics of the system, the following
generalized coordinates are chosen:

q =




θ

φ

ψ


 . (A.175)

In the next step, the vectors pM0 and pm0 from the origin of the coordinate system
to the counterweight M and projectile m, respectively, are determined. As shown in
the sketch A.23, the origin of the coordinate system is located at the pivot point of
the throwing arm. The vectors pM0 and pm0 are thus obtained by

pM0 =




l cos(θ) − h sin(φ)
0

l sin(θ) − h cos(φ)


 (A.176a)

pm0 =




−L cos(θ) + r sin(ψ)
0

−L sin(θ) − r cos(ψ)


 . (A.176b)

In the first phase of the movement, the projectile m moves along the ground. Thus,
there is a constraint in this phase of the motion. With the height hm = −L sin(θ0)
of the projectile at the beginning of the motion, this constraint eT

z pm0 = hm can be
formulated as an equation of the form

L sin(θ) + r cos(ψ) = L sin(θ0) (A.177)

This constraint must be fulfilled throughout the first phase, whereby the angles ψ and
θ are not independent of each other in this phase. If the angle θ is now used as an
independent coordinate (degree of freedom) in this phase, then ψ can be determined
in the form

ψ(θ) = arccos
(
L

r
(sin(θ0) − sin(θ))

)
(A.178)

This relationship must be taken into account in the further derivation of the equations
of motion for phase 1.

Remark: A much more systematic approach to describing this constraint is to
use Lagrange multipliers. However, since these are not part of this course, their
use will be dispensed with.
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The velocities of the projectile and the counterweight, respectively, are obtained in
phase 2 by taking the total time derivative of the position vectors:

vM0 =




−l sin(θ)θ̇ − h cos(φ)φ̇
0

l cos(θ)θ̇ + h sin(φ)φ̇


 (A.179a)

vm,20 =




L sin(θ)θ̇ + r cos(ψ)ψ̇
0

−L cos(θ)θ̇ + r sin(ψ)ψ̇


 . (A.179b)

The velocity vector for phase 1 is calculated by substituting the constraint (A.178):

vm,10 =




L sin(θ)θ̇ + r cos(ψ)ψ̇
0
0


 . (A.180)

The kinetic energies for phase 1 and 2 are calculated to be:

T1 = 1
2M

(
l2θ̇2 + h2φ̇2 + 2lhθ̇φ̇ sin(θ + φ)

)
+ 1

2m
(
L sin(θ)θ̇ + r cos(ψ)ψ̇

)2

(A.181a)

T2 = 1
2M

(
l2θ̇2 + h2φ̇2 + 2lhθ̇φ̇ sin(θ + φ)

)
+ 1

2m
(
L2θ̇2 + r2ψ̇2 + 2Lrθ̇ψ̇ sin(θ − ψ)

)
,

(A.181b)

where, for clarity, the substitution of the relationship

ψ̇ = ∂ψ

∂θ
θ̇ (A.182)

in T1 for phase 1 has been omitted.
The potential energies of the projectile and the counterweight result in:

VM = Mg(l sin(θ) − h cos(φ)) + VM,0 (A.183)
Vm = mg(−L sin(θ) − r cos(ψ)) + Vm,0 (A.184)

and the total potential energy of the system results, depending on the phase, in

V1 = VM (A.185)
V2 = VM + Vm, (A.186)

since in phase 1 only the potential energy of the counterweight has to be considered
(the potential energy of the projectile is constant in this phase).

The equations of motion of the system can now be determined directly by applying
the Euler-Lagrange formalism. A further detailed derivation of the equations of motion
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using the Lagrange formalism is omitted due to the rather unwieldy expressions. The
equations of motion of the catapult for phase two are therefore

M(q)q̈ + g(q, q̇) = 0 (A.187)

with the mass matrix

M(q) =




L2m+ l2M Mlh sin(θ + φ) mLr sin(θ − ψ)
Mlh sin(θ + φ) Mh2 0
mLr sin(θ − ψ) 0 mr2


 (A.188)

and the remaining terms

g(q, q̇) =




−mLr cos(θ − ψ)ψ̇2 +Mlh cos(θ + φ)φ̇2 − g(mL−Ml) cos(θ)
Mlh cos(θ + φ)θ̇2 +Mgh sin(φ)
mLr cos(θ − ψ)θ̇2 +mgr sin(ψ)


 .

(A.189)
The entire equation of motion is presented in Maple in the sample solution.

Solution in Maple: Trebuchet.mw
https://www.acin.tuwien.ac.at/bachelor/modellbildung/
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