CIQS Problem Sheet: Chapter 6 (Optimal Parameter & State Estimation and State Feedback)

Lukas Tarra

June 4, 2025

Instructions

- Try to solve the following exercises. If appropriate, use software tools such as Maple or Matlab / Python.
- Focus on understanding and applying the theory established in the lecture notes.
- Your solutions will serve as a basis for discussion in the next Q&A session.

1 Minimum-variance parameter estimation

In this problem, we will work with the system from Example 6.1 in the lecture notes.

• Download the Matlab data file

workspace_minimum_variance.mat

from the course homepage and load the file into your Matlab workspace. It contains a data matrix \mathbf{S} , covariance matrices \mathbf{Q} , \mathbf{N} , and \mathbf{R} as well as a (noisy) measured output vector \mathbf{y}_{meas} and a noise-free output \mathbf{y} for comparison.

- Assuming that **y** is not known (only \mathbf{y}_{meas}), compute the minimum-variance estimate of the parameter vector $\mathbf{p} = [a_1, a_2, a_3, b_0, b_1]^{\mathrm{T}}$ with the given matrices.
- Now perform the equivalent estimate using the least squares estimator ((6.10) in the lecture notes) and compare the two estimates for **p**.
- Plot the two estimated outputs $\mathbf{S}\hat{\mathbf{p}}$ from the two estimators as well as the noise-free output \mathbf{y} . Which estimator performs better? Why?
- Vary the matrices **Q** and **R** of the minimum-variance estimator. How does this affect the estimator's performance?

2 LQR design

- Use the estimated parameters from Problem 1, but change a_1 to 1.25. Complete Exercise 6.1 in the lecture notes and insert these parameters. You should obtain an unstable system.
- Now assume for the final time index N = 100 that $\mathbf{P}_N = \mathbf{S} = \mathbf{E}$, with \mathbf{E} being the unit matrix. Furthermore, assume $\mathbf{N} = \mathbf{0}$, $\mathbf{Q} = \mathbf{E}$, and $\mathbf{R} = 2\mathbf{E}$. Solve the discrete Riccati equation (Theorem 6.6 in the lecture notes) to obtain the LQR control gains \mathbf{K}_k for all k. Simulate the closed-loop system, with \mathbf{x}_0 being an arbitrary nonzero initial state. Does the LQR stabilize the system?
- Now compute the stationary Riccati controller using the Matlab command

```
K = -1* dlqr(Phi,Gamma,Q,R,N);
```

and simulate the corresponding closed-loop system. Check the closed-loop eigenvalues using

eig(Phi + Gamma*K)

to verify the asymptotic stability of the closed loop.

• Study the influence the choice of **S**, **Q**, and **R** has on the closed-loop performance. You may include random perturbations acting on your system to see this more clearly.

3 Kalman filtering

For this problem, we just do two Exercises from the lecture notes on each the Kalman Filter and the Extended Kalman Filter, respectively.

- Complete Exercise 6.6 from the lecture notes. compare the resulting Kalman Filter for some q with the Full-Order Luenberger Observer (Theorem 5.9) for desired poles of your choice. Include normally distributed stochastic disturbances \mathbf{w}_k and sensor noise v_k in your simulations. What difference between the two observer concepts do you notice?
- Complete Exercise 6.8 from the lecture notes.