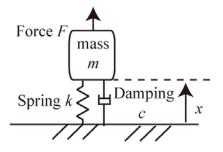
Computation exercise 3(b): Control design


Mechatronic systems 376.050 2016W

Important: Answers must be a hard copy and submitted to the office in CA0421 by 20th of December, 2016 at 4pm. The work must be original.

Fig. 1 shows a lumped mass model of a positioning system using a piezo actuator, where *F* is the input and *x* is the output. Fig. 2 shows a control block diagram to regulate the position *x*, where P(s) is the plant. The transfer function C(s) is a controller and has the following structure:

 $C(s) = C_I(s)C_{notch}(s),$

where $C_l(s)$ is an I controller and $C_{notch}(s)$ is a notch filter. Following the questions below, design a feedback controller C(s).

Parameter	Value	Unit
т	1.6x10 ⁻³	kg
k	50x10 ³	N/m
С	0.5	N/(m/s)

Fig. 1: A lumped mass model of a positioning system.

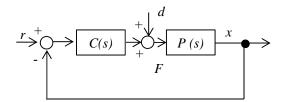


Fig. 2: Control block diagram.

- i. Derive transfer function *P*(*s*) and simulate a Bode plot. [10%]
- ii. Design the notch filter, such that the peak in the magnitude of P(s) is trimmed in the Bode plot of (i). For validation, add a simulated Bode plot of the transfer function $C_{notch}(s)P(s)$ on the figure of (i). [30%]
- iii. Design $C_l(s)$ to regulate the plant cascaded with the notch filter (i.e. $C_{notch}(s)P(s)$), fulfilling the following conditions. Also simulate a Bode plot of the open-loop transfer function $C_l(s)C_{notch}(s)P(s)$ for validation. [30%]
 - Phase margin should be 40 deg or more.
 - Gain margin should be 10 dB or more.
 - The open-loop cross-over frequency should be as high as possible.
- iv. Simulate step response of the closed-loop system with r as the input and x as the output. Also draw step response with the disturbance d as the input and x as the output. Using the results, discuss the influence of the notch filter on these inputs. [30%]