

AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS-& REGELUNGSTECHNIK

Univ.Prof. Dr.sc.techn. Georg Schitter

schitter@acin.tuwien.ac.at

Mechatronic Systems: Solution of Exercise 2

Course VU 376.050 (4 SWS, 6 ECTS) Winter semester 2016

Shingo Ito ito@acin.tuwien.ac.at

Computation Exercise 2(a): Lorentz

Parameter	Value	Unit	Description
m	0.5	kg	Mover mass
n	100	~	Number of windings
d _c	10	mm	Diameter coil
d _w	0.5	mm	Diameter wire
h _c	5	mm	Height coil
В	1.2	Т	Magnetic field strength
ρ	1.7·10 ⁻⁸	Ω·m	Specific resistance
۴o	4n·10 ⁻⁷	NA ²	Permeability in vacuum
μ _r	100	~	Relative permeability
Vmax	15	V	Max. output voltage

Computation Exercise 2(a)-(i): Geometry

- Cross sectional area of the coil: $A_c = \pi \left(\frac{d_c}{2}\right)^2$
- Cross sectional area of the wire: $A_w = \pi \left(\frac{d_w}{2}\right)^2$
- Length wire: $l_w = n\pi d_c$
- Length wire inside the magnetic field: $l_m = l_w$

Computation Exercise 2(a)-(i): R, L, Km

• Coil resistance:
$$R = \frac{\rho l_w}{A_w} = 0.272\Omega$$

Lorentz coil is a solenoid coil

- Magnetic field strength in the coil: $H = \frac{n}{h_c}I$
- Magnetic flux density: $B = \mu_0 \mu_r H$, Flux: $\varphi = A_c B$
- Summed-up Flux of all windings: $\Phi = n\phi$

Self inductance:
$$L = \frac{\Phi}{I} = \frac{n^2 \mu_0 \mu_r A_c}{h_c} = 19.7 \ mH$$

Motor constant & Back EMF constant

•
$$k_m = Bl_m$$

- Motor constant : 3.77 N/A
- Back EMF constant: 3.77 V/(m/s)

Mechatronic Systems (376.050)

Computation Exercise 2(a)-(ii)

Mechanical system: floating mass
F = ms²x
Electrical system:

$$F = k_m I \qquad V_{EMF} = k_m s x \qquad V - V_{EMF} = (Ls + R)I$$

$$\frac{x(s)}{V(s)} = \frac{k_m}{(Ls+R)ms^2 + k_m^2 s}$$

This is a 3rd-order system.

Computation Exercise 2(a)-(iii)

$$F = k_m I \qquad V_{EMF} = k_m s x \qquad V - V_{EMF} = (Ls + R)I$$

Maximum force

At a steady state, only R dominates the impedance.

At a static position, there is no back EMF voltage.

$$F_{max} = k_m I_{max} = k_m \frac{V_{max}}{R}$$

Maximum velocity

• The floating mass can accelerate until $V_{max} = V_{EMF} = \dot{x}_{max}k_m$

$$\dot{x}_{max} = \frac{V_{max}}{k_m}$$

Computation Exercise 2(a)-(iv)

Parameter	n=100	n=50	
F _{max}	208 N	208 N	
\dot{x}_{max}	3.98 m/s	7.96m/s	
$F_{max} = \frac{k_m}{R} \frac{V_{max}}{R}$	$\dot{x}_{max} = \frac{V_m}{k_p}$	$\frac{ax}{n}$ $I_{max} = \frac{V_{ma}}{R}$	x

- The number of windings
 - has no influence on the maximum force, as both R and k_m are decreased.
 - increases the maximum velocity by increasing k_m .
- In practice, a Lorentz actuator can exert its maximum force with a small current by increasing the windings.

Computation Exercise 2(b): Piezo

Parameter	Value	Unit	Description	
Y	53·10 ⁹	N/m ²	Young's modulus of piezo material	
m	100	g	Weight mass (Load)	
ρ	7.85 [.] 10 ³	Kg/m ³	Density of piezo material	
С	50	N/(m/s)	Damping of piezo actuator	
r	5	mm	Radius of piezo actuator	
D	195·10 ⁻¹²	m/V	Piezoelectric coefficient	
3	1.68.10-8	F/m	Dielectric coefficient, Permittivity	
n	50	-	Number of stacks	
- I.	1	mm	Length of piezo per stack	
R	75	Ω	Amplifier's output impedance	
V _{max}	150	V	Amplifier's maximum output voltage	

Computation Exercise 2(b)-(i)

Geometric properties:

- Cross sectional area of the piezo: $A = \pi r^2$
- Total length of piezo: L = NlMechanical properties:
- Mass of piezo: $m_p = AL\rho = 30.8g$

• Stiffness of piezo:
$$k_p = \frac{AY}{L} = 83.2N/\mu m$$

• Capacitance:
$$C = \frac{n \varepsilon A}{l} = 66 n F$$

In the following calculation, it is assumed that *m* is sufficiently heavier than the piezo itself.

Computation Exercise 2(b)-(ii)

Behavior of Piezo:
$$\begin{pmatrix} x \\ q \end{pmatrix} = \begin{bmatrix} k_p^{-1} & D \\ D & C \end{bmatrix} \begin{pmatrix} F_e \\ V \end{pmatrix}$$

- For multiple layers: $x = k_p^{-1}F_e + nDV$
- The external force: $F_e = -ms^2x csx$
- Transfer function from the applied voltage to the displacement

$$\frac{x}{V} = \frac{nDk_p}{ms^2 + cs + k_p}$$

 F_e

L Damping ▲

mass

т

Spring

Computation Exercise 2(b)-(ii)

Computation Exercise 2(b)-(iii)

$$P(s) = \frac{x}{V_{in}} = \frac{1}{RCs + 1} \frac{nDk_p}{ms^2 + cs + k_p}$$

Maximum displacement

At a steady state, the displacement is maximum.

$$x_{max} = nDV_{max}$$

Natural frequency

$$\omega_n = \sqrt{\frac{k_p}{m}}$$

Computation Exercise 2(b)-(iv)

Parameter	n=50	n=100	
x_{max}	1.46 µm	2.93 µm	
ω_n	4.59 kHz	3.25 kHz	
$x_{max} = nDV_{max}$	$\omega_n =$	$=\sqrt{\frac{k_p}{m}} = \sqrt{\frac{AY}{mnl}}$	

By increasing the stack number,

- the displacement can be larger
- However, the natural frequency decreases limiting an achievable control bandwidth
- It is typically difficult to achieve both large actuation displacement and high control bandwidth by a piezo.

