Univ.Prof. Dr.sc.techn. Georg Schitter schitter@acin.tuwien.ac.at

Mechatronic Systems: Solution of Exercise 2

Course VU 376.050 (4 SWS, 6 ECTS) Winter semester 2016

Shingo Ito

ito@acin.tuwien.ac.at

Computation Exercise 2(a): Lorentz

d_{c}

Parameter	Value	Unit	Description
\mathbf{m}	0.5	kg	Mover mass
\mathbf{n}	100	\sim	Number of windings
$\mathbf{d}_{\mathbf{c}}$	10	mm	Diameter coil
$\mathbf{d}_{\mathbf{w}}$	0.5	mm	Diameter wire
$\mathbf{h}_{\mathbf{c}}$	5	mm	Height coil
\mathbf{B}	1.2	T	Magnetic field strength
\mathbf{P}	$1.7 \cdot 10^{-8}$	$\Omega \cdot \mathrm{~m}$	Specific resistance
$\boldsymbol{\mu}_{\mathbf{0}}$	$4 \mathrm{n} \cdot 10^{-7}$	NA^{2}	Permeability in vacuum
$\boldsymbol{\mu}_{\mathbf{r}}$	100	\sim	Relative permeability
$\mathbf{V m a x}$	15	V	Max. output voltage

Computation Exercise 2(a)-(i): Geometry

- Cross sectional area of the coil: $A_{c}=\pi\left(\frac{d_{c}}{2}\right)^{2}$
- Cross sectional area of the wire: $A_{w}=\pi\left(\frac{d_{w}}{2}\right)^{2}$
- Length wire: $l_{w}=n \pi d_{c}$
- Length wire inside the magnetic field: $l_{m}=l_{w}$

Computation Exercise 2(a)-(i): R, L, Km

- Coil resistance: $R=\frac{\rho l_{w}}{A_{w}}=0.272 \Omega$
- Lorentz coil is a solenoid coil
- Magnetic field strength in the coil: $H=\frac{n}{h_{c}} I$

- Magnetic flux density: $B=\mu_{0} \mu_{r} H$, Flux: $\varphi=A_{c} B$
- Summed-up Flux of all windings: $\Phi=n \varphi$
- Self inductance: $L=\frac{\Phi}{I}=\frac{n^{2} \mu_{0} \mu_{r} A_{c}}{h_{c}}=19.7 \mathrm{mH}$

■ Motor constant \& Back EMF constant

- $k_{m}=B l_{m}$
- Motor constant : 3.77 N/A
- Back EMF constant: 3.77 V/(m/s)

Computation Exercise 2(a)-(ii)

■ Mechanical system: floating mass

$$
F=m s^{2} x
$$

- Electrical system:

$$
F=k_{m} I \quad V_{E M F}=k_{m} s x \quad V-V_{E M F}=(L s+R) I
$$

$\frac{x(s)}{V(s)}=\frac{k_{m}}{(L s+R) m s^{2}+k_{m}{ }^{2} s}$
■ This is a $3^{\text {rd }}$-order system.

Computation Exercise 2(a)-(iii)

$$
F=k_{m} I \quad V_{E M F}=k_{m} s x \quad V-V_{E M F}=(L s+R) I
$$

■ Maximum force

- At a steady state, only R dominates the impedance.
- At a static position, there is no back EMF voltage.

$$
F_{\max }=k_{m} I_{\max }=k_{m} \frac{V_{\max }}{R}
$$

- Maximum velocity
- The floating mass can accelerate until $V_{\max }=V_{E M F}=\dot{x}_{\max } k_{m}$

$$
\dot{x}_{\max }=\frac{V_{\max }}{k_{m}}
$$

Computation Exercise 2(a)-(iv)

$$
\begin{array}{|c|c|c|}
\hline \text { Parameter } & \mathrm{n}=100 & \mathrm{n}=50 \\
\hline F_{\max } & 208 \mathrm{~N} & 208 \mathrm{~N} \\
\hline \dot{x}_{\max } & 3.98 \mathrm{~m} / \mathrm{s} & 7.96 \mathrm{~m} / \mathrm{s} \\
\hline F_{\max }=k_{m} \frac{V_{\max }}{R} & \dot{x}_{\max }=\frac{V_{\max }}{k_{m}} & I_{\max }=\frac{V_{\max }}{R}
\end{array}
$$

- The number of windings
- has no influence on the maximum force, as both R and k_{m} are decreased.
- increases the maximum velocity by increasing k_{m}.

■ In practice, a Lorentz actuator can exert its maximum force with a small current by increasing the windings.

Computation Exercise 2(b): Piezo

Parameter	Value	Unit	Description
\mathbf{Y}	$53 \cdot 10^{9}$	$\mathrm{~N} / \mathrm{m}^{2}$	Young's modulus of piezo material
\mathbf{m}	100	g	Weight mass (Load)
\mathbf{p}	$7.85 \cdot 10^{3}$	$\mathrm{Kg} / \mathrm{m}^{3}$	Density of piezo material
\mathbf{c}	50	$\mathrm{~N} /(\mathrm{m} / \mathrm{s})$	Damping of piezo actuator
\mathbf{r}	5	mm	Radius of piezo actuator
\mathbf{D}	$195 \cdot 10^{-12}$	$\mathrm{~m} / \mathrm{V}$	Piezoelectric coefficient
$\boldsymbol{\varepsilon}$	$1.68 \cdot 10^{-8}$	$\mathrm{~F} / \mathrm{m}$	Dielectric coefficient, Permittivity
\mathbf{n}	50	-	Number of stacks
\mathbf{l}	1	mm	Length of piezo per stack
\mathbf{R}	75	Ω	Amplifier's output impedance
$\mathbf{V}_{\text {max }}$	150	V	Amplifier's maximum output voltage

Computation Exercise 2(b)-(i)

Geometric properties:

- Cross sectional area of the piezo: $A=\pi r^{2}$

■ Total length of piezo: $L=N l$
Mechanical properties:

■ Mass of piezo: $m_{p}=A L \rho=30.8 g$

- Stiffness of piezo: $k_{p}=\frac{A Y}{L}=83.2 \mathrm{~N} / \mu \mathrm{m}$
- Capacitance: $C=\frac{n \varepsilon A}{l}=66 n F$

In the following calculation, it is assumed that m is sufficiently heavier than the piezo itself.

Computation Exercise 2(b)-(ii)

- Behavior of Piezo: $\left\{\begin{array}{l}x \\ q\end{array}\right\}=\left[\begin{array}{cc}k_{p}^{-1} & D \\ D & C\end{array}\right]\left\{\begin{array}{l}F_{e} \\ V\end{array}\right\}$

■ For multiple layers: $x=k_{p}^{-1} F_{e}+n D V$
■ The external force: $F_{e}=-m s^{2} x-c s x$

- Transfer function from the applied voltage to the displacement

$$
\frac{x}{V}=\frac{n D k_{p}}{m s^{2}+c s+k_{p}}
$$

Computation Exercise 2(b)-(ii)

- Transfer function of an RC circuit $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{R C s+1}$
- Total transfer function
$\frac{x}{V_{i n}}=\frac{1}{R C s+1} \frac{n D k_{p}}{m s^{2}+c s+k_{p}}$
- Impedanc of an RC circuit

$$
Z(s)=\frac{I}{V}=\frac{C s}{R C s+1}
$$

Computation Exercise 2(b)-(iii)

$$
P(s)=\frac{x}{V_{\text {in }}}=\frac{1}{R C s+1} \frac{n D k_{p}}{m s^{2}+c s+k_{p}}
$$

- Maximum displacement
- At a steady state, the displacement is maximum.

$$
x_{\max }=n D V_{\max }
$$

- Natural frequency

$$
\omega_{n}=\sqrt{\frac{k_{p}}{m}}
$$

Computation Exercise 2(b)-(iv)

Parameter	$\mathrm{n}=50$	$\mathrm{n}=100$
$x_{\max }$	$1.46 \mu \mathrm{~m}$	$2.93 \mu \mathrm{~m}$
ω_{n}	4.59 kHz	3.25 kHz
$x_{\max }=n D V_{\max }$		$\omega_{n}=\sqrt{\frac{k_{p}}{m}}=\sqrt{\frac{A Y}{m n l}}$

- By increasing the stack number,
- the displacement can be larger
- However, the natural frequency decreases limiting an achievable control bandwidth

■ It is typically difficult to achieve both large actuation displacement and high control bandwidth by a piezo.

