
1 Model predictive control

The aim of this exercise is to get acquainted with the implementation of model predictive
control (MPC). To this end, different model predictive control schemes, which incorporate
the linearized system dynamics or the nonlinear system dynamics, are designed for
controlling a three-tank laboratory model. Additionally, the open-source toolbox for
nonlinear optimization and algorithmic differentiation CasADi [1.1] will be used for a
rapid prototyping of the (nonlinear) control system.
This script is not intended to be self-contained. It is recommended to study at least

chapter 1 of the corresponding lecture notes for the VU Optimization-Based Control
Methods [1.2].

The zip-archive watertank_UE1.zip on the course homepage contains
Matlab/Simulink files for the mathematical description and simulation
of the water tank model considered in Section 1.1.

If you have any questions or suggestions regarding the exercise please contact

• Kaspar Schmerling <schmerling@acin.tuwien.ac.at> or

• Lukas Marko <marko@acin.tuwien.ac.at>.

1.1 The three-tank system
Figure 1.1 shows a schematic diagram of a three-tank laboratory system. Each of the
three tanks has the same base area Atank and an individual discharge valve. Additionally,
the tanks are coupled by two coupling valves. The water heights in the tanks are denoted
as h1, h2, and h3, and are physically restricted to

0 ≤ h1, h2, h3 ≤ 0.55m. (1.1)

The water heights can be influenced by the volumetric flows qi1 and qi3 of pump 1 and 2,
respectively. The respective volumetric flows are constrained by

0 ≤ qi1, qi3 ≤ 4.5 l/min = 75 · 10−6 m3/s. (1.2)
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Figure 1.1: Schematic diagram of the three-tank system.

1.1.1 Mathematical model
Based on the conservation of mass, the change of the water heights can be described as

d
dth1 = 1

Atank
(qi1 − q12 − qo1) (1.3a)

d
dth2 = 1

Atank
(q12 − q23 − qo2) (1.3b)

d
dth3 = 1

Atank
(qi3 + q23 − qo3). (1.3c)

Here, qo1, qo2, and qo3 describe the flows through the outlet valves and q12 and q23 denote
the volumetric flows through the respective coupling valves.

Assuming turbulent flow conditions, the volumetric flows through the three outlet valves
can be modeled as

qo1(h1) = αo1Ao1
√

2gh1 (1.4a)
qo2(h2) = αo2Ao2

√
2gh2 (1.4b)

qo3(h3) = αo3Ao3
√

2gh3, (1.4c)

with g as gravitational acceleration, the contraction coefficients αo1, αo2, and αo3, and
the effective cross sectional areas Ao1, Ao2, and Ao3. For the outlet valves 1 and 3, the
effective cross sectional area can be calculated from the effective diameters Do1 and Do3,
i. e.,

Ao1 = D2
o1π

4 Ao3 = D2
o3π

4 . (1.5)

Outlet valve 2 has an adjustable cross sectional area. However, for all subsequent exercises
and experiments Ao2 is assumed to have a constant value.
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Because the pressure drop over the outlet valves depends only on the water height in
the respective tank, the assumption of turbulent flow is valid as long as the water height
is sufficiently large, i. e., hi ' 0.1m, i = 1, 2, 3. In contrast, the pressure drop over the
coupling valves scales with the differences h1 − h2 and h2 − h3. Thus, for small height
differences, the flow in the coupling valves becomes laminar, which necessitates the use of
a more involved volumetric flow model. To this end, the flow numbers

λ12(h1, h2) = D12
ρ

η

√
2g|h1 − h2| (1.6a)

λ23(h2, h3) = D23
ρ

η

√
2g|h2 − h3| (1.6b)

are defined, where D12 and D23 denote the equivalent hydraulic diameters of the valves,
and ρ and η are the density and dynamic viscosity of water, respectively. These flow
numbers characterize the flow regime within the coupling valves. The transition between
laminar and turbulent flow is characterized by the critical flow numbers λc12 and λc23.
For λi > λci, i ∈ {12, 23}, the flow is considered turbulent. The actual transition between
laminar and turbulent flow is modeled via the respective contraction coefficients as

α12(h1, h2) = α120 tanh
(2λ12(h1, h2)

λc12

)
(1.7a)

α23(h2, h3) = α230 tanh
(2λ23(h2, h3)

λc23

)
, (1.7b)

with the turbulent contraction coefficients α120 and α230. The volumetric flows through
the coupling valves are subsequently modeled as

q12(h1, h2) = α12(h1, h2)A12
√

2g|h1 − h2| sgn (h1 − h2) (1.8a)

q23(h2, h3) = α23(h2, h3)A23
√

2g|h2 − h3| sgn (h2 − h3), (1.8b)

with the effective cross sectional areas A12 and A23. All parameter values involved in the
models (1.4) and (1.8) are summarized in Table 1.1.

1.1.2 Steady state, linearization, and time discretization
In the considered experiments, the main control objective will be to establish, maintain a
desired steady state water height

h2,S = href
2 , (1.9)

with href
2 as desired value, in the second water tank. For the subsequent experiments we

consider qi1 as primary control input. The second independent control input qi3 should
mainly be used to improve transient control performance and to realize different set-points.
Thus, for the initial steady state input qi3,S the additional assumption

qi3,S = 0 (1.10)

is used. Based on this specifications the steady state heights in the first and third tank
h1,S and h3,S, together with the necessary steady state input flow qi1,S, can be calculated
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Variable Value Unit

Ts 200 ms
Atank 153.9 cm2

ρ 997 kg/m3

η 8.9 · 10−4 N s/m2

g 9.81 m/s2

αo1 0.0583 -
Do1 15 mm
αo2 0.1039 -
Ao2 1.0429 cm2

αo3 0.06 -
Do3 15 mm
α120 0.3038 -
D12 7.7 mm
A12 0.555 31 cm2

λc12 24 000 -
α230 0.1344 -
D23 15 mm
A23 1.767 15 cm2

λc23 29 600 -

Table 1.1: Parameter values of the three-tank model.

from (1.3). Together with the steady-state condition ḣ1,S = ḣ2,S = ḣ3,S = 0 and (1.10),
(1.3) reduces to

0 = qi1,S − q12(h1,S, h2,S)− qo1(h1,S) (1.11a)
0 = q12(h1,S, h2,S)− q23(h2,S, h3,S)− qo2(h2,S) (1.11b)
0 = q23(h2,S, h3,S)− qo3(h3,S). (1.11c)

For a desired h2,S, (1.11) constitutes a system of three nonlinear equations in three
unknowns h1,S, h3,S, qi1,S. Together with the initial specifications (1.9) and (1.10) the
solution to (1.11) fully specifies the desires steady state.

Hint: The solution to (1.11) is obtained by using the fsolve command in the
init_sim.m-file in the zip-archive watertank_UE1.zip, which is provided on the
course homepage.

Exercise Optimization-Based Control Methods (Summer semester 2022/2023)
©, Institut für Automatisierungs- und Regelungstechnik, TU Wien



1.2 Linear MPC based on subordinate time integration Seite 5

Introducing the deviations from the respective steady-state quantities as

∆x =


h1

h2

h3

− xS, ∆u =
[
qi1

qi3

]
− uS, ∆y = h2 − h2,S (1.12)

with xS = [h1,S h2,S h3,S]T and uS = [qi1,S qi3,S]T yields the continuous-time linearized
dynamic model of the nonlinear system (1.3) in the form

∆ẋ = A∆x + B∆u (1.13a)
∆y = cT∆x, (1.13b)

see, e. g., [1.3] for further details regarding the process of linearization. Note that (1.13)
constitutes a multiple input single output (MISO) system.

Hint: The matrices in the linearized model (1.13) can be calculated by the function
calcLinearization in the zip-archive watertank_UE1.zip, which is provided on
the course homepage.

To facilitate a discrete-time controller implementation with sampling points tk = kTs,
k = 0, 1, . . . , and the sampling time Ts, a zero-order-hold discrete-time equivalent of (1.13)
is computed in the form

∆xk+1 = Φ∆xk + Γ∆uk (1.14a)
∆yk = cT∆xk (1.14b)

can be computed using the c2d routine in Matlab. Here, ∆xk, ∆uk and ∆yk denote the
steady-state deviations according to (1.12) at time step k, Φ is the discrete-time state
transition matrix and Γ is the discrete-time input matrix, see, e. g., [1.3] for further details.

1.2 Linear MPC based on subordinate time integration
Given that the state deviations ∆xk remain sufficiently small, (1.14) is a reasonable
approximation for the nonlinear system dynamics (1.3), evaluated on the discrete-time
grid tk = kTs, k = 0, 1, . . . . As with other control design strategies, the formulation and
implementation of an MPC becomes significantly easier if only linear system dynamics
are considered. Thus, to obtain a basic understanding for the implementational aspects
of MPC, it is meaningful to first study the necessary steps in the MPC design for the
linearized discrete-time system dynamics (1.14).

Subsequently, consider a linear MPC for the linear discrete-time dynamics (1.14) with
a prediction horizon of N equidistant samples and a control horizon of one sample. This
means that the MPC should calculate a new control input deviation ∆uk at every time
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step tk = kTs, k = 0, 1, . . . , by solving the optimal control problem

(∆ũ∗
n) = arg min

(∆ũn)
JN (k, (∆ỹn), (∆ũn)) (1.15a)

s.t. ∆x̃n+1 = Φ∆x̃n + Γ∆ũn , ∆x̃0 = ∆xk (1.15b)
∆ỹn = cT∆x̃n (1.15c)
xmin ≤ ∆x̃n + xS ≤ xmax , ∀n = 1, . . . , N (1.15d)
umin ≤ ∆ũn + uS ≤ umax , ∀n = 0, 1, . . . , N − 1 (1.15e)

with the state bounds xmin, xmax, the input bounds umin, umax, and the quadratic cost
function

JN (k, (∆ỹn), (∆ũn)) =
N∑

n=1
‖∆ỹn −∆yref

k+n‖2q +
N−1∑
n=0

(
‖∆ũn‖2R1

+ ‖∆ũn −∆ũn−1‖2R2

)
.

(1.16)
Here, ∆yref = href

2 − h2,S is the desired deviation from the initial steady state h2,S, see
also (1.12), and ∆ũ−1 = ∆uk−1. This means that ∆ũ−1 equals the last realization of the
control input and is thus not a free variable in respect to the optimization problem (1.15).
The tuning parameters q, R1, and R2 define the weighting in the individual norms and
thus the contribution of the different terms in the cost function (1.16).
As will be shown in the remainder of this section, the restriction to linear system

dynamics allows to easily convert the state constraints in (1.15d) into linear inequality
constraints for the free control inputs ∆ũn. In this case, the application of the method
of subordinate time integration, see [1.2], is recommendable because it facilitates a
small number of free optimization variables and retains flexibility with respect to state
constraints. Following the method of subordinate time integration, only the control inputs
∆ũn, n = 0, . . . , N − 1, are considered as free optimization variables in (1.15) and are
assembled in the vector

z =
[
∆uT

0 ∆uT
1 . . . ∆uT

N−1

]T
. (1.17)

Similarly, the reference output ∆yref
k+n over the prediction horizon n = 1, . . . , N is also

collected in a vector
rk =

[
∆yref

k+1 ∆yref
k+2 . . . ∆yref

k+N

]T
. (1.18)

Hint: If the reference trajectory ∆yref
k is not known in advance, and if no other

information is available, a constant reference is typically assumed over the prediction
horizon. In this case, (1.18) is replaced by

rk = ∆yref
k

[
1 1 . . . 1

]T
. (1.19)

Exercise Optimization-Based Control Methods (Summer semester 2022/2023)
©, Institut für Automatisierungs- und Regelungstechnik, TU Wien



1.2 Linear MPC based on subordinate time integration Seite 7

The subordinate time integration of (1.15b) can be written in matrix form as
∆x̃1

∆x̃2
...

∆x̃N

 =


Φ
Φ2

...
ΦN


︸ ︷︷ ︸

Ψ

∆x̃0︸︷︷︸
∆xk

+


Γ 0 . . . 0

ΦΓ Γ . . . 0
...

...
...

ΦN−1Γ ΦN−2Γ . . . Γ


︸ ︷︷ ︸

Θ


∆ũ0

∆ũ1
...

∆ũN−1


︸ ︷︷ ︸

z

. (1.20)

Using (1.15c), this yields the predicted outputs
∆ỹ1

∆ỹ2
...

∆ỹN

 =


cTΦ
cTΦ2

...
cTΦN


︸ ︷︷ ︸

O

∆x̃0︸︷︷︸
∆xk

+


cTΓ 0 . . . 0

cTΦΓ cTΓ . . . 0
...

... . . . ...
cTΦN−1Γ cTΦN−2Γ . . . cTΓ


︸ ︷︷ ︸

G


∆ũ0

∆ũ1
...

∆ũN−1


︸ ︷︷ ︸

z

. (1.21)

Together with the abbreviations

Q =


q 0 . . . 0
0 q . . . 0
...

... . . . ...
0 0 . . . q

 (1.22)

R =



R1 + 2R2 −R2 0 0 . . . 0 0
−R2 R1 + 2R2 −R2 0 . . . 0 0

0 −R2 R1 + 2R2 −R2 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . R1 + 2R2 −R2

0 0 0 0 . . . −R2 R1 + R2


(1.23)

sT =
[
−∆uT

k−1R2 . . . 0 0
]
, (1.24)

the cost function (1.16) can be rewritten as

JN (k, (∆ỹn), (∆ũn)) = (O∆xk + Gz− rk)TQ(O∆xk + Gz− rk)
+ zTRz + 2sTz + ∆uT

k−1R2∆uk−1, (1.25)

which can be rewritten as

JN (k, (∆ỹn), (∆ũn)) = zT
(
GTQG + R

)
︸ ︷︷ ︸

H

z +
(
2(O∆xk − rk)TQG + 2sT

)
︸ ︷︷ ︸

mT
k

z

+ (O∆xk − rk)TQ(O∆xk − rk) + ∆uT
k−1R2∆uk−1. (1.26)
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The last two terms in (1.26) do not influence the optimal solution z∗, and can thus be
neglected in the subsequent optimization procedure.

In summary, the linear MPC has to solve the constrained quadratic program

z∗ = arg min
z

zTHz + mT
k z (1.27a)

s.t. ∆xmin,k ≤ Θz ≤ ∆xmax,k (1.27b)
∆umin,k ≤ z ≤ ∆umin,k (1.27c)

with the bounds

∆xmin,k =


xmin − xS

xmin − xS
...

xmin − xS

−Ψ∆xk, ∆xmax,k =


xmax − xS

xmax − xS
...

xmax − xS

−Ψ∆xk (1.28a)

∆umin,k =


umin − uS

umin − uS
...

umin − uS

, ∆umax,k =


umax − uS

umax − uS
...

umax − uS

 (1.28b)

during online operation at every discrete time step k. The actual control input ∆uk is
then taken equal to the first (vector-valued) entry ∆ũ∗

0 of the optimal solution z∗, see
also (1.17). Carry out the following exercise at home to implement a linear MPC as
preparation for the lab course.

Hint: An efficient and numerically stable way to solve (1.27) is the quadprog routine
from the Matlab Optimization Toolbox. This solver provides different optimization
algorithms. However, to facilitate an easy code generation for use in Simulink, it is
necessary to select the ’active-set’ method.

Exercise 1.1 (Prepare at home). Get acquainted with the Matlab/Simulink model
of the three-tank system provided on the course homepage. Subsequently, implement
a linear MPC as Matlab function based on the linearized discrete-time dynamics
(1.14), a control horizon of one sample and a freely tunable prediction horizon of N
samples. To this end, proceed as follows:

1. The files available on the course homepage already include a function
[AA, BB] = calcLinearization(xR, parSys)

which calculates the matrices to parametrize the continuous-time linearized
dynamics (1.13). Use the Matlab routine c2d to calculate the discrete-time
representation (1.14) for the intended sampling time of Ts = 2s. Use the step
command in Matlab to validate the discretization.

2. Create a function
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[Psi, Theta, OO, GG] = setupPredictionMatrices(sysD, N)

which assembles the constant matrices Ψ, Θ and O, G according to (1.20)
and (1.21), respectively. Use this function to assemble the respective matrices
during the initialization stage of the MPC. Save all relevant quantities in a
Matlab struct parMPC for further use.

3. Create a function
[HH, mm, dxmin, dxmax, dumin, dumax] =

setupOptimization(dx, dyref, duMinus1, parMPC)

which assembles H and mk from (1.26) and ∆xmin,k, ∆xmax,k and ∆umin,k,
∆umax,k according to (1.28).

4. Implement the linear MPC in a Matlab function in the three-tank simula-
tion model in Simulink with a sampling time of Ts = 2s. Use the function
setupOptimization to obtain the expressions required in (1.27) at every sam-
pling point followed by the quadprog routine from the Matlab Optimization
Toolbox to solve (1.27).

5. Test the MPC in Simulation for

N = 30
q = 1/m2

R1 =
[
6e4(s/m3)2 0

0 6e5(s/m3)2

]
, R2 =

[
6e4(s/m3)2 0

0 6e4(s/m3)2

]

xmin = 0, xmax =
[
0.4m 0.4m 0.4m

]T
umin = 0, umax =

[
75 · 10−6 m3/s 75 · 10−6 m3/s

]T
.

How do the different tuning parameters influence the control performance?
Does the MPC achieve zero steady-state error?

1.3 Nonlinear MPC based on CasADi
While the formulation and implementation of an MPC for a linear system model is rather
straightforward, the implementation of a nonlinear MPC formulation based on a nonlinear
system model can require considerable more work. To this end, it is meaningful to take
advantage of existing software tools during control design. If the intended hardware has
only limited computational resources, a more custom MPC implementation can be pursued
once the right problem formulation, optimization algorithm, and controller parameters
are determined.

In this exercise, the open source toolbox CasADi for nonlinear optimization, algorithmic
differentiation, and optimal control will be used to implement an MPC for the nonlinear
three-tank system from Section 1.1 [1.1].
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Exercise 1.2 (Prepare at home). Download the CasADi software package from
https://web.casadi.org/ and get acquainted with the basic functionalities. In
particular, perform the following task:

• Watch the MPC intro video on the CasADi homepage.

• Study the exemplary instructions https://web.casadi.org/blog/mpc-simulink/
for implementing an interpreter-based MPC in Matlab/Simulink.

• Study the exemplary instructions https://web.casadi.org/blog/mpc-simulink2/
for implementing a C-doe s-function-based MPC in Matlab/Simulink.

CasADi provides the essential building-blocks for the construction of general-purpose
or specific-purpose solvers for continuous-time optimal control problems (OCPs). For this
exercise, the OCP is of the form

ũ∗(·) = arg min
ũ(·)

JT (t, ỹ(t), ũ(t)) (1.29a)

s.t ˙̃x(τ) = f(x̃(τ), ũ(τ)) , x̃(0) = x(t) (1.29b)
ỹ(τ) = cTx̃(τ) (1.29c)
xmin ≤ x̃(τ) ≤ xmax , ∀τ ∈ [0, T ] (1.29d)
umin ≤ ũ(τ) ≤ umax , ∀τ ∈ [0, T ] (1.29e)

with a cost function according to

JT (t, ỹ(t), ũ(t)) =
∫ T

0

(
‖ỹ(τ)− yref(t+ τ)‖2q + ‖ũ(τ)‖2R1

+ ‖ ˙̃u(τ)‖2R2

)
dτ. (1.30)

Here, q, R1, and R2 define the weighting of the individual terms in (1.30) and xmin,
xmax and umin, umax constitute the state and input bounds, respectively. Based on the
assumption that the control input u is kept constant between individual discretization
points, the built-in features of CasADi can be used to cast (1.29) into a discrete-time
OCP on the time grid tk = kTs, k = 0, 1, ..., in the form of

(ũ∗
n) = arg min

(ũn)
JN (k, (ỹn), (ũn)) (1.31a)

s.t x̃n+1 = F(x̃n, ũn) , x̃0 = xk (1.31b)
ỹn = cTx̃n (1.31c)
xmin ≤ x̃n ≤ xmax , ∀n = 1, . . . , N (1.31d)
umin ≤ ũn ≤ umax , ∀n = 0, 1, . . . , N − 1 (1.31e)

with a cost function

JN (k, (ỹn), (ũn)) =
N∑

n=1
‖ỹn − yref

k+n‖2q +
N−1∑
n=0

(
‖ũn‖2R1

+ ‖ũn − ũn−1‖2R2

)
(1.32)

and appropriate weights q, R1, and R2. The number of time steps N is typically calculated
from the continuous-time prediction horizon T according to N = T/Ts. Based on (1.31),
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the MPC is realized as the evaluation of a formal mapping (xk, (yref
k+n),uk−1) → uk at

every time step tk. The formulation of the concrete optimization problem can be realized
using direct discretization methods like subordinate time ingratiation, multiple shooting,
or full discretization, see [1.2]. For the implementation of state constraints like those
defined in (1.31d), full discretization is typically preferred due to its ease of implementation
and better convergence properties. Note that in CasADi the method of full discretization
is not explicitly stated instead, it is just understood as a special case of the multiple
shooting discretization.

Hint: All subsequent exercises in this section are intended to be discussed and
solved during the lab course. Even though, interested, students are welcome to solve
the following exercises already before for the lab course.

Exercise 1.3 (Exercise during the Lab). Use CasADi to implement a discrete-time
MPC for the three-tank system from Section 1.1 based on the nonlinear dynamics
(1.3) in Matlab/Simulink. To this end, proceed as follows:

1. Model the nonlinear system dynamics (1.1) with the parameters given in Table
1.1 as CasADi function. Use the build in integrator functionality with a Runge-
Kutta integration scheme or directly implement the explicit Euler integration
scheme.

2. Set up the discrete-time OCP (1.31) with the corresponding cost function (1.32)
based on the method of full discretization (). Formalize the solution of the OCP
as CasADi function, which receives the current state xk, the current output
reference yref

k and the previous control input uk−1, by using the SQP solver and
the qrqp method. For the implementation, assume that yref

k remains constant
over the prediction horizon.

3. Generate C-code for the previously defined function to set up a Simulink
s-function which can be used to simulate the MPC in conjunction with the
three-tank model.

4. Implement and test the developed MPC in simulations in Simulink. Use a
sampling time of Ts = 2s and

N = 30
q = 1/m2

R1 =
[
6e4(s/m3)2 0

0 6e5(s/m3)2

]
, R2 =

[
6e4(s/m3)2 0

0 6e4(s/m3)2

]

xmin = 0, xmax =
[
0.4m 0.4m 0.4m

]T
umin = 0, umax =

[
75 · 10−6 m3/s 75 · 10−6 m3/s

]T
.
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as a starting point for tuning the controller. How do the different tuning
parameters influence the control performance? Does the MPC achieve zero
steady-state error?

Hint: Numerical solvers are typically sensitive to badly scaled cost
functions. Ensure that every term in the cost function has roughly the
same oder of magnitude. Additionally, the solver should be provided with
a good initial condition for the iteration. For the first optimization step,
such an initial solution could be generated from an artificial test trajectory.
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