
2 Receding horizon estimation

The aim of this exercise is to practice the implementation of (nonlinear) moving hori-
zon estimators (MHE). The exercise covers state estimation, joint state and parameter
estimation, as well as the maximum-a-posteriori approach of implementing an MHE.
Continuing from the previous exercise, all MHE designs in this exercise are formulated for
the nonlinear three-tank laboratory model presented in Section 1.1. The implementation
of the nonlinear estimation strategies makes use of the open-source toolbox for nonlinear
optimization and algorithmic differentiation CasADi [2.1].
This script is not intended to be self-contained. It is recommended to study at least

chapter 2 of the corresponding lecture notes for the VU Optimization-Based Control
Methods [2.2]. Additionally, if you have not already done so for the first exercise, download
the CasADi software package from https://web.casadi.org/ and get acquainted with
the basic functionalities.

The zip-archive watertank_UE2.zip on the course homepage contains
Matlab/Simulink files for the mathematical description and simulation
of the water tank model considered in Section 1.1.

If you have any questions or suggestions regarding the exercise, please contact

• Nikolaus Würkner <wuerkner@acin.tuwien.ac.at> or

• Lukas Marko <marko@acin.tuwien.ac.at>.

2.1 MHE with a quadratic cost function
Moving horizon estimation (MHE) provides a fairly general and flexible framework for
real-time state and parameter estimation. This estimation is performed by solving the
optimization problem

(x̂k−N , (ŵn)) =
arg min
(x̃k−N ,(w̃n))

JN (k, x̃K−N , (w̃n)) (2.1a)

u.B.v. x̃n+1 = Fn(x̃n, w̃n) ∀n = k −N, . . . , k − 1 (2.1b)
ṽn = yn − hn(x̃n) ∀n = k −N, . . . , k − 1 (2.1c)
x̃n ∈ Xn ∀n = k −N, . . . , k (2.1d)
w̃n ∈Wn , ṽn ∈ Vn , ∀n = k −N, . . . , k − 1. (2.1e)

Here, k indicates the current time step tk = kTs with the sampling period Ts. N is the
length of the estimator horizon, x̂k−N is the current estimate of the state N time steps
prior to the current time index k, and (w̃n), n = k −N, . . . , k − 1, is the current estimate
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of the sequence of process disturbances during the estimation horizon. In general, the
cost function in (2.1a) has the form

JN (k, x̃k−N , (w̃n)) = Bk−N (x̃k−N ) +
k−1∑

n=k−N
bn(w̃n, ṽn), (2.2)

where Bk−N describes the initial costs and bn penalizes the estimated process disturbances
w̃n and estimated measurement noise ṽn over the estimator horizon. Equation (2.1b)
describes the discrete-time model of the system used by the estimator, (2.1c) models the
available measurements, and (2.1d) incorporates state constraints into the optimization
problem. Uncertainties due to model errors and measurement noise are considered by the
process disturbance wk and the measurement noise vk in (2.1b) and (2.1c), respectively.
Prior knowledge about these uncertainties can be considered via constraints in (2.1e). See
[2.2] for a more detailed description of the optimization problem (2.1).

In (2.1b), the influence of any control input uk is modeled implicitly by the time variance
of the nonlinear mapping Fk. To implement an MHE for the three-tank system, it is
more convenient to explicitly state the influence of the control input uk. Additionally,
since no other information is available, a additive process disturbance wk in the system
dynamics is assumed and the constraints in (2.1e) are dropped. Furthermore, the height
measurements of the considered three-tank system constitute a linear output equation. In
summary, (2.1b) and (2.1c) can thus be simplified to

xk+1 = F(xk,uk) + wk (2.3a)
yk = Cxk + vk. (2.3b)

Note that the nonlinear mapping F in (2.3a) is considered to be time-invariant.
As a first option, the MHE for the three-tank system should feature quadratic cost

functions Bk−N and bn, i. e.,

Bk−N (x̃k−N ) = ‖x̃k−N − x̄k−1‖2S
= (x̃k−N − x̄k−1)TS(x̃k−N − x̄k−1) (2.4a)

bn(w̃n, ṽn) = ‖w̃n‖2Q + ‖ṽn‖2R
= w̃T

nQw̃n + ṽT
nRṽn, (2.4b)

with the positive definite weighting matrices S, Q, R, and the a-priori state estimate
x̄k−1. With (2.3) in (2.4b), and by introducing the local time index j = k −N + n, the
cost function (2.2) can be simplified to

JN (k, (x̃j)) =

‖x̃0 − x̄k−1‖2S +
N−1∑
j=0

(
‖ x̃j+1 − F(x̃j ,uk−N+j)︸ ︷︷ ︸

w̃j

‖2Q + ‖yk−N+j −Cx̃j︸ ︷︷ ︸
ṽj

‖2R
)
. (2.5)

Due to the assumption of additive process disturbances and the absence of constraints like
(2.1e), the system dynamics (2.3) are directly incorporated into the cost function. This
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allows to simplify the optimization problem (2.1) in the form

(x̃∗
j ) = arg min

(x̂j)
JN (k, (x̃j)) (2.6a)

u.B.v. xmin ≤ x̃j ≤ xmax , ∀j = 0, . . . , N. (2.6b)

Note that, in contrast to (2.1), the state sequence (x̃∗
j ) constitutes the only optimization

variable in (2.6). Based on (2.6), a iteration of the MHE is the evaluation of the formal
mapping

(x̄k−1, (yk−N+n), (uk−N+n))→ (x̂k, x̄k) (2.7)

at every time step tk. Here, the state estimate x̂k is the last item x̃∗
N of the optimal

sequence (x̃∗
j ) and the a-priori state estimate for the next optimization problem x̄k is

taken as the second item x̃∗
1 of (x̃∗

j ).
For diagonal S, Q, R to asses the influence of the individual weighting matrices. The

starting cost weight S controls how much the MHE trusts the previous estimate x̄k−1.
Smaller values of S cause faster forgetting of previous estimates. The weighting matrix Q
rates the reliability of the internal process model. Large values of Q mean that deviations
from the provided dynamic model are more heavily penalized. Finally, R weights the
measurement noise and thus, the reliability of the output model (2.3b).

Hint: The interpretation of Q and R is essentially the same as in the design of a
Kalman filter, see [2.3]. However, in the presented ad-hoc choice of quadratic costs in
(2.4), Q and R have no immediate stochastic meaning. A stochastic interpretation of
the cost function (2.6) is possible based on the maximum-a-posteriori MHE design
covered in Section 2.2, see also [2.2].

Exercise 2.1 (Prepare at home). If you have not already done so during the first
exercise, download the CasADi software package from https://web.casadi.org/
and get acquainted with the basic functionalities. Subsequently, use CasADi to
implement an MHE on the discrete-time grid tk = kTs for the three-tank system from
Section 1.1. The MHE receives the water height measurements from the first and
third tank, i. e.,

yk =
[
h1,k h3,k

]T
, (2.8)

to estimate the system state

xk =
[
h1,k h2,k h3,k

]T
(2.9)

based on the nonlinear dynamics (1.3) in Matlab/Simulink. To this end, proceed
as follows:

1. Model the nonlinear system dynamics (1.1) with the parameters given in Table
1.1 as CasADi function. Use the built-in integrator functionality with a Runge-
Kutta integration scheme or directly implement the explicit Euler integration
scheme to obtain F in (2.3a).
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Hint: Reuse the CasADi function from the first task in Exercise 1.3.

2. Set up the solution of the optimization problem (2.6) with the corresponding
cost function (2.5). Formalize the solution routine as a CasADi function in the
sense of (2.7). It receives the a-priori estimate x̄k−1 and the vectors

Uk =
[
uT
k−N uT

k−N+1 . . . uT
k−1

]T
∈ R2N (2.10a)

Yk =
[
yT
k−N yT

k−N+1 . . . yT
k−1

]T
∈ R2N (2.10b)

to calculate the current state estimate x̂k as well as the a-priori estimate x̄k for
the next time step. Use the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine during initialization in Matlab.
Use a sampling time of Ts = 2s and

N = 10

S =


1/m2 0 0

0 1/m2 0
0 0 1/m2



Q =


1/m2 0 0

0 0.1/m2 0
0 0 1/m2

 R =
[
1/m2 0

0 1/m2

]

xmin = 0,

xmax =
[
0.55m 0.55m 0.55m

]T
as a starting point for tuning the estimator. Calculate the optimal state estimate
for the function inputs

x̄k−1 =
[
0.125m 0.1m 0.125m

]T
(2.11a)

Uk = 75 · 10−6 m3/s
[
1 1 . . . 1

]T
. (2.11b)

Use x̄k−1 as initial condition and the entries of Uk in the integrator function
from task 1 to calculate nominal (wk = 0, vk = 0 in (2.3)) entries for Yk.

4. Generate C-code for the solution routing function and set up a Simulink
s-function which can be used to simulate the MHE in conjunction with the
three-tank model.

5. Implement and test the developed MHE in Simulink. Implement the MHE
in the enabled subsystem in the provided Simulink file to allow for an easy
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activation and deactivation of the estimator. How do the different tuning
parameters influence the control performance? Does the MHE state estimate
converge to the true state?

Hint: The Simulink file in the zip-archive watertank_UE2.zip on the
course homepage contains a Matlab function block which collects and
provides the vectors (2.10). Additionally, the function has an enable output
to indicate that N samples have been collected and Yk and Uk are ready
to be used in the MHE.

In principle, the presented MHE framework does not differentiate between system
states and unknown parameter values. Thus, additional parameter estimates can be easily
incorporated into the over-all estimation strategy. For the considered three-tank system,
this means, for instance, that the valve position of the coupling valve 23 in Figure 1.1 can
be estimated during online operation. To this end, the initial model of the volumetric flow
through the outflow valve 3 in (1.4c) is augmented by a scaling parameter cα ∈ [0,∞),
which results in

qo3(h3) = cααo3Ao3
√

2gh3. (2.12)
To allow for comparatively quick changes in the valve opening (e. g. due to a manual
change in valve position), it is assumed that the unknown parameter cα adheres to the
random-walk model

cα,k+1 = cα,k + wα,k (2.13)
on the discrete time grid tk = kTs with the process disturbance wα,k. The dynamic model
(2.13) can be combined with (2.3) to obtain the augmented system dynamics

zk+1 = Fz(zk,uk) + wz,k (2.14a)
yk = Czzk + vz,k (2.14b)

with

zk =
[

xk
cα,k

]
, Fz(zk,uk) =

[
F(xk,uk)
cα,k

]
, Cz =

[
C 0

]
. (2.15)

By analogy to (2.5) and (2.6), the MHE is then based on the optimization problem

(z̃∗
n) = arg min

(ẑn)
JN (k, (z̃n)) (2.16a)

u.B.v. xmin ≤ x̃n ≤ xmax , ∀n = 0, . . . , N (2.16b)
cα,min ≤ c̃α,n , ∀n = 0, . . . , N, (2.16c)

with the cost function

JN (k, (z̃n)) =

‖z̃0 − z̄k−1‖2Sz +
N−1∑
n=0

(
‖ z̃n+1 − Fz(z̃n, ũk−N+n)︸ ︷︷ ︸

w̃z,k

‖2Qz
+ ‖yk−N+n −Czz̃n︸ ︷︷ ︸

ṽn

‖2R
)

(2.17)

and the weighting matrices Sz, Qz, and R.
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Exercise 2.2 (Prepare at home). Augment the MHE developed in Exercise 2.1 by an
estimator for the parameter cα used in (2.12). Use CasADi to implement the MHE
on the discrete-time grid tk = kTs with Ts = 2s in Matlab/Simulink. To this end,
proceed as follows:

1. Building on the result of task 1 in Exercise 2.1, model the augmented nonlinear
system dynamics (2.14) as CasADi function. Again, use the built-in integrator
functionality with a Runge-Kutta integration scheme or directly implement the
explicit Euler integration scheme.

2. Set up the solution of the optimization problem (2.16) with the corresponding
cost function (2.17). Formalize the solution routine as a CasADi function, which
receives the a-priori estimate z̄k−1 and the vectors Uk and Yk as in (2.10) to
calculate the current state estimate ẑk as well as the a-priori estimate z̄k for
the next time step. Use the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine in Matlab. Use a sampling time
of Ts = 2s and

N = 10

Sz =


1/m2 0 0 0

0 1/m2 0 0
0 0 1/m2 0
0 0 0 1



Qz =


1/m2 0 0 0

0 0.1/m2 0 0
0 0 1/m2 0
0 0 0 1e−5

, R =
[
1/m2 0

0 1/m2

]

xmin = 0,
cα,min = 0

xmax =
[
0.55m 0.55m 0.55m

]T
as a starting point for tuning the estimator. Calculate the optimal state estimate
for the function inputs

z̄k−1 =
[
0.125m 0.1m 0.125m 1

]T
(2.18a)

Uk = 75 · 10−6 m3/s
[
1 1 . . . 1

]T
. (2.18b)

Use z̄k−1 as initial condition and the entries of Uk in the integrator function
from task 1 to calculate to calculate nominal (wz,k = 0, vk = 0 in (2.14))
entries for Yk.
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4. Generate C-code for the solution routine and set up a Simulink s-function
which can be used to simulate the MHE in conjunction with the three-tank
model.

5. Implement and test the MHE including the parameter estimator in Simulink.
Similar to task 5 in Exercise 2.1, implement the MHE in an enabled subsystem
to allow for an easy activation and deactivation of the estimator. How do the
different tuning parameters influence the control performance? Does the MHE
state estimate converge to the true state?

2.2 Maximum-a-posteriori MHE
While the ad-hoc choice of a quadratic cost function for the MHE as in (2.5) is typically a
good starting point, it gives no clear indication how to choose the weighting matrices S,
Q, and R. To avoid this shortcoming and to facilitate for the incorporation of additional
(probabilistic) prior knowledge regarding the process disturbance wk or the measurement
noise vk, a maximum-a-posteriori MHE design can be used.
In the maximum-a-posteriori MHE design, the initial state in the estimation horizon

x0, the process disturbance wk, and the measurement noise vk are treated as random
variables. In literature, random variables are always treated as dimensionless quantities.
Thus, it is customary to formulate the maximum-a-posteriori MHE in the normalized
state ξk, normalized process disturbance ωk, and the normalized measurement noise νk.

Hint: The choice of reference values used for scaling between xk, wk, vk and ξk,
ωk, νk can have a significant influence on the convergence properties of the numerical
solvers. Ensure that ξk, ωk, and νk have roughly the same oder of magnitude.

The MHE cost function (2.2) is built from the knowledge of the respective probability
density functions Pξ0 , Pωk , and Pνk . If other information is not available, it is customary
to assume normal distributions. For ξ0 ∈ R3, ωk ∈ R3, and νk ∈ R2, this results in the
probability density functions

Pξ0(ξ0) = 1√
(2π)3 det(S−1)

exp
(
−1

2(ξ0 − ξ̄)TS(ξ0 − ξ̄)
)

(2.19a)

Pωk(ωk) = 1√
(2π)3 det(Q−1)

exp
(
−1

2ω
T
kQωk

)
(2.19b)

Pνk(νk) = 1
2π det(S−1) exp

(
−1

2ν
T
kRνk

)
. (2.19c)

S−1, Q−1, and R−1 are covariance matrices and ξ̄ is both the a-priori estimate and the
expected value of the initial state ξ0.

Hint: The probability density functions in (2.19) are defined over the entire Rm,
m = 2, 3. Possible inequality constraints for ξ0, ωk, or νk my be integrated into (2.19)
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by replacing the given probability density functions by their respective truncated
counterparts.

If the maximum-a-posteriori MHE should also estimate the scaling parameter cα in
(2.12), it is necessary to model the stochastic properties of cα. One possibility would be
to model a transient change of cα by the random (2.13) and to specify probability density
functions for the initial value cα,0 and the process disturbance wα,k. However, in this
section a slightly different approach is pursued. In fact, cα is assumed to be an unknown
constant random variable described by an appropriate probability density function.
Consistent with (2.19), the actual probability density function is formulated in the

normalized parameter γα, which is obtain from cα by scaling with an adequate reference
value. Because cα, and in consequence γα, is physically restricted to the interval [0,∞],
it is meaningful to consider a one-sided probability density function Pγα to describe the
parameter uncertainty. A reasonable choice in this regard is the log-normal distribution

Pγα(γα) = 1
γασ

1√
2π

exp
(
−(ln(γα)− µ)2

2σ2

)
, γα ≥ 0 (2.20)

with the shape parameters µ and σ. For (2.20), the a-priori estimate of the modal value
γ̄α is given by

γ̄α = exp
(
µ− σ2

)
. (2.21)

Exercise 2.3 (Exercise during the Lab). Design a maximum-a-posteriori MHE which
includes a parameter estimator for cα based on the probability density functions
(2.19) and (2.20). To this end, proceed as follows:

1. Use the given probability density functions to derive a cost function following
the procedure described in [2.2]. Compare the obtained cost function with the
ad-hoc choice (2.17). What are the differences? Is it possible to interpret (2.17)
in a stochastic sense? What are meaningful choices for the a-priori estimates
of the modal values ξ̄ and γ̄α in (2.19) and (2.20)? Which parameters can be
used to tune the response of the maximum-a-posteriori MHE?

2. Incorporate the newly derived cost function into the optimization problem
(2.16). Formalize the solution routine as a CasADi function, which receives the
a-priori estimates ξ̄ and γ̄α as well as the vectors Uk and Yk as in (2.10). Use
the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine in Matlab. Use a sampling time
of Ts = 2s.

4. Generate C-code for the solution routine and set up a Simulink s-function
which can be used to simulate the MHE in conjunction with the three-tank
model.

5. Implement and test the developed maximum-a-posteriori MHE in Simulink.
Again, implement the MHE in an enabled subsystem to allow for an easy
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activation and deactivation of the estimator.
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