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1 Identification Methods

This chapter deals with the process identification of linear dynamic systems. After a
brief introduction to the concept of identification, some essential representatives of non-
parametric and parametric identification methods will be discussed. It should be noted
at this point that the terminology used is strongly based on the book by L. Ljung [1.1],
as this book also forms the basis of the Matlab Identification Toolbox, in which all the
algorithms discussed in this chapter and many more are implemented.

1.1 General Aspects
Figure 1.1 shows the basic task of process identification. The process is affected by the
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ŷ

Figure 1.1: On the concept of process identification.

input variables u1, . . . , up, and it is assumed that only one output variable y is measured.
This measured output variable y is disturbed by the noise signal v. The process model
should now describe the process as accurately as possible, whereby as much a priori
knowledge about the process as possible should be taken into account. The quality of the
model is then evaluated, for example, using the error e between the disturbed measured
output y and the model output ŷ. This error is then used to improve the model. The
various steps to be carried out within the identification task are summarized in Figure 1.2
and must be iteratively repeated several times depending on the problem:

(A) Choice of Input Variables: In this step, it must be decided which input variables
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Figure 1.2: Identification procedure.
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1.1 General Aspects Page 3

are used for process identification and which signals are suitable for the individual
input variables.

(B) Model Architecture: Here it should be determined whether it is a static or
dynamic model, for what purpose the model is needed (simulation, controller design,
error detection, etc.), the resulting dynamic range, whether the identification should
be on- or off-line, etc.

(C,D) Model Dynamics and Model Order: In these steps, a description of the system
dynamics is carried out, for example, in the form of a transfer function or a state-
space model, and a system order should be determined, which, however, if not known
from a priori knowledge, can only be sensibly estimated within the framework of
targeted experiments.

(E) Model Structure: In this step, the model structure underlying the identification
task is determined. Reference is made here to Section 1.3.1 for the different models
of parametric identification methods for linear dynamic systems (ARMA, ARX,
ARMAX, etc.).

(F) Choice of Model Parameters: Often, the model parameters are already fixed
by the previous steps, in particular the choice of model structure and system order.
However, there is still the possibility to specifically select parameters adapted to the
identification task.

(G) Model Verification: Depending on the purpose of the model (step (B)), it must
be checked whether the model has the corresponding quality. It is particularly
important to ensure in this step that not the same data set is used for model
verification as for solving the identification task.

In the literature, a distinction is also made between white-box, black-box, and grey-box
models:

• In white-box models, all equations and parameters can be derived on the basis
of physical considerations. White-box models are also referred to as such when
the model is completely derived from physical laws and some so-called constitutive
parameters (friction parameters, leakage parameters, stray inductances, etc.) are
determined from experiments. The advantages of these models lie in the very good
extrapolatability of the model beyond the data obtained through experiments, high
reliability, good insight into the model, and the scalability of the model, which
makes it applicable even for systems that have not yet been realized (prototyping).
As a disadvantage of white-box models, it can be stated that the creation is generally
relatively time-consuming and requires precise knowledge of the system.

• Black-box models are based solely on experimental results and have no (or very
little) a priori knowledge of the system. Of course, it should be borne in mind that
the model thus obtained is only valid in the data set covered by the identification.
The main advantage is that relatively little knowledge about the system is required.
All advantages of white-box models can be listed here as disadvantages.
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• Grey-box models combine model building based on physical considerations with
principles of process identification.

1.2 Non-parametric Methods
Linear, time-invariant systems can be characterized by their transfer function (s-transfer
function in continuous time and z-transfer function in discrete time) or their impulse
response. The goal of non-parametric identification methods is now to determine the
frequency response or impulse response directly from measurements of the input and output
variables, without resorting to a specific model structure underlying the identification task.
Since these methods do not rely on a finite number of parameters to be identified, they
are called non-parametric. The following considerations are based on a system of the form
shown in Figure 1.3 with the deterministic input sequence (uk), the stochastic disturbance
(noise) (vk), the undisturbed output sequence (ȳk), the output sequence (yk), and the
BIBO-stable z-transfer function G(z) with the impulse sequence (gk) = Z−1{G(z)}.

(uk) (ȳk)

(vk)

(yk)
G(z)

Figure 1.3: System considered for non-parametric identification.

For the output sequence, the following applies:

yk =
k∑

i=0
gk−iui + vk (1.1)

or in the z-domain
yz(z) = G(z)uz(z) + vz(z) (1.2)

with yz(z), vz(z), and uz(z) as the z-transforms of the sequences (yk), (vk), and (uk).

1.2.1 Impulse Response Analysis
If the input variable (uk) is chosen as the impulse sequence

uk = δk =
{

α for k = 0
0 for k > 0,

(1.3)

then the output sequence is
yk = αgk + vk . (1.4)
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If the noise is small compared to the impulse response, i.e., |vk| ≪ |αgk|, then the impulse
response can be determined from the measured sequence values yk in the form

ĝk = yk

α
(1.5)

The problem with this method is that many technical systems do not allow impulse-like
inputs.

1.2.2 Frequency Response Analysis - Excitation with a Harmonic Function
For the system in Figure 1.3, in the steady state, the response to the harmonic input
sequence

(uk) = (U sin(ω0kTa)) (1.6)

with the sampling time Ta is the harmonic output sequence (yk)

yk = Y sin(ω0kTa + φ) + vk (1.7)

with
Y = U

∣∣∣G(eIω0Ta

)∣∣∣ and φ = arg
(
G
(
eIω0Ta

))
(1.8)

or
yk = Yc cos(ω0kTa) + Ys sin(ω0kTa) + vk (1.9)

with
Yc = Y sin(φ) and Ys = Y cos(φ) . (1.10)

In view of (1.7)-(1.10), it is reasonable to choose an approach of the form

ŷk = Ŷ sin(ω0kTa + φ̂) = Ŷc cos(ω0kTa) + Ŷs sin(ω0kTa) (1.11)

with the parameters to be estimated Ŷc = Ŷ sin(φ̂) and Ŷs = Ŷ cos(φ̂) for the estimate
ŷk of the measured output variable yk. Obviously, the parameters Ŷ and φ̂ can then be
easily determined using the relationships

Ŷ =
√

Ŷ 2
c + Ŷ 2

s and φ̂ = arctan
(

Ŷc

Ŷs

)
(1.12)

It must now be clarified by which choice of Ŷc and Ŷs the quadratic error

L = 1
N

N−1∑
k=0

(yk − ŷk)2 (1.13)

for N measurements of yk is minimized. By substituting (1.11) into (1.13), differentiating
with respect to Ŷc and setting to zero, we obtain

∂L

∂Ŷc

= − 2
N

N−1∑
k=0

(
yk − Ŷc cos(ω0kTa) − Ŷs sin(ω0kTa)

)
cos(ω0kTa) = 0 (1.14)
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or with (cos(α))2 = 1
2(1 + cos(2α)) and cos(α) sin(α) = 1

2 sin(2α)

Ŷc − 2
N

N−1∑
k=0

yk cos(ω0kTa) + Ŷc

N

N−1∑
k=0

cos(2ω0kTa) + Ŷs

N

N−1∑
k=0

sin(2ω0kTa) = 0 . (1.15)

Using the Euler formulas cos(α) = 1
2

(
eIα + e−Iα

)
and sin(α) = 1

2I

(
eIα − e−Iα

)
, the second

and third sums of (1.15) can be rewritten as follows

N−1∑
k=0

cos(2ω0kTa) = 1
2

N−1∑
k=0

(
eI2ω0kTa + e−I2ω0kTa

)
(1.16a)

N−1∑
k=0

sin(2ω0kTa) = 1
2I

N−1∑
k=0

(
eI2ω0kTa − e−I2ω0kTa

)
(1.16b)

If we now only use discrete values of the form

ω0 = 2πl

NTa
with l = 1, 2, . . . (1.17)

for the angular frequency ω0, then using the relationship

N−1∑
k=0

z−k = 1 − z−N

1 − z−1 (1.18)

we obtain the following expression for the sum

N−1∑
k=0

e−I2ω0kTa =
N−1∑
k=0

e−I 4πlk
N = 1 − e−I4πl

1 − e−I 4πl
N

=
{

N for l = r
2N, r = ±1, ±2, . . .

0 for l = ±1, ±2, . . .
(1.19)

The analogous result is obtained, of course, if I is replaced by −I. For ω0 according to
(1.17), the expressions (1.16) are therefore calculated as

N−1∑
k=0

cos(2ω0kTa) =
{

N for l = r
2N, r = ±1, ±2, . . .

0 for l = ±1, ±2, . . .
(1.20a)

N−1∑
k=0

sin(2ω0kTa) = 0 (1.20b)

If the test frequency ω0 is chosen according to (1.17) such that l < N/2, then the expression
in (1.20a) is also zero, and the optimal solution Ŷc is calculated from (1.15) in the form

Ŷc = 2
N

N−1∑
k=0

yk cos
(2πl

N
k

)
. (1.21)
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Note 1.1. Note that, for a given sampling time Ta, the maximum possible frequency
of a uniquely representable harmonic function must be strictly less than the Nyquist
frequency ωmax = π/Ta. It is immediately apparent that the value l = N/2 inserted
into ω0 from (1.17) corresponds to this Nyquist frequency.

Exercise 1.1. Show that the optimal Ŷs is calculated as follows:

Ŷs = 2
N

N−1∑
k=0

yk sin
(2πl

N
k

)
(1.22)

This can now be summarized as follows: If the system from Figure 1.3 is excited with the
harmonic sequence

(uk) = (U sin(ω0kTa)) with ω0 = 2πl

NTa
, l = 1, 2, . . . ,

N

2 − 1 (1.23)

then, from the N measured values yk, k = 0, . . . , N − 1, the discrete frequency response
G
(
eIω0Ta

)
at the frequencies ω0 = 2πl

NTa
, l = 1, 2, . . . , N

2 − 1 can be approximated via the
relationships (see (1.7),(1.8))

Ŷc = U
∣∣∣Ĝ(eIω0Ta

)∣∣∣ sin(arg
(
Ĝ
(
eIω0Ta

)))
(1.24a)

Ŷs = U
∣∣∣Ĝ(eIω0Ta

)∣∣∣ cos
(
arg
(
Ĝ
(
eIω0Ta

)))
(1.24b)

as follows

∣∣∣Ĝ(eIω0Ta

)∣∣∣ =

√
Ŷ 2

s + Ŷ 2
c

U
(1.25a)

arg
(
Ĝ
(
eIω0Ta

))
= arctan

(
Ŷc

Ŷs

)
(1.25b)

with Ŷc and Ŷs from (1.21) and (1.22), respectively.
The above relationships (1.21) and (1.22) are closely related to the discrete Fourier

transform (DFT) of the sequences (uk) and (yk). As a reminder, the discrete Fourier
transform Fn(ω) of a sequence (fk) is

Fn(ω) =
N−1∑
k=0

fke−IωkTa with ω = 2πn

NTa
, n = 0, 1, . . . , N − 1 (1.26)

and the inverse discrete Fourier transform (IDFT) is

fk = 1
N

N−1∑
n=0

FneIωkTa with ω = 2πn

NTa
, k = 0, 1, . . . , N − 1 (1.27)
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The DFT of the input sequence (uk) according to (1.23) and the DFT of the measured
output sequence (yk) are, considering (1.21) and (1.22) with ω0 = 2πl

NTa
,

Un =
N−1∑
k=0

uke−IωkTa = U

2I

N−1∑
k=0

(
eIω0kTa − e−Iω0kTa

)
e−IωkTa

= U

2I

N−1∑
k=0

(
eI 2πk

N
(l−n) − e−I 2πk

N
(l+n)

)
=
{

NU
2I for l = n

0 otherwise

(1.28)

and

Yn =
N−1∑
k=0

yke−IωkTa =
N−1∑
k=0

yk

(
cos
(2πn

N
k

)
− I sin

(2πn

N
k

))
= N

2
(
Ŷc − IŶs

)
. (1.29)

Exercise 1.2. Prove the relationship in (1.28).

Thus, it can be seen that the estimation of the discrete frequency response G
(
eIω0Ta

)
at the

frequencies ω0 = 2πl
NTa

, l = 1, 2, . . . , N
2 − 1 according to (1.25) can be very easily calculated

using the discrete Fourier transforms of the input and output sequences according to
(1.28) and (1.29) – namely,

Yn(ω0)
Un(ω0) = DFT((yk))

DFT((uk)) =
N
2

(
Ŷc − IŶs

)
NU
2I

=

√
Ŷ 2

c + Ŷ 2
s

U
eI arctan Ŷc

Ŷs . (1.30)

For practical application, it is of course advisable to perform the calculation of the discrete
Fourier transforms using the more efficient FFT (Fast Fourier Transform) algorithm.

1.2.3 Frequency Response Analysis - ETFE
The relationship (1.30) now suggests choosing as the input sequence (uk) not only a
harmonic signal with constant frequency ω0, but a signal containing several frequencies,
thereby making use of the superposition principle of linear systems. The estimation of the
frequency response according to relationship (1.30) is then called empirical transfer function
estimate (ETFE) in the English-language literature – see also the Matlab command of
the same name. The estimation is called empirical because, apart from the assumption
of linearity and time invariance of the system, no further assumptions about the model
structure are made. If, for certain frequencies ω, the Fourier transform U(ω) = 0 due
to the excitation (uk), then the ETFE is not defined at these frequencies. Examples of
suitable input sequences are impulse sequences, the 3-2-1 step, chirp signals, or PRBS
signals.

A linear chirp signal with trapezoidal windowing is given by

uk = U0 + rk sin
(

ωstartkTa + (ωend − ωstart)
NTa

(kTa)2

2

)
(1.31a)

rk = Usat
(10k

N

)
sat
(10(N − k)

N

)
(1.31b)
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with

sat(x) =


1 for x ≥ 1
x for − 1 < x < 1
−1 for x ≤ −1

(1.32)

and k = 0, 1, . . . , N − 1, for the sampling time Ta, the number of sampling points N , the
constant U0 to compensate for an offset of the amplitude U , and the lower and upper
chirp frequencies ωstart and ωend.

Exercise 1.3. Plot the time response of the chirp signal (1.31) and the response of
the corresponding discrete Fourier transform for N = 256, U = 1, ωstart = 0.1, and
ωend = 5/2, Ta = 0.5 s in Matlab.

So-called PRBS (Pseudo Random Binary Signal) sequences are frequently used in
identification tasks because they exhibit similar properties to white noise. A PRBS signal
of order Op can be determined by the difference equation

pk = mod
(
a1pk−1 + a2pk−2 + . . . + aOppk−Op , 2

)
(1.33)

with the coefficients aj ∈ {0, 1}, j = 1, . . . , Op, which are shown for different orders in
Table 1.1. Note that the PRBS signal repeats every 2Op − 1 sampling steps.

Order Op aj ̸= 0 for the following j

2 1, 2
3 2, 3
4 1, 4
5 2, 5
6 1, 6
7 3, 7
8 1, 2, 7, 8
9 4, 9
10 7, 10
11 9, 11

Table 1.1: Coefficients of the PRBS signal.

To influence the frequency characteristics of the PRBS signal, oversampling of the signal
pk with a factor Pp ≥ 1 is often useful. Given a sampling time Ta, the values of pk are
upsampled Pp-times, i.e.,

u((Ppk + j)Ta) = Upk, j = 0, . . . , Pp − 1, k = 0, . . . , 2Op − 2 (1.34)

with the amplitude U of the signal. It can be shown that this results in a low-pass
filtering of the PRBS signal in the frequency domain. In the literature, an oversampling
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of Pp = 4 is typically recommended. With an order Op and an oversampling Pp, a number
of N = (2Op − 1)Pp sample values are available.

Exercise 1.4. Plot the time response of the PRBS signal (1.34) and the response of
the corresponding discrete Fourier transform for Op = 10, U = 1, and a sampling time
Ta = 0.5s in Matlab. Investigate the influence of different values for the oversampling
Pp and initialize the difference equation (1.34) with p0 = 1.

Exercise 1.5. Assume that the sequences (uk) and (yk) consist of N equidistant
sampling points with the sampling time Ta. Show that the minimum resolvable
frequency is given by ωmin = 2π

NTa
and the maximum resolvable frequency by ωmax =

π
Ta

.

Exercise 1.6. Using the fft routine from Matlab, write a program to calculate the
frequency response of a linear, time-invariant sampled-data system with the transfer
function G(z) according to (1.30). The input parameters should be the sampled
sequences of the input and output variables (uk) and (yk), the sampling time Ta, and
the number of measurement points N . The result should be the discrete frequencies
ω = 2π

NTa
n,
∣∣∣G(eIωTa

)∣∣∣, and arg
(
G
(
eIωTa

))
for n = 1, . . . , N

2 − 1. Test the program
using the system

G(s) = 1
s2 + 0.25s + 1

using a chirp signal according to (1.31), (1.32).

The results of the ETFE are generally very good for deterministic input signals, especially
for those frequencies that are sufficiently well excited by the input signal. For stochastic
input signals, additional measures, such as smoothing the ETFE using suitable window
functions (Hamming, Bartlett, Kaiser, etc.), must usually be taken to obtain usable results.
These details will not be discussed in this lecture; interested students are referred to the
literature listed at the end, in particular the book by L. Ljung [1.1].

In practical applications, it has proven very helpful to incorporate a priori knowledge
about the process into the identification process. This can be done, for example, by
choosing the input signal in such a way that it specifically excites the system in the
frequency range of interest. Another possibility is to incorporate known parts of the
transfer function to be identified. To this end, the transfer function G(z) is factored into
a known and an unknown part in the form

G(z) = zb(z)
nb(z)︸ ︷︷ ︸
known

G1(z)︸ ︷︷ ︸
unknown

(1.35)

and then the identification task for G1(z) is solved according to Figure 1.4.
This method, also known as Clary’s method, has proven to be very effective in the

identification of certain mechanical systems. In these systems, for example, it is known
that the s-transfer function G(s) has a double pole at si = 0. This means that the z-
transfer function to be identified has a double pole at zi = 1 according to the relationship
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(uk)
zb(z) G1(z) 1

nb(z)
(ūk) (ȳk) (yk)

V1(z) V2(z)

identification

Ĝ1(z)

G(z)

Figure 1.4: Identification considering known parts of the transfer function (Clary’s
method).

z = exp(sTa) with the sampling time Ta. This direct assignment of the poles of s- and
z-transfer functions is known not to be transferable to their zeros. In particular, the zeros
outside the unit circle usually have only a small influence on the frequency response in
the frequency range of interest, but are extremely difficult to identify. A non-exact but
effective procedure is to assign the value zj = −1 to these zeros zj outside the unit circle.
In order for the sequences (uk) and (yk) to be prepared for identification according to
Figure 1.4, the individual prefilters V1(z) and V2(z) must be proper, i.e., the numerator
degree must be less than or equal to the denominator degree. To ensure this, the known
part of the transfer function from (1.35) is written in the form

zb(z)
nb(z) = zb(z)

zn

zn

nb(z) with n = max(deg(zb(z)), deg(nb(z))). (1.36)

The prefilters are then

V1(z) = zb(z)
zn

and V2(z) = nb(z)
zn

. (1.37)

Exercise 1.7. Identify the system transfer function

G(s) = 1
s2

1
s2 + 0.25s + 1 (1.38)

using Clary’s method for the sampling time Ta = 0.5 s. Assume that you know from
the system that it possesses a double integrator. Use the chirp signal from Exercise
1.3 as the input signal.
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1.3 Parametric Methods
As the name implies, these methods use models with a finite number of parameters. These
parameters are then determined within the framework of the identification task such that
the model agrees with the system to be identified as well as possible in the sense of a
quality criterion. The literature contains a vast number of different model structures,
which is why a classification of these models is carried out in the first step. The following
classification is essentially based on the Matlab System Identification Toolbox.

1.3.1 Model Structures
The starting point of the considerations is again the system from Figure 1.3. For the
further steps, it is necessary to characterize the stochastic disturbance (noise) (vk) in
a suitable form. A relatively simple approach is to model (vk) as the output sequence
of a linear time-invariant system with the transfer function H(z) and white noise (wk)
(sequence of independent random variables) with a given probability density function, i.e.,

vk =
k∑

i=−∞
hk−iwi =

∞∑
i=0

hiwk−i with (hk) = Z−1{H(z)} . (1.39)

This approach is sufficient for most practical applications; however, not every possible
stochastic disturbance (vk) can be characterized in this way. Note that the character of
the stochastic disturbance signal (vk) can be specifically influenced by the choice of the
probability density function of (wk). For example, it is plausible that for one and the
same system with the transfer function H(z), a white noise (w2,k) with the probability
density function

w2,k = 0 with probability 1 − µ

w2,k = r with probability µ
(1.40)

for a very small µ and a uniformly distributed random variable r ∈ (−1, 1) gives a
completely different picture for (v2,k) than a white noise (w1,k) with the probability
density function w1,k = r.
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Note the time respoonse of (v1,k) and (v2,k) for H(z) = Z{H(s)}, with

H(s) = 1
s2

(2π10)2 + 2 0.2s
2π10 + 1

, (1.41)

in Figure 1.5, where Ta = 10ms and µ = 0.07 were used.
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Figure 1.5: Responses (v1,k) and (v2,k) of the second-order linear time-invariant discrete-
time system (1.41) to white noise (w1,k) and (w2,k) with different probability
density functions.

Combining (1.1) with (1.39), the output variable yk from Figure 1.3 is

yk =
∞∑

i=0
giuk−i +

∞∑
i=0

hiwk−i (1.42)

or, introducing the shift operator δ with uk+1 = δuk or uk−1 = δ−1uk,

yk =
∞∑

i=0
giδ

−iuk +
∞∑

i=0
hiδ

−iwk . (1.43)

To save writing effort later on, we also write (1.43) as

yk = G(δ)uk + H(δ)wk (1.44)
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with the transfer operators

G(δ) =
∞∑

i=0
giδ

−i and H(δ) =
∞∑

i=0
hiδ

−i . (1.45)

Note that the expressions for the transfer operators G(δ) and H(δ) are the same as the z-
transfer functions of linear time-invariant sampled-data systems with the impulse responses
(gk) and (hk). However, if G(δ) and H(δ) were interpreted as z-transfer functions, the
notation of (1.44) would not be permissible.

By representing G(δ) and H(δ) in the form of rational transfer operators with their
associated numerator and denominator polynomials and combining all common poles of
G(δ) and H(δ) in the polynomial A(δ), (1.44) becomes (see Figure 1.6)

A(δ)yk = B(δ)
F (δ)uk + C(δ)

D(δ)wk . (1.46)

Based on (1.46), a classification of the various model structures can now be carried out.

(uk) B(δ)
F (δ)A(δ)

C(δ)
D(δ)A(δ)

(wk)

(vk)

(yk)

Figure 1.6: On the model structures of parametric identification.

ARMA Model

In econometrics, one often deals with models that do not have a deterministic input
variable, i.e., (uk) = (0). In these so-called time series models, a distinction is made
between the following special cases:
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The model

yk = 1
D(δ)wk (1.47)

or for D(δ) = d0 + d1δ−1 + . . . + dnδ−n with d0 = 1

yk = −d1yk−1 − d2yk−2 − . . . − dnyk−n + wk (1.48)

is called an autoregressive model or AR model. Equation (1.48) can also be written in the
form

yk = sT
k p (1.49)

with the parameter vector p and the data vector sk in the form

pT =
[
−d1 −d2 . . . −dn 1

]
(1.50a)

sT
k =

[
yk−1 yk−2 . . . yk−n wk

]
(1.50b)

In statistics, models that are linear in the parameters p, such as (1.48), are also called
linear regression models. If the data vector sk contains only past values yj , j < k, of the
quantity yk to be calculated, then this model is called autoregressive.

A model of the form

yk = C(δ)wk (1.51)

or for C(δ) = c0 + c1δ−1 + . . . + cmδ−m with c0 = 1

yk = wk + c1wk−1 + c2wk−2 + . . . + cmwk−m (1.52)

is called a moving average model or MA model.

Exercise 1.8. Show that the impulse response sequence (gk) of the z-transfer function

G(z) = c0 + c1z−1 + . . . + cmz−m (1.53)

is calculated as follows:

(gk) = (c0, c1, . . . , cm, 0, 0, . . .) (1.54)

For this reason, a transfer function of the form (1.53) is also called a FIR (finite
impulse response) model. Analogously, a z-transfer function of the form

G(z) = 1
d0 + d1z−1 + . . . + dnz−n

(1.55)

is called an IIR (infinite impulse response) model.
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Combining (1.47) and (1.51), we obtain the so-called ARMA (autoregressive moving
average) model

yk = C(δ)
D(δ)wk . (1.56)

For C(δ) = c0 + c1δ−1 + . . . + cmδ−m and D(δ) = d0 + d1δ−1 + . . . + dnδ−n, d0 = 1, the
output variable yk is

yk = c0wk + c1wk−1 + c2wk−2 + . . . + cmwk−m − d1yk−1 − d2yk−2 − . . . − dnyk−n . (1.57)

ARX Model

If the AR model (1.47) is extended to include the influence of the deterministic input
variable uk (exogenous input), then the ARX (autoregressive with exogenous input) model
is obtained:

yk = B(δ)
A(δ)uk + 1

A(δ)wk . (1.58)

As can be seen from (1.58), in this case the denominator polynomials of the transfer
operators G(δ) and H(δ) according to (1.44) are identical. A mathematical justification
for this choice of structure will be given later in the context of least-squares identification.
As will be shown, the main advantage of this model structure lies in the fact that the
parameters are linear in the estimation error and can therefore be very easily estimated
using linear least-squares methods.

ARMAX Model

Analogously to the ARX model, the ARMAX (autoregressive moving average with exoge-
nous input) model is given by

yk = B(δ)
A(δ)uk + C(δ)

A(δ)wk, (1.59)

where again the denominator polynomials of the transfer operators from the deterministic
and stochastic inputs uk and wk to the output yk are equal. It should be mentioned at
this point that there are a large number of other models in the literature, but they are all
composed in a similar way to those discussed so far and are special cases of (1.46). See
Table 1.2 below.
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Model structure Model equation

MA yk = C(δ)wk

AR yk = 1
D(δ)wk

ARMA yk = C(δ)
D(δ)wk

ARX yk = B(δ)
A(δ)uk + 1

A(δ)wk

ARMAX yk = B(δ)
A(δ)uk + C(δ)

A(δ)wk

ARARX yk = B(δ)
A(δ)uk + 1

D(δ)A(δ)wk

ARARMAX yk = B(δ)
A(δ)uk + C(δ)

D(δ)A(δ)wk

OE (output error) yk = B(δ)
F (δ)uk + wk

BJ (Box-Jenkins) yk = B(δ)
F (δ)uk + C(δ)

D(δ)wk

Table 1.2: Model structures and model equations.

1.3.2 Least Squares Method
Given is the overdetermined linear system of equations

y = Sp (1.60)

with the (m × n)-matrix S ∈ Rm×n, the m-dimensional vector y ∈ Rm, and the n-
dimensional vector of unknowns p ∈ Rn. For m > n and rank(S) = n ̸= rank([S, y]),
the system of equations (1.60) has no solution for p. We now seek the solution p0 that
minimizes the quadratic error

min
p

∥e∥2
2 with e = y − Sp. (1.61)

Setting the derivative of ∥e∥2
2 with respect to p equal to zero

∂

∂peTe = ∂

∂p (y − Sp)T(y − Sp)︸ ︷︷ ︸
yTy−2yTSp+pTSTSp

= −2yTS + 2pTSTS = 0T, (1.62)

the optimal solution p = p0 in the sense of (1.61) is

p0 =
(
STS

)−1
STy . (1.63)

The expression S† =
(
STS

)−1
ST is also called the pseudoinverse of the matrix S (see the

Matlab commands \ and pinv). It can be seen that for the regularity of STS, the matrix
S must have full column rank, i.e., rank(S) = n.
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Exercise 1.9 (Polynomial approximation in the least squares sense). Given are N
measurement points that describe the relationship yj = f(xj), j = 1, . . . , N . Assume
an n-th order polynomial with n + 1 < N of the form

f(x) = p0 + p1x + p2x2 + . . . + pn−1xn−1 + pnxn

for the function f(x) and determine the polynomial coefficients p0, p1, . . . , pn using
the least squares method. Test your approach using the function g(x) = tanh(x/10)
for xj = −20 + j, j = 0, . . . , 40, and different orders n of the polynomial.

Exercise 1.10. The mathematical model of a externaly excited DC motor is

La
d

dt
ia = ua − Raia − kaω

Jr
d

dt
ω = kaia − dvω − dcsign(ω)

with the armature current ia, the angular velocity ω, the armature voltage ua,
the armature inductance La, the armature resistance Ra, the motor constant ka,
the moment of inertia Jr, and the friction parameters dv and dc. Determine the
parameters ka, Ra, dv, and dc from stationary measurements of ua, ia, and ω using
the least squares method. Test your algorithm using the measurement data data.mat
and data_rausch.mat, in which the measured values of ua, ia, and ω are stored
with and without measurement noise. Compare your identification results with
the nominal parameters Ra = 1.373 Ω, ka = 0.0652 V s/rad, dc = 0.0188 N m, and
dv = 43.3 · 10−6 N m s/rad.

Data for Exercise 1.10:
https://www.acin.tuwien.ac.at/file/teaching/master/
Regelungssysteme-1/Daten_Aufgabe_1_10.zip.

The optimal solution p0 according to (1.63) of the optimization problem (1.61) allows
the following geometrical interpretation: The n linearly independent column vectors of
the matrix S span an n-dimensional subspace U in Rm. The solvability of the system of
equations (1.60) is equivalent to the question of whether a linear combination (described
by the entries in the vector p) of the column vectors of S exists such that the vector y
can be represented. Thus, the system of equations (1.60) is uniquely solvable if y lies in
this subspace U , i.e., rank(S) = rank([S, y]). If y does not lie in the subspace U , then
the error between the quantity y0 = Sp0 = S

(
STS

)−1
STy (calculated using the optimal

solution p0 estimated in the least squares sense) and the actual quantity y is

e0 = y − y0 = y − S
(
STS

)−1
STy . (1.64)

It can now be seen that this error e0 is orthogonal to the subspace U , since

STe0 = STy − STS
(
STS

)−1
STy = 0 . (1.65)
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Figure 1.7 illustrates this geometrically for m = 3 and n = 2. The finding that the error

U
y0

y e0

Figure 1.7: On the least squares method.

e0 is orthogonal to the subspace U is a special case of the so-called projection theorem in
a Hilbert space.
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Projection Theorem in a Hilbert Space

To illustrate the projection theorem, the concepts of vector space, normed vector space,
and Hilbert space will be briefly reviewed below.

Definition 1.1 (Linear Vector Space). A non-empty set X is called a linear vector
space over a (scalar) field K with the binary operations + : X × X → X (addition)
and · : K × X → X (scalar multiplication), if the following vector space axioms are
satisfied:

(1) The set X with the operation + is a commutative group, i.e., for x, y, z ∈ X
the following holds:

(1) x + y = y + x Commutativity
(2) x + (y + z) = (x + y) + z Associativity
(3) 0 + x = x Neutral element
(4) x + (−x) = 0 Inverse element

(2) Scalar multiplication · with scalars a, b ∈ K satisfies:

(1) a(x + y) = ax + ay Distributivity
(2) (a + b)x = ax + bx Distributivity
(3) (ab)x = a(bx) Associativity
(4) 1x = x , 0x = 0

Definition 1.2 (Normed Linear Vector Space). A normed linear vector space is a
vector space X over a scalar field K with a real-valued function ∥x∥ : X → R+, which
assigns to each x ∈ X a real-valued number ∥x∥, the so-called norm of x, and satisfies
the following norm axioms:

(1) ∥x∥ ≥ 0 for all x ∈ X Non-negativity
(2) ∥x∥ = 0 ⇔ x = 0
(3) ∥x + y∥ ≤ ∥x∥ + ∥y∥ Triangle inequality
(4) ∥αx∥ = |α|∥x∥ for all x ∈ X and all α ∈ K
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Definition 1.3 (Pre-Hilbert Space). Let X be a linear vector space with the scalar
field K. A mapping ⟨x, y⟩ : X × X → K, which assigns a scalar to any two elements
x, y ∈ X , is called an inner product if it satisfies the following conditions:

(1) ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ Bilinearity
(2) ⟨x, y⟩ = ⟨y, x⟩
(3) ⟨ax, y⟩ = a⟨x, y⟩
(4) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇔ x = 0

with a ∈ K.
A complete pre-Hilbert space is called a Hilbert space, cf. e.g. [1.2]. Two vectors x and y
from a Hilbert space H are called orthogonal if ⟨x, y⟩ = 0. A non-empty set U is called
a subspace of H if for all linear combinations of vectors x and y from U it holds that
ax + by ∈ U , with scalars a and b. Furthermore, the subspace U is called closed if the
limit of every convergent sequence in U is also in U .

Exercise 1.11. Show that ∥x∥2 =
√

⟨x, x⟩ defines a norm according to Definition 1.2.

The following projection theorem now gives a necessary and sufficient condition for
solving the following problem: Given is a vector y in a Hilbert space H. The vector y0
from a subspace U of H is sought that minimizes the norm ∥y − y0∥.

Theorem 1.1 (Projection Theorem). Let H be a Hilbert space and U a closed subspace
of H. For every vector y ∈ H, there exists a unique vector y0 ∈ U such that

∥y − y0∥ ≤ ∥y − x∥ (1.66)

for all x ∈ U . The vector y0 is the unique minimizing vector if and only if

⟨y − y0, x⟩ = 0 (1.67)

for all x ∈ U . This means that the error y − y0 must be orthogonal to all vectors of
the subspace U .

The proof of this theorem can be found in the literature cited at the end of this chapter.
In the following, the projection theorem will be used to solve the optimization problem

(1.61). Given is the Hilbert space H = Rm with the inner product

⟨x, z⟩ = xTz =
m∑

j=1
xjzj (1.68)

with

xT =
[
x1 x2 . . . xm

]
(1.69a)

zT =
[
z1 z2 . . . zm

]
(1.69b)

and the closed subspace U of H, which is spanned by the column vectors sk, k = 1, . . . , n
of the matrix S, i.e., U = span{s1, s2, . . . , sn}. In the sense of (1.61), we are looking for
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that Sp0 = y0 ∈ U which, for a given y ∈ H, minimizes the squared norm of the error
∥e∥2

2 = ∥y − y0∥2
2. According to Theorem 1.1, it must therefore hold that

⟨y − Sp0, sj⟩ = ⟨y − s1p0,1 − s2p0,2 − . . . − snp0,n, sj⟩ = 0 for all j = 1, . . . , n . (1.70)

In matrix notation, using the properties of the inner product, we obtain
⟨s1, s1⟩ . . . ⟨sn, s1⟩

... . . . ...
⟨s1, sn⟩ . . . ⟨sn, sn⟩


︸ ︷︷ ︸

G=STS


p0,1

...
p0,n


︸ ︷︷ ︸

p0

=


⟨y, s1⟩

...
⟨y, sn⟩


︸ ︷︷ ︸

STy

(1.71)

and thus immediately the solution for p0 from (1.63). The matrix G from (1.71) is also
called the Gramian matrix.

Exercise 1.12. Show that the Gramian matrix from (1.71) is non-singular if and only
if the vectors sk, k = 1, . . . , n, are linearly independent.

Exercise 1.13. Calculate the solution of the quadratic minimization problem from
Section 1.2.2 using Theorem 1.1.

Remark: (to Exercise 1.13) The set of all N -tuples ξ = {ξ0, ξ2, . . . , ξN−1} with the
inner product

⟨x, z⟩ = 1
N

N−1∑
k=0

xkzk with x, z ∈ H

is used as the Hilbert space H. The set of all N -tuples {C cos(ω0kTa) + S sin(ω0kTa)},
k = 0, . . . , N − 1 with arbitrary but constant coefficients C and S and fixed angular
frequency ω0 forms a closed subspace U of H. The quadratic minimization problem
from Section 1.2.2 can now be formulated such that we are looking for that ŷ ∈ U
which minimizes the norm (compare with (1.13))

∥y − ŷ∥2 = 1
N

N−1∑
k=0

(yk − ŷk)2

with
ŷk = Ŷc cos(ω0kTa) + Ŷs sin(ω0kTa)

for a given y ∈ H. According to Theorem 1.1, this is the case if and only if

⟨y − ŷ, x⟩ = 0 for all x ∈ U

or, for the two special cases x = cos(ω0kTa) and x = sin(ω0kTa), we obtain the
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conditions

1
N

N−1∑
k=0

(
yk − Ŷc cos(ω0kTa) − Ŷs sin(ω0kTa)

)
cos(ω0kTa) =0

1
N

N−1∑
k=0

(
yk − Ŷc cos(ω0kTa) − Ŷs sin(ω0kTa)

)
sin(ω0kTa) =0 .

1.3.3 Least-Squares Identification
The starting point is the ARX model (1.58) without stochastic disturbance, i.e., (wk) = (0),
of the form

yk = B(δ)
A(δ)uk = δ−d b0 + b1δ−1 + . . . + bmδ−m

1 + a1δ−1 + . . . + anδ−n
uk with d ≥ 0. (1.72)

For a transfer function G(z) with numerator degree m and denominator degree n, d is
calculated as d = n − m. Note that dead times of the form z−ρ, ρ > 0, can also be taken
into account with the formulation (1.72). The value of the output sequence (yk) at the
k-th sampling time is calculated from (1.72) as

yk = −a1yk−1 − . . . − anyk−n + b0uk−d + b1uk−d−1 + . . . + bmuk−d−m (1.73)

or in vector notation

yk =
[
−yk−1 −yk−2 . . . −yk−n uk−d uk−d−1 . . . uk−d−m

]
︸ ︷︷ ︸

sT
k



a1
...

an

b0
...

bm


︸ ︷︷ ︸

p

(1.74)

with the data vector sk and the parameter vector p. In the identification task, the parameter
vector p is now estimated such that a model error, yet to be defined, is minimized. If the
model error is chosen as the so-called generalized equation error according to Figure 1.8,
we obtain the relationship

ek = Â(δ)yk − B̂(δ)uk (1.75)

with

Â(δ) = 1 + â1δ−1 + . . . + ânδ−n (1.76a)
B̂(δ) = b̂0δ−d + b̂1δ−1−d + . . . + b̂mδ−m−d (1.76b)

and the estimated coefficients of the numerator and denominator polynomials b̂j , j =
0, . . . , m and âk, k = 1, . . . , n. Substituting (1.76) into (1.75) and combining the coefficients

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



1.3 Parametric Methods Page 24

-

(uk) B(δ)
A(δ)

(yk)

B̂(δ) Â(δ)

model
(ek)

Figure 1.8: On the generalized equation error.

to be estimated in the parameter estimate vector p̂ =
[
â1 . . . ân b̂0 . . . b̂m

]T
, we

obtain
ek = yk − sT

k p̂ (1.77)

with the data vector sk according to (1.74). From (1.77), it can be immediately seen that
the estimate ŷk of yk is calculated as ŷk = sT

k p̂. By combining j = 0, . . . , N measurements,
(1.77) can be extended as follows:

e0
...

eN


︸ ︷︷ ︸

eN

=


y0
...

yN


︸ ︷︷ ︸

yN

−


sT

0
...

sT
N


︸ ︷︷ ︸

SN

p̂N (1.78)

where the index N of the parameter estimate vector p̂ indicates that N + 1 measurements
are used to estimate p. For N > n + m with m and n according to (1.72) and rank(SN ) ̸=
rank([SN , yN ]), the system of equations (1.78) has no solution for eN = 0. Following the
considerations of Section 1.3.2, the solution of (1.78) in the least squares sense (see (1.63))
is

p̂N =
(
ST

N SN

)−1
ST

N yN . (1.79)

Remark: Regarding the choice of notation, it should be noted that j = 0 does not
necessarily refer to the starting time of the measurement k = 0, but to the time k at
which the entry uk−d in the data vector sT

k is first non-zero.

It should be emphasized again that only the specific choice of the generalized equation
error according to Figure 1.8 leads to a parametrically linear estimation problem. If, for
example, the so-called output error shown in Figure 1.9

ek = yk − ŷk = yk − B̂(δ)
Â(δ)

uk = yk − δ−d b̂0 + b̂1δ−1 + . . . + b̂mδ−m

1 + â1δ−1 + . . . + ânδ−n
uk (1.80)
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-

(uk) B(δ)
A(δ)

(yk)

B̂(δ)
Â(δ)

(ek)

(ŷk)

model

Figure 1.9: On the output error.

were used, then from

ŷk = −â1ŷk−1 − . . . − ânŷk−n + b̂0uk−d + b̂1uk−d−1 + . . . + b̂muk−d−m (1.81)

it can already be seen for k = 0, . . . , d + 1 that

ŷk = 0 for k = 0, 1, . . . , d − 1
ŷd = b̂0u0

ŷd+1 = −â1ŷd + b̂0u1 + b̂1u0 =
(
b̂1 − â1b̂0

)
u0 + b̂0u1,

(1.82)

that in this case it is a parametrically nonlinear estimation problem, which is orders of
magnitude more difficult to solve.

Before specifying how a stochastic disturbance (vk) affects the result of the parameter
estimation p̂ from (1.79), two fundamental properties of parameter estimation methods
are defined.

Definition 1.4 (Unbiased Estimate). If an estimate for an arbitrary number N of
measurements yields a systematic error

E(p̂N − p) = E(p̂N ) − p = b ̸= 0 (1.83)

then this error is called bias. For an unbiased estimate, therefore,

E(p̂N ) = p . (1.84)

Definition 1.5 (Consistent Estimate). An estimate is called consistent if the estimate
becomes more accurate the larger the number N of measurements, i.e., if

lim
N→∞

E(p̂N ) = p . (1.85)
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An estimate is called consistent in the mean square if, in addition to (1.85), the
condition

lim
N→∞

cov(p̂N ) = lim
N→∞

E
(
[p̂N − p][p̂N − p]T

)
= 0 (1.86)

is satisfied.

Remark: Note that a consistent estimate says nothing about the quality of the
estimate for finite N . It is therefore possible that a consistent estimate is biased for
finite N .
To analyze the influence of a stochastic disturbance, it is assumed that the measured

output variable yk is composed of the undisturbed output ȳk and a stochastic disturbance
vk in the form yk = ȳk +vk, see Figure 1.3. The undisturbed output is calculated according
to (1.74) as

ȳk =
[
−ȳk−1 −ȳk−2 . . . −ȳk−n uk−d uk−d−1 . . . uk−d−m

]
︸ ︷︷ ︸

s̄T
k



a1
...

an

b0
...

bm


︸ ︷︷ ︸

p

. (1.87)

Replacing the entries ȳj in (1.87) by ȳj = yj − vj , we obtain

ȳk = sT
k p + nT

k p (1.88)

with

sT
k =

[
−yk−1 −yk−2 . . . −yk−n uk−d uk−d−1 . . . uk−d−m

]
(1.89a)

nT
k =

[
vk−1 vk−2 . . . vk−n 0 0 . . . 0

]
. (1.89b)

By combining k = 0, . . . , N measurements and using yk = ȳk+vk, the following formulation
can be found: 

y0
...

yN


︸ ︷︷ ︸

yN

=


sT

0
...

sT
N


︸ ︷︷ ︸

SN

p +


nT

0
...

nT
N


︸ ︷︷ ︸

NN

p +


v0
...

vN


︸ ︷︷ ︸

vN

. (1.90)

If we now perform a least-squares identification based on the known part yN = SN p, we
obtain

p̂ =
(
ST

N SN

)−1
ST

N y =
(
ST

N SN

)−1
ST

N (SN p + NN p + vN ) (1.91)
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or, after a short calculation,

p̂ = p +
(
ST

N SN

)−1
ST

N (NN p + vN ) . (1.92)

The expected value of the estimation error is thus

E(p̂) − p = E
((

ST
N SN

)−1
ST

N (NN p + vN )
)

= b, (1.93)

with the bias b. The estimate p̂ of p is unbiased if and only if

b = 0 (1.94)

Furthermore, the estimate is obviously consistent if

lim
N→∞

b = 0 (1.95)

is satisfied. The following theorem now provides information on the requirements that
must be placed on the stochastic disturbance vk and the model structure for these two
conditions to be satisfied.

Theorem 1.2 (Unbiased and Consistent Least-Squares Identification). The least-
squares identification of the parameter p for the identification problem according to
(1.90) or according to Figure 1.3 is unbiased and consistent if the stochastic disturbance
vk satisfies the Yule-Walker equation of an autoregressive signal process of the form

vk + a1vk−1 + a2vk−2 + . . . + anvk−n = wk, (1.96)

with zero-mean white noise wk and the coefficients aj, j = 1, . . . , n, of the denominator
of the transfer function to be identified.

That is, the disturbance signal vk must have been generated by filtering white noise wk

through a filter with the transfer function 1/A(δ). This structure corresponds exactly to
the model structure of an ARX model defined in Section 1.3.1, see Figure 1.10. It can also
be shown that in this case the least-squares identification is consistent in the mean square.
For a proof of Theorem 1.2, the reader is referred to the literature, in particular [1.3].

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



1.3 Parametric Methods Page 28

-

(uk) B(δ)
A(δ)

(yk)

B̂(δ) Â(δ)

model
(ek)

(wk) 1
A(δ)

(vk)
(ȳk)

Figure 1.10: On least-squares identification with stochastic disturbance.

1.3.4 Recursive Least-Squares (RLS) Identification
The parameter estimation (1.79) is not suitable for online operation due to the ever-
increasing dimensions of the measurement vector yN and the matrix SN . In the following,
a recursive method is given based on (1.79), which improves the estimate p̂ of the parameter
vector p with each new measurement. According to (1.79), the optimal estimate for N + 1
measurements is

p̂N =
(
ST

N SN

)−1
ST

N yN (1.97)

and for N + 2 measurements

p̂N+1 =
(
ST

N+1SN+1
)−1

ST
N+1yN+1 . (1.98)

Partitioning the data matrix SN+1 and the measurement vector yN+1 in the form

SN+1 =
[

SN

sT
N+1

]
and yN+1 =

[
yN

yN+1

]
, (1.99)

then p̂N+1 is

p̂N+1 =
([

ST
N sN+1

][ SN

sT
N+1

])−1([
ST

N sN+1
][ yN

yN+1

])

=
(
ST

N SN + sN+1sT
N+1

)−1(
ST

N yN + sN+1yN+1
)

.

(1.100)

Exercise 1.14. Show the validity of (1.100).

For further calculation, the following auxiliary theorem on matrix inversion is required:
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Theorem 1.3 (On Matrix Inversion). If A, C, and (A + BCD) are non-singular
square matrices, then

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1 . (1.101)

Applying Theorem 1.3 to F =
(
ST

N SN + sN+1sT
N+1

)
with A = ST

N SN , B = sN+1,
C = 1, and D = sT

N+1, we obtain

F−1 =
(
ST

N SN

)−1
−
(
ST

N SN

)−1
sN+1

(
1 + sT

N+1
(
ST

N SN

)−1
sN+1

)−1
sT

N+1
(
ST

N SN

)−1
.

(1.102)
With the abbreviations

PN =
(
ST

N SN

)−1
(1.103a)

PN+1 =
(
ST

N+1SN+1
)−1

(1.103b)

kN+1 = PN sN+1(
1 + sT

N+1PN sN+1
) (1.103c)

according to (1.102) we have

PN+1 = PN − kN+1sT
N+1PN (1.104)

and

PN+1sN+1 =
PN sN+1

(
1 + sT

N+1PN sN+1
)

− PN sN+1sT
N+1PN sN+1(

1 + sT
N+1PN sN+1

) = kN+1 . (1.105)

Substituting the relationships (1.103)–(1.105) into (1.100), we obtain

p̂N+1 = PN+1
(
ST

N yN + sN+1yN+1
)

= PN ST
N yN − kN+1sT

N+1PN ST
N yN + kN+1yN+1

(1.106)
or with (1.97)

p̂N+1 = p̂N + kN+1
(
yN+1 − sT

N+1p̂N

)
. (1.107)

The recursive least-squares identification can thus be summarized as follows:

(1) Suitable initial values p̂−1 and P−1 are chosen (see discussion below).

(2) For the sampling times j = 0, 1, . . ., yj is measured and the data vector is set up
according to (1.74):

sT
j =

[
−yj−1 −yj−2 . . . −yj−n uj−d uj−d−1 . . . uj−d−m

]
(1.108)

The parameter vector p can then be estimated online using j + 1 measurements
with the iteration rule
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kj = Pj−1sj(
1 + sT

j Pj−1sj

) (1.109a)

Pj = Pj−1 − kjsT
j Pj−1 (1.109b)

p̂j = p̂j−1 + kj

(
yj − sT

j p̂j−1
)

(1.109c)

In the last step, the question of suitable initial values p̂−1 and P−1 must still be clarified.
To this end, the iteration rule for P−1

k (see (1.100) and (1.103)) is first considered:

P−1
k+1 = P−1

k + sk+1sT
k+1 (1.110)

and this is iterated for k = −1, 0, 1, . . . , N, . . .

P−1
0 = P−1

−1 + s0sT
0 (1.111a)

P−1
1 = P−1

−1 + s0sT
0 + s1sT

1 (1.111b)
...

...

P−1
N = P−1

−1 +
N∑

j=0
sjsT

j = P−1
−1 + ST

N SN . (1.111c)

It can be seen that with the choice

P−1 = αE (1.112)

for large values of α, limα→∞ P−1
−1 = 0 holds, and thus (1.111) agrees with the correspond-

ing expression for the non-recursive estimate from (1.79). For large values of α in (1.112),
P−1

−1 therefore has a negligible influence on the recursively calculated PN . The iteration
rule for p̂k is, using (1.105) and (1.107),

p̂k+1 = p̂k + Pk+1sk+1
(
yk+1 − sT

k+1p̂k

)
. (1.113)

If this iteration is now carried out for k = −1, 0, 1, . . . , N, . . ., then using (1.111) we obtain

p̂0 = p̂−1 + P0s0
(
y0 − sT

0 p̂−1
)

= P0

s0y0 +
(
P−1

0 − s0sT
0
)

︸ ︷︷ ︸
P−1

−1

p̂−1

 (1.114a)

p̂1 = P1
(
s1y1 + P−1

0 p̂0
)

= P1
(
s1y1 + s0y0 + P−1

−1p̂−1
)

(1.114b)
...

...

p̂N = PN

 N∑
j=0

sjyj + P−1
−1p̂−1

 = PN

(
ST

N yN + P−1
−1p̂−1

)
. (1.114c)

As can be seen from (1.114), the choice of P−1
−1 from (1.112) for large α implies that the

initial value p̂−1 can be chosen freely and yet p̂N from (1.114) coincides with the result of
the non-recursive estimate from (1.79). For simplicity, p̂−1 = 0 is therefore often chosen.
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1.3.5 Weighted Least Squares Method
In the weighted least squares method, we seek a solution to the overdetermined linear
system of equations (see (1.60))

yN = SN p (1.115)

such that the weighted quadratic error

N∑
j=0

αje2
j , ej = yj − sT

j p (1.116)

with the sequence of positive weighting coefficients αj (αj > 0 for all j) is minimized with
respect to p. It can be seen that by choosing

ỹj = √
αjyj and s̃T

j = √
αjsT

j (1.117)

the optimization problem (1.116) can be transformed into the classical least-squares
problem according to (1.61)

min
p

N∑
j=0

ẽ2
j = min

p
∥ẽN ∥2

2 with ẽN = ỹN − S̃N p (1.118)

The corresponding recursive estimator according to (1.109) is therefore

k̃j = P̃j−1s̃j(
1 + s̃T

j P̃j−1s̃j

) (1.119a)

P̃j = P̃j−1 − k̃j s̃T
j P̃j−1 (1.119b)

p̂j = p̂j−1 + k̃j

(
ỹj − s̃T

j p̂j−1
)

. (1.119c)

Substituting the relationship (1.117) and the transformation

k̃j = kj√
αj

and P̃j = Pj (1.120)

into (1.119), we obtain

kj = Pj−1sj(
1

αj
+ sT

j Pj−1sj

) (1.121a)

Pj = Pj−1 − kjsT
j Pj−1 (1.121b)

p̂j = p̂j−1 + kj

(
yj − sT

j p̂j−1
)

. (1.121c)

A special choice for αj is given by

αj = qN−j with 0 < q ≤ 1 (1.122)
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Substituting (1.122) into the cost function of (1.116)

N∑
j=0

qN−je2
j = ∥eN ∥2

Q = eT
N QN eN with QN =



qN 0 · · · 0 0
0 qN−1 · · · 0 0
...

... . . . ...
...

0 0 · · · q 0
0 0 · · · 0 1


(1.123)

it is evident that with this special choice of αj , the equation errors are weighted less the
further back they lie. This is also referred to as an exponentially decaying memory with
the memory factor q. For this memory factor q, values in the range of 0.9 < q < 0.995
have proven useful in practical application. Note that this method is also suitable for the
identification of slowly time-varying systems, where the speed of the parameter changes
of the system naturally determines the choice of q, i.e., the speed of forgetting old
measurement values.

Exercise 1.15. In your opinion, where does the name exponentially decaying memory
come from?
The recursive least-squares estimator with exponentially decaying memory follows

directly from (1.121) with αj = qN−j and the transformation Pj → Pj/qN−j to

kj = Pj−1sj(
q + sT

j Pj−1sj

) (1.124a)

Pj =
(
Pj−1 − kjsT

j Pj−1
)1

q
(1.124b)

p̂j = p̂j−1 + kj

(
yj − sT

j p̂j−1
)

. (1.124c)

Exercise 1.16. Verify the correctness of (1.124).

Instead of the diagonal matrix QN in (1.123), any arbitrary positive definite weighting
matrix QN > 0 could be chosen. In this case, not the Euclidean norm of the error ∥eN ∥2

2,
but a weighted Euclidean norm of the form

∥eN ∥2
Q = eT

N QN eN (1.125)

is minimized. It is now easy to see that this problem

min
p

∥eN ∥2
Q with eN = yN − SN p (1.126)

by applying the projection theorem of Theorem 1.1 with the inner product

⟨x, z⟩ = xTQz (1.127)

leads to the solution
p̂N =

(
ST

N QN SN

)−1
ST

N QN yN (1.128)
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Exercise 1.17. Show the validity of (1.128). Furthermore, check whether the error
eN = yN − SN p̂N is orthogonal to the optimal solution (1.128) in the sense of the
inner product (1.127).

Exercise 1.18. Show that every positive definite matrix Q has exactly one positive
definite square root W, i.e., Q = WTW.

Remark: (to Exercise 1.18) Use the fact that every symmetric matrix Q can be
brought to diagonal form D by a similarity transformation, so

D = TQTT with TTT = E .

Exercise 1.19. Prove that (1.125) is a norm in the sense of Definition 1.2.

Exercise 1.20. Given is the continuous transfer function

G(s) = K

(sT1 + 1)(sT2 + 1)

with the parameters K, T1, T2 > 0. Determine a state-space representation for G(s)
and implement it in Matlab/Simulink for a time-varying parameter T2 and constant
parameters K and T1. Subsequently, determine the corresponding z-transfer function
for G(s) for a sampling time of Ta = 0.25 s. Identify the coefficients aj and bj of
the denominator and numerator polynomials of the discrete-time transfer function
using the recursive least-squares algorithm. Choose a multiple 3-2-1 step as the input
signal and for the parameters K = 1, T1 = 7.5 s, and a step change of T2 from 5 s to
2.5 s. Investigate the influence of the forgetting factor q and compare the result for
q = 1 with the result of the off-line least-squares procedure.
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1.3.6 Least-Mean Squares (LMS) Identification
Another way to solve the system of equations (1.71) N∑

j=0
sjsT

j

p̂N = ST
N SN p̂N = ST

N yN =
N∑

j=0
sjyj (1.129)

online, is given by the so-called Least-Mean Squares (LMS) algorithm, also known as
the stochastic gradient method. The parameter vector p is recursively estimated in the
form

p̂j = p̂j−1 + µjsj

(
yj − sT

j p̂j−1
)

︸ ︷︷ ︸
ej

(1.130)

with a suitably chosen initial value p̂−1 and the estimation error at the j-th time instant ej .
Using the (time-varying) parameter µj (µj ≥ 0 for all j ≥ 0), it is possible to adjust the
convergence speed and the sensitivity to noise to a certain extent. Typically, a constant
value µj = µ̄ is chosen for µj , whereby the parameter estimator (1.130) is able to react
faster to changes in the parameter vector p (time-varying system) for larger values of µ̄
and is less sensitive to measurement noise for smaller values of µ̄. To make the convergence
speed independent of the signal level of the entries in sj , it is common to choose the
(time-varying) parameter µj in the LMS algorithm (1.130) in the form

µj = µ̄

sT
j sj

(1.131)

or
µj = µ̄

lj
with lj+1 = lj + µ̄

(
sT

j sj − lj
)

(1.132)

with the initial value l−1 = sT
−1s−1 > 0. Without proof, it should be noted that the

convergence of (1.130) can be guaranteed for sufficiently small µ̄.

Note 1.2. The LMS algorithm is very frequently used in applications for the adap-
tive filtering of signals (adaptive noise cancellation), such as echo compensation of
transmitted signals. Consider the arrangement in Figure 1.11, where the measured
signal sequence (dk) consists of a useful signal component (rk) to be identified and a
non-measurable noise component G1(δ)mk in the form

dk = G1(δ)mk + rk (1.133)

with the noise signal (mk) and the unknown transfer operator G1(δ). Furthermore,
it is assumed that the noise signal (mk) and the useful signal (rk) are uncorrelated.
The noise signal (mk) is not directly measured but can be indirectly captured via the
signal (nk) with

nk = G2(δ)mk (1.134)

and the unknown transfer operator G2(δ). If the two transfer operators G1(δ) and
G2(δ) were known, then the useful signal could be reconstructed from knowledge of
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(dk) and (nk) in the form

rk = dk − G1(δ)G−1
2 (δ)︸ ︷︷ ︸

G̃(δ)

nk (1.135)

Note that G̃(δ) = G1(δ)G−1
2 (δ) is generally a non-causal transfer operator.

-

(mk)
G1(δ)

G2(δ)

(rk)

(nk)

(dk)
δ−p

Ĝ(δ)

(dk−p) (r̂k−p)

transmission path signal reconstruction

Figure 1.11: On adaptive signal filtering with the LMS algorithm.

Exercise 1.21. Under what conditions on G1(δ) and G2(δ) is G̃(δ) a causal
transfer operator?
For this reason, a positive integer number p > 0 is chosen such that the transfer

operator
G(δ) = G̃(δ)δ−p (1.136)

is always causal. Replacing G̃(δ) in (1.135) by G(δ) according to (1.136), we obtain

rk = dk − G(δ)δpnk (1.137a)
δ−prk = δ−pdk − G(δ)nk (1.137b)
rk−p = dk−p − G(δ)nk . (1.137c)

Since the transfer operator G(δ) in (1.137) is unknown, a transfer operator Ĝ(δ) to
be identified is substituted for G(δ). In most applications, an MA model (FIR filter)
according to (1.47), (1.48) of the form

Ĝ(δ) = Ĉ(δ) = ĉ0 + ĉ1δ−1 + . . . + ĉqδ−q (1.138)

is used in combination with the LMS algorithm. Of course, the transfer operator
G(δ) is only describable by an MA model in exceptional cases, which is why a very
high model order q of the MA model is required for good reconstruction of the useful
signal (rk). Substituting the expression Ĝ(δ) from (1.138) for G(δ) in (1.137), the

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



1.3 Parametric Methods Page 36

estimate of the useful signal r̂k−p is calculated as

r̂k−p = dk−p −
[
nk nk−1 nk−2 . . . nk−q

]
︸ ︷︷ ︸

sT
k


ĉ0

ĉ1
...

ĉq


︸ ︷︷ ︸

p̂

(1.139)

with the estimate p̂ of the parameter vector and the data vector sT
k . Applying the

LMS algorithm (1.130), the parameter estimator becomes

p̂j = p̂j−1 + µjsj

(
dj−p − sT

j p̂j−1
)

︸ ︷︷ ︸
r̂j−p

(1.140)

with the parameter µj according to (1.131) or (1.132) and a suitably chosen initial
value p̂−1. Figure 1.11 provides a graphical illustration of the algorithm.

Exercise 1.22. Given is a system according to Figure 1.11 with the measured signal
sequence (dk), in which a periodic useful signal (sk) = (20 sin(3t − π/4)) is hidden.
The noise signal (mk) is white noise, the sampling time is 0.1 s, and the two transfer
operators are

G1(δ) = 10 δ + 2
0.8 + δ + δ2 and G2(δ) = 1 − 2δ

(δ + 0.2)2(δ − 0.8)
.

Design an online algorithm according to the LMS method for extracting the useful
signal using an MA model. Perform these calculations in Matlab and also check the
results in the frequency domain using the FFT. Specify different orders of the MA
models and change the signal delay p according to (1.136). How do these specifications
and changes affect the result?
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2 Optimal Estimators
This chapter addresses the question of how the state xk+m of a dynamic system can be
estimated from an input sequence (uk) and a measured output sequence (yk). Depending
on the value of m, the estimation process is referred to as

(1) Smoothing for m < 0

(2) Filtering for m = 0, or

(3) Prediction for m > 0

Figure 2.1 provides a graphical illustration of these three cases.

k k

k

k

k − 1 k + 1

es
tim

at
io

n
sig

na
l

smoothing filtering prediction

Figure 2.1: Concerning the terms smoothing, filtering, and prediction.

Further considerations will be limited to the last case (3), as this is the most interesting
for control engineering applications. As a result of the following considerations, an optimal
state observer, the so-called Kalman filter, will be determined, which minimizes a quadratic
performance criterion. However, this requires an intermediate step of extending the results
of the least-squares estimation from the previous chapter. Since the expected value
and the covariance of random numbers are used repeatedly in this chapter, these two
concepts will be explained for normally distributed and uniformly distributed random
numbers.
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Note 2.1 (Normally Distributed Random Variables). A scalar normally distributed
random variable x is defined by the probability density function (Gaussian distribu-
tion)

f(x) = 1√
2πσ

e− (x−m)2

2σ2 , (2.1)

with the mean (expected value) m and the variance σ2. The mean (expected value,
first moment) and the variance (second central moment) are, as explained in Appendix
A, given by

E(x) = m =
∫ ∞

−∞
xf(x) dx (2.2a)

E((x − E(x))2) = σ2 =
∫ ∞

−∞
(x − E(x))2f(x) dx (2.2b)

Figure 2.2 shows the probability density function for different parameterizations of a
normally distributed random number.
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Figure 2.2: Probability density function for different normally distributed random vari-
ables.
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The probability that a random number x lies in the interval δ around the expected
value E(x) = m is calculated as

P(m − δ < x ≤ m + δ) =
∫ m+δ

m−δ
f(x) dx = erf

(
δ√
2σ

)
, (2.3)

cf. Exercise A.1 in Appendix A. For example, if δ = σ, a random number x lies in
this interval with a probability of 0.68. Furthermore, a random number x lies in the
interval δ = 2σ with a probability of 0.95. The variance thus represents a measure of
the scatter of the random numbers around the expected value. The joint probability
density function f(x) of an n-dimensional normally distributed random vector x is
calculated in the form

f(x) = 1
(2π)n/2√det(Q)

e− 1
2 (x−m)TQ−1(x−m), (2.4)

with the expected value m and the covariance matrix Q,

m = E(x) (2.5a)
Q = E((x − E(x))(x − E(x))T) . (2.5b)

For the special case n = 2, the probability that a random vector x =
[
x1

x2

]
lies in an

ellipse of the form

(x − m)TQ−1(x − m) = C2 (2.6)

is given by

P = 1 − e− C2
2 (2.7)

The proof of this statement can be found, for example, in [2.1].
Thus, with the help of the covariance matrix Q, the region (i.e., the ellipses for

n = 2) can be determined in which a random vector x lies with a probability P.
Figure 2.3 shows the distribution of 3000 random vectors x =

[
x1 x2

]T
, with the

normally distributed, uncorrelated random variables x1 (E(x1) = m1 = 1, σ1 = 2)
and x2 (E(x2) = m2 = 2, σ2 = 1). Furthermore, the ellipses for P = 0.5 and P = 0.95,
and the expected value E(x) = m are shown.
This consideration for n = 2 can be generalized to n-dimensional normally distributed
random variables. In this case, the n-dimensional ellipsoid (x−m)TQ−1(x−m) = C2

describes a measure of the distribution of the random vector. The probability P that
a random vector x lies in this ellipsoid is given by

1 − P = n

2n/2Γ
(

n
2 + 1

) ∫ ∞

C
ξn−1e− ξ2

2 dξ, (2.8)
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Figure 2.3: Graphical representation of the expected value E(x) and the covariance matrix
Q for normally distributed random vectors x.

with the Gamma function Γ, see [2.1].

An exact relationship between the ellipsoids defined by the covariance matrix Q and
the probability that a random vector x lies in this region is only defined for normally
distributed random variables. For other distributions, these ellipsoids are only a more or
less accurate approximation. Nevertheless, the covariance matrix Q is also a meaningful
measure for estimating the distribution of the random vectors for these distributions, which
is why the corresponding ellipses or ellipsoids are often displayed here as well.

Note 2.2. A scalar random variable x uniformly distributed in the interval [a, b] is
defined by the probability density function

f(x) =
{ 1

b−a a < x ≤ b

0 otherwise
(2.9)

The corresponding expected value m and variance σ2 are calculated as

E(x) = m = a + b

2 (2.10a)

E((x − E(x))2) = σ2 = 1
12(b − a)2 . (2.10b)

Figure 2.4 shows the probability density functions for different uniformly distributed
random variables.
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Figure 2.4: Probability density function for different uniformly distributed random vari-
ables.

2.1 Gauss-Markov Estimation
Consider the overdetermined linear equation system of (1.60) (compare also (1.87)-(1.90))
augmented by the stochastic disturbance v

y = Sp + v (2.11)

with the known (m × n)-matrix S ∈ Rm×n, the n-dimensional vector of unknowns p ∈ Rn,
and the m-dimensional measurement vector y ∈ Rm. We now assume that the stochastic
disturbance v has the following stochastic properties:

E(v) = 0 and cov(v) = E(vvT) = Q with Q > 0 . (2.12)
It should be noted here that v can also be interpreted as a measurement error. We are
now looking for a linear estimator of the form

p̂ = Ky (2.13)

with a constant (n × m)-matrix K ∈ Rn×m. Since y is the sum of a constant vector Sp
and a stochastic vector (vector with stochastic entries) v, y, the estimated parameter p̂
according to (2.13), and the parameter error e = p−p̂ are stochastic quantities. Therefore,
it does not make sense to determine the matrix K such that ∥e∥2

2 is minimized, but the
task

min
K

E(∥e∥2
2) = min

K
E((p − Ky)T(p − Ky)) (2.14)

must be solved.
If we now substitute the relationship (2.11) into (2.14), then we obtain, taking into
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account (2.12) and the results from Appendix A (see Exercise A.3):

min
K

E((p − KSp − Kv)T(p − KSp − Kv)) =

min
K

E((p − KSp)T(p − KSp)) − 2 E((p − KSp)TKv)︸ ︷︷ ︸
=0

+ E(vTKTKv)︸ ︷︷ ︸
=tr(E(KvvTKT))

 =

min
K

{
∥p − KSp∥2

2 + tr(KQKT)
}

. (2.15)

The matrix K that minimizes the expression (2.15) is obviously a function of the unknown
parameter vector p. Therefore, the solution of this minimization problem is also not
suitable for providing an estimator for p according to (2.13). To circumvent this problem,
a substitute problem is solved in the following: It can be seen that with the choice

KS = E (2.16)

and E as the identity matrix, the solution of the minimization problem (2.15) is independent
of the parameter p. This constraint (2.16) may seem arbitrary at first glance, but if we
calculate the expected value of p̂ of the linear estimator (2.13), then it follows that

E(p̂) = E(Ky) = E(KSp + Kv) = KS E(p)︸ ︷︷ ︸
=p

+K E(v)︸ ︷︷ ︸
=0

. (2.17)

I.e., the constraint (2.16) implies that E(p̂) = p and thus the estimator is unbiased.
The problem

min
K

{
tr(KQKT)

}
subject to KS = E (2.18)

is now equivalent to solving n separate optimization problems of the form

min
kj

kT
j Qkj subject to kT

j S = eT
j for j = 1, . . . , n . (2.19)

To show this, write the matrix K and the identity matrix E in the form

K =


kT

1
kT

2
...

kT
n

 and E =


eT

1
eT

2
...

eT
n

 (2.20)

and substitute this into (2.18):

min
K

{
tr(KQKT)

}
= min

K


n∑

j=1
kT

j Qkj

 subject to kT
j S = eT

j (2.21)

for j = 1, . . . , n. Since the j-th summand in (2.21) only depends on kj , the minimization
problem of (2.21) can be replaced by n minimization problems according to (2.19).
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For the following, the solution of a problem of type (2.19) for a fixed j is therefore
of interest. If we now consider the Hilbert space H = Rm with the inner product
⟨x, z⟩ = xTz = ∑m

j=1 xjzj , then we see that the column vectors kk, k = 1, . . . , n, of the
matrix K, i.e., span{k1, k2, . . . , kn}, which satisfy the constraints of (2.19), do not form
a subspace of the Hilbert space H and thus the projection theorem of Theorem 1.1 is not
directly applicable.

Exercise 2.1. Show that the sum kj + kk does not satisfy the constraint of (2.21),
even if kj and kk individually satisfy this constraint.

2.1.1 Quadratic Minimization with Affine Constraints
To solve the above problem, an extension of the projection theorem of Theorem 1.1 is
required:

Theorem 2.1 (Extension of the Projection Theorem). Let H be a Hilbert space and
U a closed subspace of H. The translational shift of U in the form A = x + U for a
fixed x ∈ H is called a linear variety or affine subspace. Then there exists a unique
vector x0 ∈ A of minimal norm, and this is orthogonal to U (see Figure 2.5).

Proof of Theorem 2.1. Shift the affine subspace A by −x so that it becomes a closed
subspace and then apply the projection theorem of Theorem 1.1. Note that the
optimal solution x0 is not orthogonal to the affine subspace A but orthogonal to U .

Before the problem of (2.19) can be solved, some theoretical foundations should be
explained:

Definition 2.1 (Orthogonal Complement). If U is a subspace of a Hilbert space H
with the inner product ⟨·, ·⟩, then the set of all vectors orthogonal to U is called the
orthogonal complement of U , and we write U⊥ for it.
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0

U

x
x0

A = {v ∈ H|v = x + u, u ∈ U}

H

Figure 2.5: On the projection theorem for affine subspaces.

For the subspaces U and V of a Hilbert space, the following properties now hold:

(1) The orthogonal complement U⊥ is a closed subspace,

(2) U ⊆ U⊥⊥,

(3) If U ⊂ V, then V⊥ ⊂ U⊥,

(4) U⊥⊥⊥ = U⊥, and

(5) U⊥⊥ is the smallest closed subspace containing U .

Proof of (1). Since the linear combination of orthogonal vectors is again orthogonal,
it follows immediately that U⊥ is a subspace. The closedness of U⊥ follows from
the fact that, due to the continuity of the inner product ⟨·, ·⟩, for the limit x of a
convergent sequence (xk) in U⊥, we have

0 = ⟨y, xk⟩ = ⟨y, x⟩ (2.22)

for all y ∈ U and thus also x ∈ U⊥.

Exercise 2.2. Prove the above properties (2) to (4).
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Definition 2.2 (Direct Sum). A vector space X is called the direct sum of two
subspaces U and V, and we write X = U ⊕ V, if every vector x ∈ X can be uniquely
represented as the sum x = u + v with u ∈ U and v ∈ V.

Without proof, the following theorem holds as a corollary of the projection theorem of
Theorem 1.1:

Theorem 2.2. If U is a closed linear subspace of a Hilbert space H, then H = U ⊕U⊥

and U = U⊥⊥.
The following theorem can now be given for the solution of the minimization problem

with affine constraints from (2.19):

Theorem 2.3 (Minimization with Affine Constraints). Let H be a Hilbert space with
the linearly independent vectors s1, s2, . . . , sn. Among all possible vectors x ∈ H that
satisfy the affine equation system

⟨x, s1⟩ = c1

⟨x, s2⟩ = c2
...
...
...

⟨x, sn⟩ = cn

(2.23)

with the constant coefficients c1, c2, . . . , cn, let the vector x0 have the minimal norm.
Then x0 can be written in the form

x0 =
n∑

j=1
p0,jsj = Sp0 (2.24)

where pT
0 =

[
p0,1 p0,2 . . . p0,n

]
is calculated from the relationship


⟨s1, s1⟩ · · · ⟨sn, s1⟩

... . . . ...
⟨s1, sn⟩ · · · ⟨sn, sn⟩


︸ ︷︷ ︸

G=STS


p0,1

...
p0,n


︸ ︷︷ ︸

p0

=


c1
...

cn


︸ ︷︷ ︸

c

(2.25)

with the Gramian matrix G.

Proof of Theorem 2.3. Let U = span{s1, s2, . . . , sn} be a closed linear subspace of
the Hilbert space H. The set of all possible vectors x ∈ H that satisfy the affine
equation system (2.23) form an affine subspace of H, namely the translational shift of
U⊥ by a vector γ. Since the orthogonal complement U⊥ is a closed subspace, we can
apply Theorem 2.1 and thus know that the optimal solution x0 exists, is unique, and
is orthogonal to U⊥. However, this implies x0 ∈ U⊥⊥, and due to the closedness of U
and Theorem 2.2, we obtain U⊥⊥ = U . Since x0 ∈ U holds, x0 must be representable
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as a linear combination of the sj , j = 1, . . . , n, according to (2.24). Substituting
(2.24) into the affine constraint (2.23), we obtain the result (2.25).

Applying Theorem 2.3 to the minimization problem (2.19) with S =
[
s1 s2 . . . sn

]
and the inner product ⟨x, z⟩Q = xTQz in the Hilbert space H = Rm, i.e.,

min
kj

⟨kj , kj⟩Q subject to
〈
kj , Q−1sl

〉
Q

= δjl =
{

1 for j = l

0 otherwise
(2.26)

for j = 1, . . . , n, then, replacing sl with Q−1sl in (2.24) and (2.25), we obtain the result

kj,0 = Q−1Sp0 and (Q−1S)TQQ−1Sp0 = ej (2.27)

or
kj,0 = Q−1S(STQ−1S)−1ej . (2.28)

According to (2.20), the optimal solution K0 for the matrix K is calculated as

KT
0 = Q−1S(STQ−1S)−1 (2.29)

and thus the desired linear Gauss-Markov estimator according to (2.13) is

p̂ = (STQ−1S)−1STQ−1y . (2.30)
Comparing (2.30) with (1.128), we see that the result is identical to the result of the
least-squares identification with weighted least squares with the weighting matrix Q−1,
where Q = cov(v) holds.

For the expected value of the estimation error e = p − p̂, we obtain E(e) = 0 according
to (2.17), and the covariance matrix of the estimation error is given by (2.16):

E(eeT) = E((p − Ky)(p − Ky)T) = E
(
[p − K(Sp + v)][p − K(Sp + v)]T

)
= E

(
[Kv][Kv]T

)
= KQKT

(2.31)

or, with (2.29),

E(eeT) = (STQ−1S)−1STQ−1QQ−1S(STQ−1S)−1 = (STQ−1S)−1 . (2.32)

In the literature, the linear estimator (2.30) is often also called BLUE (best linear unbiased
estimate).

If the covariance matrix cov(v) = E(vvT) = Q is a diagonal matrix of the form
Q = diag(q0, q1, . . .) with qj > 0 for all j ≥ 0, then for the Gauss-Markov estimator (2.30),
according to the recursive method of weighted least squares (1.121), with αj = 1/qj , a
recursive version can be immediately given. This also clarifies the question of what the
optimal choice of the sequence of positive weighting coefficients αj (αj > 0 for all j) looks
like in (1.121).
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2.2 Minimum-Variance Estimation
It has been assumed so far that no information is available about the n-dimensional vector
of unknowns p in (2.11). However, in some cases, a priori information about p in the
form of stochastic characteristics (expected value, covariance matrix) is known. Therefore,
it is assumed that for the system of equations (compare also (2.11))

y = Sp + v (2.33)

with the stochastic perturbation v, the known (m × n)-matrix S ∈ Rm×n, the n-dimensional
random vector p ∈ Rn, and the m-dimensional measurement vector y ∈ Rm, the following
holds:

E(v) = 0, cov(v) = E
(
vvT

)
= Q with Q ≥ 0

E(p) = 0, cov(p) = E
(
ppT

)
= R with R ≥ 0

E
(
pvT

)
= N .

(2.34)

Furthermore, it is assumed that the matrix
(
SRST + Q + SN + NTST

)
is non-singular.

A linear estimator is sought
p̂ = Ky (2.35)

with a constant (n × m)-matrix K ∈ Rn×m such that the following minimization problem

min
K

E
(
∥e∥2

2

)
= min

K
E
(
[p − Ky]T[p − Ky]

)
(2.36)

is solved. By expanding (2.36) and using the relationship spur(KSR) = spur
(
R(KS)T

)
we obtain

min
K

E
(
[p − Ky]T[p − Ky]

)
=

min
K

E
(
[p − KSp]T[p − KSp]

)
︸ ︷︷ ︸
spur(E([E−KS]ppT[E−KS]T))

−2 E
(
[p − KSp]TKv

)
︸ ︷︷ ︸
spur(E([E−KS]pvTKT))

+ E
(
vTKTKv

)
︸ ︷︷ ︸

spur(E(KvvTKT))

 =

min
K

{
spur

(
[E − KS]R[E − KS]T − 2KNT − K

[
SN + NTST

]
KT + KQKT

)}
=

min
K

{
spur

(
K
(
SRST + Q + SN + NTST

)
KT − 2K

(
SR + NT

))}
.

(2.37)

Writing the matrix K and the identity matrix E as in (2.20)

K =


kT

1
kT

2
...

kT
n

 and E =
[
e1 e2 · · · en

]
(2.38)
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then (2.37) becomes

min
K


n∑

j=1

(
kT

j

(
SRST + Q + SN + NTST

)
kj − 2kT

j

(
SR + NT

)
ej

) . (2.39)

Comparing the minimization problem (2.39) with that of (1.61), i.e.,

min
p

(y − Sp)T(y − Sp) = min
p

(
yTy − 2pTSTy + pTSTSp

)
, (2.40)

it is seen that the two problems are equivalent. Thus, the solution of (2.39) can be directly
given by the solution of (2.40) (compare (1.63))

p0 =
(
STS

)−1
STy (2.41)

by setting STS = SRST + Q + SN + NTST and STy =
(
SR + NT

)
ej in (2.41). This

yields the optimal solution K0 for the matrix K of (2.35) as

KT
0 =

(
SRST + Q + SN + NTST

)−1(
SR + NT

)
(2.42)

and the sought linear minimum-variance estimator according to (2.35) is

p̂ =
(
RST + N

)(
SRST + Q + SN + NTST

)−1
y . (2.43)

Note that at the beginning of this section it was assumed that
(
SRST + Q + SN + NTST

)
is non-singular.

The covariance matrix of the estimation error is calculated as

cov(e) = E
(
[p − K(Sp + v)][p − K(Sp + v)]T

)
= E

(
[E − KS]ppT[E − KS]T

)
−

E
(
KvpT

(
E − STKT

)
+ (E − KS)pvTKT

)
+ E

(
KvvTKT

)
= (E − KS)R(E − KS)T − KNT

(
E − STKT

)
− (E − KS)NKT + KQKT

= R − K
(
SR + NT

)
−
(
RST + N

)
KT + K

(
SRST + Q + SN + NTST

)
KT

= R −
(
RST + N

)(
SRST + Q + SN + NTST

)−1(
SR + NT

)
−(

RST + N
)(

SRST + Q + SN + NTST
)−1(

SR + NT
)

+
(
RST + N

)
(
SRST + Q + SN + NTST

)−1(
SRST + Q + SN + NTST

)
(
SRST + Q + SN + NTST

)−1(
SR + NT

)
= R −

(
RST + N

)(
SRST + Q + SN + NTST

)−1(
SR + NT

)
.

(2.44)
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Exercise 2.3. If you have the time, verify (2.44).

In contrast to the Gauss-Markov estimator (2.30), the minimum-variance estimator
(2.43) yields meaningful results even if fewer measurements m than unknowns n are
available, provided that the matrix SRST + Q + SN + NTST is non-singular. The
reason for this property is obviously that, in the minimum-variance estimator, stochastic
information about the parameter vector p is available, and thus a meaningful estimation
is possible with fewer measurements, or even with no measurements for Q > 0.

Applying now the matrix inversion lemma, Theorem 1.3,

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1 (2.45)

to the covariance matrix of the estimation error cov(e) from (2.44) with A = R−1,
B = ST + R−1N, C =

(
Q − NTR−1N

)−1
and D = S + NTR−1, we obtain

cov(e) = R −
(
RST + N

)(
SRST + Q + SN + NTST

)−1(
SR + NT

)
=
(

R−1 +
(
ST + R−1N

)(
Q − NTR−1N

)−1(
S + NTR−1

))−1
.

(2.46)

Furthermore, it is easy to verify that the minimum-variance estimator (2.43) can be
written in the form

p̂ = cov(e)
(
ST + R−1N

)(
Q − NTR−1N

)−1
y. (2.47)

Exercise 2.4. Show the validity of (2.47).

Equation (2.47) now shows that for R−1 = 0, i.e., infinitely high variance of the
parameter vector p – thus no meaningful a priori information for p is available – and
Q > 0, the minimum-variance estimator (2.43) or (2.47) transitions into the Gauss-Markov
estimator (2.30).

The results (2.43) and (2.44) in combination with the relationships

E
(
pyT

)
= E

(
ppTST + pvT

)
=
(
RST + N

)
(2.48)

and
E
(
yyT

)
= E

(
[Sp + v][Sp + v]T

)
=
(
SRST + Q + SN + NTST

)
(2.49)

can be summarized in the following theorem:

Theorem 2.4 (Minimum-Variance Estimator). For the system of equations (2.33)

y = Sp + v (2.50)

with the stochastic quantities p, v and y, it is assumed that E
(
yyT

)
is invertible. The

optimal linear estimate p̂ of p, which minimizes the expected value of the quadratic

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



2.2 Minimum-Variance Estimation Page 51

error E
(
[p − p̂]T[p − p̂]

)
, is given by

p̂ = E
(
pyT

)[
E
(
yyT

)]−1
y (2.51)

with the associated error covariance matrix

cov(e) = E
(
[p − p̂][p − p̂]T

)
= E

(
ppT

)
− E

(
p̂p̂T

)
= E

(
ppT

)
− E

(
pyT

)[
E
(
yyT

)]−1
E
(
ypT

)
.

(2.52)

Note the similarity of (2.51) to the optimal solution in the sense of least squares from
(1.63).

Exercise 2.5. Show the validity of the relationship (2.52). Further show that

E
(
[p − p̂][p − p̂]T

)
= E

(
p[p − p̂]T

)
or E

(
p̂p̂T

)
= E

(
pp̂T

)
. (2.53)

Remark: (to Exercise 2.5) Simply substitute the expression from (2.51) for p̂.

Exercise 2.6. Show that the relationships (2.43) and (2.44) can be derived directly
using Theorem 2.4.

Exercise 2.7. Assume that the expected values E(y) and E(p) are not zero as in
(2.34), but E(y) = y0 ̸= 0 and E(p) = p0 ̸= 0. Show that the minimum-variance
estimate of the form

p̂ = Ky + b

with the constant vector b is given by

p̂ = p0 + E
(
[p − p0][y − y0]T

)[
E
(
[y − y0][y − y0]T

)]−1
(y − y0)

By the minimum-variance estimation of a linear function

z = Cp (2.54)

with the optimal estimator
ẑ = Kzy (2.55)

based on the measurements
y = Sp + v (2.56)

we understand the solution of the minimization problem

min
Kz

E
(
[z − ẑ]T[z − ẑ]

)
. (2.57)

The following theorem now applies:

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



2.2 Minimum-Variance Estimation Page 52

Theorem 2.5 (Minimum-Variance Estimator of a Linear Function). The linear
minimum-variance estimate (2.55) of a linear function Cp based on the measurements
(2.56) is equivalent to the linear function of the minimum-variance estimate p̂ itself,
i.e., the best estimate of Cp is Cp̂.

Exercise 2.8. Prove Theorem 2.5.

2.2.1 Recursive Minimum-Variance Estimation
In the next step, we will investigate how the optimal estimate p̂ from (2.47) can be
improved by adding new measurements. This is of particular importance for on-line
applications. The method is again based on the properties of the projection theorem
in a Hilbert space. If U1 and U2 denote two subspaces of a Hilbert space, then the
projection of a vector p onto the subspace U1 + U2 is identical to the projection of p onto
U1 plus the projection onto U∗

2 , where U∗
2 is orthogonal to U1 and satisfies the relationship

U1 ⊕ U∗
2 = U1 + U2. If U2 is spanned by a finite number of vectors, then the differences

between these vectors and their projections onto U1 span the subspace U∗
2 . Figure 2.6

illustrates this situation.

p

U1

U2

U1 + U2

U∗
2

p̂1 p̂

Figure 2.6: On the projection onto the sum of orthogonal subspaces.

Thus, the following theorem can be stated:

Theorem 2.6 (Recursive Minimum-Variance Estimation). Let p be a random vector
of a Hilbert space H of random variables and let p̂1 denote the orthogonal projection
of p onto a closed subspace U1 of H. According to the projection theorem, p̂1 is thus
the best estimate of p in U1. Furthermore, let y2 describe all those random vectors
that span the subspace U2 of H, and let ŷ2 be the orthogonal projection of y2 onto U1.
According to the projection theorem, ŷ2 is thus the best estimate of y2 in U1. With
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ỹ2 = y2 − ŷ2, the projection p̂ of p onto U1 + U2 is

p̂ = p̂1 + E
(
pỹT

2
)[

E
(
ỹ2ỹT

2
)]−1

ỹ2 . (2.58)

Thus, the best estimate p̂ on U1 + U2 is composed of the sum of the best estimate of p
on U1 (p̂1) and the best estimate of p on U∗

2 (the subspace generated by ỹ2).

Proof of Theorem 2.6. It is easily verified that U1 + U2 = U1 ⊕ U∗
2 and that U∗

2 is
orthogonal to U1. Equation (2.58) then follows from the fact that the projection
onto a sum of subspaces is equal to the sum of the projections onto the individual
subspaces, provided that these are orthogonal.

The result of Theorem 2.6 can also be interpreted as follows: If p̂1 denotes the optimal
estimate based on measurements that span the subspace U1, then when receiving new
measurements that span the subspace U2, only that part needs to be considered that
is not yet described by the measurements in U1, i.e., that part of the new data that is
orthogonal to the old data and thus lies in the subspace U∗

2 .
As an application example, consider a system of equations of the form of (2.33)

y1 = S1p + v1 . (2.59)

Furthermore, p̂1 = E
(
pyT

1
)[

E
(
y1yT

1
)]−1

y1 denotes the optimal minimum-variance esti-
mate of p according to (2.47) or (2.51) based on dim(y1) measurements with the error
covariance matrix

cov(p − p̂1) = E
(
[p − p̂1][p − p̂1]T

)
= P1 . (2.60)

The question now arises how to improve the estimate of p by adding new measurements

y2 = S2p + v2 (2.61)

For the stochastic perturbation v2 and the random parameter vector p, let

E(v2) = 0, cov(v2) = E
(
v2vT

2
)

= Q2 with Q2 ≥ 0

E(p) = 0, E
(
pvT

2
)

= N2 .
(2.62)

Furthermore, it is reasonable to assume that the perturbation v2 is not correlated with
past measurements y1, and thus

E
(
v2yT

1
)

= 0 or E
(
v2p̂T

1
)

= 0 . (2.63)

The best estimate ŷ2 of y2 based on the past measurements y1 is

ŷ2 = S2p̂1 . (2.64)

Thus, according to Theorem 2.6 with ỹ2 = y2 − ŷ2, the improved estimate p̂2 is

p̂2 = p̂1 + E
(
pỹT

2
)[

E
(
ỹ2ỹT

2
)]−1

ỹ2 (2.65)
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with
E
(
pỹT

2
)

= E
(
p(p − p̂1)TST

2 + pvT
2
) (2.53)= P1ST

2 + N2 (2.66)

and

E
(
ỹ2ỹT

2
)

= E
(
[S2(p − p̂1) + v2][S2(p − p̂1) + v2]T

)
= S2P1ST

2 + Q2 + S2N2 + NT
2 ST

2 .
(2.67)

Exercise 2.9. Show that the error covariance matrix, analogous to (2.44), can be
calculated in the form

P2 = cov(p − p̂2)

= P1 −
(
P1ST

2 + N2
)(

S2P1ST
2 + Q2 + S2N2 + NT

2 ST
2
)−1(

S2P1 + NT
2
) (2.68)

This yields the recursive minimum-variance estimator

p̂k = p̂k−1 +
(
Pk−1ST

k + Nk

)(
SkPk−1ST

k + Qk + SkNk + NT
k ST

k

)−1
(yk − Skp̂k−1)

(2.69)
with

Pk = Pk−1 −
(
Pk−1ST

k + Nk

)(
SkPk−1ST

k + Qk + SkNk + NT
k ST

k

)−1(
SkPk−1 + NT

k

)
(2.70)

and the initial values P−1 and p̂−1.
Assuming now that exactly one new measurement is added in each iteration step, i.e.,

the quantities yk and vk are scalars, then by substituting Sk = sT
k , Qk = E

(
v2

k

)
= qk

and Nk = E(pvk) = nk into (2.69), (2.70), the recursive minimum-variance estimator
becomes

kk = Pk−1sk + nk(
qk + 2sT

k nk + sT
k Pk−1sk

) (2.71a)

Pk = Pk−1 − kk

(
sT

k Pk−1 + nT
k

)
(2.71b)

p̂k = p̂k−1 + kk

(
yk − sT

k p̂k−1
)

. (2.71c)

Note also in this context the analogy to the recursive weighted least squares method
(1.121) for qk = 1/αk and nk = 0.

2.3 The Kalman Filter
Building on the previous considerations, especially the recursive minimum variance
estimation, the next step is to derive the Kalman filter, an optimal observer in the sense
of control theory. For the fundamentals of observer theory, refer to Chapter 8 of the
Automation script. Numerous versions of the Kalman filter exist in the literature. In
this lecture, we will initially consider a linear, time-invariant, discrete-time system of the
form
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xk+1 = Φxk + Γuk + Gwk x(0) = x0 (2.72a)
yk = Cxk + Duk + vk (2.72b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the
q-dimensional output y ∈ Rq, the r-dimensional disturbance w ∈ Rr, the measurement
noise v, and the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, G ∈ Rn×r, C ∈ Rq×n, and D ∈ Rq×p.
It should be noted here, however, that the Kalman filter can also be designed for linear,
time-variant, and continuous-time systems. The following assumptions apply:

(1) For the disturbance w and the measurement noise v, it is assumed that

E(vk) = 0 E
(
vkvT

j

)
= Rδkj (2.73a)

E(wk) = 0 E
(
wkwT

j

)
= Qδkj (2.73b)

E
(
wkvT

j

)
= 0 (2.73c)

with Q ≥ 0, R > 0, and the Kronecker delta δkj = 1 for k = j and δkj = 0 otherwise.

(2) The expected value of the initial value and the covariance matrix of the initial error
are given by

E(x0) = m0 E
(
[x0 − x̂0][x0 − x̂0]T

)
= P0 ≥ 0 (2.74)

with the estimate x̂0 of the initial value x0.

(3) The disturbance wk, k ≥ 0, and the measurement noise vl, l ≥ 0, are uncorrelated
with the initial value x0, i.e.,

E
(
wkxT

0
)

= 0 (2.75a)

E
(
vlxT

0
)

= 0 . (2.75b)

However, due to

xj = Φjx0 +
j−1∑
l=0

Φl(Γuj−1−l + Gwj−1−l) (2.76)

and (2.73), the relationship

E
(
wkxT

j

)
= 0 for k ≥ j (2.77a)

E
(
vlxT

j

)
= 0 for all l, j . (2.77b)

also holds.

For further considerations, the following notation is introduced:
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Definition 2.3. The optimal estimate of xk considering 0, . . . , j measurements is
abbreviated as x̂(k|j).

Theorem 2.7 (Kalman Filter). The optimal estimate x̂(k + 1|k) of the state xk+1 of
the system (2.72) considering l = 0, . . . , k measurements is calculated according to the
iteration rule

x̂(k + 1|k) = Φx̂(k|k − 1) + Γuk+

ΦP(k|k − 1)CT
(
CP(k|k − 1)CT + R

)−1
(yk − Cx̂(k|k − 1) − Duk)

(2.78)

with the covariance matrix of the estimation error

P(k + 1|k) = ΦP(k|k − 1)ΦT + GQGT

− ΦP(k|k − 1)CT
(
CP(k|k − 1)CT + R

)−1
CP(k|k − 1)ΦT (2.79)

and the initial values x̂(0| − 1) = m0 and P(0| − 1) = P0.

Proof of Theorem 2.7. Assume that the measurements y0, y1, . . . , yk−1 have been
used for the optimal estimate x̂(k|k − 1) with the error covariance matrix

P(k|k − 1) = E
(
[xk − x̂(k|k − 1)][xk − x̂(k|k − 1)]T

)
(2.80)

At time k, the measurement yk

yk = Cxk + Duk + vk (2.81)

is now used to improve the estimate of xk. According to Theorem 2.6, the estimate
x̂(k|k) of xk is

x̂(k|k) = x̂(k|k − 1) + E
(
xkỹT

k

)[
E
(
ỹkỹT

k

)]−1
ỹk (2.82a)

ỹk = yk − Cx̂(k|k − 1) − Duk (2.82b)

or with (2.53) in

E
(
xkỹT

k

)
= E

(
xk(Cxk + vk − Cx̂(k|k − 1))T

)
= P(k|k − 1)CT (2.83)

and
E
(
ỹkỹT

k

)
= CP(k|k − 1)CT + R (2.84)

it follows

x̂(k|k) = x̂(k|k − 1)+

P(k|k − 1)CT
(
CP(k|k − 1)CT + R

)−1
(yk − Cx̂(k|k − 1) − Duk) .

(2.85)
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Thus, the error covariance matrix can be written in the form (compare (2.44), (2.70))

P(k|k) = E
(
[xk − x̂(k|k)][xk − x̂(k|k)]T

)
=

P(k|k − 1) − P(k|k − 1)CT
(
CPCT + R

)−1
CP(k|k − 1)

(2.86)

According to Theorem 2.5, the optimal estimate of Φxk is equal to the optimal
estimate x̂k of xk multiplied by Φ, so it holds that

x̂(k + 1|k) = Φx̂(k|k) + Γuk . (2.87)

For the covariance matrix of the estimation error, we obtain

P(k + 1|k) = E
(
[xk+1 − x̂(k + 1|k)][xk+1 − x̂(k + 1|k)]T

)
= E

(
[Φ(xk − x̂(k|k)) + Gwk][Φ(xk − x̂(k|k)) + Gwk]T

)
= ΦP(k|k)ΦT + GQGT

(2.88)

Combining (2.85)–(2.88) directly yields the result of Theorem 2.7.

The composition of the error covariance matrix (2.79) should be interpreted at this
point: The term ΦP(k|k − 1)ΦT describes the change in the covariance matrix due to the
system dynamics, GQGT indicates the increase in error variance due to the disturbance
w, and the remaining expression with a negative sign describes how the error variance is
reduced by adding the information of new measurements.

2.3.1 The Kalman Filter as an Optimal Observer
Introducing the abbreviations x̂k+1 = x̂(k + 1|k), x̂k = x̂(k|k − 1), Pk+1 = P(k + 1|k),
and Pk = P(k|k − 1), (2.78) and (2.79) can also be represented in the compact form

x̂k+1 = Φx̂k + Γuk + K̂k(yk − Cx̂k − Duk) (2.89)
with

K̂k = ΦPkCT
(
CPkCT + R

)−1
(2.90)

and

Pk+1 = ΦPkΦT + GQGT − ΦPkCT
(
CPkCT + R

)−1
CPkΦT (2.91)

Equation (2.91) is also called the discrete Riccati equation. Comparing (2.89) with a
Luenberger observer, it is seen that the Kalman filter is an observer with a time-varying
observer gain matrix K̂k. The expected value of the observation error ek = xk − x̂k
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satisfies the iteration rule

E(ek+1) = E
(
Φxk + Gwk − Φx̂k − K̂k(Cxk + vk − Cx̂k)

)
= E

((
Φ − K̂kC

)
(xk − x̂k) + Gwk − K̂kvk

)
=
(
Φ − K̂kC

)
E(ek) .

(2.92)

If x̂0 = E(x0) = m0 is set, then E(ek) = 0 for all k ≥ 0. Furthermore, it can be seen from
(2.90) and (2.91) that, starting from the initial value P0, the error covariance matrix Pk

and thus also K̂k can be pre-calculated and stored in the computer without knowledge of
the measurements yk for all k ≥ 0.

If no previous measurement values about the process are available, one typically sets
x̂0 = 0 and P0 = αE for α ≫ 1. If the observer runs for a very long time, the problem
can be treated mathematically as if it were in operation indefinitely. It turns out that for
infinitely long time, the covariance matrix of the estimation error converges to a stationary
value P∞. In this case, the observer gain matrix K̂∞ is also constant and is calculated as

K̂∞ = ΦP∞CT
(
CP∞CT + R

)−1
(2.93)

with P∞ as the solution of the so-called discrete algebraic Riccati equation

P∞ = ΦP∞ΦT + GQGT − ΦP∞CT
(
CP∞CT + R

)−1
CP∞ΦT . (2.94)

Equation (2.94) has a unique symmetric solution P∞ with the property that all eigenvalues
of
(
Φ − K̂∞C

)
lie in the open interior of the unit circle, if the following conditions are

met:

(1) The pair (C, Φ) is detectable, i.e., all eigenvalues outside the unit circle are observable.

(2) The pair
(
Φ, GQGT

)
is stabilizable, i.e., all eigenvalues outside the unit circle are

controllable via the input GQGT.

(3) The matrix R is positive definite.

Such a solution of the discrete algebraic Riccati equation (2.94) is also called a stabilizing
solution. Since for this stabilizing solution all eigenvalues of

(
Φ − K̂∞C

)
lie in the open

interior of the unit circle, the expected value of the observation error decreases according
to (2.92), and limk→∞ E(ek) = 0 holds. The solution P∞ of the discrete algebraic Riccati
equation (2.94) can be easily obtained by iterating the discrete Riccati equation (2.91)
starting from the initial value P0 until Pk changes only insignificantly in terms of a norm.
Although the iteration rule generally converges very quickly to a stationary value, in
practice, as is also the case in Matlab, the algebraic Riccati equation (2.94) is solved
more efficiently numerically via an eigenvector decomposition, see the Matlab commands
care or dare.
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Exercise 2.10. The motion of a satellite about an axis is modeled in the form

I
d2

dt2 φ = Mc − Md

with the moment of inertia I, the torque Mc as the control variable, the torque Md as
the disturbance, and the angle φ. Determine the corresponding discrete-time system
of the form (2.72) for the sampling time Ta = 1s, I = 1, and the output variable φ.
Assume that the measurement of the angle φ is superimposed with the measurement
noise v and that the disturbance torque Md corresponds to the process disturbance
w. Let

E(w) = 0 E
(
w2
)

= q

E(v) = 0 E
(
v2
)

= 0.1 .

Calculate and plot the elements of Pk of the Kalman filter according to the iteration
rule (2.91) for the initial value P0 = E and q = {0.1, 0.01, 0.001}. Implement the
Kalman filter in Matlab/Simulink.

Remark: The relationship (2.93) with the constant observer gain matrix K̂∞ speci-
fies an optimal full observer that is usable for both single-variable and multivariable
systems. In contrast to observer design using the pole placement method (note the
Ackermann formula according to Chapter 8 of the Automation kecture notes), no
poles of the error system need to be chosen for the Kalman filter, which can be very
difficult, especially in the multivariable case. The behavior of the error system is
instead influenced by specifying the covariance matrices Q of the disturbance w and
R of the measurement noise v.

For the choice of the covariance matrix R of the measurement noise v, a very often
interpretable approach based on the (noise) characteristics of the sensor can be found.
Furthermore, a distinction can be made between reliable and less reliable measure-
ments via the weighting of the entries of the covariance matrix R. If a measurement
is less reliable, the corresponding entry on the main diagonal of the covariance matrix
is chosen to be very large. This assumed large variance of the measurement causes
the observer to weight this measurement less in the state estimation compared to
the other measurements. In the practical application of the Kalman filter, it is even
common to switch the covariance matrix during operation if one or more sensors
deliver implausible measurements or if an operating range is reached where it is
known in advance that certain sensors no longer provide reliable information.

These assumptions generally do not apply to the process disturbance w and thus
to the covariance matrix Q. The assumption that w is white noise is usually not true.
One might now get the idea to choose the generally unknown matrix Q very small
or even zero. However, the choice Q = 0 corresponds to the scenario of a system
without disturbance w. As can be seen from condition (2) for the solution of the
discrete algebraic Riccati equation, the choice Q = 0 (or generally also for Q ≪ 1)
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does not lead to a stabilizing solution. The choice of Q (and also R) in practical
application is usually done by trial and error.

Remark: In the Matlab Control Systems Toolbox, a slightly more general
system of the form

xk+1 = Φxk + Γuk + Gwk, x(0) = x0 (2.95a)
yk = Cxk + Duk + Hwk + vk, (2.95b)

with the additional term Hwk in the measured output, is considered. Furthermore,
instead of E

(
wkvT

k

)
= 0, it is allowed that

E
(
wkvT

k

)
= Nδkj ̸= 0 (2.96)

holds. For this case, the optimal state estimation is calculated as

x̂k+1 = Φx̂k + Γuk + K̂k(yk − Cx̂k − Duk) (2.97)

with

K̂k =
(
ΦPkCT + GQHT + GN

)(
CPkCT + HQHT + R + HN + NTHT

)−1

(2.98)

and

Pk+1 = ΦPkΦT + GQGT − K̂k

(
CPkΦT + HQGT + NTGT

)
. (2.99)

The proof can be found in the literature, in particular [2.2].

2.3.2 Frequency-domain properties of the stationary Kalman filter
Assume that the measurement noise vk from (2.72), i.e.,

xk+1 = Φxk + Γuk + Gwk x(0) = x0 (2.100a)
yk = Cxk + Duk + vk (2.100b)

is generated by a dynamic system of the form

zk+1 = Φzzk + nk (2.101a)
vk = Czzk + mk (2.101b)
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with the stochastic disturbances nk and mk. Substituting vk from (2.101) into (2.100)
yields the extended system in the form[

xk+1

zk+1

]
︸ ︷︷ ︸

x̃k+1

=
[
Φ 0
0 Φz

]
︸ ︷︷ ︸

Φ̃

[
xk

zk

]
︸ ︷︷ ︸

x̃k

+
[
Γ
0

]
︸︷︷︸

Γ̃

uk +
[
G 0
0 E

]
︸ ︷︷ ︸

G̃

[
wk

nk

]
︸ ︷︷ ︸

w̃k

x(0) = x0

z(0) = z0
(2.102a)

yk =
[
C Cz

]
︸ ︷︷ ︸

C̃

[
xk

zk

]
︸ ︷︷ ︸

x̃k

+Duk + mk . (2.102b)

The stationary Kalman filter according to (2.89) and (2.93) for the extended system
(2.102) is then[

x̂k+1

ẑk+1

]
=
[
Φ 0
0 Φz

][
x̂k

ẑk

]
+
[
Γ
0

]
uk +

[
K̂x

K̂z

]
︸ ︷︷ ︸

K̂∞

(yk − Cx̂k − Czẑk − Duk) (2.103)

or [
x̂k+1

ẑk+1

]
=
[
Φ − K̂xC −K̂xCz

−K̂zC Φz − K̂zCz

][
x̂k

ẑk

]
+
[
K̂x

K̂z

]
yk +

[
Γ − K̂xD

−K̂zD

]
uk . (2.104)

Since the system is linear and thus the superposition principle applies, the input uk = 0
is set in the following. The z-transfer matrix from the input yk to the output x̂k is

G(z) = x̂z(z)
yz(z) =

[
E 0

][zE − Φ + K̂xC K̂xCz

K̂zC zE − Φz + K̂zCz

]−1[
K̂x

K̂z

]
. (2.105)

The following theorem now applies:

Theorem 2.8 (Transmission zeros of the stationary Kalman filter). The transmission
zeros of (2.105) are given by the relationship

det(zE − Φz) = 0 (2.106)

Proof. Before Theorem 2.8 is proven, the concept of a transmission zero must be
briefly discussed. The zeros of the transfer function G(z) of a single-input single-
output system are usually characterized as the roots of the numerator polynomial
of G(z). In the case of a multivariable system with a transfer matrix G(z), this is
no longer as simple. A strict definition is given as follows: The zeros of the transfer
matrix G(z) are the roots of the numerator polynomials of the Smith-McMillan form
of G(z). For the definition of the Smith-McMillan form, refer to the literature cited
at the end. A physical interpretation of a transmission zero is now given. Consider
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the linear, time-invariant, discrete-time system of the form

xk+1 = Φxk + Γuk x(0) = x0 (2.107a)
yk = Cxk (2.107b)

with the n-dimensional state x ∈ Rn, the p-dimensional input u ∈ Rp, the q-
dimensional output y ∈ Rq, and the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, and C ∈ Rq×n.
A complex number zj is a transmission zero if, for an input of the form (uk) = u0

(
zk

j

)
,

u0 ̸= 0, there exists an initial state x0 ̸= 0 such that the output (yk) vanishes
identically for all times k ≥ 0. This property is also known in the literature as
transmission-blocking. In the z-domain, the output yz(z) = Z{(yk)} of (2.107) in
response to the input

uz(z) = Z{(uk)} = Z
{

u0
(
zk

j

)}
= u0

z

z − zj
(2.108)

with the initial value x(0) = x0 is calculated as

yz(z) = C(zE − Φ)−1
(

zx0 + Γu0
z

z − zj

)
. (2.109)

Using the resolvent identity

(zE − Φ)−1 − (zjE − Φ)−1 = (zE − Φ)−1(zj − z)(zjE − Φ)−1 (2.110)

(2.109) can be rewritten as

yz(z) = C
(
(zjE − Φ)−1 + (zE − Φ)−1(zj − z)(zjE − Φ)−1

) Γu0z

z − zj
+

C(zE − Φ)−1zx0

= C(zE − Φ)−1z
(
x0 − (zjE − Φ)−1Γu0

)
+ C(zjE − Φ)−1Γu0

z

z − zj

(2.111)

Exercise 2.11. Prove the identity of (2.110).

From (2.111), it can be seen that yz(z) vanishes identically only if the equations

x0 − (zjE − Φ)−1Γu0 = 0 (2.112a)
C(zjE − Φ)−1Γu0 = 0 (2.112b)
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are satisfied. In summary, it can be stated that for a transmission zero zj , non-trivial
vectors u0 and x0 exist that satisfy the system of equations[

(zjE − Φ) −Γ
C 0

][
x0

u0

]
=
[
0
0

]
(2.113)

and have the property that the output (yk) of (2.107) for the input (uk) = u0
(
zk

j

)
and the initial value x0 vanishes identically for all times k ≥ 0. Applying this result
to the transfer matrix G(z) of (2.105) with the input yk and the output x̂k, the
conditions (2.113) in this case are[

zjE − Φ + K̂xC K̂xCz

K̂zC zjE − Φz + K̂zCz

][
x̂0

ẑ0

]
−
[
K̂x

K̂z

]
y0 =

[
0
0

]
(2.114a)

[
E 0

][x̂0

ẑ0

]
= 0 . (2.114b)

Exercise 2.12. Derive the relationships (2.114).

From (2.114b), we obtain x̂0 = 0, and thus

K̂x(Czẑ0 − y0) = 0(
zjE − Φz + K̂zCz

)
ẑ0 − K̂zy0 = 0 .

(2.115)

Assuming the full column rank of K̂x, Czẑ0−y0 = 0 follows, and thus (zjE − Φz)ẑ0 =
0. It is now seen that (2.115) has non-trivial solutions for y0 and ẑ0 if and only if
det(zjE − Φz) = 0 holds, which proves Theorem 2.8.

Remark: This result shows that the stationary Kalman filter (2.103) has zeros
at the poles of the disturbance model (2.101). To now design a Kalman filter that
blocks certain frequencies, simply choose a disturbance model with poles at these
frequencies. In general, it can be said that the greater the energy of the disturbance
at the respective frequencies, the more the Kalman filter suppresses these frequencies.

Exercise 2.13. Design a Kalman filter to estimate the rotational speed ω of a permanent
magnet DC motor based on a measurement of the rotation angle φ. For a certain
choice of parameters and neglecting the dynamics of the electrical subsystem, the
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model of the DC motor is obtained in the form

d
dt

[
φ

ω

]
=
[
0 1
0 −1

][
φ

ω

]
+
[
0
1

]
u

y = φ =
[
1 0

][φ

ω

]
.

It is now desired that resonance frequencies with an angular frequency ω0, resulting
from the mechanical load, are suppressed by the Kalman filter. The corresponding
disturbance model can be modeled in the form

d
dt

[
z1

z2

]
=
[

0 1
−ω2

0 −2ξω0

][
z1

z2

]
+
[

0
ω2

0

]
n

v =
[
1 0

][z1

z2

]

with white noise n as the input signal. Design a Kalman filter for these specifications
for a sampling time Ta = 0.05 s and investigate the influence of different values for ξ
in the range 0.01 < ξ < 0.7. Choose ω0 = 3, G = E, Q = E, and R = 1. Plot the
Bode diagram of the Kalman filter and test your Kalman filter via simulation.

2.4 The Extended Kalman Filter
Before discussing the Extended Kalman Filter as an observer for nonlinear systems, the
Kalman Filter from Section 2.3 for linear time-variant sampled systems of the form

xk+1 = Φkxk + Γkuk + Gkwk x(0) = x0 (2.116a)
yk = Ckxk + Dkuk + vk (2.116b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the
q-dimensional output y ∈ Rq, the r-dimensional disturbance w ∈ Rr, the measurement
noise v, and the time-variant matrices Φk ∈ Rn×n, Γk ∈ Rn×p, Gk ∈ Rn×r, Ck ∈ Rq×n,
and Dk ∈ Rq×p will be written down. Analogous to Section 2.3, the following assumptions
are made:

(1) For the disturbance w and the measurement noise v, it is assumed that

E(vk) = 0 E
(
vkvT

j

)
= Rkδkj (2.117a)

E(wk) = 0 E
(
wkwT

j

)
= Qkδkj (2.117b)

E
(
wkvT

j

)
= 0 (2.117c)

with Qk ≥ 0 and Rk > 0 and the Kronecker delta δkj = 1 for k = j and δkj = 0
otherwise.
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(2) The expected value of the initial value and the covariance matrix of the initial error
are given by

E(x0) = m0 E
(
[x0 − x̂0][x0 − x̂0]T

)
= P0 ≥ 0 (2.118)

with the estimate x̂0 of the initial value x0.

(3) The disturbance wk, k ≥ 0, and the measurement noise vl, l ≥ 0, are uncorrelated
with the initial value x0, i.e., it holds that

E
(
wkxT

0
)

= 0 (2.119a)

E
(
vlxT

0
)

= 0 . (2.119b)

The derivation of the Kalman filter for the system (2.116) proceeds in a completely
analogous manner as in Section 2.3 and is given for k ≥ 0, compare (2.89)–(2.91),

K̂k = ΦkPkCT
k

(
CkPkCT

k + Rk

)−1
(2.120a)

x̂k+1 = Φkx̂k + Γkuk + K̂k(yk − Ckx̂k − Dkuk) (2.120b)

Pk+1 = ΦkPkΦT
k + GkQkGT

k − ΦkPkCT
k

(
CkPkCT

k + Rk

)−1
CkPkΦT

k . (2.120c)

If the initial value x0 is known, then we set x̂0 = x0 and P0 = 0, and in the case that
no information about the initial value is available, x̂0 = 0 and P0 = αE with α ≫ 1 is
typically chosen. It should be noted that this representation can also be generalized for
H ̸= 0 and E

(
wkvT

j

)
̸= 0 analogously to the discussions in the last section.

In the literature, it is often common to represent the Kalman filter in a slightly
different form. The optimal estimation of the state xk and the error covariance matrix Pk

considering 0, . . . , k − 1 measurements, compare Definition 2.3,

x̂−
k = x̂(k|k − 1) (2.121a)

P−
k = P(k|k − 1) = E

([
xk − x̂−

k

][
xk − x̂−

k

]T)
(2.121b)

is referred to as the a priori estimate, and the optimal estimation of xk and Pk considering
0, . . . , k measurements

x̂+
k = x̂(k|k) (2.122a)

P+
k = P(k|k) = E

([
xk − x̂+

k

][
xk − x̂+

k

]T)
(2.122b)

is referred to as the a posteriori estimate. (2.120) can thus be written in the equivalent
form
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Kalman Gain Matrix: L̂k = P−
k CT

k

(
CkP−

k CT
k + Rk

)−1
(2.123a)

State Estimate Update: x̂+
k = x̂−

k + L̂k

(
yk − Ckx̂−

k − Dkuk

)
(2.123b)

Error Covariance Update: P+
k =

(
E − L̂kCk

)
P−

k (2.123c)

State Extrapolation (2.87): x̂−
k+1 = Φkx̂+

k + Γkuk (2.123d)
Error Covariance Extrapolation (2.88): P−

k+1 = ΦkP+
k ΦT

k + GkQkGT
k (2.123e)

for k ≥ 0 and the initial values x̂−
0 = x̂0 and P−

0 = P0.

Exercise 2.14. Show the equivalence of the relations (2.120) and (2.123). For this,
perform the following substitutions in (2.123): x̂−

k+1 = x̂k+1, x̂−
k = x̂k, P−

k+1 = Pk+1,
P−

k = Pk, and ΦkL̂k = K̂k.

The Extended Kalman Filter (EKF) design is generally based on a nonlinear, time-
variant, continuous-time multivariable system of the form

d
dt

x = f(x, u, w, t) x(0) = x0 (2.124a)

y = h(x, u, v, t) (2.124b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the q-
dimensional output y ∈ Rq, the r-dimensional disturbance w ∈ Rr, and the measurement
noise v. Since the Kalman filter is normally implemented in a digital computer, the
control variables are applied to the process via a zero-order hold (D/A converter) with
the sampling time Ta, and the measured variables are sampled with the sampling time Ta

via an A/D converter, the corresponding sampled system to (2.124)

xk+1 = Fk(xk, uk, wk) x(0) = x0 (2.125a)
yk = hk(xk, uk, vk) (2.125b)

must be calculated. From the lecture on Automation (Section 6.2.1), it is known that the
exact solution of (2.124) is necessary to determine the sampled system.

Remark: The solution of a nonlinear system of differential equations of the form
(2.124) is known to be only possible in special cases. Therefore, an approximate
solution using an integration method is sought below. It is assumed that the control
variable u(t) and the disturbance w(t) are constant for the sampling interval kTa ≤
t < (k + 1)Ta, i.e., u(t) = u(kTa) = uk and w(t) = w(kTa) = wk, and the differential
equation (2.124a) is integrated over the sampling interval

xk+1 = xk +
∫ (k+1)Ta

kTa

f(x(t), uk, wk, t) dt (2.126)

with xk+1 = x((k + 1)Ta) and xk = x(kTa). The approximation of the integral in
(2.126) can be done in different ways. In the following, only two possible solutions
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will be given:

(1) Euler method∫ (k+1)Ta

kTa

f(x(t), uk, wk, t) dt = f(xk, uk, wk, kTa)Ta (2.127)

(2) Fourth-order Runge-Kutta method∫ (k+1)Ta

kTa

f(x(t), uk, wk, t) dt = ∆x1 + 2∆x2 + 2∆x3 + ∆x4
6 (2.128)

with

∆x1 = f(xk, uk, wk, kTa)Ta

∆x2 = f
(

xk + ∆x1
2 , uk, wk, kTa + Ta

2

)
Ta

∆x3 = f
(

xk + ∆x2
2 , uk, wk, kTa + Ta

2

)
Ta

∆x4 = f(xk + ∆x3, uk, wk, (k + 1)Ta)Ta .

(2.129)

Here, for ∆x4 in (2.129), the left-hand limit limt→(k+1)Ta
u(t) = uk and

limt→(k+1)Ta
w(t) = wk was used.

The output equation (2.125b) of the sampled system is obtained very easily for both
cases by evaluating the output equation (2.124b) of the continuous-time multivariable
system for t = kTa

yk = h(xk, uk, vk, kTa) = hk(xk, uk, vk) . (2.130)

Assuming that a discrete-time system of the form (2.125) is given by the relations
(2.126)–(2.130), the idea of the Extended Kalman Filter is based on the fact that a Taylor
series expansion is performed for the right-hand side of (2.125a) around the point xk = x̂+

k ,
uk = uk and wk = 0 and truncated after the linear term, i.e.,

xk+1 = Fk

(
x̂+

k , uk, 0
)

+ ∂

∂xk
Fk

(
x̂+

k , uk, 0
)(

xk − x̂+
k

)
+ ∂

∂wk
Fk

(
x̂+

k , uk, 0
)
wk . (2.131)

Analogously, the right-hand side of the output equation (2.125b) is developed into a Taylor
series around the point xk = x̂−

k , uk = uk and vk = 0 and truncated after the linear term

yk = hk

(
x̂−

k , uk, 0
)

+ ∂

∂xk
hk

(
x̂−

k , uk, 0
)(

xk − x̂−
k

)
+ ∂

∂vk
hk

(
x̂−

k , uk, 0
)
vk . (2.132)

Note that the following simplified notation is used consistently here:
∂

∂xk
Fk

(
x̂−

k , uk, 0
)

= ∂

∂xk
Fk(xk, uk, wk)

∣∣∣∣
xk=x̂−

k
,uk=uk,wk=0

(2.133)

The relations (2.131) and (2.132) can be written more compactly for further considerations
in the form
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xk+1 = Φkxk + ūk + Gkwk (2.134a)
yk = Ckxk + ŭk + v̆k (2.134b)

with

Φk = ∂

∂xk
Fk

(
x̂+

k , uk, 0
)

ūk = Fk

(
x̂+

k , uk, 0
)

− Φkx̂+
k

Gk = ∂

∂wk
Fk

(
x̂+

k , uk, 0
)

Ck = ∂

∂xk
hk

(
x̂−

k , uk, 0
)

ŭk = hk

(
x̂−

k , uk, 0
)

− Ckx̂−
k v̆k = ∂

∂vk
hk

(
x̂−

k , uk, 0
)
vk

(2.135)

It is now obvious that the structure of the system (2.134) directly allows the applica-
tion of the Kalman filter according to (2.123). The necessary calculation steps for the
implementation are summarized again below.

(1) For the nonlinear, time-variant, continuous-time multivariable system (2.124), cal-
culate a discrete-time system of the form (2.125).

(2) The estimated state and the covariance matrix of the estimation error must be
initialized for the initial time point with x̂−

0 and P−
0 .

(3) It is again assumed for the disturbance wk and the measurement noise v̆k in (2.134)
that

E(v̆k) = 0 E
(
v̆kv̆T

j

)
= Rkδkj (2.136a)

E(wk) = 0 E
(
wkwT

j

)
= Qkδkj (2.136b)

E
(
wkv̆T

j

)
= 0 (2.136c)

with Qk ≥ 0 and Rk > 0 and the Kronecker delta δkj = 1 for k = j and δkj = 0
otherwise.

(4) The iteration equations of the Extended Kalman Filter are then for k ≥ 0
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Ck = ∂

∂xk
hk

(
x̂−

k , uk, 0
)

(2.137a)

L̂k = P−
k CT

k

(
CkP−

k CT
k + Rk

)−1
(2.137b)

x̂+
k = x̂−

k + L̂k

(
yk − Ckx̂−

k − ŭk

)
= x̂−

k + L̂k

(
yk − hk

(
x̂−

k , uk, 0
))

(2.137c)

P+
k =

(
E − L̂kCk

)
P−

k (2.137d)

Φk = ∂

∂xk
Fk

(
x̂+

k , uk, 0
)

(2.137e)

Gk = ∂

∂wk
Fk

(
x̂+

k , uk, 0
)

(2.137f)

x̂−
k+1 = Φkx̂+

k + Fk

(
x̂+

k , uk, 0
)

− Φkx̂+
k︸ ︷︷ ︸

ūk

= Fk

(
x̂+

k , uk, 0
)

(2.137g)

P−
k+1 = ΦkP+

k ΦT
k + GkQkGT

k . (2.137h)

Remark: In the Extended Kalman Filter design, it is assumed that the linearized
transformation of the mean and covariance corresponds with good accuracy to the
mean and covariance of the nonlinear transformation. This assumption is generally
not true, which is why the Unscented Kalman Filter considered in the next section is
often used to improve the observer design for nonlinear systems.

Exercise 2.15. The mathematical model

d
dt

x1 = x2 + w1

d
dt

x2 = 1
2ρ0 exp

(
−x1

k

)
Cw

A

m
x2

2 − g + w2

describes the free fall of a body of mass m and cross-sectional area A in the Earth’s
atmosphere with altitude x1 and velocity x2. The term ρ0 exp(−x1/k) corresponds to
the altitude-dependent density in the atmosphere (ρ0 density at sea level), whereby the
term with x2

2 describes the deceleration due to air resistance with the drag coefficient
Cw. Furthermore, g represents the acceleration due to gravity. The process noise is
given by the stochastic variables w1 and w2. The altitude x1 can be determined via
the output equation

y = x1 + v

with the measurement noise v. Design an Extended Kalman Filter for the parameters
ρ0 = 1.2 kg/m3, g = 9.81 m/s2, k = 9100 m, A = 0.5 m2, m = 100 kg, and Cw = 0.5
that estimates, in addition to the altitude x1 and velocity x2, the constant drag
coefficient Cw. Extend the system of differential equations to include the state
x3 = Cw with

d
dt

x3 = 0 + w3
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and the process noise component w3. Use the Euler method to determine the discrete-
time system. Assume that the nominal values or initial conditions of the variables
Cw, x1, and x2 are normally distributed. The corresponding values of the means and
variances can be found in the following Table 2.1. For the simulation, assume the
following values: Cw = 0.6, x1(0) = 39 500 m, and x2(0) = −10 m/s.

Variable Mean Variance

Cw 0.5 1
x1(0) 39 · 103 m 1 · 104 m2

x2(0) 0 m/s 1 m2/s2

Table 2.1: Means and variances of the parameters and initial conditions.

Exercise 2.16. An Extended Kalman Filter is to be used for position determination
of a vehicle in a two-dimensional space (o-axis: East coordinate, n-axis: North
coordinate). Several measuring stations with coordinates (Oi, Ni), i = 1, . . . , M
measure the distance to the vehicle. The acceleration of the vehicle in the North and
East directions is modeled by white noise. The system of difference equations

ok+1

nk+1

ov,k+1

nv,k+1


︸ ︷︷ ︸

xk+1

=


1 0 Ta 0
0 1 0 Ta

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Φ


ok

nk

ov,k

nv,k


︸ ︷︷ ︸

xk

+


w1,k

w2,k

w3,k

w4,k


︸ ︷︷ ︸

wk

describes the vehicle behavior, where ok and nk and ov,k and nv,k denote the co-
ordinates and velocities of the vehicle relative to the origin of a fixed coordinate
system in the East and North directions at time kTa with sampling time Ta, and
wj,k, j = 1, . . . , 4 are the components of the process noise. Furthermore, the distance
measurements of the vehicle from the stations are given by

yi,k =
√

(nk − Ni)2 + (ok − Oi)2 + vi,k, i = 1, . . . , M

with the measurement noise vi,k, i = 1, . . . , M . Assume that all stochastic variables
(wj,k) and (vi,k) are normally distributed, uncorrelated, and zero-mean. The sampling
time is given as Ta = 0.1 s. For the covariance matrix of the process noise, it applies
that

E
(
wkwT

j

)
= Qδkj with Q = diag(0, 0, 4, 4)

and the covariance of the measurement noise is

E(vi,kvi,j) = Riδkj with Ri = 1, i = 1, . . . , M .
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The initial state xT
0 =

[
0 0 50 50

]
is exactly known. Simulate the system for

60 seconds and design an Extended Kalman Filter to estimate the states. Vary the
number and position of the measuring stations.

2.5 The Unscented Kalman Filter
The Extended Kalman Filter (EKF), discussed in the last chapter, is the (industrial)
standard for state estimation of nonlinear dynamic systems. However, the EKF has the
disadvantage that it can provide unreliable estimations (of the expected value and the
error covariance) if the system exhibits pronounced nonlinearities. This unreliability
results from the linearization of the nonlinear system dynamics, which is used to calculate
the expected value and the covariance of the state. To illustrate this problem in more
detail, the next section shows how the expected value and the covariance of a random
variable change through a nonlinear transformation.

2.5.1 Expected Value and Covariance of Nonlinear Transformations
In the following, the example of a transformation from cylindrical coordinates to Cartesian
coordinates is considered

y =
[
y1

y2

]
= h(x) =

[
x1 cos(x2)
x1 sin(x2)

]
. (2.138)

It is assumed that the random vector x = [x1, x2]T is defined by the uncorrelated, uniformly
distributed random variables x1 (interval: a1 = mx1 − δx1 = 1 − 0.01, b1 = mx1 + δx1 =
1 + 0.01) and x2 (interval: a2 = mx2 − δx2 = π

2 − 0.35, b2 = mx2 + δx2 = π
2 + 0.35). Figure

2.7 shows 10000 random vectors generated according to this distribution. The expected
value (mean) mx is mx = [1, π/2]T and the covariance matrix is calculated as

Qx =
[1

310−4 0
0 49

1210−2

]
. (2.139)

In Figure 2.7, the covariance matrix is represented by the ellipse (x − mx)TQ−1
x (x − mx) =

1.
The expected value E(y) = my of the quantity y = h(x) calculated using the nonlinear

transformation results from[
my1

my2

]
=
[
E(h1(x))
E(h2(x))

]
=
[
E(x1 cos(x2))
E(x1 sin(x2))

]
. (2.140)

Considering the independence of the random variables x1 and x2 and introducing the
decomposition x = x̃ + mx, we obtain for the first row of (2.140)

E(x1 cos(x2)) = E(x1) E(cos(x̃2 + mx2)) . (2.141)
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Figure 2.7: Distribution of the random vectors x with associated expected value mx and
covariance matrix Qx.

It holds that E(x1) = mx1 = 1. Splitting the cos-term in (2.141) and substituting the
expected value mx2 = π/2, we obtain

E(cos(x̃2 + mx2)) = E(cos(x̃2) cos(mx2) − sin(x̃2) sin(mx2)) = − E(sin(x̃2)) . (2.142)

Since the expected value of a skew-symmetric function of a random variable with a
symmetric probability density function vanishes, E(sin(x̃2)) = 0 and thus my1 = 0. To
show this last step, consider

E(sin(x̃2)) =
∫ δx2

−δx2
sin(x̃2) 1

2δx2
dx̃2 = 1

2δx2
(− cos(δx2) + cos(−δx2)) = 0 . (2.143)

In an analogous way, the second row of (2.140) can be calculated as E(x1 sin(x2)) =
sin(δx2)/δx2. In summary, the exact expected value my of the random variable y is
obtained in the form

my =
[

0
sin(δx2)

δx2

]
. (2.144)

The exact calculation of the expected value my is only possible for a few special
cases. Note that in this example, a simple uniform distribution and a simple nonlinear
transformation were assumed to be able to calculate an analytical solution. An obvious
way to approximately calculate the expected value is to approximate the nonlinear
transformation h(x) by a Taylor series, which was determined around the expected value
mx of the random vector x.

h(x) = h(mx) + Dx̃h + 1
2!D

2
x̃h + 1

3!D
3
x̃h + . . . , (2.145)
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where the notation

Dk
x̃h =

(
n∑

i=1
x̃i

∂

∂xi

)k

h(x)

∣∣∣∣∣∣
x=mx

(2.146)

is used. Here, n denotes the dimension of the random variable x.
If a first-order Taylor series approximation of h(x) is used to calculate the expected

value, we obtain

h(x) ≈ hl(x) = h(mx) + x̃1
∂h(x)
∂x1

∣∣∣∣
x=mx

+ x̃2
∂h(x)
∂x2

∣∣∣∣
x=mx

. (2.147)

The associated expected value is then calculated as

E(hl(x)) = h(mx) + ∂h(x)
∂x1

∣∣∣∣
x=mx

E(x̃1) + ∂h(x)
∂x2

∣∣∣∣
x=mx

E(x̃2) = h(mx) (2.148)

and thus

E(hl(x)) = myl =
[
0
1

]
(2.149)

A comparison with the exact result (2.144) shows that the errors increase with increasing
δx2. Figure 2.8 shows a comparison of the exact expected value my with the expected
value myl, which was determined based on the linearization. Since this linearization is
also inherently included in the calculation of an EKF, a deviation from the exact result
must also be expected for an EKF. This deviation increases with increasing nonlinearity
of the system and with increasing covariance of the random variables.

One way to reduce the error due to the linearization is to use a second-order approxi-
mation hq(x) of h(x). In this case, the approximate expected value is

E(hq(x)) = myq =

 0
1 − σ2

x2
2

, (2.150)

with the variance σx2 of x2. In Figure 2.8, the expected improvement of the approxi-
mation of E(h(x)) by E(hq(x)) compared to the linear approximation E(hl(x)) can be
seen.

Exercise 2.17. Show the result E(hq(x)) from (2.150).

Thus, an arbitrarily accurate approximation of E(h(x)) could be determined by a
sufficiently high approximation order of h(x). However, this approach has two major
disadvantages:

1. A very high approximation order may be necessary to approximate a general nonlinear
function. This leads to a significant increase in computational effort.

2. In the calculation of the expected value with an approximation of order k, the central
moments up to order k of the random vector x are necessary.
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Figure 2.8: Distribution of the random vectors y = h(x) with the expected value
E(y) = my, the approximation myl based on a 1st-order Taylor series and the
approximation myq based on a 2nd-order Taylor series.

Therefore, this approach is only conditionally useful for practical implementation.
To characterize a (normally distributed) random variable x, the covariance matrix

E
(
(x − mx)(x − mx)T

)
= Qx is also necessary. Therefore, it is interesting to investigate

how the covariance matrix changes due to the nonlinear transformation. For the example
considered, it holds that

Qy = E
([

x1 cos(x2)
x1 sin(x2) − sin(δx2)

δx2

][
x1 cos(x2) x1 sin(x2) − sin(δx2)

δx2

])

= E

 x2
1 cos(x2)2 x2

1 cos(x2) sin(x2) − x1 cos(x2) sin(δx2)
δx2

x2
1 cos(x2) sin(x2) − x1 cos(x2) sin(δx2)

δx2

(
x1 sin(x2) − sin(δx2)

δx2

)2

,

(2.151)

which, after a short calculation, leads to

Qy =

1
2
(
1 + σ2

x1
)(

1 − sin(2δx2)
2δx2

)
0

0 1
2
(
1 + σ2

x1
)(

1 + sin(2δx2)
2δx2

)
−
(

sin(δx2)
δx2

)2

 (2.152)

Exercise 2.18. Verify the solution (2.152).

To estimate the transformed covariance matrix Qy using the first-order Taylor series
approximation, the expression

yl − E(yl) = Dx̃h = x̃1
∂h
∂x1

∣∣∣∣
x=mx

+ x̃2
∂h
∂x2

∣∣∣∣
x=mx

. (2.153)
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is used. This yields the approximation Qyl of the covariance matrix as

Qyl = E

[x̃1
∂h
∂x1

∣∣∣∣
x=mx

+ x̃2
∂h
∂x2

∣∣∣∣
x=mx

][
x̃1

∂h
∂x1

∣∣∣∣
x=mx

+ x̃2
∂h
∂x2

∣∣∣∣
x=mx

]T


=
[

∂h
∂x1

∣∣∣
x=mx

∂h
∂x2

∣∣∣
x=mx

]
E
([

x̃2
1 x̃1x̃2

x̃1x̃2 x̃2
2

]) ∂h
∂x1

∣∣∣T
x=mx

∂h
∂x2

∣∣∣T
x=mx

 = HQxHT

(2.154)

or for the example considered

Qyl =
[
σ2

x2 0
0 σ2

x1

]
. (2.155)

Figure 2.9 shows a comparison of the covariance matrix Qy and the approximation Qyl in
the form of the ellipses defined by them for C = 1.
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Figure 2.9: Distribution of the random vectors y = h(x) with expected value E(y) = my

and covariance matrix Qy, and the approximations myl and Qyl based on a
1st-order Taylor series.

Theorem 2.9 (Approximation Order). The expected value my and the covariance
matrix Qy of a random variable y, which is calculated by a nonlinear transformation
of the form y = h(x), are given by

my = h(mx) + E
(

Dx̃h + 1
2!D

2
x̃h + 1

3!D
3
x̃h + 1

4!D
4
x̃h + . . .

)
(2.156)
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and

Qy = HQxHT + E
( 1

3!Dx̃h
(
D3

x̃h
)T

+ 1
4D2

x̃h
(
D2

x̃h
)T

+ 1
3!D

3
x̃h(Dx̃h)T

)
− E

(
D2

x̃h
)

E
(
D2

x̃h
)T

+ . . . ,

(2.157)

with H = ∂h/∂x|x=mx
. To calculate the expected value my with an approximation

accuracy of order m, the partial derivatives of h and the central moments of x up to
the m-th order are necessary. Furthermore, the term of the m-th order of the series
of the covariance matrix can only be determined if the derivatives of h and the central
moments of x up to the 2m-th order are known.

Since the EKF is largely based on this linearization, a better form of approximation of
the expected value and the covariance matrix is necessary for systems with pronounced
nonlinearity.

2.5.2 The Unscented Transformation
The unscented transformation is based on the fact that it is often easier to approximate
the distribution of a random variable than a general nonlinear function or transformation.
In the unscented transformation, a set S of sigma points ξi is chosen such that their
expected value mxu and the covariance matrix Qxu correspond to those of the original
random vector x. Applying a nonlinear transformation y = h(x) to each of these sigma
points ξi yields the transformed sigma points ηi = h(ξi). The statistical properties of the
transformed points ηi are then an approximation of the exact statistical properties of the
nonlinear transformation.

The set of sigma points S is defined by the vectors ξi and the associated weights Wi,
i.e., S = {ξi, Wi|i = 1, . . . , p}. The choice of sigma points is not unique, i.e., for a random
vector x with expected value mx and covariance matrix Qx, there are several possible
realizations of sigma points. To obtain an unbiased estimate, the weights Wi must satisfy
the constraint

p∑
i=1

Wi = 1 (2.158)

In the literature, for a random vector x ∈ Rn, a set S of 2n points lying on the ellipsoid
(x − mx)Q−1

x (x − mx)T = n is often used. The sigma points for a random vector x are
therefore defined by

ξi =
{

mx +
(√

nQx
)T

i for i = 1, . . . , n

mx − (√
nQx

)T
i−n for i = n + 1, . . . , 2n

(2.159)

with the dimension n, the expected value mx, and the covariance matrix Qx of the random
vector x. Furthermore,

(√
nQx

)
i denotes the i-th row of the square root of the matrix

nQx. The associated weights are given by
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Wi = 1
2n

. (2.160)

Remark: The square root R of a matrix Q can be determined very efficiently using
the Cholesky decomposition (Matlab command chol). Then it holds that RTR = Q.

Exercise 2.19. Show that the mean and covariance matrix of the sigma points defined
by (2.159) and (2.160) correspond to the mean mx and the covariance matrix Qx of
the random vector x.
The procedure for determining the approximate expected value myu and the covariance

matrix Qyu using the unscented transformation consists of the following steps:

1. The nonlinear transformation h(x) is applied to each sigma point ξi, resulting in
the transformed sigma points ηi

ηi = h(ξi) . (2.161)

2. The expected value myu results from the weighted sum of the transformed sigma
points

myu =
2n∑
i=1

Wiηi . (2.162)

3. The covariance matrix Qyu of the transformed sigma points is calculated as

Qyu =
2n∑
i=1

Wi(ηi − myu)(ηi − myu)T . (2.163)

As documented in the literature, n sigma points would already suffice to correctly
approximate the expected value and the covariance matrix. However, the symmetric
choice of the 2n sigma points according to (2.159) also ensures that the third central
moment is exactly fulfilled.

The approximation order of the unscented transformation is 2, i.e., the mean and the
covariance matrix are correctly reproduced up to the second term. Note that for the
calculation of the mean and the covariance, no higher moments of x or partial derivatives
of the nonlinear transformation are necessary. The latter property allows the unscented
transformation to be applied to non-continuously differentiable (even non-continuous)
nonlinear transformations.

In the following, the application of the unscented transformation to the nonlinear
transformation y = h(x) from (2.138) in Section 2.5.1 is considered. The 2n = 4 sigma
points ξi according to (2.159) are shown in Figure 2.10 together with the exact mean
mx and the covariance matrix Qx characterized by the ellipse for C =

√
2. As expected,

the sigma points ξi are symmetrically distributed on this ellipse. Figure 2.11 shows
the transformed sigma points ηi = h(ξi). Furthermore, the mean myu approximated
according to (2.162) and the approximated covariance matrix Qyu according to (2.163)
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Figure 2.10: Uniformly distributed random variable x according to (2.138) with mean mx,
covariance matrix Qx, and sigma points ξi.

are shown. Compared to the covariance matrix Qyl calculated using linearization from
the last section 2.5.1, a drastic improvement in the approximation results, cf. Figure 2.9.

Note 2.3. As already noted, the choice of sigma points is not unique. In addition
to the sigma points presented in this script based on the unscented transformation,
so-called simplex sigma points or spherical sigma points are also often used in the
literature, see, e.g., [2.3]. These are characterized by a somewhat simpler calculation,
but have disadvantages in terms of approximation accuracy. If the random vector x
is normally distributed, the extended choice of sigma points of the form

ξ0 = mx (2.164a)

ξi =


mx +

(√
n

1−λQx

)T

i
for i = 1, . . . , n

mx −
(√

n
1−λQx

)T

i−n
for i = n + 1, . . . , 2n

(2.164b)

with the scalar parameter λ often proves useful. The associated weights are given by

W0 = λ (2.165a)

Wi = 1 − λ

2n
. (2.165b)

It can be shown that the choice λ = 1 − n/3 is optimal for normally distributed
random vectors x [2.4]. The rationale for choosing the extended sigma points is based
on an analysis of the influence of higher-order moments on the approximation of the
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Figure 2.11: Transformed random variable y = h(x) according to (2.138) with exact
mean my, exact covariance matrix Qy, transformed sigma points ηi = h(ξi),
approximated mean myu, and approximated covariance matrix Qyu.

covariance matrix. For a detailed analysis and the determination of the optimal value
of λ for normally distributed random vectors, the reader is referred to the literature,
in particular [2.4], [2.3], [2.5].

To analyze the influence of the extended sigma points (2.164) and the weights (2.165) on
the mean and the associated covariance matrix estimated using the unscented transforma-
tion, consider again the nonlinear transformation according to (2.138). It is now assumed
that the random vector x = [x1, x2]T is defined by normally distributed random numbers
x1 (expected value mx1 = 1, variance σx1 = 0.01) and x2 (expected value mx2 = π/2,
variance σx2 = 0.35). Figure 2.12 shows the distribution of 10, 000 random vectors x,
generated in Matlab using the command randn, with their mean mx and covariance
matrix Qx. Furthermore, the 4 sigma points ξi according to (2.159) and the 5 extended
sigma points ξei according to (2.164) are plotted. The optimal choice λ = 1 − 2/3 = 1/3
for normally distributed random vectors was made. It can be seen that the extended
sigma points ξei lie on an ellipse with an increased value of C. Equivalently, the choice
λ < 0 would result in the sigma points lying on an ellipse with a reduced value of C.

If the nonlinear transformation y = h(x) from (2.138) is applied to the sigma points,
the transformed sigma points ηi and the transformed extended sigma points ηei shown
in Figure 2.13 are obtained. The advantage of the extended sigma points can be seen
in the approximation of the covariance matrix Qy. Here, the extended sigma points ξei

from (2.164) with the associated weights Wi according to (2.165) provide a significant
improvement in approximation accuracy compared to the original sigma points according
to (2.159).
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Figure 2.12: Normally distributed random vector x with mean mx and covariance matrix
Qx, and the sigma points ξi according to (2.159) and the extended sigma
points ξei according to (2.164) for λ = 1/3.
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Figure 2.13: Transformed normally distributed random variable y = h(x) with the exact
mean my and the exact covariance matrix Qy. Furthermore, the approxima-
tion of the mean myu and the covariance matrix Qyu based on the sigma
points from (2.159) with the weights (2.160) and the approximation of the
mean myue and the covariance matrix Qyue based on the extended sigma
points from (2.164) with the weights (2.165) are shown.
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2.5.3 State Estimation of Dynamic Systems Using the Unscented
Transformation

In this section, the unscented transformation is used for state estimation of nonlinear
dynamic systems. In analogy to the extended Kalman filter from Section 2.4, a nonlinear,
discrete-time dynamic system of the form

xk+1 = Fk(xk, uk, wk) (2.166a)
yk = hk(xk, uk, vk), (2.166b)

with state xk, deterministic input uk, disturbance wk, and measurement noise vk, is
considered. It is assumed that the statistical properties of wk and vk are known and given
by

E(vk) = 0 E
(
vkvT

j

)
= Rδkj (2.167a)

E(wk) = 0 E
(
wkwT

j

)
= Qδkj (2.167b)

E
(
wkvT

j

)
= 0, (2.167c)

with Q > 0, R > 0.
Furthermore, an estimate x̂0 of the initial value x0 is given in the form of the expected

value m0, i.e., x̂0 = E(x0) = m0, and the covariance matrix of the estimation error
P0 = E

(
[x0 − x̂0][x0 − x̂0]T

)
≥ 0 is assumed to be known. As with the Kalman filter and

the extended Kalman filter, it is assumed that E
(
x0wT

k

)
= 0 and E

(
x0vT

k

)
= 0 hold.

For this system, a Kalman filter based on the unscented transformation, the so-called
Unscented Kalman filter (also referred to as Sigma-Point Kalman filter in the literature),
is now presented. Note that the disturbance wk and the measurement noise vk undergo a
nonlinear transformation, so their statistical properties must also be captured using the
unscented transformation. To this end, the augmented state xa

k ∈ Rna is defined as

xa
k =


xk

wk

vk

 (2.168)

and the unscented transformation is calculated for this augmented state.
The following iteration of the Unscented Kalman filter can then be formulated; see [2.4],

[2.5], [2.3] for a detailed derivation:
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1. Initialization:

x̂0 = E(x0) = m0 (2.169a)

P0 = E
(
[x0 − x̂0][x0 − x̂0]T

)
(2.169b)

x̂a+
0 = E(xa

0) =


x̂0

0
0

 (2.169c)

Pa+
0 = E

([
xa

0 − x̂a+
0

][
xa

0 − x̂a+
0

]T)
=


P0 0 0
0 Q 0
0 0 R

 (2.169d)

2. Calculation of Sigma Points:

ξa+
0,k−1 = x̂a+

k−1 (2.170a)

ξa+
i,k−1 =


x̂a+

k−1 +
√

na

1−λ

(√
Pa+

k−1

)T

i
for i = 1, . . . , na

x̂a+
k−1 −

√
na

1−λ

(√
Pa+

k−1

)T

i−na
for i = na + 1, . . . , 2na

(2.170b)

with

ξa+
i,k−1 =


ξx+

i,k−1
ξw+

i,k−1
ξv+

i,k−1

 . (2.171)

3. State and Covariance Matrix Extrapolation:
Predicted sigma points:

ξx−
i,k = Fk−1

(
ξx+

i,k−1, uk−1, ξw+
i,k−1

)
(2.172)

Predicted mean and predicted error covariance matrix:

x̂−
k =

2na∑
i=0

Wiξ
x−
i,k (2.173a)

P−
k =

2na∑
i=0

Wi

(
ξx−

i,k − x̂−
k

)(
ξx−

i,k − x̂−
k

)T
(2.173b)
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Predicted output (measurement):

η−
i,k = hk

(
ξx−

i,k , uk, ξv+
i,k−1

)
(2.174a)

ŷ−
k =

2na∑
i=0

Wiη
−
i,k (2.174b)

4. Measurement Update:
Covariance matrix Pykyk

between the predicted measurements and covariance matrix
Pxkyk

between predicted measurement and state:

Pykyk
=

2na∑
i=0

Wi

(
η−

i,k − ŷ−
k

)(
η−

i,k − ŷ−
k

)T
(2.175a)

Pxkyk
=

2na∑
i=0

Wi

(
ξx−

i,k − x̂−
k

)(
η−

i,k − ŷ−
k

)T
(2.175b)

Measurement update of the estimated state and the error covariance:

Kk = Pxkyk
(Pykyk

)−1 (2.176a)

x̂+
k = x̂−

k + Kk

(
yk − ŷ−

k

)
(2.176b)

P+
k = P−

k − KkPykyk
KT

k (2.176c)

5. Reset / Initialization for Next Iteration:

x̂a+
k =


x̂+

k

0
0

 (2.177a)

Pa+
k =


P+

k 0 0
0 Q 0
0 0 R

 (2.177b)

For the calculation of the Unscented Kalman filter, according to (2.170), 1 + 2(n +
dim(w) + dim(v)) sigma points are necessary. This can lead to a very large computational
effort for a high system order. However, in many control engineering problems, it can be
assumed that both the process noise wk and the measurement noise vk act additively on
the system. Thus, the system (2.166) can be simplified to

xk+1 = Fk(xk, uk) + wk (2.178a)
yk = hk(xk, uk) + vk, (2.178b)

For this simplified system, the following simplified formulation of the Unscented Kalman
filter can now be found, starting from the iteration equations for the general case (2.169)-
(2.177):

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



2.5 The Unscented Kalman Filter Page 84

1. Initialization:

x̂+
0 = E(x0) = m0 (2.179a)

P+
0 = E

(
[x0 − x̂0][x0 − x̂0]T

)
(2.179b)

2. Calculation of Sigma Points:

ξ+
0,k−1 = x̂+

k−1 (2.180a)

ξ+
i,k−1 =


x̂+

k−1 +
√

n
1−λ

(√
P+

k−1

)T

i
for i = 1, . . . , n

x̂+
k−1 −

√
n

1−λ

(√
P+

k−1

)T

i−n
for i = n + 1, . . . , 2n

(2.180b)

3. State and Covariance Matrix Extrapolation:
Predicted sigma points:

ξ−
i,k = Fk−1

(
ξ+

i,k−1, uk−1
)

(2.181)

Predicted mean and predicted error covariance matrix:

x̂−
k =

2n∑
i=0

Wiξ
−
i,k (2.182a)

P−
k =

2n∑
i=0

Wi

(
ξ−

i,k − x̂−
k

)(
ξ−

i,k − x̂−
k

)T
+ Q (2.182b)

Sigma point correction:

ξ−
0,k = x̂−

k (2.183a)

ξ−
i,k =


x̂−

k +
√

n
1−λ

(√
P−

k

)
i

for i = 1, . . . , n

x̂−
k −

√
n

1−λ

(√
P−

k

)
i−n

for i = n + 1, . . . , 2n
(2.183b)

Predicted output (measurement):

η−
i,k = hk

(
ξ−

i,k, uk

)
(2.184a)

ŷ−
k =

2n∑
i=0

Wiη
−
i,k (2.184b)
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4. Measurement Update:
Covariance matrix Pykyk

of the predicted measurements and covariance matrix
Pxkyk

between predicted measurement and state:

Pykyk
=

2n∑
i=0

Wi

(
η−

i,k − ŷ−
k

)(
η−

i,k − ŷ−
k

)T
+ R (2.185a)

Pxkyk
=

2n∑
i=0

Wi

(
ξ−

i,k − x̂−
k

)(
η−

i,k − ŷ−
k

)T
(2.185b)

Measurement update of the estimated state and the error covariance:

Kk = Pxkyk
(Pykyk

)−1 (2.186a)

x̂+
k = x̂−

k + Kk

(
yk − ŷ−

k

)
(2.186b)

P+
k = P−

k − KkPykyk
KT

k (2.186c)

Note 2.4. The sigma point correction in (2.183) is necessary because the influence
of the process noise wk is only considered in the predicted error covariance matrix
P−

k according to (2.182b) using the covariance matrix Q. Due to this correction, the
Cholesky decomposition of an n×n matrix must be calculated twice per iteration. This
numerically expensive operation is often circumvented in practical implementation
by using the original sigma points ξ−

i,k from (2.181) in (2.184), (2.185). This results
in reduced numerical effort; however, it must be checked in practical application
whether the resulting errors are acceptable.

Another approach to correct the sigma points is to define an extended set of sigma
points of the form

ξa−
i,k = ξ−

i,k for i = 0, . . . , 2n (2.187)

and

ξa−
i+2n,k =


ξ−

0,k +
√

2n
1−λ

(√
Q
)T

i for i = 1, . . . , n

ξ−
0,k −

√
2n

1−λ

(√
Q
)T

i−n for i = n + 1, . . . , 2n
. (2.188)

These extended sigma points ξa−
i,k and the weights W a

i adapted to the new dimension
4n + 1 of ξa−

i,k are then used in the calculation of (2.184), (2.185). Since Q is a
constant matrix, the calculation of the Cholesky decomposition in (2.188) is omitted,
which reduces the numerical effort. On the other hand, 4n + 1 sigma points must
now be considered in (2.184) and (2.185), which, compared to (2.183), again leads to
an increase in numerical effort.
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3 Optimal State Feedback Controller

The goal of this chapter is the development of an optimal state feedback controller for
linear, time-invariant systems and the combination of this state feedback controller with
the optimal state observer from the last chapter. The starting point of the considerations
is the linear, time-invariant, discrete-time system of the form

xk+1 = Φxk + Γuk x(0) = x0 (3.1a)
yk = Cxk + Duk (3.1b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the
q-dimensional output y ∈ Rq, and the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, C ∈ Rq×n and
D ∈ Rq×p. We seek a control sequence u0, u1, . . . , uN−1 that minimizes the cost functional

J(x0) =
N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

)
+ xT

N SxN

=
N−1∑
k=0

[
xT

k uT
k

] [Q NT

N R

]
︸ ︷︷ ︸

J

[
xk

uk

]
+ xT

N SxN

(3.2)

for suitable weighting matrices Q ∈ Rn×n, R ∈ Rp×p, N ∈ Rp×n and S ∈ Rn×n. Due to
the quadratic cost criterion (3.2), this controller design is also known in the literature as
the LQR (Linear Quadratic Regulator) problem. To solve this problem, the method of
Bellman’s dynamic programming is used.

3.1 Dynamic Programming after Bellman
The basis of dynamic programming is the principle of optimality:

Theorem 3.1 (Principle of Optimality). An optimal solution has the property that,
starting at any point of this solution, the remaining solution is optimal in the sense
of the problem to be solved, with the chosen point as the initial condition.

Figure 3.1 illustrates Theorem 3.1. This idea is now used in the sense of Bellman’s
dynamic programming such that the optimization problem (3.2) is solved backwards
starting from the final time point N . The value of the optimal control for time point
N , i.e., uN−1, can be solved independently of the achieved state xN−1. In the next step,
starting from the optimal solution uN−1, the optimal uN−2 is calculated. Repeating this
procedure until k = 0, the optimal control strategy is found.
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t

x0

x(t′)

The optimal solution of problem with initial value x(t′)
is the last segment of the initial solution.

The optimal solution of the initial optimization problem
for the initial value x0 ist the entire trajectory.

t′ T

Figure 3.1: On the principle of optimality.

Since linearity of the system is not necessary for dynamic programming, the optimization
problem

min
(u0,...,uN−1)

J(x0) with J(x0) =
N−1∑
k=0

jk(xk, uk) + s(xN ) (3.3)

subject to the constraint
xk+1 = f(xk, uk) (3.4)

is investigated. As already mentioned, the optimization problem (3.3) is solved backwards
starting from the final time point k = N . Since J(xN ) is independent of the input u, it
trivially holds that

J∗(xN ) = s(xN ), (3.5)

where J∗(xN ) describes the optimal value of J(xN ). According to the principle of
optimality, for the optimal control sequence u∗

0, u∗
1, . . . , u∗

N−1 with

J∗(x0) =
N−1∑
k=0

jk(xk, u∗
k) + s(xN ) (3.6)

the following relationship also holds:

J∗(x0) =
l∑

k=0
jk(xk, u∗

k) +
N−1∑

k=l+1
jk(xk, u∗

k) + s(xN )
︸ ︷︷ ︸

J∗(xl+1)

(3.7)

with
J∗(xl+1) = min

(ul+1,...,uN−1)
J(xl+1) (3.8)
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and

J(xl+1) =
N−1∑

k=l+1
jk(xk, uk) + s(xN ) (3.9)

subject to constraint (3.4). Note that (3.8) is solved with (3.9) for the initial value xl+1.
If one now wants to go back one step based on (3.8) and determine the optimal value of
the cost criterion J∗(xl), then the principle of optimality yields the substitute problem

J∗(xl) = min
ul

jl(xl, ul) + J∗
(

xl+1︸︷︷︸
f(xl,ul)

) . (3.10)

The minimum with respect to ul in (3.10) can usually be determined from the relationship

∂

∂ul
{jl(xl, ul) + J∗(f(xl, ul))} = ∂

∂ul
jl(xl, ul) + ∂

∂zJ∗(z) ∂

∂ul
f(xl, ul) = 0 (3.11)

Example 3.1. As a non-control engineering application, consider a simple assignment
problem. Let an investment sum A be given, which is to be divided among N projects.
Furthermore, it is assumed that assigning a sum uk to project k yields a profit gk(uk)
for the project. The optimization problem to be solved is therefore

max
(u0,...,uN−1)

J(x0) with J(x0) =
N−1∑
k=0

gk(uk) subject to
N−1∑
k=0

uk = A . (3.12)

The problem can now be reformulated into an equivalent control problem of the form

max
(u0,...,uN−1)

J(x0) with J(x0) =
N−1∑
k=0

gk(uk) (3.13)

subject to the constraint

xk+1 = xk − uk with x0 = A and xN = 0 (3.14)
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If, for example, gk(uk) = √
uk is chosen, then using dynamic programming we obtain

J∗(xN ) = 0

J∗(xN−1) = max
uN−1

{√
uN−1

} subject to xN−1 − uN−1 = 0= √
xN−1 u∗

N−1 = xN−1

J∗(xN−2) = max
uN−2

{√
uN−2 +

√
xN−2 − uN−2

}
=
√

2xN−2 u∗
N−2 = xN−2/2

J∗(xN−3) = max
uN−3

{√
uN−3 +

√
2(xN−3 − uN−3)

}
=
√

3xN−3 u∗
N−3 = xN−3/3

...
...

J∗(x0) =
√

Nx0 u∗
0 = x0/N .

(3.15)

Exercise 3.1. Interpret the result (3.15).

3.2 The LQR Problem
Applying the principle of dynamic programming to problem (3.2) with constraint (3.1),
we obtain for k = N

J∗(xN ) = xT
N SxN (3.16)

and for k = N − 1
J∗(xN−1) =

min
uN−1


(
xT

N−1QxN−1 + uT
N−1RuN−1 + 2uT

N−1NxN−1
)

+ J∗
(

xN︸︷︷︸
ΦxN−1+ΓuN−1

)
(3.17)

or

J∗(xN−1) = min
uN−1

{(
xT

N−1QxN−1 + uT
N−1RuN−1 + 2uT

N−1NxN−1
)
+

(ΦxN−1 + ΓuN−1)TS(ΦxN−1 + ΓuN−1)
}

.
(3.18)

Minimizing (3.18) with respect to uN−1 yields the optimal solution u∗
N−1 of uN−1 as

u∗
N−1 = −

(
R + ΓTSΓ

)−1(
N + ΓTSΦ

)
xN−1 . (3.19)

Substituting (3.19) into (3.18) yields

J∗(xN−1)

= xT
N−1

(
Q + ΦTSΦ

)
xN−1 + (u∗

N−1)T
(
R + ΓTSΓ

)
u∗

N−1 + 2(u∗
N−1)T

(
N + ΓTSΦ

)
xN−1

= xT
N−1

{(
Q + ΦTSΦ

)
−
(
N + ΓTSΦ

)T(
R + ΓTSΓ

)−1(
N + ΓTSΦ

)}
xN−1

(3.20)
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This directly allows the following theorem to be stated:

Theorem 3.2 (Linear Quadratic Regulator). The unique solution of the optimization
problem (3.2) for the linear, time-invariant, discrete-time system (3.1) with the
symmetric positive semi-definite matrix S = PN , the symmetric positive semi-definite
matrix

J =
[
Q NT

N R

]
(3.21)

and the positive definite matrix
(
R + ΓTSΓ

)
is given by the control law

u∗
k = Kkxk (3.22)

with
Kk = −

(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
(3.23)

and

Pk =
(
Q + ΦTPk+1Φ

)
−
(
N + ΓTPk+1Φ

)T(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
(3.24)

The minimal value of the cost functional (3.2) is calculated as

min
(u0,...,uN−1)

J(x0) = J∗(x0) = xT
0 P0x0 (3.25)

and Pk ≥ 0 holds for all k = 0, 1, . . . , N .

Proof of Theorem 3.2. The control law (3.22), (3.23), the iteration rule (3.24), and
the relationship (3.25) are obtained directly by repeated application of the dynamic
programming iteration rule from equations (3.19) and (3.20). It remains to show
that Pk is positive semi-definite for all k = 0, 1, . . . , N . To do this, substitute
u∗

N−1 = KN−1xN−1 into (3.20), which yields

J∗(xN−1) = xT
N−1

((
Q + ΦTPN Φ

)
+ KT

N−1
(
R + ΓTPN Γ

)
KN−1

+ 2KT
N−1

(
N + ΓTPN Φ

))
xN−1 = xT

N−1PN−1xN−1
(3.26)

and thus for Pk from (3.24)

Pk = (Φ + ΓKk)TPk+1(Φ + ΓKk) +
[
E KT

k

] [Q NT

N R

]
︸ ︷︷ ︸

J

[
E

Kk

]
. (3.27)

Since the matrices PN = S and J are positive semi-definite, the positive semi-
definiteness of Pk for all k = 0, 1, . . . , N is also directly shown.

As with the Kalman filter as an observer (see (2.91)), equation (3.24) is also a discrete
Riccati equation, which is why the time-varying state feedback controller (3.22), (3.23) is
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also called a Riccati controller. Note, however, that the discrete Riccati equation (3.24)
runs backward in contrast to the Kalman filter! For a real-time implementation of the
controller (3.22), (3.23), the final time N must therefore be known, and the matrices Pk

and Kk must be pre-calculated.
If the final time N → ∞, as with the Kalman filter (compare (2.93), (2.94)), a stationary

solution Ps and Ks can be calculated from (3.22)–(3.24). The stationary solution Ps

of the discrete Riccati equation (3.24) could now be determined by iterating from the
initial value P∞ = αE for α ≫ 1 until Pk changes only insignificantly in terms of a
norm. Another solution is to solve the associated discrete algebraic Riccati equation for
Pk+1 = Pk = Ps in (3.24)

Ps =
(
Q + ΦTPsΦ

)
−
(
N + ΓTPsΦ

)T(
R + ΓTPsΓ

)−1(
N + ΓTPsΦ

)
(3.28)

The stationary Riccati controller

u∗
k = Ksxk (3.29a)

Ks = −
(
R + ΓTPsΓ

)−1(
N + ΓTPsΦ

)
(3.29b)

has the structure of a classical state feedback controller according to Section 8 of the
Automation script. The discrete algebraic Riccati equation (3.28) has a unique symmetric
positive semi-definite solution Ps with the property that all eigenvalues of (Φ + ΓKs) lie
in the open interior of the unit circle if the following conditions are met:

(1) The pair (Φ, Γ) is stabilizable, i.e., all eigenvalues outside the unit circle are reachable,
and

(2) the pair (CJ, Φ) with

0 ≤ J =
[
Q NT

N R

]
=
[
CT

J
DT

J

][
CJ DJ

]
(3.30)

is detectable, i.e., all eigenvalues outside the unit circle are observable via the output
CJ.

If it is now desired that all poles of the closed-loop system with the dynamic matrix
(Φ + ΓKs) not only lie inside the unit circle, but also inside a circle with radius r < 1
due to robustness considerations, then the controller design must be carried out for the
equivalent system

xk+1 = Φ̃xk + Γ̃uk (3.31)

with
Φ̃ = 1

r
Φ and Γ̃ = 1

r
Γ (3.32)

Since the eigenvalues of the matrix
(
Φ̃ + Γ̃Ks

)
then lie inside the unit circle, it follows

from (3.31) that the eigenvalues of (Φ + ΓKs) lie inside a circle with radius r.
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Exercise 3.2. Show that the solution of the optimization problem

J(x0) =
∞∑

k=0

1
r2k

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

)
(3.33)

with 0 < r < 1 for the system (3.1) is given by

u∗
k = Ksxk (3.34)

with
Ks = −

(
r2R + ΓTPsΓ

)−1(
r2N + ΓTPsΦ

)
(3.35)

and

r2Ps =
(
r2Q + ΦTPsΦ

)
−
(
r2N + ΓTPsΦ

)T(
r2R + ΓTPsΓ

)−1(
r2N + ΓTPsΦ

)
(3.36)

and that the eigenvalues of the closed-loop system’s dynamic matrix (Φ + ΓKs) lie
inside a circle with radius 0 < r < 1.
If in the cost functional (3.2) only the p-dimensional input u and the q-dimensional

output y are to be weighted, i.e.,

J(x0) =
N−1∑
k=0

(
yT

k Qyyk + uT
k Ruk + 2uT

k Nyyk

)
+ xT

N SxN (3.37a)

=
N−1∑
k=0

[
yT

k uT
k

] [Qy NT
y

Ny R

]
︸ ︷︷ ︸

J

[
yk

uk

]
+ xT

N SxN , (3.37b)

then (3.37) can be transformed via the relationship yk = Cxk + Duk and
N−1∑
k=0

[
xT

k CTQyC︸ ︷︷ ︸
Q̃

xk + uT
k

(
R + DTQyD + NyD + DTNT

y
)

︸ ︷︷ ︸
R̃

uk

+ 2uT
k

(
Ny + DTQy

)
C︸ ︷︷ ︸

Ñ

xk

]

=
N−1∑
k=0

[
xT

k uT
k

] [Q̃ ÑT

Ñ R̃

]
︸ ︷︷ ︸

J̃

[
xk

uk

] (3.38)

into the form of (3.2)

J(x0) =
N−1∑
k=0

[
xT

k uT
k

] [Q̃ ÑT

Ñ R̃

]
︸ ︷︷ ︸

J̃

[
xk

uk

]
+ xT

N SxN (3.39)

and solved using Theorem 3.2.
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Remark: Using the weighting matrix J of the cost functional (3.2) or (3.37), the
behavior of the closed-loop system can be specifically influenced. As a general rule of
thumb: the larger the entries of the matrix R (weighting of the control variables),
the smaller the required control variables will be. Furthermore, by heavily weighting
a specific state in Q or Q̃, it can be ensured that this state decays very quickly to
zero in the closed loop. Since this evaluation often proves to be very difficult in the
discrete time domain, it is sensible to specify the cost functional (3.2) in continuous
time and then translate it into discrete time. The idea is to evaluate the states and
control variables in terms of "power" in the form∫ T

0
x2(t)dt (3.40)

As a starting point, consider the linear, time-invariant, continuous-time system

d
dt

x = Ax + Bu (3.41a)

y = Cx + Du (3.41b)

with the state x ∈ Rn, the input u ∈ Rp, and the output y ∈ Rq. The corresponding
discrete-time system (see Section 6 of the Automation script) is calculated for the
sampling time Ta as

xk+1 = Φxk + Γuk (3.42a)
yk = Cxk + Duk (3.42b)

with
Φ = exp(ATa) and Γ =

∫ Ta

0
exp(Aτ)dτB . (3.43)

Now choose a cost functional of the form

J(x0) =
∫ T

0

(
xT(t)Qcx(t) + uT(t)Rcu(t) + 2uT(t)Ncx(t)

)
dt + xT(T )Scx(T )

=
∫ T

0

[
xT(t) uT(t)

] [Qc NT
c

Nc Rc

]
︸ ︷︷ ︸

Jc

[
x(t)
u(t)

]
dt + xT(T )Scx(T )

(3.44)

for the continuous-time system (3.41) with the symmetric, positive semi-definite
weighting matrices Jc and Sc and the final time T = NTa. To transform (3.44) into
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the form of (3.2), first write (3.44) as follows

J(x0) =
N−1∑
k=0

∫ (k+1)Ta

kTa

(
xT(t)Qcx(t) + uT(t)Rcu(t) + 2uT(t)Ncx(t)

)
dt

+ xT(NTa)Scx(NTa)
(3.45)

Considering that the control variable u(t) = uk is constant in the sampling interval
kTa ≤ t < (k + 1)Ta and for the state x(t) it holds that

x(t) = exp(A(t − kTa))︸ ︷︷ ︸
Φ(t−kTa)

xk +
∫ t

kTa

exp(A(t − τ))dτB︸ ︷︷ ︸
Γ(t−kTa)

uk, kTa ≤ t < (k + 1)Ta,

(3.46)
then for (3.45) we obtain

J(x0) =
N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

)
+ xT

N SxN (3.47)

with

Q =
∫ (k+1)Ta

kTa

ΦT(t − kTa)QcΦ(t − kTa)dt =
∫ Ta

0
ΦT(t)QcΦ(t)dt (3.48a)

R =
∫ (k+1)Ta

kTa

(
ΓT(t − kTa)QcΓ(t − kTa) + 2NcΓ(t − kTa) + Rc

)
dt (3.48b)

=
∫ Ta

0

(
ΓT(t)QcΓ(t) + 2NcΓ(t) + Rc

)
dt

N =
∫ (k+1)Ta

kTa

(
ΓT(t − kTa)Qc + Nc

)
Φ(t − kTa)dt (3.48c)

=
∫ Ta

0

(
ΓT(t)Qc + Nc

)
Φ(t)dt

S = Sc (3.48d)

and
Φ(t) = exp(At) and Γ(t) =

∫ t

0
exp(Aτ)dτB . (3.49)

Note that here, in general, the coupling matrix N is non-zero, even if Nc = 0 holds.

Exercise 3.3. Compare the Matlab commands lqrd, dlqr, and dlqry. What
do these commands do? Look at the respective help text and then establish the
connection to the theory presented so far.
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3.3 The LQR Problem with Stochastic Disturbance
Model (3.1) according to (2.72) is now extended by the r-dimensional stochastic disturbance
w

xk+1 = Φxk + Γuk + Gwk x(0) = x0 (3.50)
with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, and
the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, and G ∈ Rn×r. The following assumptions now apply:

(1) For the disturbance w, it is assumed that

E(wk) = 0 E(wkwT
j ) = Q̂δkj (3.51)

holds with the covariance matrix Q̂ ≥ 0 and the Kronecker delta δkj = 1 for k = j
and δkj = 0 otherwise.

(2) The expected value and the covariance matrix of the initial value x0 are given by

E(x0) = m0 cov(x0) = E
(
(x0 − m0)(x0 − m0)T

)
= P̂0 ≥ 0 (3.52)

(3) The disturbance wk, k ≥ 0, is uncorrelated with the initial value x0, i.e.,

E(wkxT
0 ) = 0 . (3.53)

Analogously to (2.76) and (2.77), because of

xj = Φjx0 +
j−1∑
l=0

Φl(Γuj−1−l + Gwj−1−l) (3.54)

and (3.52) and (3.53), the relationship

E(wkxT
j ) = 0 for k ≥ j (3.55)

also follows.

Since xk, k ≥ 0, is now a stochastic signal, in contrast to (3.1), the cost functional (3.2)
must be replaced by

J(x0) = E
(

N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

))
+ E(xT

N SxN )

= E


N−1∑
k=0

[
xT

k uT
k

] [Q NT

N R

]
︸ ︷︷ ︸

J

[
xk

uk

]+ E(xT
N SxN )

(3.56)

To calculate the optimal control law, i.e., the minimization of (3.56) with respect to
u0, u1, . . . , uN−1 subject to constraint (3.50), the method of dynamic programming is
again used. For k = N ,

J∗(xN ) = E(xT
N SxN ) (3.57)
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holds, and for k = N − 1 it follows that

J∗(xN−1) =

min
uN−1

E

xT
N−1QxN−1 + uT

N−1RuN−1 + 2uT
N−1NxN−1 + J∗( xN︸︷︷︸

ΦxN−1+ΓuN−1+GwN−1

)


(3.58)

with

J∗(xN ) = E
(
(ΦxN−1 + ΓuN−1 + GwN−1)TS(ΦxN−1 + ΓuN−1 + GwN−1)

)
. (3.59)

Minimizing (3.58) with respect to uN−1 yields the optimal solution u∗
N−1 of uN−1 as

u∗
N−1 = KN−1xN−1 (3.60)

with
KN−1 = −

(
R + ΓTPN Γ

)−1(
N + ΓTPN Φ

)
, (3.61)

where S = PN was set and the condition
(
R + ΓTPN Γ

)
> 0 must be satisfied. Substi-

tuting (3.60) into (3.58) yields

J∗(xN−1) =

E

xT
N−1

((
Q + ΦTPN Φ

)
+ KT

N−1
(
R + ΓTPN Γ

)
KN−1 + 2KT

N−1
(
N + ΓTPN Φ

))
︸ ︷︷ ︸

PN−1

xN−1


+ 2 E

(
wT

N−1GTPN (ΦxN−1 + ΓuN−1)
)

︸ ︷︷ ︸
2tr(PN G E(wN−1xT

N−1)ΦT)+2 E(wT
N−1)GTPN ΓuN−1

+ E
(
wT

N−1GTPN GwN−1
)

︸ ︷︷ ︸
tr(PN G E(wN−1wT

N−1)GT)

.

(3.62)

This directly allows the following result to be stated: The optimal control law u∗
k for the

system with stochastic disturbance (3.50) corresponds to that of the undisturbed system
and is (see (3.22))

u∗
k = Kkxk (3.63)

with

Kk = −
(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
(3.64a)

Pk =
(
Q + ΦTPk+1Φ

)
−
(
N + ΓTPk+1Φ

)T(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
.

(3.64b)

The minimal value of the cost functional (3.56) is calculated according to (3.62) as

min
(u0,...,uN−1)

J(x0) = J∗(x0) = E(xT
0 P0x0) +

N−1∑
k=0

tr(Pk+1GQ̂GT) . (3.65)
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Exercise 3.4. Prove the validity of relationship (3.65). Furthermore, show that the
expression E(xT

0 P0x0) can be simplified as follows:

E(xT
0 P0x0) = mT

0 P0m0 + tr(P0P̂0) (3.66)

with
P̂0 = cov(x0) and m0 = E(x0) (3.67)

From (3.65), (3.66), and (3.67), it follows that the minimal value of the cost functional
for the system with stochastic disturbance is greater than that of the undisturbed system
(see (3.25)). Two additional terms are added: a term with Q̂ due to the stochastic
disturbance w and a term with P̂0 due to the stochastic nature of the initial value x0.
In Theorem 3.2, it was shown that Pk ≥ 0 for all k ≥ 0, provided that S and J from
(3.56) are positive semi-definite. However, as can be seen from (3.65), the minimization
problem with the cost functional (3.56) cannot be solved for N → ∞. In order to still
be able to calculate the stationary Riccati controller (3.29) even in the case of stochastic
disturbance, the cost functional is set in the form

J(x0) = lim
N→∞

1
N

E
(

N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

))
(3.68)

Exercise 3.5. Show that the stationary Riccati controller (3.29) minimizes the cost
functional (3.68) with the constraint (3.50) and that for the minimal value of the
cost functional it holds that

J∗(x0) = tr(PsGQ̂GT)

with Ps as the solution of the discrete algebraic Riccati equation (3.28).

3.4 The LQG Control Problem
In the following, it is assumed that only the output y can be measured, while the state
x is not available. To this end, consider the discrete-time, linear, time-invariant system
underlying the Kalman filter (see (2.72)) of the form

xk+1 = Φxk + Γuk + Gwk x(0) = x0 (3.69a)
yk = Cxk + Duk + vk (3.69b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the
q-dimensional output y ∈ Rq, the r-dimensional disturbance w ∈ Rr, the measurement
noise v, and the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, G ∈ Rn×r, C ∈ Rq×n, and D ∈ Rq×p.
The following assumptions now apply again:

(1) For the disturbance w and the measurement noise v, it is assumed that

E(vk) = 0 E(wkwT
j ) = Q̂δkj (3.70a)

E(wk) = 0 E(vkvT
j ) = R̂δkj (3.70b)

E(wkvT
j ) = 0 (3.70c)
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with Q̂ ≥ 0 and R̂ > 0 and the Kronecker delta δkj = 1 for k = j and δkj = 0
otherwise.

(2) The expected value of the initial value and the covariance matrix of the initial error
are given by

E(x0) = m0 E
(
(x0 − x̂0)(x0 − x̂0)T

)
= P̂0 ≥ 0 (3.71)

with the estimate x̂0 of the initial value x0.

(3) The disturbance wk, k ≥ 0, and the measurement noise vl, l ≥ 0, are uncorrelated
with the initial value x0, i.e.,

E(wkxT
0 ) = 0 (3.72a)

E(vlxT
0 ) = 0 . (3.72b)

Because of (3.54) and (3.70), we also have the relationship

E(wkxT
j ) = 0 for k ≥ j (3.73a)

E(vlxT
j ) = 0 for all l, j . (3.73b)

The control task is now to minimize the cost functional

J(x0) = E
(

N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

))
+ E(xT

N SxN )

= E


N−1∑
k=0

[
xT

k uT
k

] [Q NT

N R

]
︸ ︷︷ ︸

J

[
xk

uk

]+ E(xT
N SxN )

(3.74)

for the positive semi-definite weighting matrices J and S with respect to u0, u1, . . . , uN−1
subject to constraint (3.69) such that the control law depends only on the measurable out-
puts y. Denoting by x̂k = x̂(k|k − 1) the estimate of xk using 0, 1, . . . , k − 1 measurements
(cf. Definition 2.3), it follows that

E(xT
k Qxk) = E

(
(x̂k − (x̂k − xk))TQ(x̂k − (x̂k − xk))

)
= E(x̂T

k Qx̂k) − 2 E(x̂T
k Q(x̂k − xk)) + E

(
(x̂k − xk)TQ(x̂k − xk)

)
= E(x̂T

k Qx̂k) − 2tr
(
Q E(x̂k(x̂k − xk)T)

)
+ tr

(
Q E

(
(x̂k − xk)(x̂k − xk)T

))
.

(3.75)

In the following, only estimators are considered for which the relationship

E(x̂k(x̂k − xk)T) = 0 (3.76)

holds, i.e., the second term in expression (3.75) becomes zero. According to Theorem
2.4 or Exercise 2.5, this is satisfied by the minimum-variance estimator and thus also by
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the Gauss-Markov estimator and, of course, the Kalman filter, cf. Exercise 2.5. Using
dynamic programming, we now obtain in a first step for S = PN the minimal value of the
cost functional J∗(xN ) of J(xN ) as

J∗(xN ) = E(xT
N PN xN ) = tr(PN E(xN xT

N )) (3.77)

or, with xN = xN − x̂N + x̂N ,

J∗(x̂N , P̂N ) = E(xT
N PN xN ) = E(x̂T

N PN x̂N ) + tr(PN P̂N ) (3.78)

with the covariance matrix of the estimation error

P̂N = cov(x̂N − xN ) = E
(
(x̂N − xN )(x̂N − xN )T

)
. (3.79)

In the next step of dynamic programming, the following minimization problem must be
solved:

J∗(xN−1) =

min
uN−1

E

xT
N−1QxN−1 + uT

N−1RuN−1 + 2uT
N−1NxN−1 + J∗( xN︸︷︷︸

ΦxN−1+ΓuN−1+GwN−1

)


(3.80)

with

J∗(xN ) = E
(
(ΦxN−1 + ΓuN−1 + GwN−1)TPN (ΦxN−1 + ΓuN−1 + GwN−1)

)
(3.81)

Since uN−1 must not depend on xN−1, the minimization problem is solved with respect
to an estimate x̂N−1 by setting in (3.80), (3.81)

xN−1 = xN−1 − x̂N−1 + x̂N−1 (3.82)

The control law with the controller gain matrix KN−1 is identical to (3.60) with (3.61)
and is

u∗
N−1 = KN−1x̂N−1 (3.83)

and
KN−1 = −

(
R + ΓTPN Γ

)−1(
N + ΓTPN Φ

)
(3.84)

with the minimal value of the cost functional

J∗(xN−1) =

E

xT
N−1

((
Q + ΦTPN Φ

)
+ KT

N−1
(
R + ΓTPN Γ

)
KN−1 + 2KT

N−1
(
N + ΓTPN Φ

))
︸ ︷︷ ︸

PN−1

xN−1


+ 2 E

(
wT

N−1GTPN (ΦxN−1 + ΓuN−1)
)

︸ ︷︷ ︸
2tr(PN G E(wN−1xT

N−1)ΦT)+2 E(wT
N−1)GTPN ΓuN−1

+ E
(
wT

N−1GTPN GwN−1
)

︸ ︷︷ ︸
tr(PN G E(wN−1wT

N−1)GT)

.

(3.85)
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Finally, from the recursion, with E(wkwT
k ) = Q̂ and (3.79), we obtain the minimal value

of the cost functional for all control sequence values (compare the result with (3.65)):

min
(u0,...,uN−1)

J(x0) = J∗(x0) = E
(
xT

0 P0x0
)

+
N−1∑
k=0

spur
(
Pk+1GQ̂GT

)

+
N−1∑
k=0

spur
(
P̂kKT

k

(
R + ΓTPk+1Γ

)
Kk

)
.

(3.86)

It can be seen that (3.86) is independent of the type of estimator, provided that it
satisfies condition (3.76) and E(wjx̂T

0 ). This property, together with the fact that the
poles in the state observer and state controller design can be specified independently of
each other, is also referred to as the separation theorem for optimal state observer and
state controller design. Since the expression KT

k

(
R + ΓTPk+1Γ

)
Kk is positive definite

for all k ≥ 0, the third term in (3.86) (or the last term in (3.85)) can also be written in
the form

N−1∑
k=0

tr(P̂kKT
k

(
R + ΓTPk+1Γ

)
Kk) =

N−1∑
k=0

E
(
(xk − x̂k)TK̄T

k K̄k(xk − x̂k)
)

(3.87)

with the Cholesky decomposition

K̄T
k K̄k = KT

k

(
R + ΓTPk+1Γ

)
Kk (3.88)

According to Theorem 2.5, the linear minimum-variance estimation of a linear function of
a parameter vector is equivalent to the linear function of the minimum-variance estimation
of the parameter vector itself, which is why the value of the cost functional (3.86) can be
minimized by choosing a minimum-variance estimator. Since the Kalman filter is based
on recursive minimum-variance estimation, the optimal LQG control problem is solved by
combining an LQR state controller and a Kalman filter observer.

To this end, the dynamic controller with optimal output feedback for the system (3.69)
according to (3.83)–(3.85) and Theorem 2.7 is summarized in the following form:

x̂k+1 = Φx̂k + Γuk + K̂k(yk − Cx̂k − Duk) x̂(0) = x̂0 (3.89a)
uk = Kkx̂k (3.89b)

with

Pk =
(
Q + ΦTPk+1Φ

)
−
(
N + ΓTPk+1Φ

)T(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
(3.90a)

Kk = −
(
R + ΓTPk+1Γ

)−1(
N + ΓTPk+1Φ

)
(3.90b)

P̂k+1 = ΦP̂kΦT + GQ̂GT − ΦP̂kCT
(
CP̂kCT + R̂

)−1
CP̂kΦT (3.90c)

K̂k = ΦP̂kCT
(
CP̂kCT + R̂

)−1
, (3.90d)
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the boundary condition PN = S ≥ 0, and the initial condition P̂0 ≥ 0.
It is easy to see that for N = 0 and G = E the LQR state controller and the Kalman

filter are dual according to the definition in the Automation script. For (3.90), it then
holds that

Pk = Q + ΦTPk+1Φ − ΦTPk+1Γ
(
R + ΓTPk+1Γ

)−1
ΓTPk+1Φ (3.91a)

Kk = −
(
R + ΓTPk+1Γ

)−1
ΓTPk+1Φ (3.91b)

P̂k+1 = Q̂ + ΦP̂kΦT − ΦP̂kCT
(
R̂ + CP̂kCT

)−1
CP̂kΦT (3.91c)

K̂k = ΦP̂kCT
(
R̂ + CP̂kCT

)−1
, (3.91d)

i.e., the discrete Riccati equation of the state controller (3.91a) becomes the discrete
Riccati equation of the Kalman filter (3.91c) for ΦT = Φ, Γ = CT, P = P̂, R = R̂,
and Q = Q̂. The only difference is that the Riccati equation of the state controller runs
backward and that of the Kalman filter runs forward. Furthermore, for ΦT = Φ, Γ = CT,
P = P̂, and R = R̂, the relationship Kk = K̂T

k holds.
As shown in Section 3.3 for the LQR controller with stochastic disturbance, the cost

functional (3.74) is not meaningful for N → ∞, which is why the stationary LQG problem
(stationary LQR controller and stationary Kalman filter) is based on the performance
criterion

lim
N→∞

1
N

E
(

N−1∑
k=0

(
xT

k Qxk + uT
k Ruk + 2uT

k Nxk

))
(3.92)

Note that the stationary Kalman filter and the stationary Riccati controller together

x̂k+1 = Φx̂k + Γuk + K̂(yk − Cx̂k − Duk) x̂(0) = 0 (3.93a)
uk = Kx̂k (3.93b)

can also be written as a controller transfer matrix RLQG(z) with the q-dimensional input
y and the p-dimensional output u in the form

RLQG(z) = uz(z)
yz(z) = K

(
zE −

(
Φ + ΓK − K̂(C + DK)

))−1
K̂ (3.94)

Exercise 3.6. Given is the simplified model of a music cassette drive according to
Figure 3.2. The two DC motors can be controlled independently of each other, so that
both the tape position x3 (position of the read head) and the tensile force fe can be
controlled separately. The moment of inertia of the motors including the discs is given
by J = 6.375 · 10−3 kgm2, the radius of the discs is r = 0.1 m, the motor constant
of the DC motors has the value km = 0.544 Nm/A, and the massless tape can be
approximately modeled by a linear spring with the spring constant c = 2.113 ·103 N/m
and a linear damper with the damping constant d = 3.75 Ns/m.

Calculate the mathematical model with the inputs uT =
[
i1 i2

]
and the outputs

yT =
[
x3 fe

]
. Choose a suitable sampling time Ta and determine the corresponding

discrete-time system. Design a Kalman filter and an LQR state controller using
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Matlab and simulate the result in Matlab/Simulink.

i1

kmi1

rr

ϕ1

x1 x3 x2

ϕ2

kmi2

i2

d

c

Figure 3.2: On the music cassette drive.

Remark: (for Exercise 3.6) The continuous-time mathematical model follows from
the relationships

J
d2

dt2 φ1 = kmi1 + fer

J
d2

dt2 φ2 = kmi2 − fer

fe = c(x2 − x1) + d(ẋ2 − ẋ1)

x3 = x1 + x2
2 .

Choose the angles φ1 and φ2 and the corresponding angular velocities ω1 and ω2 as
state variables.
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Exercise 3.7. Figure 3.3 shows a simplified model of a magnetic bearing. The control
task is to keep the mass m at a constant distance s (velocity ṡ = w) through
the magnetic force fmag. For the further calculation, the following parameters are
given: mass m = 500 kg, number of turns of the coil N = 500, resistance of the coil
R = 2Ω, permeability constant of air µ0 = 4π10−7 Vs

Am , and the area of the air gap for
calculating the magnetic force A = 0.04 m2.
Determine the nonlinear mathematical model in the form

d
dt

x = f(x, u)

y = s

with the state xT =
[
s w i

]
, the input voltage u as input variable, and the position

s as output variable. Linearize the mathematical model around the equilibrium
point (x0, u0), which is determined by the stationary voltage u0 = 60 V. Design
a continuous-time LQR state controller and a continuous-time Kalman filter using
Matlab and simulate the result in Matlab/Simulink. Use the commands ss, lqr,
lqe, reg, and lqgreg as well as lqg from the Robust Control Toolbox.

m

u
i

µ → ∞

µ → ∞

s
g

A

Figure 3.3: On the magnetic bearing.

Remark: (for Exercise 3.7) The nonlinear mathematical model is

d
dt


s

w

i

 =


w

g − ki2

2ms2

s
k

(
u − Ri + iwk

s2

)
 with k = 1

2Aµ0N2 .

Exercise 3.8. Consider the temperature control system shown in Figure 3.4 with a
constant mass flow rate ṁzu = ṁab = ṁ. The temperature in the tank Ttank with
the constant water quantity mtank can be influenced via the mixing valve with the
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output temperature Tm. For the temperature directly at the tank inlet Tzu, due to
the neglect of heat losses in the pipeline,

Tzu = Tm(t − Tt)

holds with the dead time Tt caused by the transport process through the pipeline.
Determine the mathematical model of the temperature control system with the state
variable x = Ttank, the input variable u = Tm, and the output variable y = Tab = Ttank.
Furthermore, generally calculate the transport dead time Tt for a frictionless pipeline
with inner diameter D and length L for given mass flow rate ṁ and density ρ of the
liquid. The energy Etank stored in the water quantity mtank with temperature Ttank

and the specific heat capacity of water cW is

Etank = cW mtankTtank .

Choose suitable parameters and implement the mathematical model in Matlab/Simulink.
For a suitable sampling time Ta, design a Kalman filter and an LQR state controller
and simulate the closed-loop control system with the continuous-time plant in Mat-
lab/Simulink.

hot water

cold water
mixing valve

Tzu

Tab = Ttank

Ttank

Tm

Figure 3.4: For Exercise 3.8 on the temperature control system.
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3.5 Extended Concepts of State Control
3.5.1 Feedforward of the Estimated Disturbance
It was already shown in the Kalman filter (see Section 2.3.2) how deterministic disturbances
can be systematically taken into account by adding a disturbance model. In the following,
this concept is extended to the combined state controller and state observer design.
Consider the linear, time-invariant, continuous-time system

d
dt

x = Ax + Bu + Gw x(0) = x0 (3.95a)

y = Cx (3.95b)

with the n-dimensional state x ∈ Rn, the p-dimensional deterministic input u ∈ Rp, the
q-dimensional output y ∈ Rq, the r-dimensional deterministic disturbance w ∈ Rr, and
the matrices A ∈ Rn×n, B ∈ Rn×p, G ∈ Rn×r, and C ∈ Rq×n. It is assumed that the
disturbance w can be described by the disturbance model

d
dt

z = Azz z(0) = z0 (3.96a)

w = Czz (3.96b)

In a first step, the corresponding discrete-time system for the sampling time Ta is calculated
for the extended system

d
dt

[
x
z

]
=
[
A GCz

0 Az

][
x
z

]
+
[
B
0

]
u (3.97a)

y =
[
C 0

][x
z

]
(3.97b)

in the form [
xk+1

zk+1

]
=
[
Φ Φxz

0 Φz

][
xk

zk

]
+
[
Γ
0

]
uk (3.98a)

yk =
[
C 0

][xk

zk

]
(3.98b)

Exercise 3.9. Show that the discrete-time system of (3.97) must have the structure
of (3.98).

As can be seen, the state of the disturbance model z is not reachable via the input u.
If the system (3.98) is observable, the state x and the state of the disturbance model z
can be observed via an observer[

x̂k+1

ẑk+1

]
=
[
Φ Φxz

0 Φz

][
x̂k

ẑk

]
+
[
Γ
0

]
uk +

[
K̂
K̂z

]
(yk − Cx̂k) (3.99)

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



3.5 Extended Concepts of State Control Page 107

In the next step, a state controller
uk = Kxk (3.100)

is designed for the system
xk+1 = Φxk + Γuk (3.101)

and extended and implemented in the form

uk = Kx̂k + Kzẑk (3.102)

Thus, the closed-loop system (3.98), (3.99), and (3.102) is

xk+1 = (Φ + ΓK)xk + (Φxz + ΓKz)zk − ΓKx̃k − ΓKzz̃k (3.103a)
zk+1 = Φzzk (3.103b)

with the dynamics of the observation errors x̃k = xk − x̂k and z̃k = zk − ẑk[
x̃k+1

z̃k+1

]
=
[
Φ − K̂C Φxz

−K̂zC Φz

][
x̃k

z̃k

]
. (3.104)

Note that the controller matrix K determines the dynamics with which an initial error x(0)
is controlled to zero with vanishing disturbance, i.e., w = 0. Furthermore, the observer
matrices K̂ and K̂z determine the error dynamics, and with the help of Kz the influence
of the disturbance w can be specifically suppressed. As can be seen from (3.103), the
optimal choice for Kz, if possible, is given by

Φxz + ΓKz = 0 (3.105)

This strategy for disturbance suppression is also called feedforward of the estimated
disturbance. Figure 3.5 shows the corresponding block diagram.

K

Kz

observer

D/A

A/D

plant

x̂k

ẑk

uk u

w

y
Ta

Ta

yk

Digital Controller Continuous Plant

Figure 3.5: Block diagram for feedforward of the estimated disturbance.
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3.5.2 State Controller and State Observer Design with Integral Action
Now assume that the disturbance w in (3.95) is constant but unknown. Then the
corresponding disturbance model (3.96) is

d
dt

z = 0 z(0) = w (3.106a)

w = z (3.106b)

and the discrete-time system (3.98) becomes[
xk+1

zk+1

]
=
[
Φ Φxz

0 E

][
xk

zk

]
+
[
Γ
0

]
uk (3.107a)

yk =
[
C 0

][xk

zk

]
(3.107b)

with

Φ = exp(ATa) (3.108a)

Φxz =
∫ Ta

0
exp(Aτ)dτG (3.108b)

Γ =
∫ Ta

0
exp(Aτ)dτB . (3.108c)

Exercise 3.10. Show the validity of (3.108).

Now assume that Φxz = Γ or G = B holds, i.e., the disturbance zk acts on the system
before the input uk in the sampled system, then (3.105) can be solved exactly. It holds
that Kz = −E. Thus, the controller from (3.102) is

uk = Kx̂k − ẑk (3.109)

and the observer from (3.99) has the form[
x̂k+1

ẑk+1

]
=
[
Φ Γ
0 E

][
x̂k

ẑk

]
+
[
Γ
0

]
uk +

[
K̂
K̂z

]
(yk − Cx̂k) . (3.110)

Rewriting (3.109) and (3.110), we obtain

x̂k+1 = (Φ + ΓK)x̂k + K̂(yk − Cx̂k) (3.111a)
ẑk+1 = ẑk + K̂z(yk − Cx̂k) (3.111b)

uk = Kx̂k − ẑk, (3.111c)

showing that the controller consists of the feedback of the estimated state x̂k with the
controller matrix K and the integrated output error weighted by the matrix K̂z. Figure 3.6
shows the corresponding controller structure in the form of a block diagram. In summary,
the design with integral action looks as follows:
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-

-

K

x̂k+1 = Φx̂k + Γûk + K̂(yk − Cx̂k)

C

1
z − 1

K̂z

xk+1 = Φxk + Γuk + Γzk

yk = Cxk

x̂k uk

zk = wk

yk

ûk

ŷk

Figure 3.6: State controller/state observer design with integral action.

(1) Design a state controller of the form

uk = Kxk . (3.112)

for the system

xk+1 = Φxk + Γuk (3.113a)
yk = Cxk (3.113b)

(2) In the second step, extend the system (3.113) by a constant, but unknown disturbance
w acting at the system input, i.e.,[

xk+1

zk+1

]
=
[
Φ Γ
0 E

][
xk

zk

]
+
[
Γ
0

]
uk z(0) = w (3.114a)

yk =
[
C 0

][xk

zk

]
(3.114b)

and design the observer gain matrices K̂ and K̂z of a full observer (see (3.110)).

(3) The controller then follows according to (3.109) as

uk = Kx̂k − ẑk . (3.115)

3.5.3 State Controller and State Observer Design with Setpoints
This section shows how setpoints can be systematically taken into account in state
controller and state observer design. In the English-language literature, this problem is
often referred to as the servo problem. It is assumed that the variables ȳk ∈ Rp

ȳk = Crxk (3.116)
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of the system

xk+1 = Φxk + Γuk (3.117a)
yk = Cxk, (3.117b)

with the n-dimensional state x ∈ Rn, the p-dimensional input u ∈ Rp, the q-dimensional
output y ∈ Rq, and the matrices Φ ∈ Rn×n, Γ ∈ Rn×p, and C ∈ Rq×n, are to be
controlled to a given stationary reference value rs ∈ Rp

ȳs = Crxs = rs (3.118)

In a first step, a state controller
uk = Kxk (3.119)

is designed, for example, as a stationary Riccati controller, and in a second step it is
extended in the form

uk = −K(Lrrk − xk) + Lurk (3.120)
with Lr ∈ Rn×p and Lu ∈ Rp×p. The matrices Lr and Lu are to satisfy the following
conditions for the stationary state

Lrrs = xs (3.121a)
Lurs = us (3.121b)

From (3.117), it follows in the stationary state that

(E − Φ)xs − Γus = 0 (3.122)

and substituting (3.121) into (3.118) and (3.122), we obtain

((E − Φ)Lr − ΓLu)rs = 0 (3.123a)
ȳs = CrLrrs = rs (3.123b)

or, for rs ̸= 0, [
E − Φ −Γ

Cr 0

]
︸ ︷︷ ︸

X

[
Lr

Lu

]
=
[

0
E

]
. (3.124)

If the matrix X is invertible, then the matrices Lr and Lu can be calculated from (3.124).
Figure 3.7 shows the corresponding controller structure.

It can be seen that (3.120) can also be simplified in the form

uk = Kxk + Lrk with L = Lu − KLr (3.125)

Now assume that the state xk is not measurable. Then a state observer of the form

x̂k+1 = Φx̂k + Γuk + K̂(yk − Cx̂k) (3.126)

is additionally required. The closed-loop system (3.117), (3.125), and (3.126) is then given
with the observation error ek = xk − x̂k as

xk+1 = (Φ + ΓK)xk − ΓKek + ΓLrk (3.127a)

ek+1 =
(
Φ − K̂C

)
ek (3.127b)

yk = Cxk . (3.127c)

As expected, the observation error ek is not reachable via the reference input rk.Lecture Control Systems (2024W)
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-

Lr

Lu

−K plant Cr
rk

uk xk ȳk

Figure 3.7: Controller structure for state control with setpoints.

Exercise 3.11. In an analogous way to that shown in Section 3.5.2, the state controller
and state observer design with setpoints can be extended by an integral action. Show
that in this case the control law is calculated as follows:

x̂k+1 = (Φ + ΓK)x̂k + K̂(yk − Cx̂k) + ΓLrk

ẑk+1 = ẑk + K̂z(yk − Cx̂k)
uk = Kx̂k − ẑk + Lrk

3.5.4 The Feedforward Concept
If the controlled system is to behave like a reference model of the form

x̄k+1 = Φmx̄k + Γmrk (3.128a)
ȳk = Cmx̄k (3.128b)

then the following procedure can be chosen: Simulate the reference model (3.128) on the
computer and set the control law as follows:

uk = −K(x̄k − xk) + ūk (3.129)
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The so-called (control variable) feedforward signal ūk is determined such that, with
ideal agreement between the reference model and the controlled system, i.e., x̄k = xk,
the outputs of the reference model and the controlled system also agree, i.e., ȳk = yk.
Calculating the feedforward signal in the multivariable case is generally relatively difficult.
In the single-variable case, using the z-transfer functions of (3.117) and (3.128)

G(z) = yz(z)
uz(z) = cT(zE − Φ)−1Γ (3.130a)

Gm(z) = ȳz(z)
rz(z) = cT

m(zE − Φm)−1Γm (3.130b)

from the condition
G(z)uz(z) = yz(z) = ȳz(z) = Gm(z)rz(z) (3.131)

the z-transform ūz(z) of the feedforward signal (ūk) can be calculated as follows:

ūz(z) = Gm(z)
G(z) rz(z) (3.132)

From (3.132), it can be seen that this is only possible if the degree difference of Gm(z) is
greater than or equal to the degree difference of G(z), Gm(z) is BIBO-stable, and all zeros
outside the closed unit circle of G(z) are also zeros of Gm(z). If the numerator polynomials
of G(z) and Gm(z) are identical and the orders of the denominator polynomials are equal,
i.e.,

G(z) = zG(z)
nG(z) = b0 + b1z + · · · + bn−1zn−1 + bnzn

a0 + a1z + · · · + an−1zn−1 + anzn
(3.133a)

Gm(z) = zGm(z)
nGm(z) = V

b0 + b1z + · · · + bn−1zn−1 + bnzn

ā0 + ā1z + · · · + ān−1zn−1 + zn
, (3.133b)

then ūz(z) simply follows as

ūz(z) = V
a0 + a1z + · · · + an−1zn−1 + anzn

ā0 + ā1z + · · · + ān−1zn−1 + zn
rz(z) . (3.134)

The factor V is chosen, for example, such that limz→1 Gm(z) = 1 holds. If the reference
model (3.128) is now in the first standard form, then the state realization of (3.134) in
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the first standard form in the single-variable case is

x̄1,k+1

x̄2,k+1
...

x̄n−1,k+1

x̄n,k+1


︸ ︷︷ ︸

x̄k+1

=



0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1

−ā0 −ā1 . . . −ān−2 −ān−1


︸ ︷︷ ︸

Φm



x̄1,k

x̄2,k

...
x̄n−1,k

x̄n,k


︸ ︷︷ ︸

x̄k

+



0
0
...
0
1


︸︷︷︸
Γm

rk (3.135a)

ūk = V
[
a0 − ā0an a1 − ā1an . . . an−1 − ān−1an

]
︸ ︷︷ ︸

c̄T
m



x̄1,k

x̄2,k

...
x̄n−1,k

x̄n,k


︸ ︷︷ ︸

x̄k

+V anrk .

(3.135b)

Now all the results obtained so far can be summarized in a common structure. A state
controller and state observer with integral action and feedforward via a reference model
in the case of a single-variable system consists of the reference model (see (3.128))

x̄k+1 = Φmx̄k + Γmrk (3.136a)
ȳk = cT

mx̄k (3.136b)

the state and disturbance observer (see (3.110))[
x̂k+1

ẑk+1

]
=
[
Φ Γ
0 1

][
x̂k

ẑk

]
+
[
Γ
0

]
uk +

[
k̂
k̂z

](
yk − cTx̂k

)
(3.137)

and the control law, consisting of the feedback component −kT(x̄k − x̂k) − ẑk and the
feedforward component ūk = c̄T

mx̄k + V anrk (see (3.119), (3.129), and (3.135)),

uk = −kT(x̄k − x̂k) − ẑk + c̄T
mx̄k + V anrk︸ ︷︷ ︸

ūk

(3.138)

Simplifying equations (3.136)–(3.138), we finally obtain

x̄k+1 = Φmx̄k + Γmrk (3.139a)

x̂k+1 =
(
Φ + ΓkT − k̂cT

)
x̂k + Γ

(
c̄T

m − kT
)
x̄k + V anΓrk + k̂yk (3.139b)

ẑk+1 = ẑk + k̂z

(
yk − cTx̂k

)
(3.139c)

uk =
(
c̄T

m − kT
)
x̄k + kTx̂k − ẑk + V anrk . (3.139d)

Figure 3.8 shows the structure of the control concept (3.139).

Lecture Control Systems (2024W)
©W. Kemmetmüller, A. Kugi, Automation and Control Institute, TU Wien



3.5 Extended Concepts of State Control Page 114
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reference model
feedforward
generator −kT plant

observer

rk

ūk

x̄k

ẑk

x̂k

uk yk

Figure 3.8: Control structure of the feedforward concept.

Exercise 3.12. Consider the transfer function of a double integrator

G(s) = 1
s2 .

For the sampling time Ta = 0.1 s, determine the corresponding discrete-time model.
Apply all control concepts presented in this chapter to this model, if possible. Consider
a constant but unknown disturbance at the input and a sinusoidal input disturbance
of the form

w(t) = A sin(2t + φ)

with unknown amplitude A and unknown phase φ. Furthermore, jump-like and sinu-
soidal reference signals are to be specified, which the system can at least follow station-
arily without control errors. Implement all control concepts in Matlab/Simulink.

Exercise 3.13. Given is the mechanical system shown in Figure 3.9, driven by a exter-
nally excited DC motor. Determine the mathematical model under the assumption
that the dynamics of the DC motor can be neglected. Use the angular velocities ω1,
ω2, and the angle difference ∆φ = φ1 − φ2 as state variables, the armature current ia

as input variable, and ω2 as output variable. The armature circuit constant has the
value ka = 1 Nm/A, the moments of inertia of the two masses are J1 = 1.11 kgm2 and
J2 = 10 kgm2, and the spring and damping constant of the torsion shaft are given by
c = 1 Nm/rad and d = 0.1 Nms/rad. For a sampling time Ta = 0.5 s, determine the
corresponding sampled model. Apply all control concepts presented in this chapter
to this sampled model, if possible, and test your results in Matlab/Simulink.
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ia

motor

ϕ1, ω1

d

c ϕ2, ω2

J1 J2

ka

Figure 3.9: Mechanical system with torsion shaft.
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A Fundamentals of Stochastics

Theorem A.1 (Axioms of Probability). The following axioms of probability can be
defined:

(1) The probability P(A) of an outcome A in an experiment is a uniquely determined
non-negative real number, which can be at most equal to 1, thus it holds that

0 ≤ P(A) ≤ 1 . (A.1)

(2) For a certain event A of an experiment it holds that

P(A) = 1 . (A.2)

For equivalent events B and C in an experiment it holds that

P(B) = P(C) . (A.3)

(3) If two events B and C in an experiment are mutually exclusive, then it holds
that

P(B + C) = P(B) + P(C) . (A.4)

Definition A.1 (Random Variable, Stochastic Variable). A function X is called a
random variable or stochastic variable if it is assigned to a random experiment and
possesses the following properties:

(1) The values of X are real numbers and

(2) for every number a and every interval I on the number line, the probability of
the event “X has the value a” or “X lies in the interval I” is in accordance with
the axioms of probability.

In this context, a random experiment is an experiment in which the result of a single
execution can be expressed by a single number.

If X is a discrete random variable, then the corresponding probabilities p1 = P(X = x1),
p2 = P(X = x2), . . . can be assigned to all values of X, hereinafter denoted by x1, x2, . . ..
The function

f(x) =
{

pj for x = xj

0 for all other x
(A.5)

is then called the probability function. Since the random variable X always takes a value
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xj , it must also hold that the sum of all probabilities∑
j

f(xj) = 1 (A.6)

is 1. The probability that the random variable X lies in the interval a < X ≤ b is then
easily calculated in the form

P(a < X ≤ b) =
∑

a<xj≤b

f(xj) . (A.7)

If the probability P(X ≤ x) is plotted as a function of x, i.e., the probability of an
experiment whose results are X ≤ x, then one obtains the probability distribution function

F (x) = P(X ≤ x) =
∑

xj≤x

f(xj) . (A.8)

For a continuous random variable X, the probability distribution function can be repre-
sented in integral form

F (x) =
∫ x

−∞
f(v) dv with F (∞) = 1 (A.9)

where the integrand f(v) is a non-negative and, except for finitely many points, continuous
function, which is also called the probability density function.

Exercise A.1. Show that for the continuous random variable X the relation

P(a < X ≤ b) =
∫ b

a
f(v) dv = F (b) − F (a)

holds.
Figure A.1 shows the typical course of the probability distribution function of a discrete
and a continuous random variable.

x1 x2 . . . xk xx

11

F (x)F (x)

Figure A.1: On the probability distribution function.
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Definition A.2 (Expected Value). The expected value E(X) of a random variable X
(also called mean value or 1st moment) is defined in the case of a discrete distribution
as

E(X) =
∑

j

xjf(xj) (A.10)

and in the case of a continuous distribution as

E(X) =
∫ ∞

−∞
xf(x) dx . (A.11)

For a function g(X) of the random variable X, it generally holds that the expected
value of the function g(X) can be calculated in the form

E(g(X)) =
∑

j

g(xj)f(xj) or E(g(X)) =
∫ ∞

−∞
g(x)f(x) dx (A.12)

Exercise A.2. Show the validity of the following important equation

E(αg(X) + βh(X)) = α E(g(X)) + β E(h(X))

with the constants α and β. Show that this also implies

E(E(X)) = E(X) and E(X E(X)) = E(X)2

Definition A.3 (Variance). The variance σ2
X of a random variable X measures the

quadratic deviation from the expected value and is defined as

σ2
X = E

(
[X − E(X)]2

)
= E

(
X2 − 2X E(X) + E(X)2

)
= E

(
X2
)

− E(X)2 (A.13)

The variance is also referred to as the second central moment, and its positive square
root σX as the standard deviation.
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The previous considerations can now be easily extended to multiple random variables.
For two discrete random variables X and Y , the probability distribution function takes
the form

F (x, y) = P(X ≤ x, Y ≤ y) =
∑

xk≤x

∑
yj≤y

f(xk, yj) (A.14)

with

f(x, y) =
{

pkj for x = xk, y = yj

0 for all other (x, y)
with

∑
k

∑
j

f(xk, yj) = 1 (A.15)

and in the continuous case it holds that

F (x, y) =
∫ x

−∞

∫ y

−∞
f(v, w) dv dw with F (∞, ∞) = 1 . (A.16)

The so-called marginal distributions are given by the following expressions

F1(x) = P(X ≤ x, Y arbitrary) =
∑

xk≤x

∑
j

f(xk, yj)
︸ ︷︷ ︸

f1(xk)

(A.17)

or
F1(x) = P(X ≤ x, Y arbitrary) =

∫ x

−∞

∫ ∞

−∞
f(v, w) dv︸ ︷︷ ︸
f1(w)

dw (A.18)

and
F2(y) = P(X arbitrary, Y ≤ y) =

∑
yj≤y

∑
k

f(xk, yj)︸ ︷︷ ︸
f2(yj)

(A.19)

or
F2(y) = P(X arbitrary, Y ≤ y) =

∫ y

−∞

∫ ∞

−∞
f(v, w) dw︸ ︷︷ ︸
f2(v)

dv (A.20)
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Definition A.4 (Independence of Random Variables). Two random variables X and
Y are independent if and only if for every pair of events of the form

a1 < X ≤ b1 and a2 < Y ≤ b2 (A.21)

the relation

P(a1 < X ≤ b1, a2 < Y ≤ b2) = P(a1 < X ≤ b1) P(a2 < Y ≤ b2) (A.22)

and thus also

f(x, y) = f1(x)f2(y) and F (x, y) = F1(x)F2(y) (A.23)

with f1(x), f2(y), F1(x) and F2(y) according to (A.17)–(A.20) holds.

Theorem A.2 (Expected Value and Covariance of Two Random Variables). For the
expected value of a function g(X, Y ) of two random variables X and Y , it holds that

E(g(X, Y )) =
∑

k

∑
j

g(xk, yj)f(xk, yj) (A.24)

or
E(g(X, Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy . (A.25)

The expected value E(X + Y ) of a sum of random variables X and Y is calculated as

E(X + Y ) = E(X) + E(Y ) . (A.26)

If two random variables X and Y are independent, then the following relation holds
(shown here for the discrete case using (A.19))

E(XY ) =
∑

k

∑
j

xkyjf(xk, yj) =
∑

k

∑
j

xkyjf1(xk)f2(yj) = E(X) E(Y ) . (A.27)

If a random variable Z results from the sum of two random variables X and Y , then
according to (A.13) the variance of Z is

σ2
Z = E

(
Z2
)

− E(Z)2 = E
(
X2
)

+ 2 E(XY ) + E
(
Y 2
)

− E(X)2 − 2 E(X) E(Y ) − E(Y )2 = σ2
X + σ2

Y + 2σXY

(A.28)

with the so-called covariance

σXY = E(XY ) − E(X) E(Y ) . (A.29)
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It is easily verified that (A.29) can also be written in the form

σXY = E([X − E(X)][Y − E(Y )]) (A.30)

If the random variables X and Y are independent, then according to (A.27) σXY = 0.

Definition A.5 (Correlation Coefficient and Covariance Matrix). The quotient

r = σXY

σXσY
(A.31)

is called the correlation coefficient between the random variables X and Y . If r = 0,
then X and Y are uncorrelated. It can also be seen that two independent random
variables X and Y must also be uncorrelated because of σXY = 0. The correlation
coefficient −1 ≤ r ≤ 1 provides a measure of the linear dependence of X and Y . For
a vector-valued random variable XT =

[
X1 X2 . . . Xn

]
, it now holds that

E
(
XT

)
=
[
E(X1) E(X2) . . . E(Xn)

]
(A.32)

and the covariance matrix of the vector-valued random variable X is understood to
be the matrix

cov(X) = E
(
[X − E(X)][X − E(X)]T

)
=


σ2

X1
σX1X2 · · · σX1Xn

σX2X1 σ2
X2

· · · σX2Xn

...
... . . . ...

σXnX1 σXnX2 · · · σ2
Xn

 . (A.33)

It can be seen that the covariance matrix is symmetric.

Exercise A.3. Show that the relation

E
(
∥X − E(X)∥2

2

)
= E

(
[X − E(X)]T[X − E(X)]

)
= trace(cov(X))

holds with trace(S) = ∑
i sii.

From what has been said so far, it follows that the covariance matrix of a vector-valued
random variable X, whose components Xi, Xj for i ̸= j = 1, . . . , n are uncorrelated, is a
diagonal matrix.

For stochastic time signals originating from statistically identical signal sources, there
exists not only a single realization x1(t) but a whole family (ensemble) of random time
functions {xj(t)}. This ensemble of random time functions or random sequences in the
time-discrete case is called a continuous-time or discrete-time stochastic process x(t). A
single realization xj(t) for a fixed j is also called a sample function. For every fixed point
in time t, x(t) is a random variable with a probability distribution function (see (A.8))

F (x, t) = P(x(t) ≤ x) . (A.34)
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The probability density function is then calculated according to (A.9) as

f(x, t) = ∂F (x, t)
∂x

. (A.35)

Definition A.6 (Mean, Auto- and Cross-Correlation Function of a Stochastic Process).
The mean ηx(t) of a stochastic process x(t) is (see also (A.11))

ηx(t) = E(x(t)) =
∫ ∞

−∞
xf(x, t) dx . (A.36)

The autocorrelation function Φxx(t1, t2) of a stochastic process x(t) is understood to
be the expected value of the product x(t1)x(t2)

Φxx(t1, t2) = E(x(t1)x(t2)) =
∫ ∞

−∞

∫ ∞

−∞
x1f(x1, t1)x2f(x2, t2) dx1 dx2 . (A.37)

The cross-correlation function Φxy(t1, t2) of two stochastic processes x(t) and y(t) is
given by the relation

Φxy(t1, t2) = E(x(t1)y(t2)) =
∫ ∞

−∞

∫ ∞

−∞
xf(x, t1)yf(y, t2) dx dy. (A.38)

Definition A.7 (Auto- and Cross-Covariance Function). The autocovariance function
Cxx(t1, t2) of a stochastic process x(t) is

Cxx(t1, t2) = E([x(t1) − ηx(t1)][x(t2) − ηx(t2)]) = Φxx(t1, t2) − ηx(t1)ηx(t2) . (A.39)

The cross-covariance function Cxy(t1, t2) of two stochastic processes x(t) and y(t) is
analogously given by

Cxy(t1, t2) = E([x(t1) − ηx(t1)][y(t2) − ηy(t2)]) = Φxy(t1, t2) − ηx(t1)ηy(t2) . (A.40)

Exercise A.4. Show the validity of the right-hand identity of (A.39).

Definition A.8 (Stationary Stochastic Process). A stochastic process x(t) is called
strictly stationary if its statistical properties are invariant under time shifts, i.e., x(t)
and x(t + c) have identical statistical properties for all c. The stochastic process x(t) is
stationary in a wider sense if the mean ηx(t) = ηx is constant and the autocorrelation
function depends only on the time difference τ = t2 −t1, i.e., Φxx(τ) = E(x(t)x(t + τ)).

The functions (A.36)–(A.40) shown so far take into account all realizations, i.e., the
entire ensemble, of a stochastic process. According to the so-called ergodic hypothesis,
the functions (A.36)–(A.40) can also be written using only a single sample function if
infinitely long time intervals are considered. Ergodic processes are also stationary, but
the inverse does not generally hold. This results in the following expressions, with the
continuous-time case on the left and the discrete-time case on the right:
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(1) Mean value

ηx = lim
T →∞

1
T

∫ T/2

−T/2
x(t) dt or ηx = lim

N→∞
1
N

N−1∑
k=0

xk (A.41)

(2) Autocorrelation function

Φxx(τ) = lim
T →∞

1
T

∫ T/2

−T/2
x(t)x(t + τ) dt or Φxx(τ) = lim

N→∞
1
N

N−1∑
k=0

xkxk+τ

(A.42)

(3) Cross-correlation function

Φxy(τ) = lim
T →∞

1
T

∫ T/2

−T/2
x(t)y(t + τ) dt or Φxy(τ) = lim

N→∞
1
N

N−1∑
k=0

xkyk+τ

(A.43)

Exercise A.5. Show that Φxx(τ) satisfies the following properties:

1. Φxx(τ) = Φxx(−τ)

2. Φxx(0) = E
(
x(t)2

)
3. Φxx(∞) = E(x(t))2

4. Φxx(τ) ≤ Φxx(0)

Exercise A.6. Show that Φxy(τ) satisfies the following properties:

1. Φxy(τ) = Φyx(−τ)

2. Φxy(0) = E(x(t)y(t))

3. Φxy(∞) = E(x(t)) E(y(t))

4. Φxy(τ) ≤ 1
2 [Φxx(0) + Φyy(0)]

Exercise A.7. What are the expressions for the autovariance and autocovariance
functions in the ergodic case?
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Definition A.9 (White Noise). A stochastic process v(t) is called (strict) white noise
if for all time points t1 ̸= t2, v(t1) and v(t2) are statistically independent, or

Cvv(τ) = C0δ(τ) with δ(τ) =
{

1 for τ = 0
0 otherwise

and C0 > 0 . (A.44)

It is further assumed that the mean ηv = 0.

Remark: It can be shown that in the continuous-time case the average power of
the white noise is infinite and therefore this process cannot be ideally realized. In
contrast, in the discrete-time case, where the signal sequence values are at a finite
distance from each other, the power remains finite, so that ideal white noise is also
realizable.
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