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1 Nonlinear Systems
The analysis and design methods for controlling linear systems are by far the most
advanced. This is due to the superposition principle, which significantly simplifies the
mathematical treatment of this class of dynamical systems. However, physical laws often
contain significant nonlinearities. When these can no longer be neglected, one must resort
to the methods of nonlinear control engineering.

Due to the superposition principle, local and global properties coincide in linear systems.
This is no longer the case for nonlinear dynamical systems. If one restricts oneself to local
properties in nonlinear systems, often linear methods can still be used by linearizing the
system equations. However, if one is interested in global properties, the full nonlinear
mathematical model must be examined.

A large class of nonlinear dynamical systems can be described by mathematical models
of first-order nonlinear differential equations. For these models, there is no simple tool
available for input-output description as in the case of Laplace transformation in linear
systems. Therefore, the analysis of such systems is preferably done in state space.

1.1 Linear and Nonlinear Systems
The relationship

ẋ = Ax (1.1)

describes a linear, time-invariant, autonomous system of n-th order with lumped parame-
ters. Besides the superposition principle, the system can be characterized by additional
properties.

The equilibrium points xR of (1.1) are solutions to the linear system of equations

0 = AxR . (1.2)

In the case where det(A) ≠ 0, the system has exactly one equilibrium point, namely
xR = 0; otherwise, it has infinitely many equilibrium points.

Exercise 1.1. Provide a second-order system (1.1) with infinitely many equilibrium
points.

With the transition matrix

Φ(t) = eAt = E + At+ A2 t
2

2 + . . .+ An t
n

n! + . . . (1.3)

the solution of the initial value problem is

x(t) = Φ(t)x0 . (1.4)
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It is easy to see that x(t) satisfies the inequality

a1e−α1t ≤ ∥x(t)∥ ≤ a2eα2t (1.5)

with real numbers a1, a2, α1, α2 > 0. That is, a trajectory x(t) of the system (1.1) cannot
converge to the equilibrium xR = 0 in finite time nor grow beyond all bounds in finite time.

These properties do not necessarily hold for a nonlinear, autonomous system of n-th
order

ẋ = f(x) . (1.6)

The equilibrium points of this system are now solutions to the nonlinear system of equations

0 = f(xR) . (1.7)

No general statement can be made about the solution set XR of (1.7). Thus, XR can
consist of exactly one element, a finite number of elements, or an infinite number of
elements.

Exercise 1.2. Provide a first-order system (1.6) with exactly three equilibrium points.

Nonlinear systems can also converge to the equilibrium state in finite time. Consider
the equation

ẋ = −√
x, x0 > 0 . (1.8)

For the solution of the above system, we have

x(t) =
{(√

x0 − t
2
)2 for 0 ≤ t ≤ 2√

x0

0 otherwise .
(1.9)

The solution of a nonlinear system can also grow beyond bounds in finite time. For
example, consider the system

ẋ = 1 + x2, x0 = 0 (1.10)

with the solution given by

x(t) = tan(t), 0 ≤ t <
π

2 . (1.11)

There is no solution for t ≥ π
2 .

1.2 Satellite Control
Figure 1.1 shows a communication satellite. If the satellite is considered as a rigid body,
its rotational motion can be described by the relationship

Θẇ = −w × (Θw) + M (1.12)
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with

w =


ω1

ω2

ω3

 , (1.13a)

Θ =


Θ11 Θ12 Θ13

Θ12 Θ22 Θ23

Θ13 Θ23 Θ33

 , (1.13b)

M =


M1

M2

M3

 (1.13c)

x

y

z

x1

x2

x3

ω1

ω2

ω3

0
0c

body-fixed frame

inertial frame

Figure 1.1: Rotational motion of a satellite.

Here, w denotes the vector of angular velocities, Θ the inertia matrix, and M the vector
of torques. The quantities w, Θ, and M are referred to the satellite-fixed coordinate
frame (0C , x1, x2, x3) at the center of mass 0C . If the coordinate frame (0C , x1, x2, x3)
is aligned with the principal axes of inertia of the satellite, we have

Θ =


Θ11 0 0
0 Θ22 0
0 0 Θ33

 , (1.14)
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which simplifies the above system to

Θ11ω̇1 = −(Θ33 − Θ22)ω2ω3 +M1 (1.15a)
Θ22ω̇2 = −(Θ11 − Θ33)ω1ω3 +M2 (1.15b)
Θ33ω̇3 = −(Θ22 − Θ11)ω1ω2 +M3 (1.15c)

Exercise 1.3. How many fundamentally different equilibrium states can you specify
for the satellite (1.15) when M = 0?

1.3 Ball on Beam
A ball with mass mK rolls on a pivot-mounted beam (see Figure 1.2). The setup is

reference

reference

M

r r0

x1

x2 ϕ1

ϕ2

Figure 1.2: Beam with rolling ball.

influenced by applying a moment M at the pivot point of the beam. The geometric
relationships hold as follows:

x1 = r cos(φ1) − r0 sin(φ1) (1.16a)
x2 = r sin(φ1) + r0 cos(φ1) (1.16b)

and

ṙ = −r0φ̇2 . (1.17)
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Neglecting friction forces, the Lagrangian is given by

L(φ1, φ̇1, r, ṙ) = 1
2mK

(
ẋ2

1(φ1, φ̇1, r, ṙ) + ẋ2
2(φ1, φ̇1, r, ṙ)

)
︸ ︷︷ ︸

translational kinetic energy

+ 1
2
(
ΘBφ̇

2
1 + ΘK(φ̇1 + φ̇2)2

)
︸ ︷︷ ︸

rotational kinetic energy

−mKgx2(φ1, r)︸ ︷︷ ︸
potential energy

(1.18)

with the mass of the ball mK , the moment of inertia of the beam ΘB, the moment of
inertia of the ball ΘK = 2

5mKr
2
0, and the acceleration due to gravity g.

Exercise 1.4. Show that for the moment of inertia of a homogeneous ball with radius
r0, the following holds:

ΘK = 2
5mKr

2
0 .

Using the generalized coordinates r(t) and φ1(t), the Euler-Lagrange equations yield
the system’s equations of motion in the form

d
dt

(
∂

∂ṙ
L(φ1, φ̇1, r, ṙ)

)
− ∂

∂r
L(φ1, φ̇1, r, ṙ) = 0 (1.19a)

d
dt

(
∂

∂φ̇1
L(φ1, φ̇1, r, ṙ)

)
− ∂

∂φ1
L(φ1, φ̇1, r, ṙ) = M . (1.19b)

To simplify the results, it is assumed that the ball is a point mass, so r0 = 0 and ΘK = 0.
Thus, the Lagrangian simplifies to

L(φ1, φ̇1, r, ṙ) = 1
2mK ṙ

2 + 1
2mKr

2φ̇2
1 + 1

2ΘBφ̇
2
1 −mKgr sin(φ1) (1.20)

and the mathematical model becomes

d2

dt2φ1 = 1
mKr2 + ΘB

(M − 2mKrṙφ̇1 − gmKr cos(φ1)) (1.21a)

d2

dt2 r = rφ̇2
1 − g sin(φ1) . (1.21b)

The equilibrium positions of this system are given by

φ1,R = 0 (1.22a)
MR = gmKrR (1.22b)
rR arbitrary. (1.22c)

Exercise 1.5. Replace the rolling ball in Figure 1.2 with a frictionless sliding cube of
mass m2 and edge length l. Provide the Lagrangian function and the equations of
motion for this model.
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Exercise 1.6. Figure 1.3 shows a crane with a pivot arm. Determine the equations of
motion using Lagrangian mechanics. Introduce the generalized coordinates as the
angles φ1 and φ2. The input variables are the two moments M1 and M2.

M1

ϕ1

rod 1 l x1
y1

z1 M2

ϕ2
l

x2

z2

y2
rod 2

Figure 1.3: Crane with pivot arm.

Exercise 1.7. In Figure 1.4, a simple manipulator consisting of five beam elements
is depicted. It is a system with two degrees of freedom, where the quantities q1
and q2 are introduced as generalized coordinates. This manipulator has the special
property that the system of differential equations decouples when a simple geometric
relationship is satisfied. That is, q1 or q2 is only influenced by M1 or M2. This is
particularly convenient for controller design. Such examples are typical mechatronic
tasks, as in this case the construction is carried out in such a way that the control
task is subsequently simplified. However, knowledge of the mathematical model is
required to accomplish this. Manipulators of this type were built, among others, by
the company Hitachi under the model designation HPR10II.
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lc1

lc2

lc3

lc4

l3

l2

q1,

q2,

M1

M2

x

y

Figure 1.4: Closed kinematic chain.

1.4 Positioning with Static Friction
Figure 1.5 shows a mass m sliding on a rough surface subject to the spring force FS = cx,
the friction force FR, and the input force Fu.

In the friction force model, a distinction is made between static and dynamic models.
In the static model, the friction force FR is given as a function of the velocity v = d

dtx.
As shown in Figure 1.6, the friction force generally consists of a velocity-proportional

(viscous) component rvv, a Coulomb component (dry friction) rCsign(v), and a static
friction component described by the parameter rH . It has also been experimentally
observed that the force-velocity curve when entering or leaving the static friction state
follows the shape of the dashed curve in Figure 1.6 (Stribeck effect). The velocity vS at
which the friction force FR reaches a minimum is also referred to as the Stribeck velocity.
Very often, this behavior is described in the form

FR = rvv + rC sgn(v) + (rH − rC) exp
(

−
(
v

v0

)2
)

sgn(v) (1.23)

where a reference velocity v0 is used for the total friction force. Hence, the mathematical
model of Figure 1.5 written relative to the relaxed position of the spring x0 reads

(1) The static friction condition is satisfied, so v = 0 and |Fu − cx| ≤ rH ,

d
dtx = 0 (1.24a)

m
d
dtv = 0 (1.24b)
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x0 x

FS Fu

FR

Figure 1.5: Spring-mass system with static friction.

(2) The adhesion condition is not fulfilled

d
dtx = v (1.25a)

m
d
dtv = Fu − FR − cx (1.25b)

with the friction force FR according to (1.23).

When implementing the mathematical model (1.24) and (1.25) in a numerical simulation
program like Matlab/Simulink, it must be ensured that the structural switching between
(1.24) and (1.25) is correctly implemented. For example, Simulink offers dedicated blocks
to detect zero-crossings of variables and implement the switching of states using the
Stateflow toolbox.

Combining static friction with an integral controller generally leads to undesirable
limit cycles. To demonstrate this, in the next step, a PI controller will be designed as a
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−vS −v0
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−rH

−rC

rC

rH

v

FR(v)
viscous friction component
dry friction component
Stribeck effect
static model of friction

Figure 1.6: Static friction model.

position controller for the spring-mass system shown in Figure 1.5 with the input force
Fu. For the design of the PI controller, it is common practice to neglect the Coulomb
friction component and the static friction component, i.e., rH = rC = 0. This results in a
simple linear system with position x as the output and force Fu as the input, with the
corresponding transfer function

G(s) = x̂

F̂u
= 1
ms2 + rvs+ c

(1.26)

If the parameters are chosen as c = 2, m = 1, rC = 1, rv = 3, rH = 4, and v0 = 0.01, then
the PI controller R(s) = 4 s+1

s for the linear system (1.26) leads to the step response of
the closed loop shown in Figure 1.7.

0 5 10 15 200

0.5

1

1.5

Time t

Po
sit

io
n

x

Figure 1.7: Step response of the linear system.

Implementing the PI controller on the original model (1.24) and (1.25), we obtain the
position and velocity profiles shown in Figure 1.8.
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Figure 1.8: Position control of a spring-mass system with static friction using a PI con-
troller.

Exercise 1.8. Try to replicate the results of Figure 1.8 in Matlab/Simulink. Consider
measures to prevent limit cycles (Dead Zone, Integrator with switchable I component,
Dithering, etc.).

Exercise 1.9. Determine the Stribeck velocity vS for the friction model approach
(1.23) with the parameters rC = 1, rv = 3, rH = 4, and v0 = 0.01.

In addition to static friction models, various dynamic models can be found in the
literature. Many of these models are essentially based on a brush-like contact model of
two rough surfaces. In the so-called LuGre model, the friction force is calculated in the
form

FR = σ0z + σ1
d
dtz + σ2∆v , (1.27)

with the relative velocity ∆v of the two contact surfaces. The average deflection of the
brushes z satisfies the differential equation

d
dtz = ∆v − |∆v|

χ
σ0z (1.28)

with

χ = rC + (rH − rC) exp
(

−
(∆v
v0

)2)
. (1.29)

Analogous to the static friction model (see (1.23)), rC denotes the coefficient of Coulomb
friction, rH denotes the static friction, and v0 denotes a reference velocity. The coefficients
σ0, σ1, and σ2 allow parameterization of the friction force model using measurement data.
For a constant relative velocity ∆v, the static friction force ( d

dtz = 0) is calculated as

FR = σ2∆v + rC sgn(∆v) + (rH − rC) exp
(

−
(∆v
v0

)2)
sgn(∆v) . (1.30)
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It can be seen that (1.30) corresponds to the relationship in (1.23). Therefore, the
parameter σ2 in (1.27) corresponds to the parameter rv of the viscous friction component
in (1.23). The advantage of the dynamic friction model is that no structural switching
is required for simulation. However, in general, the entire differential equation system
becomes very stiff, requiring the use of special integration algorithms.

1.5 Linear and Nonlinear Oscillator
The simplest linear oscillator with an angular frequency of ω0 is described by a differential
equation system of the form

ẋ1 = −ω0x2 (1.31a)
ẋ2 = ω0x1 (1.31b)

with the output variable x1. A fundamental disadvantage of this oscillator is that
disturbances can change the amplitude (see Figure 1.9 left). It is obvious to extend the
linear oscillator in a way that the amplitude is ’stabilized’. One possibility is shown by
the following system

ẋ1 = −ω0x2 − x1
(
x2

1 + x2
2 − 1

)
(1.32a)

ẋ2 = ω0x1 − x2
(
x2

1 + x2
2 − 1

)
. (1.32b)

The influence of the nonlinear terms can be seen in Figure 1.9 (right).
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Figure 1.9: Nonlinear and linear oscillator.
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Exercise 1.10. Calculate the general solution for the nonlinear oscillator (1.32). Use
the transformed variables

x1(t) = r(t) cos(φ(t)) (1.33a)
x2(t) = r(t) sin(φ(t)) . (1.33b)

1.6 Vehicle Maneuvers
Figure 1.10 shows a drastically simplified model of a vehicle maneuver. The control
variables considered are the rolling speed u1 and the rotational speed u2 of the axle.

x1

x2
x3

u1

u2

Figure 1.10: Simple vehicle model.

The corresponding mathematical model is given by
ẋ1

ẋ2

ẋ3

 =


− sin(x3)
cos(x3)

0

u1 +


0
0
1

u2 . (1.34)

Linearizing the model around an equilibrium point

xR =


x1,R

x2,R

x3,R

, uR =
[
0
0

]
, (1.35)
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results in

∆ẋ =


0 0 0
0 0 0
0 0 0

∆x +


− sin(x3,R)
cos(x3,R)

0

∆u1 +


0
0
1

∆u2 . (1.36)

It can be easily verified that the controllability matrix

R(A,B) =
[
B AB A2B

]
(1.37)

has rank two. Therefore, every linearized model of the vehicle maneuver around an
equilibrium point is uncontrollable. However, from experience, it is known that this may
not hold for the original system (or what is your experience with parking?).

1.7 Direct Current (DC) Machines
Figure 1.11 shows the equivalent circuit diagram of a separately excited DC machine. The

RA

RF

LA

ΨF

uA uind

uF

iA

iF = f(ΨF ) MelMel ω, ϕ

ΘG

ML

Figure 1.11: Equivalent circuit diagram of a separately excited DC machine.

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



1.7 Direct Current (DC) Machines Page 14

corresponding mathematical model can be formulated in the form

LA
d
dt iA = uA −RAiA − kψFω︸ ︷︷ ︸

uind

(1.38a)

d
dtψF = uF −RF iF (1.38b)

ΘG
d
dtω = kψF iA︸ ︷︷ ︸

Mel

−ML (1.38c)

where LA is the armature inductance, RA is the armature resistance, iF = f(ψF ) is
the field current, RF is the field circuit resistance, ΘG is the moment of inertia of the
DC machine and all rigidly flanged components, and k is the armature circuit constant.
The state variables in this case are the armature current iA, the linked field flux ψF ,
and the angular velocity ω, while the control variables are the armature voltage uA, the
field voltage uF , and the load torque ML acts as a disturbance on the system. This
description of the separately excited DC machine already assumes that the following
model assumptions have been taken into account:

• The spatially distributed windings can be modeled as concentrated inductances in
their respective winding axes,

• the inductances in the armature and field circuits twisted by 90◦ against each other
already indicate a complete decoupling between the armature and field,

• the resistances in the armature and field circuits are constant,

• no iron losses are considered,

• there are no saturation effects in the armature circuit, and

• commutation is assumed to be ideal (no torque ripple).

To classify the steady-state behavior of the DC machine independently of the specific
machine parameters, a normalization of (1.38) to dimensionless quantities is carried out.
Using the reference values of the nominal angular velocity ω0, the nominal linked field
flux ψF,0, and

uA,0 = uind,0 = kψF,0ω0 , (1.39a)

iA,0 = uA,0
RA

, (1.39b)

Mel,0 = kψF,0iA,0 , (1.39c)
uF,0 = RF iF,0 (1.39d)
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(1.38) is then transformed into dimensionless form as

LA
RA

d
dt

(
iA
iA,0

)
= uA
uA,0

− iA
iA,0

− ψF
ψF,0

ω

ω0
(1.40a)

ψF,0
uF,0

d
dt

(
ψF
ψF,0

)
= uF
uF,0

− f̃

(
ψF
ψF,0

)
(1.40b)

ΘGω0
Mel,0

d
dt

(
ω

ω0

)
= ψF
ψF,0

iA
iA,0

− ML

Mel,0
, (1.40c)

where iF
iF,0

= f(ψF )
iF,0

= f̃
(
ψF
ψF,0

)
. Due to the larger air gap in the armature transverse

direction, LA
RA

≪ ψF,0
uF,0

and magnetic saturation effects in the armature circuit can generally
be neglected. For simplification of notation, all normalized quantities x

x0
are denoted in

the form x
x0

= x̃ in the following.
For constant input quantities uA, uF , and ML, the equations for the steady state from

(1.40) are given by

0 = ũA − ı̃A − ψ̃F ω̃ (1.41a)

0 = ũF − f̃
(
ψ̃F
)

(1.41b)

0 = ψ̃F ı̃A − M̃L . (1.41c)

Considering the normalized flux ψ̃F as an independent input quantity - which can always
be calculated from ũF via (1.41b) in the steady state - the following relationships can be
specified for the steady state of the separately excited DC machine

ı̃A = 1
ψ̃F

M̃L , (1.42a)

ω̃ = 1
ψ̃F

ũA − 1
ψ̃2
F

M̃L (1.42b)

It should be noted that the flux ψF is limited by iron saturation in the stator circuit, which
is why ψF,0 can always be set in such a way that approximately in the entire operating
range the following holds

ψ̃F = ψF
ψF,0

≤ 1 . (1.43)

Exercise 1.11. Show that in the case of a constant excitation DC machine ψF = ψF,0
the mathematical model (1.38) is linear.

There is a distinction between armature control and field control in separately excited
DC machines. In armature control, the excitation flux is set as in the case of a constant
excitation DC machine ψF = ψF,0, and the control of the angular velocity ω is done
through the armature circuit voltage uA.
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Exercise 1.12. Draw the steady-state characteristics of (1.42) for ψ̃F = 1 with ũA as
a parameter (ũA = −1.0, − 0.5, 0.5, 1.0) in the range −0.5 ≤ M̃L ≤ 0.5.

In contrast, in field control, the armature voltage is operated at the nominal value
uA = ±uA,0, and the speed control is done through the excitation voltage uF by weakening
the excitation flux in the range ψ̃F,min ≤ ψ̃F ≤ 1. Setting ũA = 1 in (1.42), the steady-state
characteristics shown in Figure 1.12 are obtained. The maximum achievable angular
velocity ω̃max for a constant load torque M̃L is obtained from (1.42) with ũA = 1 through
the relationship

dω̃
dψ̃F

= − 1
ψ̃2
F

(
1 − 2

ψ̃F
M̃L

)
= 0 (1.44)

in the form

ψ̃F,min = 2M̃L , (1.45a)

ω̃max = 1
4M̃L

. (1.45b)

It can be seen from (1.45) that for a given constant load torque M̃L, the lower limit of
the flux is given by ψ̃F,min = 2M̃L.

ψ̃F = 0.3

ψ̃F = 0.4

ψ̃F = 0.6
ψ̃F = 0.8

ψ̃F = 0.3

ψ̃F = 0.4

ψ̃F = 0.6
ψ̃F = 0.8

−0.2−0.2 00 0.20.2 0.40.4

−2

2

4
1.5

1.0

0.5

−0.5

ĩAω̃

M̃L M̃L

ω̃max

Speed-torque characteristic Armature current-torque characteristic

Figure 1.12: Characteristic curves for DC machines.

The left image of Figure 1.12 shows, among other things, that reducing the flux ψ̃F
depending on the load torque M̃L does not necessarily lead to an increase in the angular
velocity ω̃. Therefore, in practice, a combination of armature and field control is usually
chosen - namely, in a way that the angular velocity is controlled by the armature voltage
uA up to the nominal value of angular velocity ω0 and the excitation flux ψF is maintained
at its nominal value ψF,0, and only when the armature voltage uA,0 is reached, further
increase in angular velocity is achieved through field weakening.

Exercise 1.13. Figure 1.13 shows the equivalent circuit diagram of a series-wound
machine, which is very commonly used in traction drives.Any external resistances in
the armature circuit are added to the armature resistance RA, and the adjustable
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resistance RP is used for field weakening. Provide a mathematical model of the
series-wound machine and consider how the resistance RP affects the steady-state
behavior.

RA

RF

RP

LA

ΨF

uA

uind

iA

iF = f(ΨF )

MelMel ω, ϕ

ΘG
ML

Figure 1.13: Equivalent circuit diagram of a series-wound machine.

1.8 Hydraulic Actuator (Double Rod Cylinder)
Figure 1.14 shows a double rod cylinder controlled by a 3/4-way valve with zero overlap.
It should be noted that this configuration also includes the very common case of a double-
acting cylinder with a single piston rod (differential cylinder). Here, xk denotes the piston
position, V0,1 and V0,2 are the volumes of the two cylinder chambers for xk = 0, A1 and
A2 describe the effective piston areas, mk is the sum of all moving masses, q1 and q2
denote the flow from the control valve to the cylinder and from the cylinder to the control
valve, respectively, qint is the internal leakage oil flow, and qext,1 and qext,2 describe the
external leakage oil flows. In general, the density of oil ρoil is a function of pressure p and
temperature T . The temperature influence will be neglected further, and the isothermal
bulk modulus βT will be used as a constitutive equation with

1
βT

= 1
ρoil

(
∂ρoil
∂p

)
T = const.

(1.46)

The continuity equations for the two cylinder chambers are

d
dt(ρoil(p1)(V0,1 +A1xk)) = ρoil(p1)(q1 − qint − qext,1) (1.47a)
d
dt(ρoil(p2)(V0,2 −A2xk)) = ρoil(p2)(qint − qext,2 − q2) (1.47b)
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Figure 1.14: Double rod cylinder with 3/4-way valve.

with the cylinder pressures p1 and p2. Since the internal and external leakage oil flows
qint, qext,1, and qext,2 are generally laminar, there is a linear relationship between leakage
oil flow and pressure drop. Using relation (1.46), equation (1.47) simplifies to

d
dtp1 = βT

(V0,1 +A1xk)

(
q1 −A1

d
dtxk − Cint(p1 − p2) − Cext,1p1

)
(1.48a)

d
dtp2 = βT

(V0,2 −A2xk)

(
−q2 +A2

d
dtxk + Cint(p1 − p2) − Cext,2p2

)
(1.48b)

with the laminar leakage coefficients Cint, Cext,1, and Cext,2. For a 3/4-way valve with
zero overlap, the flows q1 and q2 are calculated as

q1 = Kv,1
√
pS − p1sg(xs) −Kv,2

√
p1 − pT sg(−xs) (1.49a)

q2 = Kv,2
√
p2 − pT sg(xs) −Kv,1

√
pS − p2sg(−xs) (1.49b)

with the tank pressure pT , the supply pressure pS , the control spool position xs, the
function sg(xs) = xs for xs ≥ 0 and sg(xs) = 0 for xs < 0, and the valve coefficients
Kv,i = CdAv,i

√
2/ρoil, i = 1, 2. Here, the term Av,ixs denotes the orifice area and Cd

denotes the flow coefficient (Cd ≈ 0.6 − 0.8, depending on the geometry of the control
edge, Reynolds number, flow direction, etc).
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Neglecting the dynamics of the control valve and considering the control valve position
xs as an input to the system, a mathematical model for Figure 1.14 is obtained in the
form

d
dtp1 = βT

(V0,1 +A1xk)
(q1 −A1vk − Cint(p1 − p2) − Cext,1p1) (1.50a)

d
dtp2 = βT

(V0,2 −A2xk)
(−q2 +A2vk + Cint(p1 − p2) − Cext,2p2) (1.50b)

d
dtxk = vk (1.50c)
d
dtvk = 1

mk
(A1p1 −A2p2 − dkvk − ckxk) (1.50d)

with q1 and q2 from (1.49).
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2 Dynamical Systems

A dynamical system (without input) allows the description of the change of certain points
(elements of a suitable set X ) in time t. In control engineering, these points are given by
the state x(t) of the system. If we choose the set of states as X = Rn, then an autonomous
dynamical system is a mapping

Φt(x) : Rn ×R → Rn (2.1)

with

x(t) = Φt(x0) . (2.2)

From the relationship

x0 = Φ0(x0) (2.3)

it follows that Φ0 must be the identity mapping I with x = I(x). From the relationships

x(t) = Φt(x0) (2.4a)
x(s+ t) = Φs(x(t)) (2.4b)
x(s+ t) = Φs+t(x0) (2.4c)

we now have

x(s+ t) = Φs(Φt(x0)) = Φs+t(x0) (2.5)

or

Φs ◦ Φt = Φs+t , (2.6)

where ◦ denotes the composition of the mappings Φs and Φt. By exchanging the order in
the above considerations, we obtain

Φs+t = Φs ◦ Φt = Φt ◦ Φs , (2.7)

justifying the notation Φs+t.

Exercise 2.1. Let a(x) : Rn → Rn and b(x) : Rn → Rn be two linear mappings from
Rn to itself. Is the composition (a ◦ b)(x) = a(b(x)) again a linear mapping? Does
a ◦ b = b ◦ a hold?
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In other words, are linear mappings commutative with respect to composition? The
linear mappings a and b are given by the matrices A and B with y = Ax and
y = Bx. What are the matrix representations of the above compositions?

Furthermore, it is assumed that Φt(x) is a (continuously) differentiable mapping with
respect to x.

Definition 2.1 (Dynamical System). A (autonomous) dynamical system is a C1

(continuously differentiable) mapping

Φt(x) : Rn ×R → Rn , (2.8)

that satisfies the following conditions:

(1) Φ0 is the identity mapping I, and

(2) the composition Φs(Φt(x)) satisfies the relations

Φs+t = Φs ◦ Φt = Φt ◦ Φs (2.9)

for all s, t ∈ R.

Note that from the above definition, it immediately follows

Φ−s(Φs(x0)) = Φ0(x0) =
(
Φ−1
s ◦ Φs

)
(x0) = x0 (2.10)

The mapping Φt thus satisfies the following conditions:

(1) Φ0 = I,

(2) Φs+t = Φs ◦ Φt = Φt ◦ Φs, and

(3) Φ−1
s = Φ−s.

A dynamical system according to Definition 2.1 is closely related to a system of
differential equations. From

ẋ(t) = lim
∆t→0

1
∆t(Φt+∆t(x0) − Φt(x0))

=
(

lim
∆t→0

1
∆t(Φ∆t − I)

)
◦ Φt(x0)

= ∂

∂t
Φt

∣∣∣∣
t=0

◦ Φt(x0)

= ∂

∂t
Φt

∣∣∣∣
t=0

(x(t))

(2.11)

it follows

ẋ(t) = f(x(t)), f(x(t)) = ∂

∂t
Φt

∣∣∣∣
t=0

(x(t)) . (2.12)

Thus, a dynamical system also satisfies the relationship
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(4) ∂
∂tΦt

∣∣∣
t=0

(x(t)) = f(x(t)) with x(t) = Φt(x0). The mapping Φt is also called the
flow of the differential equation system (2.12).

Exercise 2.2. Choose the specific dynamical system x(t) = eAtx0 or Φt(x) = eAtx.
Now interpret the properties of the transition matrix according to points (1) - (3) of
a dynamical system. What does the corresponding differential equation system look
like?

As an example, the motion of a point x0 ∈ R3 on a unit sphere with the origin as the
center is considered (see Figure 2.1). As an approach for a (continuous) transformation
that maps points on the unit sphere back to themselves, the form

x(t) = D(t,x0)x0 = Φt(x0) (2.13)

is chosen with a (3 × 3) matrix D. Due to xT
0 x0 = xT(t)x(t) = 1, the conditions

DTD = DDT = I (2.14)

must be satisfied.
Exercise 2.3. Show the validity of (2.14).

x1

x2

x3

x

ẋw

Figure 2.1: Motion on a sphere.

For the mapping in Figure 2.1 to describe a dynamical system, the conditions

(1) D(0,x) = I and

(2) D(s+ t,x) = D(s,D(t,x)x)D(t,x) = D(t,D(s,x)x)D(s,x)
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must hold. Furthermore, it is known that a dynamical system is associated with a system
of differential equations of the form

ẋ = ∂

∂t
(D(t,x)x)

∣∣∣∣
t=0

= ∂

∂t
D(t,x)

∣∣∣∣
t=0

x (2.15)

Additionally, the relationship

W =
(
∂

∂t
D(t,x0)

)
DT(t,x0)

= lim
∆t→0

1
∆t(D(t+ ∆t,x0) − D(t,x0))DT(t,x0)

using condition (2):

= lim
∆t→0

1
∆t(D(∆t,D(t,x0)x0)D(t,x0) − D(t,x0))DT(t,x0)

= lim
∆t→0

1
∆t(D(∆t,D(t,x0)x0) − I)D(t,x0)DT(t,x0)

= ∂

∂t
D(t,x)

∣∣∣∣
t=0

.

(2.16)

holds. By using (2.14), it is immediately clear that W is skew-symmetric, because
∂

∂t

(
DDT

)
=
(
∂

∂t
D
)

DT + D
(
∂

∂t
DT

)
= 0 (2.17)

or (
∂

∂t
D
)

DT = −D
(
∂

∂t
DT

)
. (2.18)

A skew-symmetric matrix W generally has the form

W(x) =


0 −ω3(x) ω2(x)

ω3(x) 0 −ω1(x)
−ω2(x) ω1(x) 0

 (2.19)

and thus the differential equation (2.15) can be written as follows

ẋ = Wx = w(x) × x (2.20)

with wT(x) = [ω1(x), ω2(x), ω3(x)]. This means that when a dynamical system describes
the motion of a point on a sphere, the differential notation yields the cross product.

2.1 Differential Equations
By a dynamical system according to Definition 2.1, a system of differential equations is
defined. The investigation of when a differential equation of the form

ẋ = f(x) (2.21)

describes a dynamical system in the above sense will be examined subsequently. However,
in a first step, some basic concepts will be explained.
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Definition 2.2 (Linear Vector Space). A non-empty set X is called a linear vector
space over a (scalar) field K with the binary operations + : X × X → X (addition)
and · : K × X → X (scalar multiplication), if the following vector space axioms are
satisfied:

(1) The set X with the operation + forms a commutative group, i.e., for x, y, z ∈ X ,
the following holds:

(1) x + y = y + x Commutativity (2.22)
(2) x + (y + z) = (x + y) + z Associativity (2.23)
(3) 0 + x = x Identity element (2.24)
(4) x + (−x) = 0 Inverse element (2.25)

(2) The multiplication · by a scalar a, b ∈ K satisfies the laws:

(1) a(x + y) = ax + ay Distributivity (2.26)
(2) (a+ b)x = ax + bx Distrivutivity (2.27)
(3) (ab)x = a(bx) Compativility (2.28)
(4) 1x = x, 0x = 0 (2.29)

Definition 2.3 (Linear Subspace). If X is a linear vector space over the field K,
then a subset S of X is a linear subspace if x, y ∈ S ⇒ ax + by ∈ S for all scalars a,
b ∈ K.
An expression of the form

n∑
j=1

ajxj = a1x1 + a2x2 + . . .+ anxn (2.30)

with X ∋ xj , j = 1, . . . , n and scalars K ∋ aj , j = 1, . . . , n is called a linear combination of
the vectors x1,x2, . . . ,xn ∈ X . If there exist scalars aj , j = 1, . . . , n, not all identically zero,
such that the linear combination

n∑
j=1

ajxj = 0 holds, then the vectors x1,x2, . . . ,xn ∈ X
are linearly dependent. If apart from the trivial solution aj = 0, j = 1, . . . , n, no scalars
exist that satisfy this condition, then the vectors x1,x2, . . . ,xn ∈ X are called linearly
independent. For the set of all linear combinations of vectors in a non-empty subset M of
X , we denote span(M). The subspace spanned by M (also known as linear hull) is the
smallest subspace according to Definition 2.3 that contains M, i.e., all its elements can
be represented as linear combinations of elements from M.

If a linear vector space X is spanned by a finite number n of linearly independent
vectors, then X has dimension n and is called finite-dimensional. If no finite number
exists, X is infinite-dimensional.
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2.1.1 The Concept of Norms
Examples of linear vector spaces include vectors in Rn, n × m-dimensional real-valued
matrices, or complex numbers, each with the scalar field R.

Definition 2.4 (Normed Linear Vector Space). A normed linear vector space is a
vector space X over a scalar field K with a real-valued function ∥x∥ : X → R+ that
assigns to each x ∈ X a real number ∥x∥, called the norm of x, and satisfies the
following norm axioms:

(1)∥x∥ ≥ 0 for all x ∈ X Non-negativity (2.31)
(2)∥x∥ = 0 ⇔ x = 0 (2.32)
(3)∥x + y∥ ≤ ∥x∥ + ∥y∥ Triangle Inequality (2.33)
(4)∥αx∥ = |α|∥x∥ for all x ∈ X and all α ∈ K (2.34)

Exercise 2.4. Show that from the norm axioms it follows that ∥x − y∥ ≥ ∥x∥ − ∥y∥.

Next, we consider some classical normed vector spaces, distinguishing between finite
and infinite-dimensional vector spaces. The p-norm, 1 ≤ p < ∞, of a finite-dimensinal
vector xT = [x1, . . . , xn] is defined as

∥x∥p =
(

n∑
i=1

|xi|p
)1/p

(2.35)

and for p = ∞ we have

∥x∥∞ = max
i

|xi| . (2.36)

In addition to the ∞-norm ("infinity norm") according to (2.36), the most commonly used
norms on Rn are the 1-norm ("one norm")

∥x∥1 =
n∑
i=1

|xi| (2.37)

and the 2-norm ("square norm" or "Euclidean norm")

∥x∥2 =
(

n∑
i=1

x2
i

)1/2

. (2.38)

The following inequalities hold:

Theorem 2.1 (Hölder’s Inequality). If the relationship

1
p

+ 1
q

= 1 (2.39)

holds for positive numbers 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, then for xT = [x1, . . . , xn] and
yT = [y1, . . . , yn], the inequality

n∑
i=1

|xiyi| ≤ ∥x∥p∥y∥q . (2.40)
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follows.

Theorem 2.2 (Minkowski’s Inequality). For x, y ∈ Rn, 1 ≤ p ≤ ∞, we have

∥x + y∥p ≤ ∥x∥p + ∥y∥p . (2.41)

The equality in (2.41) holds if and only if ax = by for positive constants a and b.

Note that Minkowski’s inequality corresponds to the triangle inequality (3) for norms
in Definition 2.4.

In a finite-dimensional normed vector space, all norms are equivalent. This means that if
∥ ∥α and ∥ ∥β denote two different norms, there always exist two constants 0 < c1, c2 < ∞
such that

c1∥ ∥α ≤ ∥ ∥β ≤ c2∥ ∥α (2.42)

holds.
Exercise 2.5. Prove the statement that in a finite-dimensional vector space, all p-norms
are equivalent.

Exercise 2.6. Show that the equivalence of norms (∥ ∥α ∼ ∥ ∥β) is an equivalence
relation.

Remark: You need to prove the properties of reflexivity (∥ ∥α ∼ ∥ ∥α),
symmetry (∥ ∥α ∼ ∥ ∥β ⇒ ∥ ∥β ∼ ∥ ∥α), and transitivity (∥ ∥α ∼ ∥ ∥β and
∥ ∥β ∼ ∥ ∥γ ⇒ ∥ ∥α ∼ ∥ ∥γ).

Exercise 2.7. Draw in the (x1, x2)-plane the sets M1 =
{
x ∈ R2|∥x∥1 ≤1

}
, M2 ={

x ∈ R2|∥x∥2 ≤1
}
, and M∞ =

{
x ∈ R2|∥x∥∞ ≤1

}
. Verify the inequality

∥x∥2 ≤ ∥x∥1 ≤
√

2∥x∥2 (2.43)

using the image and find suitable positive constants c1 and c2 for the inequality

c1∥x∥2 ≤ ∥x∥∞ ≤ c2∥x∥2 . (2.44)

The equivalence of norms does not hold for infinite-dimensional normed vector spaces.
In the infinite-dimensional vector space Lp[t0, t1], 1 ≤ p < ∞, all real-valued functions
x(t) in the interval [t0, t1] are considered, satisfying

∥x∥p =
(∫ t1

t0
|x(t)|p dt

)1/p
< ∞ . (2.45)

It is important to note that in the vector space Lp[t0, t1], functions that are almost
everywhere equal, meaning they differ only on a countable set of points, are considered
identical. This is the reason why the norm ∥x∥p in (2.45) satisfies condition (2) of
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Definition 2.4. The vector space L∞[t0, t1] describes all real-valued functions x(t) that
are essentially bounded on the interval [t0, t1], i.e., bounded except on a countable set of
points. The corresponding norm is then ∥x∥∞ = ess supt0≤t≤t1 |x(t)|. Hölder’s inequality
for the Lp spaces is as follows (see Theorem 2.1):

Theorem 2.3 (Hölder’s Inequality for Lp Spaces). For x(t) ∈ Lp[t0, t1] and y(t) ∈
Lq[t0, t1] with p > 1,

1
p

+ 1
q

= 1 (2.46)

holds ∫ t1

t0
|x(t)y(t)| dt ≤ ∥x∥p∥y∥q . (2.47)

The Minkowski Inequality for Lp Spaces corresponds to the triangle inequality (3)
according to the norm definition 2.4 and is therefore not repeated here.

The common norms here are the L1, L2, and the L∞ norms and are briefly summarized
below.

∥x∥1 =
∫ t1

t0
|x(t)| dt , (2.48a)

∥x∥2 =
√∫ t1

t0
x2(t) dt , (2.48b)

∥x∥∞ = ess sup
t0≤t≤t1

|x(t)| . (2.48c)

It is easy to see that for the function

x(t) =
{

1/t for t ≥ 1
0 for t < 1

(2.49)

the L1, L2, and L∞ norms can be calculated as follows

∥x∥1 = ∞ , (2.50a)
∥x∥2 = 1 , (2.50b)

∥x∥∞ = 1 (2.50c)

and thus the existence of one norm does not imply the existence of other norms.

Exercise 2.8. Calculate the L1, L2, and L∞ norms for the time functions x(t) = sin(t),
x(t) = 1 − exp(−t), and x(t) = 1/ 3√t for 0 ≤ t ≤ ∞.

Regarding the equivalence of norms, the following definition of topologically equivalent
normed vector spaces should be mentioned:
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Definition 2.5. Let (X , ∥ ∥X ) and
(
Y, ∥ ∥Y

)
be two normed linear vector spaces.

Now, X and Y are called topologically isomorphic if there exists a bijective linear
mapping T : X → Y and positive real constants c1 and c2 such that

c1∥x∥X ≤ ∥Tx∥Y ≤ c2∥x∥X (2.51)

for all x ∈ X . The norms ∥ ∥X and ∥ ∥Y are then also called equivalent.

Finally, it should be noted that norms of finite and infinite-dimensional vector spaces
can also be combined. For example, consider the vector space Cn[t0, t1], the set of all
vector-valued continuous time functions mapping the interval [t0, t1] to Rn. If a norm of
the form

∥x(t)∥C = sup
t∈[t0,t1]

∥x(t)∥2

= sup
t∈[t0,t1]

(
n∑
i=1

x2
i (t)

)1/2

,
(2.52)

is defined, then ∥ ∥2 provides a norm on Rn with an n-dimensional vector as the argument,
while ∥ ∥C denotes the norm on Cn[t0, t1] with a vector-valued time function as the
argument.

Exercise 2.9. Prove that ∥x(t)∥C from (2.50) is a norm.

2.1.2 Induced Matrix Norm
A real-valued (m× n) matrix A describes a linear mapping from Rn to Rm. Assuming
∥x∥p denotes a valid norm, one defines the so-called induced p-norm as follows:

∥A∥i,p = sup
x̸=0

∥Ax∥p
∥x∥p

. (2.53)

It is immediately clear that the following inequality holds for x ̸= 0:

∥Ax∥p =
∥Ax∥p
∥x∥p

∥x∥p ≤ sup
x̸=0

∥Ax∥p
∥x∥p

∥x∥p = ∥A∥i,p∥x∥p. (2.54)

For p = 1, 2, ∞, we have:

∥A∥i,1 = max
j

m∑
i=1

|aij |︸ ︷︷ ︸
maximum absolute column sum

, ∥A∥i,2 =
√
λmax(ATA) und ∥A∥i,∞ = max

i

n∑
j=1

|aij |︸ ︷︷ ︸
maximum absolute row sum

,

(2.55)
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where λmax(ATA) denotes the largest eigenvalue of ATA (largest singular value of A).
For example, if we consider the matrix:

A =


1 2 3
4 6 5
9 7 8

 , (2.56)

the induced norms can be calculated as (in Matlab using the commands norm(A,1),
norm(A), and norm(A,inf):

∥A∥i,1 = 16 , (2.57a)
∥A∥i,2 = 16.708 , (2.57b)

∥A∥i,∞ = 24 . (2.57c)

Exercise 2.10. Prove that for A ∈ Rm×n and B ∈ Rn×l with the induced matrix
norm ∥ ∥i,p, the following holds:

∥AB∥i,p ≤ ∥A∥i,p∥B∥i,p . (2.58)

Exercise 2.11. Show that for A ∈ Rm×n, the following inequalities hold:

∥A∥i,2 ≤
√

∥A∥i,1∥A∥i,∞
1√
n

∥A∥i,∞ ≤ ∥A∥i,2 ≤ √
m∥A∥i,∞

1√
m

∥A∥i,1 ≤ ∥A∥i,2 ≤ √
n∥A∥i,1

(2.59)

Using the so-called Rayleigh quotient, a convenient estimate of quadratic forms can be
given. The Rayleigh quotient of a real-valued (complex-valued) (n× n) matrix A with
any nontrivial vector x is defined as:

R[x] = xTAx
xTx . (2.60)

It is important to note that in the complex case, xT refers to the transposed, complex
conjugate. We want to find the vector x for which the Rayleigh quotient attains extreme
values, i.e., (

∂

∂xR[x]
)T

= 2Ax
xTx − xTAx

(xTx)2 2x = 2
xTx(Ax −R[x]x) = 0 . (2.61)

Since the Rayleigh quotient is real, the extremal value problem reduces to solving an
eigenvalue problem of the form:

(A −R[x]I)x = 0 (2.62)

with the identity matrix I.
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Therefore, the eigenvectors of A are solutions to the extremal value problem of the
Rayleigh quotient (2.61), and with x as an eigenvector of A, the Rayleigh quotient R[x]
corresponds to the associated eigenvalue λ due to:

R[x] = xTAx
xTx = λxTx

xTx = λ (2.63)

This allows us to provide the following useful estimation for all x ∈ Rn:

λmin(A)∥x∥2
2 ≤ xTAx ≤ λmax(A)∥x∥2

2 (2.64)

Exercise 2.12. Show that every square matrix A can be decomposed into a symmetric
part As and a skew-symmetric part Ass. Furthermore, show that in the quadratic
form xTAx, the skew-symmetric part of the matrix A cancels out.

Exercise 2.13. Use the Rayleigh quotient to show that a symmetric matrix A ∈ Rn×n

has exclusively real eigenvalues and a positive definite matrix A ∈ Rn×n has exclusively
positive real eigenvalues.

2.1.3 Banach Space
In the following, we will consider convergence in normed vector spaces.

Definition 2.6 (Convergence). A sequence of points (xk) in a normed linear vector
space (X , ∥ ∥) with xk ∈ X is called convergent to a limit x ∈ X (in compact
notation xk → x) if

lim
k→∞

∥xk − x∥ = 0 (2.65)

holds. Furthermore, for a continuous function f(x), it holds that if xk → x, then
f(xk) → f(x).

The above definition allows to investigate whether a given sequence converges to a
given limit or not. However, this requires knowledge of the limit, which is generally not
available. Therefore, one often resorts to the concept of a Cauchy sequence.

Definition 2.7 (Cauchy Sequence). A sequence (xk) with xk ∈ X is called a Cauchy
sequence if

lim
n,m→∞∥xn − xm∥ = 0 (2.66)

holds.
The relationship between convergent sequences and Cauchy sequences is characterized

by the following theorem.
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Theorem 2.4 (Cauchy Sequence). Every convergent sequence is a Cauchy sequence.
However, the converse does not generally hold in normed vector spaces.

To illustrate this theorem, consider X = C[0, 1], i.e., the sequence of continuous functions
{xk(t)}, k = 2, 3, . . . in the interval 0 ≤ t ≤ 1, of the form

xk(t) =


0 for 0 ≤ t ≤ 1

2 − 1
k

kt− k
2 + 1 for 1

2 − 1
k < t ≤ 1

2
1 for 1

2 < t ≤ 1 .
(2.67)

Choosing the L2 norm for {xk(t)} ⊂ C[0, 1],

∥x∥2 =

 1∫
0

x2(t) dt

1/2

, (2.68)

immediately leads to

∥xm − xn∥2
2 =

∫ 1
2 − 1

n

1
2 − 1

m

(
mt− m

2 + 1
)2

dt+
∫ 1

2

1
2 − 1

n

(
mt− m

2 − nt+ n

2

)2
dt

= (m− n)2

3n2m

(2.69)

for n > m, and

lim
n,m→∞∥xm − xn∥2

2 = 0 . (2.70)

Thus, it can be seen that the sequence (2.67) is a Cauchy sequence for the L2 norm.
However, for the limit function, we have

lim
k→∞

xk(t) = x(t) =
{

0 for 0 ≤ t < 1
2

1 for 1
2 < t ≤ 1 .

(2.71)

This shows that the limit function x(t) is not continuous and therefore not an element of
C[0, 1].

Exercise 2.14. Draw a plot of the sequence (2.67).

Since it is generally of interest that the limit of Cauchy sequences in a normed linear
vector space also lies in this vector space, the concept of a Banach space is introduced.

Definition 2.8 (Banach space). A normed linear vector space (X , ∥ ∥) is called
complete if every Cauchy sequence converges to an element x ∈ X . A complete,
normed vector space is also called a Banach space.
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Theorem 2.5 (Cauchy convergence criterion). In a complete, normed vector space, a
sequence converges if and only if it is a Cauchy sequence.

The normed linear vector spaces (Rn, ∥ ∥p), (Rn, ∥ ∥∞), Lp[t0, t1], and L∞[t0, t1] are
examples of Banach spaces. Furthermore, it can be shown that C[0, 1] with the norm
∥ ∥∞ is also a Banach space.

For the following, some important definitions are needed:

Definition 2.9 (Closed subset). A subset S ⊂ X is called closed if for every convergent
sequence (xk) with xk ∈ S , the limit also lies in S. If S is not closed, one can add to
S the set of all possible limits of convergent sequences in S, and this set is called the
closure of S denoted by S̄. Thus, S̄ is the smallest closed subset containing S.

Definition 2.10 (Bounded subset). A subset S ⊂ X is bounded if

sup
x∈S̄

∥x∥X < ∞ . (2.72)

Definition 2.11 (Compact subset). A subset S ⊂ X is called compact or relatively
compact if every sequence in S or S̄ contains a convergent subsequence with the limit
in S or S̄.
The following theorems hold for subspaces of a Banach space:

Theorem 2.6. In a Banach space, a subset is complete if and only if it is closed.

Theorem 2.7. In a normed linear vector space, every finite-dimensional subspace is
complete.

Next, consider an equation of the form x = T (x). A solution x∗ of this equation is
called a fixed point of the mapping T , since x∗ is invariant under T . A classical approach
to finding the fixed point is the so-called successive approximation using the recurrence
equation xk+1 = T (xk) with the initial value x0. The contraction mapping theorem
provides sufficient conditions for the existence of a unique fixed point for the mapping T
in a Banach space and for the convergence of the successive approximation sequence to
this fixed point.

Theorem 2.8 (Contraction Theorem). Let S be a non-empty closed subset of a
Banach space X with the mapping T : S → S. If for all x, y ∈ S the inequality

∥T (x) − T (y)∥ ≤ ρ∥x − y∥ , 0 ≤ ρ < 1 , (2.73)

holds, then the equation

x = T (x) (2.74)
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has exactly one fixed point solution x = x∗, and the sequence xk+1 = T (xk) converges
for every initial value x0 ∈ S to x∗. In this case, T is called a contraction.

The following exercise demonstrates a simple application of the Contraction Theorem.

Exercise 2.15. Consider a linear system of equations of the form

Ax = b (2.75)

with a real-valued (n× n) matrix A. Suppose

|aii| >
∑
j ̸=i

|aij | . (2.76)

Show that the equation system Ax = b has a unique solution, which can be computed
using the recurrence equation

Dxk+1 = (D − A)xk + b , k ≥ 0 , D = diag(a11, a22, . . . , ann) (2.77)

for every x0 ∈ Rn.

2.1.4 Hilbert Space
A so-called pre-Hilbert space is a linear vector space X equipped with an inner product.

Definition 2.12 (Pre-Hilbert Space). Let X be a linear vector space over the scalar
field K. A mapping ⟨x, y⟩ : X × X → K, which assigns to each pair of elements x,
y ∈ X a scalar, is called an inner product if it satisfies the following conditions:

(1)⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ (Sesquilinear form)
(2)⟨x,y⟩ = ⟨y,x⟩∗

(3)⟨ax,y⟩ = a⟨x,y⟩
(4)⟨x,x⟩ ≥ 0 und ⟨x,x⟩ = 0 ⇔ x = 0

(2.78)

where ⟨y,x⟩∗ denotes the complex conjugate of ⟨y,x⟩ and a ∈ K.

Examples of vector spaces with an inner product include vectors in Rn with

⟨x,y⟩ = yTx (2.79)

or the vector space of continuous time functions on the interval −1 ≤ t ≤ 1 with the inner
product

⟨x, y⟩ =
∫ 1

−1
y(τ)x(τ) dτ . (2.80)

As the examples show, the inner product also defines the specific norm

∥x∥2 =
√

⟨x,x⟩ . (2.81)

To generalize this property, the following theorem is needed.
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Theorem 2.9 (Cauchy-Schwarz Inequality). For all x, y, elements of a linear vector
space X with scalar field K and an inner product, the following inequality holds:

|⟨x,y⟩| ≤ ∥x∥2∥y∥2 . (2.82)

The equality in (2.82) is satisfied if and only if x = λy or y = 0.

Proof. To prove this, consider the inequality valid for all a ∈ K:

0 ≤ ⟨x − ay,x − ay⟩
= ⟨x,x⟩ − ⟨ay,x⟩ − ⟨x, ay⟩︸ ︷︷ ︸

=⟨ay,x⟩∗=a∗⟨y,x⟩∗

+|a|2⟨y,y⟩ (2.83)

with y ̸= 0. Choosing

a = ⟨x,y⟩
⟨y,y⟩ , (2.84)

it follows

0 ≤ ⟨x,x⟩ − ∥⟨x,y⟩∥2

⟨y,y⟩ (2.85)

or

|⟨x,y⟩| ≤
√

⟨x,x⟩⟨y,y⟩ = ∥x∥2∥y∥2 . (2.86)

For y = 0, nothing needs to be shown.

Theorem 2.10 (Associated Norm in Pre-Hilbert Spaces). In a pre-Hilbert space X ,
the inner product induces a function ∥x∥2 =

√
⟨x,x⟩ that is a norm according to the

definition in 2.4.

In a pre-Hilbert space, there are other useful properties:

Theorem 2.11. In a pre-Hilbert space X , if ⟨x,y⟩ = 0 for all x ∈ X , then y = 0.

Exercise 2.16. Prove Theorem 2.11.

Theorem 2.12 (Parallelogram Equation). In a pre-Hilbert space X , the following
equation holds:

∥x + y∥2
2 + ∥x − y∥2

2 = 2∥x∥2
2 + 2∥y∥2

2 . (2.87)

Exercise 2.17. Prove Theorem 2.12.
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Definition 2.13 (Hilbert Space). A complete pre-Hilbert space is called a Hilbert
space.

Therefore, a Hilbert space is a Banach space equipped with an inner product that,
according to Theorem 2.10, induces a norm. The spaces (Rn, ∥ ∥2)) and L2[t0, t1] are
Hilbert spaces with inner products

⟨x,y⟩ = yTx (2.88)

for xT = [x1, . . . , xn] and yT = [y1, . . . , yn], and

⟨x, y⟩L2[t0,t1] =
∫ t1

t0
x(t)y∗(t) dt (2.89)

for x, y ∈ L2[t0, t1]. It is important to note that in this case, the Cauchy-Schwarz inequality
(2.82) corresponds to Hölder’s inequality (2.40) or (2.47) for p = q = 2.

2.1.5 Existence and Uniqueness
The solution of a differential equation does not have to be unique. To see this, consider
the differential equation

ẋ = x1/3 , x0 = 0 . (2.90)

It is easy to verify that

x(t) = 0 , (2.91a)

x(t) =
(2t

3

)3/2
(2.91b)

are solutions of (2.90). Although the right-hand side of the differential equation is
continuous, the solution is not unique. In fact, continuity guarantees the existence
of a solution, but further conditions are needed for uniqueness. In the following, the
time-varying system

ẋ = f(t,x) , x(t0) = x0 (2.92)

is examined, as this also covers the non-autonomous case.

Theorem 2.13 (Local Existence and Uniqueness). Let f(t,x) be piecewise continuous
in t and satisfy the estimate (Lipschitz condition)

∥f(t,x) − f(t,y)∥ ≤ L∥x − y∥ , 0 < L < ∞ (2.93)

for all x, y ∈ B = {x ∈ Rn | ∥x − x0∥ ≤ r} and all t ∈ [t0, t0 + τ ]. Then there exists
a δ > 0 such that

ẋ = f(t,x) , x(t0) = x0 (2.94)

has exactly one solution for t ∈ [t0, t0 + δ]. In this case, the function f(t,x) is said to
be locally Lipschitz on B ⊂ Rn. If condition (2.93) holds in the entire Rn, then the
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function f(t,x) is called globally Lipschitz.

Proof. The proof of this theorem is based on the contraction theorem according to
Theorem 2.8. In a first step, the Banach space X = Cn[t0, t0 + δ] of all vector-valued
continuous time functions in the time interval [t0, t0 + δ] is defined with the norm
∥x(t)∥C = supt∈[t0,t0+δ]∥x(t)∥. For further explanation, see also (2.52). Furthermore,
the differential equation (2.94) is transformed into an equivalent integral equation of
the form

(Px)(t) = x0 +
t∫

t0

f(τ,x(τ)) dτ (2.95)

Within the proof, it is then shown that the mapping P on the closed subset S ⊂ X
with S = {x ∈ Cn[t0, t0 + δ] | ∥x − x0∥C ≤ r} is a contraction and that P maps the
subset S to itself. To do this, one calculates

(Px1)(t) − (Px2)(t) =
t∫

t0

f(τ,x1(τ)) dτ −
t∫

t0

f(τ,x2(τ)) dτ (2.96)

for x1(t), x2(t) ∈ S.
It now holds that

∥(Px1)(t) − (Px2)(t)∥C =

∥∥∥∥∥∥
t∫

t0

(f(τ,x1(τ)) − f(τ,x2(τ))) dτ

∥∥∥∥∥∥
C

≤
t∫

t0

∥f(τ,x1(τ)) − f(τ,x2(τ))∥C dτ

≤
t∫

t0

L∥x1(τ) − x2(τ)∥C dτ

≤ Lδ∥x1(t) − x2(t)∥C ,

(2.97)

and by choosing

δ ≤ ρ/L , ρ < 1 , (2.98)

and with (2.98), Theorem 2.8 shows that P is a contraction on S. In the next step,
it must be proven that the mapping P maps the subset S ⊂ X to itself. Since f is
piecewise continuous, it follows that f(t,x0) is bounded on the interval [t0, t0 + δ],
hence

h = max
t∈[t0,t0+δ]

∥f(t,x0)∥ . (2.99)
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This results in

∥(Px)(t) − x0∥C ≤
t∫

t0

∥f(τ,x(τ))∥C dτ

≤
t∫

t0

∥f(τ,x(τ)) − f(τ,x0) + f(τ,x0)∥C dτ

≤
t∫

t0

(∥f(τ,x(τ)) − f(τ,x0)∥C + ∥f(τ,x0)∥C) dτ

≤
t∫

t0

(L∥x(τ) − x0∥C + h) dτ

≤ δ(Lr + h) .

(2.100)

Choosing

δ ≤ r

Lr + h
, (2.101)

ensures that S is mapped onto itself under P . Combining (2.98) and (2.101) and
choosing δ to be less than or equal to the considered time interval τ from Theorem
2.13,

δ = min
(
ρ

L
,

r

Lr + h
, τ

)
, ρ < 1 , (2.102)

the existence and uniqueness of the solution in S for t ∈ [t0, t0+δ] is thus demonstrated.

Since the mapping P from (2.95) is a contraction, it follows from Theorem 2.8 that the
sequence xk+1 = Pxk with x0 = x(t0) converges to the unique solution of the integral
equation (2.95) or the equivalent differential equation (2.94). This method is also known
as the Picard iteration method.

Exercise 2.18. Show that for linear, time-invariant systems of the form

ẋ = Ax , x(t0) = x0 , (2.103)

the Picard iteration method precisely iteratively calculates the transition matrix
Φ(t) = eAt.

Exercise 2.19. Calculate, using the Picard iteration method, the transition matrix of
a linear, time-varying system of the form

ẋ = A(t)x , x(t0) = x0 . (2.104)

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



2.1 Differential Equations Page 39

Remark: The transition matrix of (2.104) is calculated from the Peano-Baker series
as

Φ(t) = I +
t∫

0

A(τ) dτ +
t∫

0

A(τ)
τ∫

0

A(τ1) dτ1 dτ + . . . (2.105)

For a scalar function f(x) : R → R that does not explicitly depend on time t, the
Lipschitz condition (2.93) can be written very simply as

|f(y) − f(x)|
|y − x| ≤ L (2.106)

The condition (2.106) allows a very simple graphical interpretation, namely the function
f(x) must not have a slope greater than L. Therefore, functions f(x) that have an infinite
slope at a point (like the function x1/3 from (2.90) at the point x = 0) are certainly
not locally Lipschitz. This also implies that discontinuous functions f(x) do not satisfy
the Lipschitz condition (2.93) at the point of discontinuity. This connection between
the Lipschitz condition and the boundedness of

∣∣∣ ∂∂xf(x)
∣∣∣ is generalized in the following

theorem without proof:

Theorem 2.14 (Lipschitz condition and continuity). If the functions f(t,x) from
(2.92) and [∂f/∂x](t,x) are continuous on the set [t0, t0 + δ] ×B with B ⊂ Rn, then
f(t,x) locally satisfies the Lipschitz condition of (2.93).

To verify the global existence and uniqueness of a differential equation of type (2.92),
the following theorem is provided:

Theorem 2.15 (Global Existence and Uniqueness). Assume that the function f(t,x)
from (2.92) is piecewise continuous in t and globally Lipschitz for all t ∈ [t0, t0 + τ ]
according to Theorem 2.13. Then the differential equation (2.92) has a unique solution
in the time interval t ∈ [t0, t0 +τ ]. If the function f(t,x) from (2.92) and [∂f/∂x](t,x)
are continuous on the set [t0, t0 + τ ] ×Rn, then f(t,x) is globally Lipschitz if and only
if [∂f/∂x](t,x) on [t0, t0 + τ ] ×Rn is uniformly bounded.

To explain, [∂f/∂x](t,x) is uniformly bounded if, independently of t0 ≥ 0, for every
positive, finite constant a, there exists a β(a) > 0 independent of t0 such that∥∥∥∥ ∂f

∂x(t0,x(t0))
∥∥∥∥
i

≤ a ⇒
∥∥∥∥ ∂f
∂x(t,x(t))

∥∥∥∥
i

≤ β(a) (2.107)

with ∥ ∥i denoting the induced norm according to (2.53) for all t ∈ [t0, t0 + τ ] and all
x ∈ Rn.

The proofs of the last two theorems can be found in the literature cited at the end of
this chapter. As an example, consider the system[

ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=
[
−x1 + x1x2

x2 − x1x2

]
︸ ︷︷ ︸

f(x)

. (2.108)
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From Theorem 2.14, it can be immediately concluded that f(x) from (2.108) is locally
Lipschitz on R2. However, the application of Theorem 2.15 shows that f(x) is not globally
Lipschitz, since ∂f/∂x on R2 is not uniformly bounded.

In summary, it can be stated that the mathematical models of most physical systems in
the form of (2.92) are locally Lipschitz, as this essentially corresponds to a requirement of
continuous differentiability of the right-hand side, as stated in Theorem 2.14. In contrast,
the global Lipschitz condition is very restrictive and is satisfied by only a few physical
systems, as was already hinted at by the requirement for the uniform boundedness of
[∂f/∂x](t,x).

Exercise 2.20. Check for the following functions

(1) f(x) = x2 + |x| (2.109)
(2) f(x) = sin(x) sgn(x) (2.110)
(3) f(x) = tan(x) (2.111)

and

f(x) =
[
ax1 + tanh(bx1) − tanh(bx2)
ax2 + tanh(bx1) + tanh(bx2)

]
(2.112)

and

f(x) =
[

−x1 + a∥x2∥
−(a+ b)x1 + bx2

1 − x1x2

]
, (2.113)

whether they are (a) continuous, (b) continuously differentiable, (c) locally Lipschitz,
and (d) globally Lipschitz.

Exercise 2.21. Show that the system[
ẋ1

ẋ2

]
=

−x1 + 2x2
1+x2

2

−x2 + 2x1
1+x2

1

 , x(t0) = x0 (2.114)

has a unique solution for all t ≥ t0.

2.1.6 Influence of Parameters
Often one wants to investigate the influence of parameters on the solution of a differential
equation of the form

ẋ = f(t,x,p) , x(t0) = x0 (2.115)

with the parameter vector p ∈ Rd. Let p0 denote the nominal value of the parameter
vector p.
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Theorem 2.16 (Influence of Parameters). Assume that f(t,x,p) is continuous in
(t,x,p) and locally Lipschitz in x (Lipschitz condition (2.93)) on [t0, t0 + τ ]×D×{p|
∥p − p0∥ ≤ r} with D ⊂ Rn. Furthermore, let y(t,p0) be a solution of the differential
equation ẏ = f(t,y,p0) with the initial value y(t0,p0) = y0 ∈ D, where the solution
y(t,p0) remains in D for all times t ∈ [t0, t0 + τ ]. Then, for a given ε > 0, there
exist δ1, δ2 > 0 such that for

∥z0 − y0∥ < δ1 und ∥p − p0∥ < δ2 (2.116)

the differential equation ż = f(t, z,p) with the initial value z(t0,p) = z0 has a unique
solution z(t,p) for all times t ∈ [t0, t0 + τ ] and z(t,p) satisfies the condition

∥z(t,p) − y(t,p0)∥ < ε (2.117)

For the proof of this theorem, we refer to the literature cited at the end of this chapter.
In essence, this theorem states that for all parameters p sufficiently close to the nominal
value p0 (∥p − p0∥ < δ2), the differential equation (2.115) has a unique solution that is
very close to the nominal solution of the differential equation ẋ = f(t,x,p0), x(t0) = x0.

Assuming that f(t,x,p) satisfies the conditions of Theorem 2.16 and has continuous
first partial derivatives with respect to x and p for all (t,x,p) ∈ [t0, t0 + τ ] ×Rn ×Rd.
The differential equation (2.115) can now be rewritten into an equivalent integral equation
of the form

x(t,p) = x0 +
∫ t

t0
f(s,x(s,p),p) ds (2.118)

Due to the continuous differentiability of f(t,x,p) with respect to x and p, we have

d
dpx(t,p) = d

dpx0︸ ︷︷ ︸
=0

+
∫ t

t0

∂

∂xf(s,x(s,p),p) d
dpx(s,p) + ∂

∂pf(s,x(s,p),p) ds . (2.119)

Differentiating (2.119) with respect to t, we obtain

d
dtxp(t,p) = A(t,p)xp(t,p) + B(t,p) , xp(t0,p) = 0 (2.120)

and

xp(t,p) = d
dpx(t,p) , (2.121a)

A(t,p) = ∂

∂xf(t,x,p)
∣∣∣∣
x=x(t,p)

, (2.121b)

B(t,p) = ∂

∂pf(t,x,p)
∣∣∣∣
x=x(t,p)

. (2.121c)

For parameters p sufficiently close to the nominal value p0, the matrices A(t,p) and
B(t,p), and thus xp(t,p), are well-defined on the time interval [t0, t0 + τ ]. Substituting
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p = p0 into xp(t,p) yields the so-called sensitivity function

S(t) = xp(t,p0) = d
dpx(t,p)

∣∣∣∣
p=p0

(2.122)

which is the solution of the differential equation (compare with (2.120))

ẋ = f(t,x,p0) , (2.123a)
x(t0) = x0 , (2.123b)

Ṡ =
[
∂

∂xf(t,x,p)
]

p=p0

S +
[
∂

∂pf(t,x,p)
]

p=p0

, (2.123c)

S(t0) = 0 . (2.123d)

The matrix differential equation for S(t) is also referred to as the sensitivity equation. The
sensitivity function can be interpreted as providing a first-order approximation for the
effect of parameter variations on the solution. This allows for approximating the solution
x(t,p) of (2.115) for small changes in the parameter vector p from the nominal value p0
in the form

x(t,p) ≈ x(t,p0) + S(t)(p − p0) (2.124)

This approximation is, among other things, the basis for singular perturbation theory.
While one could imagine determining the effect of parameter variations by simply varying
the parameters in the differential equations, this approach has the disadvantage that small
parameter variations often get lost in the round-off errors of the integration, thus not
allowing for quantitative statements about the influence of parameters on the solution.

Exercise 2.22. The following differential equation system (Phase-Locked-Loop) is
given

ẋ1 = x2 (2.125)
ẋ2 = −c sin(x1) − (a+ b cos(x1))x2 (2.126)

with state xT = [x1, x2] and parameter vector pT = [a, b, c]. The nominal values of
the parameter vector p are p0 = [1, 0, 1]. The sensitivity function S(t) according
to (2.122) is sought. Compare the solutions for the nominal parameter vector p0
and for the parameter vector pT = [1.2,−0.2, 0.8] for xT

0 = [1, 1] by simulation in
Matlab/Simulink.

Exercise 2.23. Calculate the sensitivity equation for the Van der Pol oscillator

v̈ − ε
(
1 − v2

)
v̇ + v = 0 (2.127)

with state xT = [v, v̇] and parameter p = ε. Compare the solutions for various small
deviations from the nominal value ε0 = 0.01 by simulation in Matlab/Simulink.
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3 Fundamentals of Lyapunov Theory

This chapter covers the theoretical foundations for investigating the stability of an
equilibrium point for autonomous and non-autonomous nonlinear systems.

3.1 Autonomous Systems
In this section, we consider an autonomous system

ẋ = f(x) (3.1)

with the smooth vector field f(x). Denoting the flow of (3.1) by Φt(x), an equilibrium
point xR satisfies the relation

f(xR) = 0 or Φt(xR) = xR . (3.2)

Without loss of generality, we can assume that the equilibrium point is xR = 0. If xR ̸= 0,
then by a simple coordinate transformation x̃ = x − xR, one can always achieve that in
the new coordinates x̃R = 0. The concept of a vector field will now be briefly explained.

3.1.1 Vector Fields
An important concept in the study of (autonomous) systems of the form (3.1) is that
of a vector field, where so-called smooth vector fields are of particular significance. The
following definition applies:

Definition 3.1 (Smooth Function). A function f : Rn → R is called smooth or C∞

if f and all partial derivatives of any order l

∂l∏n
i=1 ∂

lixi
f(x1, . . . , xn),

n∑
i=1

li= l, li ≥ 0 (3.3)

are continuous.
This definition can now be easily extended to a mapping f : Rn → Rn by requiring that

all components fi, i = 1, . . . , n of f are smooth.

Definition 3.2 (Vector Field). A (smooth) vector field is a prescription that assigns
to each point x ∈ Rn the pair (x, f(x)) ∈ Rn × Rn through a (smooth) mapping
f : Rn → Rn.
Note that a vector field is not a mapping of the form Rn → Rn. A vector field assigns

a linear vector space Rn to each point x in Rn, where the specific coordinate system is
the image set of the mapping f(x). Often, the explicit indication of the first argument in
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(x, f(x)) is suppressed and simply written as f(x). However, if we have two vector fields
f1 : Rn → Rn and f2 : Rn → Rn, then they can only be added f1(x1) + f2(x2) if x1 = x2,
as otherwise f1 and f2 would lie in different vector spaces.

As an example, consider the electrostatic field of two fixed point charges q1 and q2 in
three-dimensional space. If q1 is located at position xT

q1 = [xq1,1, xq1,2, xq1,3], then to each
point xT = [x1, x2, x3] the field strength E1(x) is assigned in the form

E1(x) = q1
4πε0

(x − xq1)(
(xq1,1 − x1)2 + (xq1,2 − x2)2 + (xq1,3 − x3)2

)3/2 (3.4)

Analogously, charge q2 generates the field E2. Both vector fields can be superimposed,
and one obtains the force on a test charge q at position x as

F = qE1(x) + qE2(x) . (3.5)

Note that the sum qE1(x1) + qE2(x2) is not a meaningful operation for x1 ̸= x2. Figure
3.1 illustrates this fact.

q1 q2

E

E1E2

x

Figure 3.1: Illustration of the concept of a vector field using the example of the electric
field of two point charges.

For second-order systems of the type (3.1), the solution trajectories can be easily
obtained graphically by drawing the vector field fT(x) = [f1(x1, x2), f2(x1, x2)]. The
reason for this is that for a solution curve of (3.1) passing through the point xT = [x1, x2],
the vector field f(x) at point x is tangential to the solution curve.

Exercise 3.1. Draw the vector field for the system of differential equations

ẋ1 = x2 (3.6a)
ẋ2 = − sin(x1) − 1.5x2 . (3.6b)
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Remark: Use Maple and the command fieldplot for this purpose.

3.1.2 Stability of the Equilibrium
These prerequisites allow us to define the stability of an equilibrium point in the sense of
Lyapunov.

Definition 3.3 (Lyapunov Stability of Autonomous Systems). The equilibrium
xR = 0 of (3.1) is called stable (in the sense of Lyapunov) if for every ε > 0 there
exists δ(ε) > 0 such that

∥x0∥ < δ(ε) ⇒ ∥Φt(x0)∥ < ε (3.7)

holds for all t ≥ 0. Furthermore, the equilibrium xR = 0 of (3.1) is referred to as
attractive if there exists a positive real number η such that

∥x0∥ < η ⇒ lim
t→∞

Φt(x0) = 0 . (3.8)

If the equilibrium xR = 0 of (3.1) is stable and attractive, then it is also called
asymptotically stable.

The choice of norms ∥ ∥ in (3.7) and (3.8) is arbitrary, as shown in Section 2.1.1,
where it is demonstrated that in a finite-dimensional vector space, norms are topologically
equivalent. The distinction between stable and attractive in Definition 3.3 is important
because an attractive equilibrium may not necessarily be stable. An example of this is
given by the system

ẋ1 = x2
1(x2 − x1) + x5

2(
x2

1 + x2
2
)(

1 +
(
x2

1 + x2
2
)2) (3.9a)

ẋ2 = x2
2(x2 − 2x1)(

x2
1 + x2

2
)(

1 +
(
x2

1 + x2
2
)2) (3.9b)

with the vector field shown in Figure 3.2.

3.1.3 Direct (Second) Method of Lyapunov
Before discussing the direct method of Lyapunov, the physical idea behind this method
will be illustrated using the simple electrical system shown in Figure 3.3.

The network equations are

d
dt iL = 1

L
(−uC −R1iL) (3.10a)

d
dtuC = 1

C

(
iL − uC

R2

)
(3.10b)
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Figure 3.2: Vector field of an unstable but attractive point.

with the capacitor voltage uC and the current through the inductance iL. The energy
stored in the capacitance C and inductance L

V = 1
2Li

2
L + 1

2Cu
2
C (3.11)

is positive for all (uC , iL) ̸= (0,0) and its time derivative

d
dtV = −R1i

2
L − 1

R2
u2
C (3.12)

is negative for all (uC , iL) ̸= (0,0). By introducing the norm∥∥∥∥∥
[
uC

iL

]∥∥∥∥∥ =
√
Cu2

C + Li2L (3.13)

it can be shown from Definition 3.3 for δ = ε that the equilibrium uC = iL = 0 is stable
and attractive, hence asymptotically stable.

Exercise 3.2. Show that (3.13) is a norm.

In the context of Lyapunov theory, for nonlinear systems of type (3.1), the energy
function (3.11) is replaced by a function V with corresponding properties. For this purpose,
the following definition is introduced:
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R1

L

C

il

uc R2

Figure 3.3: Simple electrical system.

Definition 3.4 (Positive/Negative (Semi-)Definiteness). Let D ⊆ Rn be an open
neighborhood of 0. A function V (x) : D → R is called locally positive (negative)
definite if the following conditions are satisfied:

(1) V (x) is continuously differentiable,

(2) V (0) = 0, and

(3) V (x) > 0, (V (x) < 0) for x ∈ D − {0}.

If D = Rn and there exists a constant r > 0 such that

inf
∥x∥≥r

V (x) > 0
(

sup
∥x∥≥r

V (x) < 0
)

, (3.14)

then V (x) is called positive (negative) definite.
If V (x) in condition (3) satisfies only the following conditions:

(3) V (x) ≥ 0, (V (x) ≤ 0) for x ∈ D − {0},

then V (x) is called (locally) positive (negative) semidefinite.
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Exercise 3.3. Which of the following functions are positive (negative) (semi)definite?

V (x1, x2, x3) = x2
1 + x2

2 + 3x4
3 (3.15a)

V (x1, x2, x3) = −x2
1 − x4

2 − ax2
3 + x4

3, a > 0 (3.15b)
V (x1, x2, x3) = (x1 + x2)2 (3.15c)
V (x1, x2, x3) = x1 − 2x2 + x2

3 (3.15d)

V (x1, x2, x3) = x2
1 exp

(
−x2

1
)

+ x2
2 (3.15e)

In analogy to the electrical example in Figure 3.3, one now tries to construct a positive
definite function V (x) (corresponding to the energy function), the so-called Lyapunov
function, whose time derivative is negative definite. For the temporal change of V (x)
along a trajectory Φt(x0) of (3.1), the following holds:

d
dtV (Φt(x0)) = ∂

∂xV (Φt(x0)) d
dtΦt(x0)

= ∂

∂xV (x)f(x) .
(3.16)

Figure 3.4 illustrates this fact using the level sets V (x) = c for various positive constants
c.

x2

∂
∂xV (x)

x1

Φt(x0)
V (x) = c f(x)

Figure 3.4: Constructing a Lyapunov function.

Exercise 3.4. Show that for second-order systems, the level sets near the equilibrium
point are always ellipses. (This also justifies the choice of the schematic representation
in Figure 3.4.)
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Now we are able to formulate Lyapunov’s direct method:

Theorem 3.1 (Lyapunov’s Direct Method). Let xR = 0 be an equilibrium point
of (3.1) and D ⊆ Rn be an open neighborhood of 0. If there exists a function
V (x) : D → R such that V (x) is positive definite on D and V̇ (x) is negative
semidefinite on D, then the equilibrium point xR = 0 is stable. If V̇ (x) is even
negative definite, then the equilibrium point xR = 0 is asymptotically stable. The
function V (x) is then called a Lyapunov function.

The proof of this theorem is not provided here but can be found in the literature
referenced at the end. It should be noted at this point that using the level sets of Figure
3.4 can help illustrate the statement of Theorem 3.1.

Exercise 3.5. Consider an RLC network described by the following system of differ-
ential equations: [

ẋC
ẋL

]
=
[
C 0
0 L

]−1[
R11 R12

R21 R22

][
xC
xL

]
(3.17)

Here, xC denotes the vector of capacitor voltages and xL denotes the vector of
inductance currents. The diagonal matrix C contains all capacitor values, and the
positive definite matrix L consists of self and mutual inductances. The matrices R11
and R22 are symmetric, and R12 = −RT

21. Show that for negative definite matrices
R11 and R22, the equilibrium point xC = xL = 0 is asymptotically stable.

Remark: Use as a Lyapunov function the total energy stored in the energy
storage elements: V (xC ,xL) = 1

2xT
CCxC + 1

2xT
LLxL.

Note that the failure of a candidate for V (x) does not imply the instability of the
equilibrium point. In such a case, a different function V (x) must be chosen. However,
the existence of a Lyapunov function is always guaranteed if the equilibrium point is
stable in the Lyapunov sense, i.e., the main challenge is to find a suitable Lyapunov
function V (x). In most technical-physical applications, the Lyapunov function can be
obtained from physical considerations by considering the stored energy in the system as a
suitable candidate. If this is not possible, for example, if the physical structure is partially
destroyed by control, then other methods must be used accordingly.

In the case of a scalar system of the form

ẋ = −f(x) (3.18)

with continuous f(x), f(0) = 0, and xf(x) > 0 for all x ≠ 0 with x ∈ (−a, a), one chooses
candidates for the Lyapunov function as

V (x) =
x∫

0

f(z)dz . (3.19)

Obviously, V (x) is positive definite on the interval (−a, a) and for the time derivative of
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V (x) we have

V̇ (x) = f(x)(−f(x)) = −f2(x) < 0 (3.20)

for all x ̸= 0 with x ∈ (−a, a). This proves the asymptotic stability of the equilibrium
xR = 0.

Exercise 3.6. Show that a single-input system with an asymptotically stable equi-
librium xR = 0 can always be written in the form of (3.18) in a sufficiently small
neighborhood D = {x ∈ R| − a < x < a} around the equilibrium, with the condition
xf(x) > 0 for all x ∈ D − {0}.

3.1.4 Basin of Attraction
Although stability of an equilibrium can be assessed using the above methods, the allowed
deviation x0 from the equilibrium 0 is only known to be sufficiently small. To quantitatively
classify these possible deviations, the so-called basin of attraction is defined.

Definition 3.5 (Basin of Attraction). Let xR = 0 be an asymptotically stable
equilibrium of (3.1). Then the set

E =
{

x0 ∈ Rn| lim
t→∞

Φt(x0) = 0
}

(3.21)

is called the basin of attraction of xR = 0. If E = Rn, then the equilibrium xR = 0 is
globally asymptotically stable.

If one can show that the Lyapunov function V (x) is positive definite on a domain X
and V̇ (x) is negative definite on a domain Y, where the domains X and Y include the
equilibrium xR = 0, then a simple estimation of the basin of attraction is given by the
largest level set

Lc = {x ∈ Rn| V (x) ≤ c} (3.22)

for which Lc ⊂ X ∩ Y.

Exercise 3.7. Show that Lc ⊂ X ∩ Y being a positively invariant set according to
Definition 3.6. Provide a justification for why this is indeed a suitable estimation of
the basin of attraction.
When proving global asymptotic stability, fundamental difficulties arise as for large c,

the level sets (3.22) may no longer be closed and bounded (compact). If this property is
lost, the level sets are no longer positively invariant sets and hence not suitable estimates
for the basin of attraction. An example of this is given by the Lyapunov function

V (x) = x2
1(

1 + x2
1
) + x2

2 (3.23)

As can be seen from Figure 3.5, the level sets Lc are compact for small c, which
directly follows from the fact that V (x) is positive definite. In order for the level
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Figure 3.5: Regarding the compactness of level sets.

sets Lc to be completely contained in a region Br = {x ∈ Rn|∥x∥ < r}, the condition
c < min∥x∥=r V (x) < ∞ must be satisfied, i.e., if

l = lim
r→∞ min

∥x∥=r
V (x) < ∞ , (3.24)

then the level sets Lc for c < l are compact. For the Lyapunov function (3.23), it follows
that

l = lim
r→∞ min

∥x∥=r

(
x2

1(
1 + x2

1
) + x2

2

)

= lim
|x1|→∞

x2
1(

1 + x2
1
)

= 1 ,

(3.25)

which means that the level sets are compact only for c < 1. To ensure that the level sets
Lc are compact for all c > 0, the additional requirement

lim
∥x∥→∞

V (x) = ∞ (3.26)

is established. A function that satisfies this condition is called radially unbounded. This
leads to the following theorem.

Theorem 3.2 (Global asymptotic stability). Let xR = 0 be an equilibrium point of
(3.1). If there exists a function V (x) : Rn → R such that V (x) is positive definite,
V̇ (x) is negative definite, and V (x) is radially unbounded, then the equilibrium point
xR = 0 is globally asymptotically stable.

Again, for the detailed proof, one should refer to the literature.
Consider the dynamic system shown in Figure 3.6 with T1, T2 > 0, and the saturation
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characteristic

F (x1) =


−1 for x1 ≤ −1
x1 for − 1 < x1 < 1
1 for x1 ≥ 1

(3.27)

or

x1
F (x1) =


−x1 for x1 ≤ −1
1 for − 1 < x1 < 1
x1 for x1 ≥ 1 .

(3.28)

1
1

F (x1) u1

u2

x1

x2

1
1+T1s

1
1+T2sx3

2

Figure 3.6: Block diagram of the analyzed dynamic system.

The corresponding mathematical model is

ẋ1 = 1
T1

(F (x1)x2 − x1) (3.29a)

ẋ2 = 1
T2

(
x3

2x1 − x2
)

. (3.29b)

Now, if we choose candidates for the Lyapunov function as

V (x) = a2x2
1 + b2x2

2, a, b ̸= 0 , (3.30)

then we obtain the expression for V̇ (x) as

V̇ (x) = x2
1
2a2

T1

(
F (x1)
x1

x2 − 1
)

+ x2
2
2b2

T2

(
x2

2x1 − 1
)

. (3.31)

Obviously, V̇ (x) is negative definite for

x2 <
x1

F (x1) and x1 <
1
x2

2
(3.32)
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To estimate the basin of attraction, a level set Lc =
{

x ∈ R2∣∣ V (x) ≤ c
}

is sought where
V̇ (x) is negative definite. For this purpose, we determine the ellipse V (x) = a2x2

1 + b2x2
2 =

(
√
c)2, which touches the curves (3.32). The point of tangency between the ellipse

x2
1

(
√
c/a)2 + x2

2
(
√
c/b)2 = 1 (3.33)

and the saturation characteristic x2 = x1
F (x1) immediately yields the relationship

√
c/b = 1.

To determine the second point of tangency, we use the fact that at the point of tangency
of the two curves

x2
1

(
√
c/a)2 + x2

2 = 1 and x1 = 1
x2

2
(3.34)

the slopes
2x1 dx1

(
√
c/a)2 + 2x2 dx2 = 0 and dx1 = −2 dx2

x3
2

(3.35)

and
dx2
dx1

= −x1

x2(
√
c/a)2 and dx2

dx1
= −x3

2
2 (3.36)

must be equal. From (3.34) and (3.36) it follows that

−x1

(
√
c/a)2 = −x4

2
2 and x4

2 = 1
x2

1
(3.37)

and thus

x3
1 = (

√
c/a)2

2 . (3.38)

Substituting (3.38) into (3.34), we obtain

√
c/a = 3

√
3

2 . (3.39)

Thus, an estimation of the basin of attraction is calculated as the interior of the ellipse

x2
1

27
4

+ x2
2 = 1 . (3.40)

Figure 3.7 shows the graphical representation of the situation.

Exercise 3.8. The following dynamic system is given

ẋ1 = −6x1
u2 + 2x2, u = 1 + x2

1 (3.41a)

ẋ2 = −2(x1 + x2)
u2 . (3.41b)

(1) Calculate the equilibrium(s) of the system (3.41). Show that for all x ∈ R2,
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Figure 3.7: Calculation of the basin of attraction of Figure 3.6.

V (x) > 0 and V̇ (x) < 0 for

V (x) = x2
1

1 + x2
1

+ x2
2 . (3.42)

(2) Are the equilibrium(s) stable, asymptotically stable, globally stable, or globally
asymptotically stable?

Exercise 3.9. The following dynamic system is given:

ẋ1 = −x1 + 2x3
1x2 (3.43a)

ẋ2 = −x2 . (3.43b)

(1) Show that the equilibrium xR = 0 is asymptotically stable.

(2) Provide the largest possible estimate of the basin of attraction.

3.1.5 The Invariance Principle
Expanding on Theorem 3.1, there are systems where the equilibrium xR = 0 is asymp-
totically stable even though the time derivative of the Lyapunov function V̇ (x) is only
negative semidefinite. As an example, consider the simple spring-mass-damper system
shown in Figure 3.8 with mass m, linear damping force Fd = d d

dtz, d > 0, and nonlinear
spring force Fc = ψF (z) satisfying k1z2 ≤ ψF (z)z ≤ k2z2 with 0 < k1 < k2.

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



3.1 Autonomous Systems Page 56

Fd

Fc

d

m

ψF (z)

z

z

Figure 3.8: Simple mechanical system.

The equations of motion are

d
dtz = v (3.44a)
d
dtv = − 1

m
(ψF (z) + dv) (3.44b)

with the state xT = [z, v] and the only equilibrium xR = 0. The kinetic and potential
energy stored in the system

V = 1
2mv

2 +
∫ z

0
ψF (w) dw (3.45)

are naturally positive definite and serve as suitable candidates for a Lyapunov function.
Clearly,

d
dtV = mv

(
− 1
m

(ψF (z) + dv)
)

+ ψF (z)v = −dv2 (3.46)

is negative semidefinite, and according to Theorem 3.1, we can conclude that the equi-
librium xR = 0 is stable in the sense of Lyapunov. That is, the energy V stored in the
system always decreases, except when v = 0 where it remains constant. Substituting v = 0
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into (3.44), we see that z = z̄ and d
dtv = − 1

mψF (z̄) for a constant z̄. From the specific
form of the characteristic curve ψF (z) in Figure 3.8, it follows that d

dtv only becomes zero
for z̄ = 0. This demonstrates that the energy V stored in the system must decrease until
the point z = v = 0 is reached, proving the asymptotic stability of the equilibrium.

The mathematical generalization of this procedure leads to the so-called Invariance
Principle of Krassovskii-LaSalle. Before this is discussed in more detail, the concepts of
limit points and limit sets should be explained. Without loss of generality, consider again
the autonomous, smooth nth-order system

ẋ = f(x) (3.47)

with the flow Φt(x) according to (3.1).

Definition 3.6 (Positively Invariant Set). A set M ⊂ Rn is called a positively
invariant set of the system (3.47) if the image of set M under the flow Φt is the set
M itself, i.e., Φt(M) ⊆ M , for all t > 0.

Simple examples of a positively invariant set are the set {xR} with xR as an equilibrium
point, the set of points of a limit cycle, etc. A set M is called a negatively invariant set of
the system (3.47) if Φ−t(M) is positively invariant. Also of interest are points that are
approached arbitrarily closely by a trajectory an infinite number of times. For this, the
following definition is given:

Definition 3.7 (Limit Point and Limit Set). A point y ∈ Rn is called an ω-limit
point of x of the system (3.47) if there exists a sequence (ti) of real numbers from the
interval [0,∞) with ti → ∞ such that

lim
i→∞

∥y − Φti(x)∥ = 0 (3.48)

holds. The set of all ω-limit points of x, the so-called ω-limit set of x, is denoted by
Lω(x).

Equivalently to the above definition, limit points and limit sets can be considered for
t < 0. In this case, the designations α-limit point and α-limit set Lα(x) are used.

Definition 3.8 (Limit Cycle). A limit cycle of (3.47) is a closed trajectory γ that
satisfies the conditions γ ⊂ Lω(x) or γ ⊂ Lα(x) for certain x ∈ Rn. In the first case,
the limit cycle is called an ω-limit cycle, and in the second case, an α-limit cycle.

In Figure 3.9, the concepts of limit set and limit cycle are illustrated based on a
schematic representation of the trajectories of the Van der Pol oscillator. Here, γ describes
the unique closed trajectory that, for every point x ∈ R2 except for the point xA, forms
the ω-limit set Lω(x), i.e., γ describes an ω-limit cycle. Furthermore, the point xA is the
α-limit set Lα(x) for every point x inside γ. If x is outside γ, then Lα(x) = {}.

With these concepts, it is now possible to formulate the invariance principle of
Krassovskii-LaSalle.
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xA

γ

Figure 3.9: Limit points and limit sets.

Theorem 3.3 (Auxiliary lemma for the invariance theorem). If the solution x(t) =
Φt(x0) of the system (3.1) is bounded for t ≥ 0, then the ω-limit set Lω(x0) of x0
according to Definition 3.7 is a nonempty, compact (bounded and closed), positively
invariant set with the property

lim
t→∞

Φt(x0) ∈ Lω(x0) . (3.49)

The proof of this theorem can be found in the literature cited at the end.

Theorem 3.4 (Invariance principle of Krassovskii-LaSalle). Assume X is a compact,
positively invariant set and V : X → R is a continuously differentiable function that
satisfies V̇ (x) ≤ 0 on X . Let Y be the subset of X for which Y =

{
x ∈ X |V̇ (x) = 0

}
.

If M denotes the largest positively invariant set of Y, then

Lω(X ) ⊆ M . (3.50)

The proof of this theorem can also be found in the literature cited at the end. As seen
from Theorem 3.4, V (x) does not need to be positive definite. The difficulty here lies in
finding the compact, positively invariant set X . However, it is known from Section 3.1.4
that the level set of a positive definite function V (x) is locally compact and positively
invariant. If radial unboundedness can be proven, then this holds globally. Thus, it is
possible to formulate the following theorem as a direct consequence of Theorem 3.4.

Theorem 3.5 (Application of the Invariance Theorem). Let xR = 0 be an equilibrium
point of (3.1) and D ⊆ Rn be an open neighborhood of 0. If there exists a function
V (x) : D → R such that V (x) is positive definite on D and V̇ (x) is negative semidef-
inite on D, then the point xR = 0 is asymptotically stable if the largest positively
invariant subset of Y =

{
x ∈ D|V̇ (x) = 0

}
is the set M = {0}. Furthermore, if V (x)

is radially unbounded, then xR = 0 is globally asymptotically stable.
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Referring to the spring-mass-damper system in Figure 3.8, consider the example

ẋ1 = x2 (3.51a)
ẋ2 = −g(x1) − h(x2) (3.51b)

with

g(0) = 0, x1g(x1) > 0 for x1 ̸= 0, x1 ∈ (−a, a) (3.52)
h(0) = 0, x2h(x2) > 0 for x2 ̸= 0, x2 ∈ (−a, a) (3.53)

being examined. It is assumed that g(x1) and h(x2) are continuous on the interval (−a, a).
It can be easily verified that xR = 0 in the set D =

{
x ∈ R2∣∣− a < x1 < a,−a < x2 < a

}
is the only equilibrium point. A candidate for a Lyapunov function is chosen as

V (x) =
x1∫
0

g(x) dx+ x2
2

2 (3.54)

Clearly, V (x) is positive definite on D and for V̇ we have

V̇ (x) = g(x1)ẋ1 + x2ẋ2 = −x2h(x2) ≤ 0 . (3.55)

In this example, the set Y =
{

x ∈ D|V̇ (x) = 0
}

simplifies to Y = {x ∈ D|x1 arbitrary and x2 = 0}.
Therefore, for the solution curves to remain in Y for all times t ≥ 0, it follows immediately
that x1 = 0, meaning the largest positively invariant subset of Y is the set M = {0}.
Hence, according to Theorem 3.5, the equilibrium point xR = 0 is asymptotically stable.

Exercise 3.10. Given is a first-order dynamic system

ẋ1 = ax1 + u (3.56)

with an adaptive control law

ẋ2 = γx2
1, γ > 0 (3.57a)

u = −x2x1 . (3.57b)

Show using the invariance principle of Krassovskii-LaSalle that for the closed loop
system, limt→∞ x1(t) = 0 regardless of the plant parameter a. It is only known that
the parameter a is bounded from above by a < b.

Remark: Choose as a candidate for the Lyapunov function

V (x) = 1
2x

2
1 + 1

2γ (x2 − b)2, b > a . (3.58)

3.1.6 Linear Systems
The stability analysis of linear systems

ẋ = Ax (3.59)
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can be carried out based on the eigenvalues of the matrix A. By means of a regular state
transformation z = Tx, the system can be transformed to Jordan normal form

ż = Jz (3.60)

with

J =


J1 0 · · · 0

0 J2
. . . ...

... . . . . . . 0
0 · · · 0 Jn

 (3.61)

A Jordan block Ji has the form

Ji =



ai 1 0 · · · 0

0 ai
. . . . . . ...

... . . . . . . . . . 0

... . . . ai 1
0 · · · · · · 0 ai


m×m

(3.62)

for an m-fold real eigenvalue λi = ai of the matrix A or

Ji =



Ai I 0 · · · 0

0 Ai
. . . . . . ...

... . . . . . . . . . 0

... . . . Ai I
0 · · · · · · 0 Ai


2m×2m

, Ai =
[
ai −bi
bi ai

]
(3.63)

for an m-fold complex conjugate eigenvalue λi = ai ± jbi of the matrix A.

Exercise 3.11. How should the transformation matrix T look like in order to obtain
the Jordan form?

Remark: Eigenvectors
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Now, the following theorem holds for stability according to Lyapunov:

Theorem 3.6 (Stability of Linear Systems). The equilibrium xR = 0 of (3.59) is
stable in the sense of Lyapunov if and only if for each Jordan block Ji of (3.60), ai < 0
or ai ≤ 0 and m = 1. If ai < 0 holds for each Jordan block Ji of (3.60), then the
equilibrium xR = 0 is asymptotically stable.

Exercise 3.12. Prove Theorem 3.6.
Two more definitions are needed for the subsequent considerations.

Definition 3.9 (Hurwitz Matrix). An (n× n) matrix A is called a Hurwitz matrix if
for all eigenvalues λi of A, Re(λi) < 0 for i = 1, . . . , n.

Definition 3.10 (Positive Definite Matrix). A symmetric (n× n) matrix P is called
positive definite if xTPx > 0 for all x ∈ Rn − {0}. If xTPx ≥ 0, then P is called
positive semidefinite.

Exercise 3.13. Where are the eigenvalues of a positive (semi)definite matrix located?
Prove your statements.

Now, if we choose candidates for a Lyapunov function of (3.59) as

V (x) = xTPx (3.64)

with a positive definite matrix P, then for V̇ we have

V̇ (x) = ẋTPx + xTPẋ

= xT
(
ATP + PA

)
x

= −xTQx

(3.65)

with a square matrix Q that satisfies the relationship

ATP + PA + Q = 0 (3.66)

(3.66) is also called the Lyapunov equation.

Exercise 3.14. Show that the Lyapunov equation (3.66) is a linear equation in the
elements pij of P.

If the matrix Q is positive definite, then from Theorem 3.1, it follows that the equilibrium
xR = 0 is asymptotically stable and consequently A is a Hurwitz matrix. That is, for a
given positive definite matrix P, the matrix Q is computed for system (3.59) and checked
for positive definiteness. For linear systems, this procedure can be reversed. A positive
definite Q is specified, and P is computed accordingly. The following theorem states:
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Theorem 3.7 (Lyapunov Equation). The matrix A is a Hurwitz matrix if and only
if the Lyapunov equation (3.66) has a positive definite solution P for every positive
definite Q. In this case, P is uniquely determined.

Proof. (⇐): Follows trivially from Theorem 3.1. (⇒): If A is a Hurwitz matrix, then
the existence of the integral

P =
∞∫

0

eATtQeAt dt (3.67)

is guaranteed. Furthermore, if Q is positive definite, then this must also hold for P,
because from

xTPx = 0 (3.68)

it follows
∞∫

0

xTeATtQeAtx︸ ︷︷ ︸
>0

dt = 0 . (3.69)

Since Q is positive definite, eAtx = 0 and due to the regularity of the transition
matrix, x = 0. The calculation

ATP + PA =
∞∫

0

ATeATtQeAt dt+
∞∫

0

eATtQeAtA dt

=
∞∫

0

d
dt
(
eATtQeAt

)
dt

= lim
t→∞

eATtQeAt − Q

= −Q

(3.70)

shows that P from (3.67) is indeed a solution of the Lyapunov equation (3.66). The
uniqueness of the solution remains to be shown. Assuming P0 is another solution of
the Lyapunov equation (3.66). For the time derivative of the expression

F(X) = XTPX − XTP0X = XT(P − P0)X (3.71)

with X as a solution of the matrix differential equation

Ẋ = AX (3.72)
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we obtain

Ḟ(X) = XT

ATP + PA︸ ︷︷ ︸
−Q

−
(
ATP0 + P0A

)
︸ ︷︷ ︸

−Q

X = 0 . (3.73)

Thus, F(X) is constant along a trajectory of (3.59). From

F
(
eAt
)

= eATt(P − P0)eAt (3.74)

we then deduce, with

lim
t→0

F
(
eAt
)

= F(I)

= (P − P0)

= lim
t→+∞

F
(
eAt
)

= 0

(3.75)

the uniqueness of the solution of (3.66).

Exercise 3.15. Given are two identical linear systems of the form

ẋi =
[

0 1
−1 0

]
xi +

[
0
1

]
ui, i = 1, 2 (3.76a)

yi =
[
1 0

]
xi . (3.76b)

Check the stability of the equilibrium when the two systems are connected in series or
in parallel. Provide a physical interpretation of the results when considering system
(3.76) as an undamped mass-spring oscillator.

Exercise 3.16. Given is the linear autonomous time-invariant sampled system

xk+1 = Axk, A ∈ Rn×n . (3.77)

Show that the existence of a positive definite solution P ∈ Rn×n of the inequality

ATPA − P < 0 (3.78)

is sufficient for V (x) = xTPx to be a Lyapunov function for (3.77).

Exercise 3.17. The linear system

ẋ = Ax (3.79a)
y = Cx (3.79b)
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is completely observable. Show that A is a Hurwitz matrix if and only if the Lyapunov
equation

PA + ATP = −CTC (3.80)

is satisfied for a positive definite P. Show further that in this case, the solution for P
is unique.

Remark: Use the invariance principle of Krassovskii-LaSalle and the fact that
for the observable pair (A,C), CeAtx = 0 for all t ≥ 0 if and only if x = 0 for
all t ≥ 0.

3.1.7 Indirect (First) Method of Lyapunov
In addition to the second method of Lyapunov discussed in Section 3.1.3, which is
essentially based on the construction of a Lyapunov function, there is also the possibility
to assess the stability of an equilibrium point based on the linearized system around this
equilibrium point. Consider the nonlinear autonomous system

ẋ = f(x) (3.81)

with equilibrium point xR = 0. Assuming that f(x) is continuously differentiable on an
open neighborhood D of 0, f(x) can be written in the form

f(x) = f(0) + ∂

∂xf(x)
∣∣∣∣
x=0

x + r(x), lim
∥x∥→0

∥r(x)∥
∥x∥ = 0 (3.82)

Then the following theorem holds:

Theorem 3.8 (Indirect (first) Method of Lyapunov). Let xR = 0 be an equilibrium
point of (3.81) and f(x) be continuously differentiable on an open neighborhood D ⊆ Rn

of 0. With

A = ∂

∂xf(x)
∣∣∣∣
x=0

(3.83)

the following holds:

(1) If all eigenvalues λi of A have a real part less than zero, i.e., Re(λi) < 0, then
the equilibrium point is asymptotically stable.

(2) If one eigenvalue λi of A satisfies Re(λi) > 0, then the origin is unstable.

(3) For eigenvalues λi of A with Re(λi) = 0, no statement can be made about the
stability of the equilibrium point of the nonlinear system.

Proof. To prove the first part of this theorem, the function

V (x) = xTPx (3.84)
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with positive definite P is considered as a candidate for a Lyapunov function. From
(3.82), it follows for V̇

V̇ (x) = xTPf(x) + fT(x)Px
= xTP(Ax + r(x)) + (Ax + r(x))TPx

= xT
(
PA + ATP

)
x + 2xTPr(x) .

(3.85)

Since A is a Hurwitz matrix, the Lyapunov equation

PA + ATP + Q = 0 (3.86)

has a positive definite solution P for every positive definite Q. It was also assumed
that f(x) is continuously differentiable, and therefore for every ε > 0, there exists a
δ > 0 such that

∥r(x)∥2 < ε∥x∥2, ∥x∥2 < δ . (3.87)

For a positive definite matrix P, the induced 2-norm satisfies the estimate (compare
to (2.55))

λmin(P) ≤ ∥P∥i,2 ≤ λmax(P) (3.88)

with λmin(P) > 0 or λmax(P) > 0 as the smallest or largest eigenvalue of P. Thus,
from the Cauchy-Schwarz inequality (2.82), (3.87), and (3.88), the estimate∣∣∣xTPr(x)

∣∣∣ ≤ ∥Pr(x)∥2∥x∥2 ≤ ∥P∥i,2 ∥r(x)∥2︸ ︷︷ ︸
<ε∥x∥2

∥x∥2 ≤ ελmax(P)∥x∥2
2 (3.89)

or

V̇ (x) ≤ −xTQx + 2ελmax(P)∥x∥2
2

≤ (−λmin(Q) + 2ελmax(P))∥x∥2
2 ,

(3.90)

is obtained, and V̇ is definitely negative for

ε <
λmin(Q)

2λmax(P) (3.91)

This proves, according to Theorem 3.1, the asymptotic stability of the equilibrium
xR = 0. The proof of the second part of Theorem 3.8 is not carried out here but can
be found in the corresponding literature.

Exercise 3.18. Search in the literature provided at the end for Lyapunov instability
theorems and apply them to prove the second part of Theorem 3.8.

If the linearized system has eigenvalues λi with Re(λi) = 0, then the indirect method
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does not allow any statement. Consider the nonlinear single-input system

ẋ = ax3 (3.92)

with the system linearized around the equilibrium xR = 0

ẋ = 0 . (3.93)

Choosing candidates for a Lyapunov function as

V (x) = x4 (3.94)

and obtaining V̇ as

V̇ (x) = 4ax6 . (3.95)

It is easy to see that the origin is asymptotically stable for a < 0 but unstable for a > 0.
For a = 0, the system is linear and has infinitely many equilibrium points.

Exercise 3.19. Examine the stability of the equilibrium point(s) for systems (3.9),
(3.29), (3.41), and (3.43) using the indirect method of Lyapunov.

3.2 Non-autonomous Systems
The following considerations are based on the non-autonomous nonlinear system

ẋ = f(t,x) (3.96)

with f : [0,∞)×D → Rn piecewise continuous in t and locally Lipschitz in x on [0,∞)×D,
D ⊆ Rn, (compare Theorem 2.13). The error systems that arise in trajectory tracking
control of nonlinear systems typically have the structure of (3.96). One calls xR ∈ D an
equilibrium of (3.96) for t = t0, if for all times t ≥ t0 ≥ 0 the relationship

f(t,xR) = 0 (3.97)

is satisfied, where xR must be independent of time t. Without loss of generality, one can
assume that an equilibrium with xR = 0 for t0 = 0 is given.

Exercise 3.20. Show that for xR ̸= 0, t0 ̸= 0, one can always achieve, through a simple
coordinate and time transformation, that in the new coordinates the equilibrium
x̃R = 0 for t̃ = 0.

In the following, it will be briefly shown that the equilibrium of a non-autonomous
system (3.96) can also be the transformed nontrivial solution of an autonomous system.
This has the advantage that the stability analysis of a solution trajectory can be reduced
to the stability of an equilibrium of a non-autonomous system. Consider the autonomous
system

d
dτ y = g(y) , (3.98)
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where ȳ(τ) denotes a solution of (3.98) for τ ≥ τ0 ≥ 0. Now, performing a coordinate and
time transformation of the form x = y − ȳ(τ) and t = τ − τ0, we obtain the transformed
system

d
dtx = d

dty(t+ τ0) − d
dt ȳ(t+ τ0)

= g(x + ȳ(t+ τ0)) − d
dt ȳ(t+ τ0)

:= f(t,x) .

(3.99)

Since ȳ(τ) is a solution of (3.98) for τ ≥ τ0 ≥ 0, we have

d
dτ ȳ(τ) = g(ȳ(τ)), τ ≥ τ0 ≥ 0 (3.100)

or in the transformed time t

d
dt ȳ(t+ τ0) = g(ȳ(t+ τ0)), t ≥ 0 . (3.101)

It is immediately clear from (3.99) and (3.101) that xR = 0 for t0 = 0 is an equilibrium of
the transformed system d

dtx = f(t,x).
The definition of Lyapunov stability according to Definition 3.3 can now also be applied

to non-autonomous systems, but here the dependence of the system behavior on the initial
time t0 must be explicitly taken into account.

Definition 3.11 (Lyapunov Stability of Non-Autonomous Systems). The equilib-
rium xR = 0 of (3.96) is called

• stable (in the sense of Lyapunov), if for every ε > 0 there exists a δ(ε, t0) > 0
such that

∥x(t0)∥ < δ(ε, t0) ⇒ ∥x(t)∥ < ε (3.102)

holds for all t ≥ t0 ≥ 0,

• uniformly stable, if for every ε > 0 there exists a δ(ε) > 0 (independent of t0)
such that (3.102) is satisfied for all t ≥ t0 ≥ 0,

• asymptotically stable, if it is stable and there exists a positive real number η(t0)
such that from

∥x(t0)∥ < η(t0) ⇒ lim
t→∞

x(t) = 0 , (3.103)

• uniformly asymptotically stable, if it is uniformly stable, there exists a positive
real number η (independent of t0) such that (3.103) is satisfied for all t ≥ t0 ≥ 0,
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and for every µ > 0 one can find a T (µ) > 0 such that

∥x(t0)∥ < η ⇒ ∥x(t)∥ < µ for all t ≥ t0 + T (µ) (3.104)

holds.
For non-autonomous systems of the form (3.96), a theorem analogous to Theorem 3.1

can now be given for checking uniform stability:

Theorem 3.9 (Uniform stability of non-autonomous systems). Let xR = 0 be an
equilibrium of (3.96) for t = 0 and D ⊆ Rn be an open neighborhood of 0. If there
exists a continuously differentiable function V (t,x) : [0,∞) × D → R and continuous
positive definite functions W1(x) and W2(x) on D such that

W1(x) ≤ V (t,x) ≤ W2(x) (3.105a)
∂

∂t
V +

(
∂

∂xV
)

f(t,x) ≤ 0 (3.105b)

holds for all t ≥ 0 and all x ∈ D, then the equilibrium xR = 0 is uniformly stable.
If furthermore a continuous positive definite function W3(x) on D exists such that
(3.105b) can be bounded as

∂

∂t
V +

(
∂

∂xV
)

f(t,x) ≤ −W3(x) < 0 (3.106)

for all t ≥ 0 and all x ∈ D, then the equilibrium xR = 0 is uniformly asymptotically
stable.
The proof of this theorem can be found in the literature cited at the end.

Exercise 3.21. Show that the equilibrium x = 0 of the system[
ẋ1

ẋ2

]
=
[
−x1 − g(t)x2

x1 − x2

]
(3.107)

with the continuously differentiable time function g(t), 0 ≤ g(t) ≤ k and d
dtg(t) ≤ g(t)

for all t ≥ 0 is uniformly asymptotically stable.

Exercise 3.22. Given is the following mathematical model (mathematical pendulum
with time-varying damping)[

ẋ1

ẋ2

]
=
[

x2

− sin(x1) − g(t)x2

]
(3.108)

with the continuously differentiable time function g(t), 0 < α ≤ g(t) ≤ β < ∞ and
d
dtg(t) ≤ γ < 2 for all t ≥ 0. Show that the equilibrium x1 = x2 = 0 is uniformly
asymptotically stable.

Besides uniform stability, exponential stability also plays a crucial role in the analysis
of non-autonomous systems.
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Definition 3.12 (Exponential Stability of Non-autonomous Systems). The equilib-
rium xR = 0 of (3.96) is called exponentially stable if positive constants k1, k2, and
k3 exist such that

∥x(t0)∥ < k3 ⇒ ∥x(t)∥ < k1∥x(t0)∥e−k2(t−t0) . (3.109)

The verification of exponential stability can be done using the following theorem.

Theorem 3.10 (Exponential Stability of Non-autonomous Systems). Let xR = 0 be
an equilibrium of (3.96) at t = 0 and D ⊆ Rn be an open neighborhood of 0. If there
exists a continuously differentiable function V (t,x) : [0,∞) × D → R and positive
constants αj, j = 1, . . . , 4, such that

α1∥x(t)∥α4 ≤ V (t,x) ≤ α2∥x(t)∥α4 (3.110a)
∂

∂t
V +

(
∂

∂xV
)

f(t,x) ≤ −α3∥x(t)∥α4 (3.110b)

holds for all t ≥ 0 and all x ∈ D, then the equilibrium xR = 0 is exponentially stable.

Proof. From the two inequalities (3.110), it can be seen that

d
dtV (t,x) ≤ −α3∥x(t)∥α4 ≤ −α3

α2
V (t,x) (3.111)

and thus

V (t,x) ≤ V (t0,x(t0))e− α3
α2

(t−t0) . (3.112)

Furthermore, from (3.110a) it follows

V (t0,x(t0)) ≤ α2∥x(t0)∥α4 (3.113)
and

∥x(t)∥ ≤
(
V (t,x)
α1

) 1
α4 , (3.114)

hence, with (3.112), the following estimation

∥x(t)∥ ≤
(
V (t,x)
α1

) 1
α4 ≤

(
α2
α1

) 1
α4 ∥x(t0)∥e− α3

α2α4
(t−t0) (3.115)

can be given. This directly shows the exponential stability according to Definition
3.12 for k1 =

(
α2
α1

) 1
α4 and k2 = α3

α2α4
.
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Exercise 3.23. Given is the following mathematical model[
ẋ1

ẋ2

]
=
[
h(t)x2 − g(t)x3

1
−h(t)x1 − g(t)x3

2

]
(3.116)

with the continuously differentiable and bounded time functions h(t) and g(t), g(t) ≥
k > 0 for all t ≥ 0. Is the equilibrium x1 = x2 = 0 uniformly asymptotically stable?
Is the equilibrium x1 = x2 = 0 exponentially stable?

Exercise 3.24. Given is the following mathematical model[
ẋ1

ẋ2

]
=
[

−x1 + x2 +
(
x2

1 + x2
2
)

sin(t)
−x1 − x2 +

(
x2

1 + x2
2
)

cos(t)

]
. (3.117)

Show that the equilibrium x1 = x2 = 0 is exponentially stable.

3.2.1 Linear Systems
The stability analysis of linear time-varying systems of the form

ẋ = A(t)x (3.118)

is significantly more challenging compared to the time-invariant case as in (3.59).

Example 3.1. Consider the system (3.118) with the dynamics matrix

A(t) =
[

−1 + 1.5(cos(t))2 1 − 1.5 sin(t) cos(t)
−1 − 1.5 sin(t) cos(t) −1 + 1.5(sin(t))2

]
. (3.119)

In this case, the eigenvalues λ1,2 = −1/4 ± I
√

7/4 of A(t) are constant for all times
t and have negative real parts, yet the equilibrium is unstable as shown by the
calculation of the solution for t0 = 0

x(t) =
[

et/2 cos(t) e−t sin(t)
−et/2 sin(t) e−t cos(t)

]
x(0) (3.120)

It is worth mentioning that linear time-varying systems arise naturally when linearizing
nonlinear (autonomous) systems around a desired trajectory.
The stability analysis of the equilibrium can be carried out, for example, using Theo-

rem 3.9. To do this, one chooses a suitable Lyapunov function of the form

V (t,x) = xTP(t)x, 0 < α1I ≤ P(t) ≤ α2I (3.121)

with a continuously differentiable, bounded, and symmetric matrix P(t) and positive
constants α1 and α2. The Lyapunov function satisfies the inequalities

α1∥x∥2
2 ≤ V (t,x) ≤ α2∥x∥2

2 . (3.122)
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If P(t) satisfies the matrix differential equation

−Ṗ(t) = AT(t)P(t) + P(t)A(t) + Q(t) (3.123)

for a continuous, bounded, and symmetric matrix Q(t) such that

0 < α3I ≤ Q(t) , (3.124)

then the change in V (t,x) along a solution curve of (3.118) is given by

d
dtV (t,x) = ẋTP(t)x + xTṖ(t)x + xTP(t)ẋ

= xT
(
AT(t)P(t) + Ṗ(t) + P(t)A(t)

)
x

= −xTQ(t)x
≤ −α3∥x∥2

2 < 0 .

(3.125)

From (3.122) and (3.125), it is immediately apparent that exponential stability for α4 = 2
is also demonstrated by Theorem 3.10. It is worth mentioning that for linear time-varying
systems, uniform asymptotic stability and exponential stability are equivalent.

For the analysis of linear periodically time-varying systems of the form (3.118) with
A(t) = A(t+ T ), a comprehensive theory can be found in the literature under the term
Floquet theory. Here, we refrain from further elaboration on this topic, but we provide a
useful estimation for the trajectories of linear time-varying systems.

Theorem 3.11 (Ważewski’s Inequality). A solution x(t) of the linear time-varying
system (3.118) with the real-valued dynamics matrix A(t) satisfies the following
inequality

∥x(t0)∥2 exp
(∫ t

t0
λ(τ) dτ

)
≤ ∥x(t)∥2 ≤ ∥x(t0)∥2 exp

(∫ t

t0
Λ(τ) dτ

)
, (3.126)

where λ(t) and Λ(t) denote the smallest and largest eigenvalue of the symmetric part
of the matrix A(t)

As(t) = 1
2
(
A(t) + AT(t)

)
(3.127)
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Proof. For a fixed time t, according to (2.64), the relationship holds

λ(t)∥x(t)∥2
2 ≤ xT(t)As(t)x(t) ≤ Λ(t)∥x(t)∥2

2 (3.128)

and by substituting

d
dt∥x(t)∥2

2 = ẋT(t)x(t) + xT(t)ẋ(t)

= xT(t)
(
A(t) + AT(t)

)
x(t)

= 2xT(t)As(t)x(t)

(3.129)

we obtain

2λ(t)∥x(t)∥2
2 ≤ d

dt∥x(t)∥2
2 ≤ 2Λ(t)∥x(t)∥2

2 . (3.130)

Now, considering only the left part of the inequality (3.130) in the first step, the
result immediately follows according to (3.126)

2λ(t)∥x(t)∥2
2 ≤ 2∥x(t)∥2

d(∥x(t)∥2)
dt (3.131a)

λ(t) dt ≤ d(∥x(t)∥2)
∥x(t)∥2

(3.131b)∫ t

t0
λ(τ) dτ ≤ ln

(
∥x(t)∥2
∥x(t0)∥2

)
(3.131c)

∥x(t0)∥2 exp
(∫ t

t0
λ(τ) dτ

)
≤ ∥x(t)∥2 . (3.131d)

Exercise 3.25. Show in the same way the right part of the inequality (3.130).

Taking again the system (3.118) with the dynamics matrix (3.119) as an example, the
symmetric part of the dynamics matrix is calculated as

As(t) = 1
2
(
A(t) + AT(t)

)
=
[
−1 + 1.5(cos(t))2 −1.5 sin(t) cos(t)
−1.5 sin(t) cos(t) −1 + 1.5(sin(t))2

] (3.132)

with the corresponding eigenvalues λs1 = 1/2 and λs2 = −1. According to Theorem 3.11,
a solution x(t) satisfies the inequality

∥x(t0)∥2e−(t−t0) ≤ ∥x(t)∥2 ≤ ∥x(t0)∥2e
1
2 (t−t0) . (3.133)
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3.2.2 Lyapunov-like Theory: Barbalat’s Lemma
In addition to the Lyapunov theory for non-autonomous nonlinear systems of the form
(3.96) discussed in the previous section, one often finds a Lyapunov-like approach using
what is called Barbalat’s Lemma. It is based on the mathematical properties of the
asymptotic behavior of functions and their derivatives. In the first step, let us review
some asymptotic properties of functions and their temporal derivatives. For a function
f(t) differentiable with respect to time t, the following holds:

(1) From lim
t→∞

ḟ(t) = 0, it does not follow lim
t→∞

f(t) = c with |c| < ∞.

As an example, consider the function f(t) = ln(t). While the derivative satis-
fies

lim
t→∞

ḟ(t) = 1
t

= 0 , (3.134)

the function itself goes to ∞ as t → ∞.

(2) From lim
t→∞

f(t) = c with |c| < ∞, it does not follow lim
t→∞

ḟ(t) = 0.

For example, consider the function f(t) = e−t sin
(
e2t), for which lim

t→∞
f(t) = 0,

but

lim
t→∞

ḟ(t) = lim
t→∞

(
2 cos

(
e2t
)
et − e−t sin

(
e2t
))

(3.135)

is not defined.

(3) If f(t) is bounded from below and not increasing
(
ḟ(t) ≤ 0

)
, then it follows

lim
t→∞

f(t) = c with |c| < ∞.

Barbalat’s Lemma now clarifies under which conditions the derivative ḟ(t) of a bounded
function converges to zero as t → ∞.

Theorem 3.12 (Barbalat’s Lemma). If the differentiable function f(t) satisfies
lim
t→∞

f(t) = c with |c| < ∞ and ḟ(t) is uniformly continuous, then lim
t→∞

ḟ(t) = 0.

Before showing how this theorem is used for stability analysis, let us briefly revisit the
concept of uniform continuity of a function f(t).
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Definition 3.13 (ϵδ-Continuity). A function f(t) is said to be continuous at the
point t1 if for every ϵ > 0 there exists δ = δ(ϵ, t1) > 0 such that

|t− t1| < δ ⇒ |f(t) − f(t1)| < ϵ . (3.136)

A function f(t) is called uniformly continuous if δ can always be found independently
of t1.

Consider the function f(t) = t2 as an example. Let us choose an ϵ > 0 and determine a
δ such that ∣∣∣t2 − t21

∣∣∣ < ϵ or |t− t1||t+ t1| < ϵ, |t− t1| < δ . (3.137)

From (3.137), it can be seen that for t > t1 > 0, for every ϵ, a δ can always be found such
that

0 < t− t1 < δ ⇒ (t− t1)(t+ t1) < ϵ . (3.138)

Replacing t in (3.138) with tn = t1 + δ − δ
n and letting n → ∞, we obtain

δ(2t1 + δ) < ϵ (3.139)

or rather

δ <
ϵ

2t1
. (3.140)

It can be observed that as t1 increases, keeping ϵ constant, the value of δ decreases, and
thus there is no smallest δ that would be correct for all t1. Therefore, the function f(t) = t2

is continuous but not uniformly continuous. In contrast, for the function f(t) =
√
t under

the condition t > t1 > 0, ∣∣∣√t−
√
t1
∣∣∣ < √|t− t1| < ϵ , (3.141)

and choosing δ = ϵ2 immediately leads to uniform continuity, i.e.,

|t− t1| < δ , (3.142a)√
|t− t1| < ϵ , (3.142b)∣∣∣√t−

√
t1
∣∣∣ < ϵ . (3.142c)

Exercise 3.26. Prove the last implication in (3.142).

As can be seen, verifying uniform continuity in this manner is quite tedious. Therefore,
a sufficient criterion of the following form is often used:
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Theorem 3.13 (Sufficient condition for uniform continuity). A differentiable function
f(t) is uniformly continuous if its derivative d

dtf(t) is bounded.

From Barbalat’s Lemma, the following theorem for stability analysis of nonlinear,
non-autonomous systems of the form (3.96) immediately follows.

Theorem 3.14 (Lyapunov-like method). If a scalar function V (t,x) : R+ ×Rn → R

satisfies the conditions

(1) V (t,x) is bounded from below,

(2) V̇ (t,x) ≤ 0, and

(3) V̇ (t,x) is uniformly continuous in time t,

then lim
t→∞

V̇ (t,x) = 0.

As an application example, consider the following control engineering problem: We
want to position a mass m sliding on a horizontal surface using the force F in the absence
of friction. The corresponding system of differential equations is

m
d2

dt2x = F . (3.143)

Suppose the desired position rd(t) is specified by a person using a control stick, then a
simple way to convert this external signal into a twice continuously differentiable reference
signal xd(t) is through a reference model of the form

ẍd + a1ẋd + a0xd = a0rd, G(s) = x̂d
r̂d

= a0
s2 + a1s+ a0

(3.144)

for suitable parameters a1 and a0. The parameters a1 and a0 are chosen such that
the reference model with transfer function G(s) is stable and meets the performance
requirements. Now, the simple control law

F (t) = m
(
ẍd − 2λė− λ2e

)
, e = x− xd (3.145)

for λ > 0 leads to an asymptotically stable closed loop with error dynamics

ë+ 2λė+ λ2e = 0 . (3.146)

Furthermore, assume that the mass m is constant but not precisely known, i.e., only
the estimated value m̂ is known. Substituting the estimated value m̂ for m in the control
law (3.145), we obtain for the closed loop

mẍ = m̂
(
ẍsoll − 2λė− λ2e

)
(3.147)

or

mẍ−m
(
ẍsoll − 2λė− λ2e

)
= m̂

(
ẍsoll − 2λė− λ2e

)
−m

(
ẍsoll − 2λė− λ2e

)
(3.148)
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and by introducing a generalized control error s = ė+ λe, we get

m
d
dts+mλs = em

(
ẍsoll − 2λė− λ2e

)
︸ ︷︷ ︸

w(t)

(3.149)

with the parameter error em = m̂−m.
The adaptive control law

d
dtm̂ = −γws, γ > 0 (3.150)

guarantees that the generalized control error converges asymptotically to zero. To prove
this, one considers the function bounded from below

V (s, em) = 1
2

(
ms2 + 1

γ
e2
m

)
(3.151)

and calculates its time derivative

d
dtV = ms

(
−λs+ 1

m
emw

)
+ 1
γ
em(−γws)

= −λms2 ≤ 0 .
(3.152)

Since V is positive definite in s and em and V̇ is negative semidefinite, the functions s
and em are bounded. Taking another time derivative of V̇ , one obtains

V̈ = −2λms
(

−λs+ 1
m
emw

)
, (3.153)

and this function is also bounded due to the bounded quantities s and em and the
assumption of bounded reference signals rd(t) (hence w(t) is also bounded). According to
Theorem 3.13, V̇ is uniformly continuous, the Barbalat’s Lemma (Theorem 3.14) can be
applied, leading to

lim
t→∞

V̇ = − lim
t→∞

λms2 = 0 (3.154)

thus

lim
t→∞

s = 0 . (3.155)
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4 Lyapunov-based Controller Design

This chapter discusses some controller design methods based on Lyapunov’s theory of
stability. The basic idea of these methods is to find a nonlinear state feedback u = α(x)
for a system of the form

ẋ = f(x,u) , f(0,0) = 0 (4.1)

with the state x ∈ Rn, the control input u ∈ Rp, and α(0) = 0, such that the equilibrium
xR = 0 of the closed loop system

ẋ = f(x,α(x)) (4.2)

becomes stable or asymptotically stable in the sense of Lyapunov.

4.1 Integrator Backstepping
As a starting point and motivation for this nonlinear controller design method, consider
the following nonlinear system

ẋ1 = cos(x1) − x3
1 + x2 (4.3a)

ẋ2 = u (4.3b)

with state xT = [x1, x2] and control input u. Now, a state feedback control u = u(x1, x2)
should be designed such that for every initial state x(0) = x0, limt→∞ x1(t) = 0 and
limt→∞|x2(t)| = c < ∞. From (4.3), it can be seen that for x1,R = 0, the only equilibrium
with xT

R = [0,−1] is given. Considering the state x2 as a virtual control input for the
system (4.3a), then the state feedback

x2 = α(x1) = − cos(x1) − c1x1 , c1 > 0 (4.4)

would make the equilibrium x1,R = 0 of the subsystem (4.3a), (4.4) asymptotically stable.
To show this, let’s choose the Lyapunov function

V (x1) = 1
2x

2
1 > 0 , (4.5)

then the time derivative is calculated as

d
dtV (x1) = x1

(
−x3

1 − c1x1
)

= −x4
1 − c1x

2
1 < 0 .

(4.6)
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Next, the deviation of the state x2 from the "ideal" form (4.4)

z = x2 − α(x1) = x2 + cos(x1) + c1x1 (4.7)

is introduced as a new state variable, resulting in the differential equation (4.3) in the
new state [x1, z]

ẋ1 = cos(x1) − x3
1 + (z − cos(x1) − c1x1)︸ ︷︷ ︸

x2

= −x3
1 − c1x1 + z

(4.8a)

ż = ẋ2 − d
dtα(x1)

= u− (sin(x1) − c1)
(
−x3

1 − c1x1 + z
)

.
(4.8b)

Now, assuming a Lyapunov function in the form

Va(x1, x2) = V (x1) + 1
2z

2 = 1
2x

2
1 + 1

2(x2 + cos(x1) + c1x1)2 (4.9)

we get

d
dtVa(x1, x2) = x1

(
−x3

1 − c1x1 + z
)

+ z
(
u− (sin(x1) − c1)

(
−x3

1 − c1x1 + z
))

= −c1x
2
1 − x4

1 + z
{
x1 + u− (sin(x1) − c1)

(
−x3

1 − c1x1 + z
)}

︸ ︷︷ ︸
χ

. (4.10)

The idea is now to determine the control input u in such a way that d
dtVa(x1, x2) becomes

negative definite. This can be achieved, for example, by choosing

χ = x1 + u− (sin(x1) − c1)
(
−x3

1 − c1x1 + z
)

= −c2z, c2 > 0 (4.11)

or

u = −x1 + (sin(x1) − c1)
(
−x3

1 − c1x1 + z
)

− c2z . (4.12)

In conclusion, it can be easily verified that the state feedback (4.12) globally asymptoti-
cally stabilizes the equilibrium x1,R = zR = 0 or x1,R = 0 and x2,R = −1.

Exercise 4.1. Show that Va(x1, x2) from (4.9) is radially unbounded.

The choice of u according to (4.11) is of course not unique, as on one hand, χ = −f(z)
could be chosen with any arbitrary function f(z) satisfying f(z)z > 0 for all z ≠ 0, and
on the other hand, it is not necessary to cancel all terms of χ. For example, the state
feedback

u = −x1 + (sin(x1) − c1)
(
−x3

1 − c1x1
)

− c2z (4.13)
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would lead to a closed loop (4.8), (4.13) of the form

ẋ1 = −x3
1 − c1x1 + z (4.14a)

ż = −x1 − c2z − (sin(x1) − c1)z (4.14b)

and for the choice of parameters c2 > c1 + 1, the Lyapunov function

Va(x1, z) = 1
2x

2
1 + 1

2z
2 (4.15)

and its time derivative

d
dtVa = −x4

1 − c1x
2
1 − (c2 − c1 + sin(x1))z2 (4.16)

show the global asymptotic stability of the equilibrium x1,R = zR = 0 or x1,R = 0 and
x2,R = −1.

Exercise 4.2. Show that for a suitable choice of parameters k1 and k2, even the simple
state feedback

u = −k1z − k2x
2
1z (4.17)

leads to a closed loop with a globally asymptotically stable equilibrium.

Remark: Choose the Lyapunov function as Va = 1
2x

2
1 + 1

2z
2 and combine the

terms of V̇a appropriately.

These variations mentioned above demonstrate the design degrees of freedom of the
method. The generalization of the example discussed above is now possible in the following
form:

Theorem 4.1 (Integrator Backstepping). Consider the nonlinear system

ẋ1 = f(x1) + g(x1)x2 (4.18a)
ẋ2 = u (4.18b)

with the state xT =
[
xT

1 , x2
]

∈ Rn+1, the control input u ∈ R, and x0 = x(0). Assume
that a continuously differentiable function α(x1) with α(0) = 0 and a positive definite,
radially unbounded function V (x1) exist such that

∂

∂x1
V {f(x1) + g(x1)α(x1)} ≤ W (x1) ≤ 0 (4.19)

and f(x1) satisfies f(0) = 0.

(1) If W (x1) is negative definite, then there exists a state feedback u = αa(x1, x2)
such that the equilibrium x1,R = 0, x2,R = 0 of the closed loop system is globally
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asymptotically stable with the Lyapunov function

Va(x1, x2) = V (x1) + 1
2(x2 − α(x1))2 . (4.20)

One possible state feedback is given by

u = −c(x2 − α(x1)) + ∂

∂x1
α(x1){f(x1) + g(x1)x2}

− ∂

∂x1
V (x1)g(x1) , c > 0 .

(4.21)

(2) If W (x1) is only negative semidefinite, then there exists a state feedback u =
αa(x1, x2) such that the state variables x1(t) and x2(t) are bounded for all times
t ≥ 0, and the solution of the system converges for t → ∞ to the largest positive
invariant set M of the set

Y =
{[

x1

x2

]
∈ Rn+1

∣∣∣∣∣W (x1) = 0 und x2 = α(x1)
}

(4.22)

Proof. Introducing the new state variables z = x2 − α(x1) transforms (4.18) to

ẋ1 = f(x1) + g(x1){z + α(x1)} (4.23a)

ż = u− ∂

∂x1
α(x1){f(x1) + g(x1){z + α(x1)}} . (4.23b)

Substituting the state feedback (4.21) into (4.23), the time derivative of the positive
definite, radially unbounded Lyapunov function Va(x1, x2) from (4.20) satisfies

d
dtVa = ∂

∂x1
V (x1)(f(x1) + g(x1){z + α(x1)}) + z

{
−cz − ∂

∂x1
V (x1)g(x1)

}
≤ W (x1) − cz2 .

(4.24)

For W (x1) < 0, the global asymptotic stability of the equilibrium x1,R = 0, x2,R = 0
is thus proven. In the case when W (x1) ≤ 0, according to the invariance principle of
Krassovskii-LaSalle (see Theorem 3.4), it follows that

lim
t→∞

Φt(x0) ∈ M (4.25)

with M being the largest positive invariant subset of set Y

Y =
{

x =
[
x1

x2

]
∈ Rn+1

∣∣∣∣∣ d
dtVa = 0 bzw. W (x1) = 0 und x2 = α(x1)

}
, (4.26)

which concludes the proof of the theorem above.
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Exercise 4.3. Design a nonlinear state feedback using the Integrator Backstepping
method for the system

ẋ1 = x1x2 (4.27a)
ẋ2 = u . (4.27b)

Satz 4.1 can now be extended to systems with a chain of integrators of the form

ẋ1 = f(x1) + g(x1)x2

ẋ2 = x3

ẋ3 = x4
...

ẋk = u .

(4.28)

Assuming that a continuously differentiable function α1(x1) with α1(0) = 0 and a positive
definite, radially unbounded function V (x1) exist such that condition (4.19) is satisfied,
and f(x1) satisfies the relationship f(0) = 0, the function

Va(x1, x2, . . . , xk) = V (x1) + 1
2

k∑
j=2

(xj − αj−1(x1, x2, . . . , xj−1))2 (4.29)

can be assumed as the Lyapunov function of the closed loop. To explain the procedure in
more detail, consider the case k = 3. The mathematical model (4.28) then reads

ẋ1 = f(x1) + g(x1)x2 (4.30a)
ẋ2 = x3 (4.30b)
ẋ3 = u (4.30c)

and the Lyapunov function (4.29) results in

Va(x1, x2, x3) = V (x1) + 1
2(x2 − α1(x1))2 + 1

2(x3 − α2(x1, x2))2 . (4.31)

In a first step, introduce the state variables

z1 = x2 − α1(x1) (4.32a)
z2 = x3 − α2(x1, x2) (4.32b)

and calculate the time derivative of the Lyapunov function (4.31) along a solution of the
system

d
dtVa = ∂V (x1)

∂x1
(f(x1) + g(x1){z1 + α1(x1)})

+ z1

(
x3 − ∂α1(x1)

∂x1
(f(x1) + g(x1)x2)

)
+ z2

(
u− ∂

∂x1
α2(x1, x2){f(x1) + g(x1)x2} − ∂

∂x2
α2(x1, x2)x3

)
.

(4.33)
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Next, considering x3 in the first row of (4.33) as the input and applying Theorem 4.1
for it, we obtain

x3 = α2(x1, x2)

= −c1z1 + ∂

∂x1
α1(x1)(f(x1) + g(x1)x2) − ∂

∂x1
V (x1)g(x1)

(4.34)

with c1 > 0. By replacing x3 = z2 + α2(x1, x2) according to (4.32) in (4.33), we get

d
dtVa = ∂

∂x1
V (x1)(f(x1) + g(x1)α1(x1))︸ ︷︷ ︸

≤W (x1)

−c1z
2
1 + z1z2

+ z2

(
u− ∂

∂x1
α2(x1, x2){f(x1) + g(x1)x2} − ∂

∂x2
α2(x1, x2)x3

)
.

(4.35)

Applying Theorem 4.1 again to (4.35) with the input u ultimately leads to the state
feedback

u = −z1 − c2z2 + ∂

∂x1
α2(x1, x2)(f(x1) + g(x1)x2) + ∂

∂x2
α2(x1, x2)x3 (4.36)

with c2 > 0 and α2(x1, x2) according to (4.34).

Exercise 4.4. Prove that for a negatively definite W (x1), the equilibrium x1 = 0,
x2 = x3 = 0 is globally asymptotically stable. To which set do the solutions of the
system converge if W (x1) is only negatively semidefinite?

4.2 Generalized Backstepping
The method of Integrator Backstepping can now be extended to a class of nonlinear
systems of the form

ẋ1 = f1(x1,x2) (4.37a)
ẋ2 = f2(x1,x2) + u (4.37b)

with the state x1 ∈ Rn, x2 ∈ Rp and the control input u ∈ Rp. Without loss of generality,
assume that x1,R = 0, x2,R = 0 is an equilibrium of the free system, i.e., for u = 0. If
this is not the case, then a state transformation x̃1 = x1 − x1,R and x̃2 = x2 − x2,R and a
control input transformation ũ = u − uR can always be found such that this holds in the
new variables.

Theorem 4.2. Assume there exists a Lyapunov function V (x1) and a state feedback
x2 = α(x1) with α(0) = 0 such that the equilibrium x1,R = 0 of the system

ẋ1 = f1(x1,α(x1)) (4.38)

is globally (locally) asymptotically stable. Then, a state feedback u = u(x1,x2) with
u(0,0) = 0 can always be specified such that the equilibrium x1,R = 0, x2,R = 0 of
the closed loop system (4.37) is globally (locally) asymptotically stable.
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Proof. The following proof is constructive and thus provides a computational proce-
dure to obtain the state feedback law.

(1) For the Lyapunov function V (x1), due to the asymptotic stability of system
(4.38), we have

d
dtV (x1) = ∂

∂x1
V (x1)f1(x1,α(x1)) < 0 . (4.39)

(2) Now, introduce an auxiliary quantity G(x1,x2) in the form

G(x1,x2) =
∫ 1

0

∂

∂vf1(x1,v)
∣∣∣∣
v=α(x1)+λx2

dλ (4.40)

such that f1(x1,α(x1) + x2) can be expressed as follows

f1(x1,α(x1) + x2) = f1(x1,α(x1)) + G(x1,x2)x2 (4.41)

To show this, multiply (4.40) from the right by x2 and replace the integrand
with the left-hand side of the subsequent expression

∂

∂λ
f1

x1,α(x1) + λx2︸ ︷︷ ︸
v

 =


∂f1,1(x1,v)

∂v1
x2,1 + · · · + ∂f1,1(x1,v)

∂vp
x2,p

...
∂f1,n(x1,v)

∂v1
x2,1 + · · · + ∂f1,n(x1,v)

∂vp
x2,p


= ∂

∂vf1(x1,v)
∣∣∣∣
v=α(x1)+λx2

x2 ,

(4.42)

which yields

G(x1,x2)x2 =
∫ 1

0

∂

∂vf1(x1,v)
∣∣∣∣
v=α(x1)+λx2

x2 dλ

=
∫ 1

0

∂

∂λ
f1(x1,α(x1) + λx2) dλ

(4.43)

and consequently (4.41)

G(x1,x2)x2 = f1(x1,α(x1) + x2) − f1(x1,α(x1)) . (4.44)

(3) The state feedback law

u(x1,x2) = −f2(x1,x2) + ∂α(x1)
∂x1

f1(x1,x2)

−
[
∂V (x1)
∂x1

G(x1,x2 −α(x1))
]T

− c(x2 −α(x1)), c > 0

(4.45)
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guarantees the asymptotic stability of the equilibrium of the closed loop system.
The candidate for the Lyapunov function of the closed loop system is the
positive definite function

Va(x1,x2) = V (x1) + 1
2∥x2 −α(x1)∥2

2 (4.46)

The time derivative of Va along a solution of the system is

d
dtVa(x1,x2) =

[
∂Va
∂x1

∂Va
∂x2

][ f1(x1,x2)
f2(x1,x2) + u

]
(4.47)

Substituting u(x1,x2) and Va(x1,x2) from (4.45) and (4.46) into the equations,
we obtain

d
dtVa = ∂V

∂x1
f1(x1,x2) + (x2 −α(x1))T

{
−∂α(x1)

∂x1
f1(x1,x2) + f2(x1,x2)

− f2(x1,x2) + ∂α(x1)
∂x1

f1(x1,x2)

−
[
∂V (x1)
∂x1

G(x1,x2 −α(x1))
]T

− c(x2 −α(x1))
}

= ∂V

∂x1
{f1(x1,x2) − G(x1,x2 −α(x1))(x2 −α(x1))}

− c∥x2 −α(x1)∥2
2 .

(4.48)

Replacing x2 with x2 −α(x1) in (4.44), we get

G(x1,x2 −α(x1))(x2 −α(x1)) = f1(x1,x2) − f1(x1,α(x1)) (4.49)

Hence, for (4.48) we have

d
dtVa = ∂V

∂x1
f1(x1,α(x1))︸ ︷︷ ︸

= d
dt
V (x1)<0

−c∥x2 −α(x1)∥2
2 < 0 . (4.50)

Thus, Theorem 4.2 is proven.

As an application example, consider the active damping system of a vehicle shown in
Figure 4.1, also see Figure 5.5.

A hydraulic actuator is mounted in parallel to a spring-damper system with the spring
constant ks and the damping constant ds between the vehicle chassis and the suspension.
The inflow q of oil into the hydraulic actuator can be adjusted via a current-controlled
servo valve. The dynamics of the servo valve are approximated by a first-order time delay
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vehicle chassis

hydraulic

road

reference

actuator
wheel

qms ds ks xa = xs − xu

kt

xr

xu

xs

mu

Figure 4.1: Active vehicle damping system.

element in the form

ẋv = −cvxv + kviv, cv, kv > 0 (4.51)

describing the spool position xv and the servo current as input iv. The oil flow q then
results from the relationship (compare to (1.49))

q =
{
Kv,1

√
pS − pxv for xv ≥ 0

Kv,2
√
p− pTxv for xv ≤ 0

(4.52)

with the tank pressure pT , the supply pressure pS , the pressure in the cylinder p, and the
valve coefficients Kv,1 and Kv,2. For simplicity, assuming the oil is incompressible, i.e.,
d
dtp = 0, and neglecting the leakage oil flows, (4.51) and (4.52) can be written as follows

q̇

Kv,1
√
pS − p

= −cv
q

Kv,1
√
pS − p

+ kviv, xv ≥ 0 (4.53a)

q̇

Kv,2
√
p− pT

= −cv
q

Kv,2
√
p− pT

+ kviv, xv ≤ 0 (4.53b)

The state feedback, also called servo compensation,

iv =


i∗v

Kv,1
√
pS − p

for xv ≥ 0
i∗v

Kv,2
√
p− pT

for xv ≤ 0
(4.54)
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with the new input i∗v then leads to the differential equation for the oil flow

q̇ = −cvq + kvi
∗
v . (4.55)

Furthermore, due to the assumption of oil incompressibility, the relation

ẋa = q

A
(4.56)

holds with the piston area A. Now, a damping behavior of the form

q = α(xa) = −A
(
d1xa + d2x

3
a

)
, d1, d2 > 0 , (4.57)

is desired, where for small displacements (xa ≪) a linear behavior is assumed (x3
a is

negligible compared to xa), and for larger displacements, damping proportional to the
third power of xa is considered. This allows the application of the backstepping method
from Theorem 4.2 with n = p = 1, x1 = xa, x2 = q, u = kvi

∗
v, f1(x1,x2) = q

A , and
f2(x1,x2) = −cvq:

(1) The equilibrium xa = 0 of the system (4.56) with the fictitious state feedback (4.57)
is asymptotically stable, which can be directly shown with the Lyapunov function

V (xa) = 1
2x

2
a (4.58)

and its time derivative along a solution of the system
d
dtV (xa) = −

(
d1x

2
a + d2x

4
a

)
< 0 (4.59)

(2) In this case, the auxiliary quantity (4.40) reads

G(xa, q) =
∫ 1

0

∂

∂q

(
q

A

)∣∣∣∣
q=α(xa)+λq

dλ = 1
A

. (4.60)

(3) The state feedback according to (4.45) is given by

kvi
∗
v = cvq + ∂α(xa)

∂xa

q

A
− ∂V (xa)

∂xa

1
A

− c(q − α(xa)), c > 0 (4.61)

or with the choice c = cv we obtain

i∗v = 1
kv

(
−cvA

(
d1xa + d2x

3
a

)
−
(
d1 + 3d2x

2
a

)
q − xa

1
A

)
. (4.62)

As one can easily verify,

Va(xa, q) = 1
2x

2
a︸︷︷︸

V (xa)

+1
2

q +A
(
d1xa + d2x

3
a

)
︸ ︷︷ ︸

−α(xa)


2

(4.63)

is the corresponding Lyapunov function of the closed loop system given by (4.46).

Therefore, the state feedback for the servo current command of the servo valve consists
of (4.54) and (4.62).

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



4.3 Adaptive Control Page 88

Exercise 4.5. Given is the mathematical model (1.15) of the rotational motion of a
satellite as shown in Figure 1.1

Θ11ω̇1 = −(Θ33 − Θ22)ω2ω3 +M1 (4.64a)
Θ22ω̇2 = −(Θ11 − Θ33)ω1ω3 +M2 (4.64b)
Θ33ω̇3 = −(Θ22 − Θ11)ω1ω2 +M3 (4.64c)

with the angular velocities ω1, ω2, ω3, the moments of inertia Θ11, Θ22, Θ33, and the
moments M1, M2, and M3 around the principal axes of inertia.

(1) In a first step, design a controller using the Computed-Torque method according
to Section 4.5 so that the equilibrium ω1,R = ω2,R = ω3,R = 0 is asymptotically
stabilized.

(2) Now assume that the cold gas thrusters in the x3 axis have failed, i.e., M3 = 0.
Design a state feedback controller according to Theorem 4.2 in such a way that
for this case, the equilibrium of the closed loop system ω1,R = ω2,R = ω3,R = 0
remains globally asymptotically stable. Why can the Computed-Torque method
no longer be applied here?

4.3 Adaptive Control
In this section, some basic concepts of Lyapunov-based adaptive control are discussed
using simple examples. To illustrate the idea, consider the simple nonlinear system

ẋ = u+ θφ(x) (4.65)

with the state x ∈ R, the control input u ∈ R, and the unknown but constant parameter
θ ∈ R. Assuming in a first step that the parameter θ is known, the equilibrium x = 0 is
asymptotically stabilized by the state feedback

u = −θφ(x) − c1x, with c1 > 0 . (4.66)

A possible Lyapunov function is given by

V (x) = 1
2x

2 > 0, V̇ (x) = −c1x
2 < 0 . (4.67)

Substituting an estimated value θ̂ for the unknown parameter θ in the state feedback
(4.66), the change of V (x) = 1

2x
2 along a solution curve of the closed loop system is given

by

ẋ = −c1x− θ̂φ(x) + θφ(x) = −c1x−
(
θ̂ − θ

)
︸ ︷︷ ︸

=θ̃

φ(x) . (4.68)
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The expression for the change of V (x) = 1
2x

2 along a solution curve of the closed loop
system is

V̇ (x) = −c1x
2 − θ̃φ(x)x . (4.69)

To eliminate the indefinite term in the estimation error θ̃, the Lyapunov function is
extended by an additional quadratic term

Ve
(
x, θ̃

)
= V (x) + 1

2γ θ̃
2 = 1

2x
2 + 1

2γ θ̃
2 > 0, γ > 0 (4.70)

and the change of Ve
(
x, θ̃

)
along a solution curve of (4.68) is calculated as

V̇e
(
x, θ̃

)
= −c1x

2 + θ̃

(
−φ(x)x+ 1

γ

d
dt θ̃

)
. (4.71)

The differential equation of the estimated value θ̂ is then determined such that the
bracketed expression in (4.71) vanishes, i.e.,

d
dt θ̃ = d

dt
(
θ̂ − θ

)
= d

dt θ̂ = γφ(x)x , (4.72)

resulting in V̇e
(
x, θ̃

)
as

V̇e
(
x, θ̃

)
= −c1x

2 ≤ 0 (4.73)

From Theorem 3.4, it is immediately clear that limt→∞ x(t) = 0.
The assumption that the (nonlinear) state feedback stabilizes the system for known

parameters θ is also referred to in the literature as the certainty equivalence property,
which is essential for a variety of adaptive controller design methods. Furthermore, it
is easy to see that the unknown parameter θ affects the system (4.65) in the same way
as the control input u, and thus the effect of the term θφ(x) can be easily compensated
for known θ through the control input. This structural property is also known in the
literature as the matching condition. In the next part of this section, it will be shown that
the design of the parameter estimator still analogous even when the matching condition
is violated to the extent that the control input u affects the system with the unknown θ
only after one integrator. In this context, it is also referred to as the extended matching
condition. Hence, the associated system with the extended matching condition for the
parameter θ takes the form

ẋ1 = x2 + θφ(x1) (4.74a)
ẋ2 = u . (4.74b)

In the first step, design a state feedback using the simple integrator backstepping method
assuming that the parameter θ is known (certainty equivalence property). For the fictitious
control input

x2 = −θφ(x1) − c1x1, c1 > 0 (4.75)
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the asymptotic stability of the equilibrium x1 = 0 of the first subsystem immediately
follows with the Lyapunov function

V (x1) = 1
2x

2
1 > 0, V̇ (x1) = −c1x

2
1 < 0 . (4.76)

Setting the Lyapunov function of the overall system as

Va(x1, x2) = 1
2x

2
1 + 1

2(x2 + θφ(x1) + c1x1)2 (4.77)

and calculating the control input u from

V̇a(x1, x2) = x1(x2 + θφ(x1))︸ ︷︷ ︸
=−c1x2

1+(x2+θφ(x1)+c1x1)x1

+(x2 + θφ(x1) + c1x1)

×
(
u+

(
θ
∂

∂x1
φ(x1) + c1

)
(x2 + θφ(x1))

)

= −c1x
2
1 + (x2 + θφ(x1) + c1x1)

×
(
u+

(
θ
∂

∂x1
φ(x1) + c1

)
(x2 + θφ(x1)) + x1

)
︸ ︷︷ ︸

=−c2(x2+θφ(x1)+c1x1), c2>0

(4.78)

yields

u = −
(
θ
∂

∂x1
φ(x1) + c1

)
(x2 + θφ(x1)) − x1 − c2(x2 + θφ(x1) + c1x1) . (4.79)

To calculate the state feedback and the parameter estimator for a constant but unknown
parameter θ, the following Lyapunov function

Ve
(
x1, x2, θ̃

)
= 1

2x
2
1 + 1

2
(
x2 + θ̂φ(x1) + c1x1

)2
+ 1

2γ θ̃
2, γ > 0 (4.80)

with the parameter estimation error θ̃ = θ̂− θ is used. The time derivative of Va
(
x1, x2, θ̃

)
is given by
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V̇e = x1(x2 + θφ(x1))︸ ︷︷ ︸
=−c1x2

1+(x2+θ̂φ(x1)+c1x1)x1−θ̃φ(x1)x1

+
(
x2 + θ̂φ(x1) + c1x1

)

×
(
u+

(
θ̂
∂

∂x1
φ(x1) + c1

)
(x2 + θφ(x1)) + φ(x1) d

dt θ̂
)

+ 1
γ
θ̃

d
dt θ̂

= −c1x
2
1 +

(
x2 + θ̂φ(x1) + c1x1

)
×
(
u+

(
θ̂
∂

∂x1
φ(x1) + c1

)(
x2 + θ̂φ(x1)

)
+ x1 + d

dt θ̂φ(x1)
)

︸ ︷︷ ︸
=−c2(x2+θ̂φ(x1)+c1x1), c2>0

+ θ̃

(
−φ(x1)x1 + d

dt θ̂
1
γ

−
(
x2 + θ̂φ(x1) + c1x1

)(
θ̂
∂

∂x1
φ(x1) + c1

)
φ(x1)

)
︸ ︷︷ ︸

=0

.

(4.81)

The state feedback and the parameter estimator then follow as

u = −
(
θ̂
∂

∂x1
φ(x1) + c1

)(
x2 + θ̂φ(x1)

)
− x1 − d

dt θ̂φ(x1) − c2
(
x2 + θ̂φ(x1) + c1x1

)
(4.82)

and

d
dt θ̂ = γφ(x1)

(
x1 +

(
x2 + θ̂φ(x1) + c1x1

)(
θ̂
∂

∂x1
φ(x1) + c1

))
. (4.83)

As an application example, consider the mathematical model of a simplified biochemical
process of the form

ẋ1 = [φ0(x2) + θ1φ1(x2) + θ2φ2(x2)]x1 −Dx1 (4.84a)
ẋ2 = −k[φ0(x2) + θ1φ1(x2) + θ2φ2(x2)]x1 −Dx2 + u (4.84b)

with x1 as the concentration of the bacterial population, x2 as the concentration of
the substrate, the specific growth rate µ(x2) = [φ0(x2) + θ1φ1(x2) + θ2φ2(x2)] with the
unknown but constant parameters θ1 and θ2, the substrate feed rate u as the input, and
the system parameters D and k. Note that both the state variables x1 and x2 as well
as the specific growth rate µ(x2) are always non-negative. The task of control is now to
regulate the concentration of the bacterial population x1 to a predetermined reference
value x1,d.

In the first step, one performs a regular state transformation of the form

z1 = ln(x1) − ln(x1,d) bzw. x1 = x1,d exp(z1) (4.85a)
z2 = x2 bzw. x2 = z2 (4.85b)
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and the system (4.84) in the new state zT = [z1, z2] reads

ż1 = [φ0(z2) + θ1φ1(z2) + θ2φ2(z2)] −D (4.86a)
ż2 = −k[φ0(z2) + θ1φ1(z2) + θ2φ2(z2)]x1,d exp(z1) −Dz2 + u . (4.86b)

If one interprets φ0(z2) as a fictitious input in the first differential equation of (4.86), it
can be easily verified that the control law

φ0(z2) = −θ1φ1(z2) − θ2φ2(z2) +D − c1z1, c1 > 0 (4.87)

asymptotically stabilizes the desired equilibrium z1,d = 0 (x1 = x1,d). In this context, one
chooses the Lyapunov function as

V (z1) = 1
2z

2
1 > 0, V̇ (z1) = −c1z

2
1 < 0 . (4.88)

To derive the state feedback and the parameter estimator for θT = [θ1, θ2], one chooses a
similar Lyapunov function as shown before, i.e.,

Ve
(
z, θ̃

)
= 1

2z
2
1 + 1

2

(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)2
+ 1

2 θ̃
TΓ−1θ̃ (4.89a)

with

θ̂
T =

[
θ̂1, θ̂2

]
, φ12(z2) =

[
φ1(z2)
φ2(z2)

]
, θ̃ =

[
θ̃1

θ̃2

]
= θ̂ − θ (4.89b)

and the positive definite matrix Γ. The change of the Lyapunov function Ve(z, θ̃) along a
solution of the system (4.86) is calculated as
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V̇e
(
z, θ̃

)
= z1

(
φ0(z2) + θTφ12(z2) −D

)
+
(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)
×
((

∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)
ż2 + c1ż1 + d

dt θ̂
T
φ12(z2)

)
+ θ̃TΓ−1 d

dt θ̃

= z1

([
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

]
− c1z1 − θ̃T

φ12(z2)
)

+
((

∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)
ż2 + c1ż1 + d

dt θ̂
T
φ12(z2)

)
×
(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)
+ θ̃TΓ−1 d

dt θ̃

= −c1z
2
1 +

(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)((
∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)
ż2

+c1ż1 + d
dt θ̂

T
φ12(z2) + z1

)
+ θ̃T

(
−z1φ12(z2) + Γ−1 d

dt θ̃
)

= −c1z
2
1 +

(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

){(
∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)

×

−k

φ0(z2) + θT︸︷︷︸
=θ̂T−θ̃T

φ12(z2)

x1,d exp(z1) −Dz2 + u



+ c1


φ0(z2) + θT︸︷︷︸

=θ̂T−θ̃T

φ12(z2)

−D

+ d
dt θ̂

T
φ12(z2) + z1


+ θ̃T

(
−z1φ12(z2) + Γ−1 d

dt θ̃
)

= −c1z
2
1 +

(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

){(
∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)
×
(

−k
[
φ0(z2) + θ̂T

φ12(z2)
]
x1,d exp(z1) −Dz2 + u

)
+c1

([
φ0(z2) + θ̂T

φ12(z2)
]

−D

)
+ d

dt θ̂
T
φ12(z2) + z1

}
+ θ̃T

{
−z1φ12(z2) + Γ−1 d

dt θ̃ +
(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)
×
[(

∂

∂z2
φ0(z2) + θ̂T ∂

∂z2
φ12(z2)

)
kφ12(z2)x1,d exp(z1) − c1φ12(z2)

]}
.

(4.90)

Exercise 4.6. Calculate the relation (4.90).

Remark: Take your time for this task.

The state feedback is obtained by setting the simply underlined expression in (4.90)
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equal to −c2

(
φ0(z2) + θ̂T

φ12(z2) −D + c1z1

)
, where c2 > 0, and the parameter estimator

follows directly by setting to zero the double underlined expression in (4.90) and the fact
that d

dt θ̃ = d
dt θ̂.

4.4 PD control law for rigid body systems
If qT = [q1, q2, . . . , qn] denotes the generalized coordinates of a mechanical rigid body
system, then the equations of motion are obtained from the so-called Euler-Lagrange
equations

d
dt

(
∂

∂q̇k
L

)
− ∂

∂qk
L = τk , k = 1, . . . , n (4.91)

with the generalized velocities q̇ = d
dtq, the generalized forces or moments τT =

[τ1, τ2, . . . , τn], and the Lagrangian L. For rigid body systems, the Lagrangian always
results from the difference between kinetic and potential energy, that is, L = T −V . Under
the assumption that

(1) the kinetic energy T can be expressed as a quadratic function of the generalized
velocities q̇ in the form

T = 1
2

n∑
j=1

n∑
i=1

dij(q)q̇iq̇j = 1
2 q̇TD(q)q̇ (4.92)

with the symmetric, positive definite generalized mass matrix D(q), and

(2) the potential energy V (q) is independent of q̇,

the equations of motion (4.91) can be written in the form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (4.93)

To show this, substitute T from (4.92) and V (q) into the Euler-Lagrange equations (4.91)
and with

∂

∂q̇k
L =

n∑
j=1

dkj(q)q̇j , (4.94a)

d
dt

(
∂

∂q̇k
L

)
=

n∑
j=1

dkj(q)q̈j +
n∑
j=1

d
dtdkj(q)q̇j

=
n∑
j=1

dkj(q)q̈j +
n∑
j=1

n∑
i=1

∂

∂qi
dkj(q)q̇iq̇j ,

(4.94b)

∂

∂qk
L = 1

2

n∑
j=1

n∑
i=1

∂

∂qk
dij(q)q̇iq̇j − ∂

∂qk
V (4.94c)
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(4.91) finally simplifies to
n∑
j=1

dkj(q)q̈j +
n∑
j=1

n∑
i=1

(
∂

∂qi
dkj(q) − 1

2
∂

∂qk
dij(q)

)
q̇iq̇j︸ ︷︷ ︸

B

+ ∂

∂qk
V = τk . (4.95)

Now, writing for
n∑
j=1

n∑
i=1

∂

∂qi
dkj(q)q̇iq̇j = 1

2

n∑
j=1

n∑
i=1

(
∂

∂qi
dkj(q) + ∂

∂qj
dki(q)

)
q̇iq̇j , (4.96)

the term B from (4.95) follows as

B =
n∑
j=1

n∑
i=1

1
2

(
∂

∂qi
dkj(q) + ∂

∂qj
dki(q) − ∂

∂qk
dij(q)

)
︸ ︷︷ ︸

cijk(q)

q̇iq̇j , (4.97)

where the terms cijk(q) are referred to as Christoffel symbols of the first kind. Furthermore,
if we set ∂V

∂qk
(q) = gk(q), then from (4.95) and (4.97) we immediately obtain the equations

of motion in the form
n∑
j=1

dkj(q)q̈j +
n∑
j=1

n∑
i=1

cijk(q)q̇iq̇j + gk(q) = τk . (4.98)

As can be seen, the equations of motion (4.98) contain three different terms - those
involving the second derivative of the generalized coordinates (acceleration terms), those
where the product q̇iq̇j appears (centrifugal terms for i = j and Coriolis terms for i ≠ j),
and those that depend solely on q (potential forces). As stated above, the equations of
motion can thus be written in matrix form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (4.99)

with the (k, j)-th element of the matrix C(q, q̇) given by

C(q, q̇)[k, j] =
n∑
i=1

cijk(q)q̇i (4.100)

Exercise 4.7. Transform the mathematical models from Exercise 1.6 and 1.7 into the
structure of (4.99).

For stability considerations, the following essential theorem now applies:

Theorem 4.3. The matrix

N(q, q̇) = Ḋ(q) − 2C(q, q̇) (4.101)

is skew-symmetric, i.e.,

njk(q, q̇) = −nkj(q, q̇) . (4.102)
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Proof. To prove this, consider the (j, k)-th component of the matrix N(q, q̇) in the form

njk =
n∑
i=1

(
∂

∂qi
djk(q) − 2cikj(q)

)
q̇i

=
n∑
i=1

(
∂

∂qi
djk(q) − ∂

∂qi
djk(q) − ∂

∂qk
dji(q) + ∂

∂qj
dik(q)

)
q̇i

(4.103)

then it follows

njk =
n∑
i=1

(
− ∂

∂qk
dji(q) + ∂

∂qj
dik(q)

)
q̇i (4.104)

or by interchanging the indices j and k

nkj =
n∑
i=1

(
− ∂

∂qj
dki(q) + ∂

∂qk
dij(q)

)
q̇i (4.105)

and taking into account the symmetry of the mass matrix D(q), i.e., dki(q) = dik(q), we
immediately obtain the result njk = −nkj .

In the next step, we will show how a PD control law can asymptotically stabilize a
constant desired position of the generalized coordinates qd. For this purpose, a control
law of the form

τ = KP (qd − q)︸ ︷︷ ︸
eq

−KDq̇ + g(q) (4.106)

is used with the positive definite matrices KP and KD, where the compensation of the
potential forces g(q) guarantees that q = qd is an equilibrium of the closed loop. With
the positive definite function

V (q, q̇) = 1
2 q̇TD(q)q̇ + 1

2eT
q KPeq (4.107)

as the Lyapunov function and its time derivative along the solution of the closed loop
(4.99) and (4.106)

d
dtV (q, q̇) = q̇TD(q)q̈ + 1

2 q̇TḊ(q)q̇ + eT
q KP ėq

= q̇T(−C(q, q̇)q̇ + KP (qd − q) − KDq̇) + 1
2 q̇TḊ(q)q̇ + eT

q KP ėq︸︷︷︸
−q̇

= q̇T
(1

2Ḋ(q) − C(q, q̇)
)

q̇︸ ︷︷ ︸
=0

+ q̇TKP (qd − q) − eT
q KP q̇︸ ︷︷ ︸

=0

−q̇TKDq̇

≤ 0

(4.108)

the asymptotic stability of the desired position qd follows directly from the invariance
principle of Krassovskii-LaSalle (see Theorem 3.4). It should be noted at this point that
this PD control law (4.106) also leads to very good results for slowly varying desired
trajectories qd(t) (i.e., where q̇d(t) is very small).
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Exercise 4.8. Design a PD controller for the mechanical systems in Exercise 1.6 and
1.7 according to (4.106). Choose suitable parameters and perform simulations of the
closed-loop systems in Matlab/Simulink.

Exercise 4.9. Figure 4.2 shows a robot with three degrees of freedom with rod masses
mi, rod lengths li, distances from the rod base to the center of mass lci, and moments
of inertia Ixxi, Iyyi, Izzi (all cross-moments are assumed to be zero) in the body-fixed
coordinate system (xi, yi, zi) for i = 1, 2, 3. A mass mL is attached at the end of the
third rod. The three degrees of freedom of the robot are the rotation around the z1
axis of rod 1, the rotation around the x2 axis of rod 2, and the rotation around the x3
axis of rod 3. The action of the actuators is idealized as torque τi in the connecting
joints.
Design a PD controller to stabilize a given desired position and simulate the control
loop in Matlab/Simulink. Use the following numerical values: m1,m2,m3,mL = 1
kg, lc1, lc2, lc3 = 1/2 m, l1, l2, l3 = 1 m, Ixx1 = Iyy1 = Ixx2 = Izz2 = Ixx3 = Izz3 = 0.1
m4, and Izz1 = Iyy2 = Iyy3 = 0.02 m4.

x y

z
mL

lc1

lc2

lc3

l1

l2

l3

φ1, τ1

φ2, τ2

φ3, τ3g

Figure 4.2: Robot with three degrees of freedom.

4.5 Inverse Dynamics (Computed-Torque)
Since the inertia matrix D(q) in (4.99) is positive definite, it can also be inverted, and
thus the control law of inverse dynamics (Computed-Torque)

τ = D(q)v + C(q, q̇)q̇ + g(q) (4.109)

leads to a closed loop of the form

q̈ = v (4.110)
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with the new input v. One can now specify a controller for v such that the error
system converges globally asymptotically to a trajectory qd(t) that is twice continuously
differentiable. For this purpose, v is given in the form

v = q̈d − K0 (q − qd)︸ ︷︷ ︸
eq

−K1 (q̇ − q̇d)︸ ︷︷ ︸
ėq

(4.111)

with suitable positive definite diagonal matrices K0 and K1, and the error dynamics then
reads

ëq + K1ėq + K0eq = 0 . (4.112)

Hence, the error dynamics can be freely adjusted by choosing the matrices K0 and K1.

Exercise 4.10. Design a controller for the mechanical systems of exercises 1.6 and 1.7
using the Computed-Torque method according to (4.109) and (4.111). Choose suitable
parameters and perform simulations of the closed control loops in Matlab/Simulink.
Compare the results with those of exercise 4.8.

It is well known that system parameters such as masses, moments of inertia, etc., are
generally not precisely known and therefore cannot be ideally compensated for, as shown
in (4.109). However, the rigid body systems of the form (4.99) have the property that a
parameter vector p ∈ Rm can always be found in such a way that it appears linearly in
the equations of motion, i.e.,

D(q)q̈ + C(q, q̇)q̇ + g(q) = Y0(q, q̇, q̈) + Y1(q, q̇, q̈)p = τ (4.113)

with an (n,m)-matrix Y1(q, q̇, q̈) and a vector Y0(q, q̇, q̈) consisting of known functions.
It should be noted that the entries of the parameter vector p might themselves depend
nonlinearly on the system’s masses, lengths, etc. Now, if an estimated value p̂ of the
parameter vector p is substituted into the control law (4.109), then the control law (4.109)
and (4.111) becomes

τ = D̂(q)(q̈d − K0eq − K1ėq) + Ĉ(q, q̇)q̇ + ĝ(q) (4.114)

and the error system (4.112) results in

D̂(q)(ëq + K0eq + K1ėq) = D̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q)︸ ︷︷ ︸
Y0(q,q̇,q̈)+Y1(q,q̇,q̈)p̂

−

D(q)q̈ + C(q, q̇)q̇ + g(q)︸ ︷︷ ︸
Y0(q,q̇,q̈)+Y1(q,q̇,q̈)p

 .
(4.115)

It should be mentioned at this point that the quantities D and D̂, C and Ĉ, as well as g
and ĝ differ only in that the parameter vector p is replaced by p̂, but their entries remain
functionally the same. Assuming the invertibility of D̂(q), one can ultimately rewrite
(4.115) in the form

ëq + K0eq + K1ėq = D̂(q)−1Y1(q, q̇, q̈)p̃ = Φp̃ (4.116)
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or as a first-order differential equation system

d
dt

[
eq
ėq

]
=
[

0n,n En,n

−K0 −K1

]
︸ ︷︷ ︸

A

[
eq
ėq

]
+
[

0n,n
En,n

]
︸ ︷︷ ︸

B

Φp̃ (4.117)

with p̃ = p̂ − p and the identity matrix E. Since the matrices K0 and K1 were chosen
in such a way that the error system is asymptotically stable, the matrix A is a Hurwitz
matrix, and according to Theorem 3.7, for every positive definite matrix Q̄, there exists a
unique positive definite solution P of the Lyapunov equation

ATP + PA + Q̄ = 0 . (4.118)

To develop an adaptation law for the estimated value p̂ of the parameter p, a Lyapunov
function of the form

V (eq, ėq, p̃) =
[
eT
q ėT

q

]
P
[
eq
ėq

]
+ p̃TΓp̃ (4.119)

is assumed with a symmetric, positive definite matrix Γ, and its time derivative along a
solution is calculated

d
dtV = −

[
eT
q ėT

q

]
Q̄
[
eq
ėq

]
+ 2p̃T

(
ΦTBTP

[
eq
ėq

]
+ Γ d

dt p̃
)

. (4.120)

Assuming that the parameter vector p is constant (or changes sufficiently slowly compared
to the system dynamics in practice) yields the adaptation law

d
dt p̃ = d

dt p̂ = −Γ−1ΦTBTP
[
eq
ėq

]
, (4.121)

which results in (4.120) becoming

d
dtV = −

[
eT
q ėT

q

]
Q̄
[
eq
ėq

]
≤ 0 . (4.122)

This immediately demonstrates the stability of the equilibrium of the error system
eq,R = ėq,R = 0.

To prove asymptotic stability, Barbalat’s Lemma is used (see Theorem 3.14). From the
fact that V (eq, ėq, p̃) from (4.119) is positive definite and d

dtV from (4.122) is negative
semidefinite, the boundedness of eq, ėq, and p̃ directly follows. Assuming that the matrix
D̂(q) remains positive definite and invertible through parameter estimation guarantees
that the entries of Φ in (4.116) are also bounded. From (4.116) and (4.121), it can then
be immediately seen that ëq and d

dt p̃ are bounded. This implies that d2

dt2V is bounded,
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and consequently, according to Theorem 3.13, d
dtV is uniformly continuous. This allows

the application of Barbalat’s Lemma, resulting in

lim
t→∞

d
dtV = 0 (4.123a)

or

lim
t→∞

eq = lim
t→∞

ėq = 0 . (4.123b)

One disadvantage of this method is that to calculate Y from (4.113) or Φ from (4.116),
either the acceleration q̈ must be measured or approximated by differentiating the velocity
q̇. In practice, q̈ is often simply replaced by q̈d.

Exercise 4.11. Design a controller using the Computed-Torque method with parameter
adaptation according to (4.114) and (4.121) for the mechanical systems in exercises
1.6 and 1.7. Choose a deviation of +15% from the nominal parameters and simulate
the closed-loop systems in Matlab/Simulink. Compare the results with those from
exercise 4.10 where the actual parameters deviate by +15% from the nominal values.

Exercise 4.12. Design a trajectory tracking controller using the Computed-Torque
method for the three-degree-of-freedom robot shown in Figure 4.2 and perform an
adaptation for the end mass mLast according to (4.121). Simulate the closed-loop
system in Matlab/Simulink for an end mass mLast = 20 kg. Note that for the
nominal value of the end mass, m̂Last = 1 kg.

Exercise 4.13. Show that the controller according to Slotine and Li

τ = D(q)v̇ + C(q, q̇)v + g(q) − KD(q̇ − v), v = q̇d − Λ(q − qd) (4.124)

leads to an asymptotically stable error system for eq = q − qd with a positive definite
diagonal matrix Λ.

Remark: Introduce the generalized control error

s = ėq + Λeq (4.125)

as an auxiliary quantity and consider the Lyapunov function

V = 1
2sTD(q)s (4.126)
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5 Singular Perturbation Theory

There are many (nonlinear) dynamic systems that consist of a slow and a fast subsystem.
In this chapter, such systems will be analyzed in more detail, and it will be clarified
under which conditions the fast subsystem can be approximated by its corresponding
quasi-stationary solution.

5.1 Basic Idea
In state-space representation, a system consisting of a fast and a slow subsystem can be
described in the form

ẋ = f1(t,x, z, ε) (5.1a)
εż = f2(t,x, z, ε) (5.1b)

with the small positive perturbation parameter ε ∈ [0, ε0], time t ∈ [t0, t1], and state
x ∈ Dx ⊂ Rn and z ∈ Dz ⊂ Rm. Furthermore, it is assumed that f1 and f2 are
continuously differentiable with respect to all arguments (t,x, z, ε). Now, if we set ε = 0
in (5.1), the differential equation system (5.1b) degenerates into a system of algebraic
equations of the form

0 = f2(t,xr, zr, 0) . (5.2)

Assuming that the nonlinear equation system (5.2) has k ≥ 1 isolated real roots of the
form

zr = q(t,xr) (5.3)

for each (t,xr) ∈ [0, t1] × Dx, a well-defined n-dimensional reduced mathematical model of
the form

ẋr = f1(t,xr,q(t,xr), 0) (5.4)

can be computed for each root. In this case, it is said that (5.1) is in the standard form
of singular perturbation theory, and (5.4) represents the corresponding quasi-stationary
model.

The following examples illustrate how a singularly perturbed state-space representation
according to (5.1) can arise during the modeling of dynamic systems and how the singular
perturbation parameter ε comes into play.
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Example 5.1 (Direct Current Machine). Assuming a constant excitation (ψF constant),
the mathematical model of a direct current machine can be written as follows according
to (1.38) with kA = kψF :

ΘG
d
dtω = kAiA −ML (5.5a)

LA
d
dt iA = uA −RAiA − kAω (5.5b)

Assuming that the armature inductance LA is very small, LA can be directly used as
a singular perturbation parameter ε, and the system (5.4) is already in the standard
form of singular perturbation theory according to (5.1) with x = ω and z = iA.
Setting ε = LA = 0 in (5.5), we obtain from (5.5b) for RA ̸= 0 the (unique) isolated
root

iA = uA − kAω

RA
(5.6)

and thus the quasi-stationary model

ΘG
d
dtω = − k2

A

RA
ω + kA

RA
uA −ML . (5.7)

One drawback of this approach is that the singular perturbation parameter ε = LA is
a dimensioned quantity, and therefore, based solely on the value of LA, it cannot be
concluded that (5.5b) represents a fast subsystem. For this reason, a normalization
according to (1.39) is introduced in the form

ω̃ = ω

ω0
, ũA = uA

kAω0
, ĩA = iARA

kAω0
und M̃L = MLRA

k2
Aω0

(5.8)

with the nominal angular velocity ω0, and (5.5) follows in normalized representation
as

TM
d
dt ω̃ = ĩA − M̃L (5.9a)

TA
d
dt ĩA = ũA − ĩA − ω̃ (5.9b)

with the electrical and mechanical time constants

TA = LA
RA

und TM = RAΘG

k2
A

. (5.10)
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Finally, with the normalized time t̃ = t/TM , (5.9) results in the standard form of
singular perturbation theory

d
dt̃ ω̃ = ĩA − M̃L (5.11a)

TA
TM

d
dt̃ ĩA = ũA − ĩA − ω̃ (5.11b)

with the dimensionless singular perturbation parameter

ε = TA
TM

= LAk
2
A

ΘGR2
A

≪ 1 , (5.12)

since the electrical time constant TA is much smaller than the mechanical time constant
TM . Figure 5.1 shows simulation results of the full and reduced models for TA = 10
ms, TM = 200 ms, ũA = 1, the load torque profile M̃L

(
t̃
)

= 1/2
(
σ
(
t̃− 1

)− σ
(
t̃− 2

))
with the unit step function σ(·), and initial values ĩA = 0 and ω̃ = 0.

0
0.2
0.4
0.6
0.8

1

ω̃

0 1 2 30
0.2
0.4
0.6
0.8

1

Time t̃

ĩ A

Full model
Reduced model

Figure 5.1: Simulation results of the full and reduced models of the direct current
machine.

Example 5.2 (Cascaded Control Loop). The cascaded control loop given in Figure
5.2.
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r u y

−−
kP 2 ψ(·) kP 1

s

d
dtx = Ax + bu
y = cT x

inner loop

Figure 5.2: Cascaded control loop.

In the inner control loop, an actuator is controlled by a high-gain controller. The
open loop of the actuator is modeled as a Hammerstein model with a static input
nonlinearity ψ(e) (in this case, ψ(0) = 0, eψ(e) > 0 for all e ≠ 0) and a linear
dynamics (in this case, an integrator with transfer function G(s) = kP1/s with a very
large gain factor kP1 > 0). The controlled actuator acts on a linear time-invariant
single-input system

d
dtx = Ax + bu (5.13a)

y = cTx (5.13b)

with state x ∈ Rn, input u ∈ R, and output y ∈ R, which is controlled in an outer
control loop by a P-controller with gain factor kP2. The state-space representation of
the closed loop is thus

d
dtx = Ax + bu (5.14a)

1
kP1

d
dtu = ψ

(
kP2

(
r − cTx

)
− u

)
. (5.14b)

It is immediately apparent that for kP1 ≫ 1, the quantity ε = 1/kP1 ≪ 1 represents
a suitable singular perturbation parameter, and the system (5.14) is in the standard
form of singular perturbation theory (5.1). The reduced model for ε = 0 or kP1 → ∞
is directly obtained as

d
dtx =

(
A − kP2bcT

)
x + kP2br , (5.15)

corresponding to the block diagram in Figure 5.3.
r y

−
kP 2

d
dtx = Ax + bu

y = cT x

Figure 5.3: Block diagram of the linear system (5.14b).
In the context of singular perturbation theory, the inner control loop is considered as
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a pass-through, essentially reflecting the basic idea of cascaded control.

Example 5.3 (Electrical Network). Consider the nonlinear electrical network shown
in Figure 5.4 with voltage-controlled nonlinear resistors i = ψ(u), linear resistors R
and RC , voltage sources U , and linear capacitors C.

RR

RC

CC

UU
++ u1 u2ψ(u1)

ψ(u2)

Figure 5.4: Electrical network.

The mathematical model for this is

C
d
dtu1 = 1

R
(U − u1) − ψ(u1) − 1

RC
(u1 − u2) (5.16a)

C
d
dtu2 = 1

R
(U − u2) − ψ(u2) + 1

RC
(u1 − u2) . (5.16b)

Now, assuming that the resistance RC ≪ 1, then (5.16) can be written in the form

ε
d
dtu1 = ε

CR
(U − u1) − ε

C
ψ(u1) − 1

C
(u1 − u2) (5.17a)

ε
d
dtu2 = ε

CR
(U − u2) − ε

C
ψ(u2) + 1

C
(u1 − u2) . (5.17b)

with the singular perturbation parameter ε = RC . Obviously, (5.17) does not have
isolated roots for ε = 0, because u1 − u2 = 0, which is why the system (5.17) is not
in the standard form of singular perturbation theory (5.1).
Performing the regular state transformation

x = 1
2(u1 + u2) und z = 1

2(u1 − u2) (5.18)

leads to the standard form of singular perturbation theory from (5.16) to

d
dtx = 1

CR
(U − x) − 1

2C (ψ(x+ z) + ψ(x− z)) (5.19a)

ε
d
dtz = − ε

CR
z − ε

2C (ψ(x+ z) − ψ(x− z)) − 2
C
z (5.19b)

with the quasi-stationary model (ε = 0 implies the unique isolated root z = 0)

d
dtx = 1

CR
(U − x) − 1

C
ψ(x) . (5.20)
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Exercise 5.1. Draw the equivalent circuit diagram for the quasi-stationary model
(5.20). Scale the quantities appropriately so that the singular perturbation parameter
ε becomes dimensionless.

5.2 Different Time Scales
In the following, the order of approximation O(·) is needed, which is defined as follows:

Definition 5.1 (Order of Approximation). We write δ1(ε) = O(δ2(ε)) if positive
constants c1 and c2 exist such that

|δ1(ε)| ≤ c1|δ2(ε)| for alle |ε| < c2 (5.21)

holds.
To illustrate the definition, some examples are given below:

• εn = O(εm) for all n ≥ m, since |ε|n = |ε|m|ε|n−m ≤ |ε|m for all |ε| < 1

• 1 + 5ε = O(1), since |1 + 5ε| ≤ |1 + 5c2| for all |ε| < c2

• ε2/(1 + ε) = O(ε2), since
∣∣∣∣∣ ε2

1 + ε

∣∣∣∣∣ ≤ 1
1 − c2

∣∣ε2∣∣ for all |ε| < c2 < 1

Suppose x(t; ε) and z(t; ε) denote the solution trajectory of the system (see (5.1))

ẋ = f1(t,x, z, ε), x(t0; ε) = x0(ε) (5.22a)
εż = f2(t,x, z, ε), z(t0; ε) = z0(ε) , (5.22b)

where x0(ε) and z0(ε) are smooth functions of ε. For the corresponding dimension-reduced
quasi-stationary model (see (5.4))

ẋr = f1(t,xr,q(t,xr), 0), xr(t0) = x0(0) (5.23)

only n initial conditions can be specified, as the values of zr(t0) = zr0 = q(t,x0(0)) are
fixed at time t = t0 through the relationship zr(t) = q(t,xr(t)) (see (5.3)). Note that
there may be a significant difference between the initial value z0(ε) of the full model (5.22)
and the initial value zr0 of the quasi-stationary system. Regarding the accuracy of the
quasi-stationary model, one can expect at most for a time interval t ∈ [ts, t1] with ts > t0
that

z(t; ε) − zr(t) = O(ε) . (5.24)

For the state x of the slow subsystem, due to the consistent initial condition, one can
indeed expect the approximation order to hold for the entire time interval t ∈ [t0, t1]

x(t; ε) − xr(t) = O(ε) , (5.25)
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since

x(t0; ε) − xr(t0) = x0(ε) − x0(0) = O(ε) . (5.26)

If the approximation order z(t; ε) − zr(t) = O(ε) holds in the time interval t ∈ [ts, t1]
with ts > t0, then obviously the initial error z(t0; ε) − zr(t0) = z0(ε) − zr0 must decay
accordingly in the time interval t ∈ [t0, ts]. This time interval [t0, ts] is also referred to as
the boundary layer in the context of singular perturbation theory. It should be mentioned
at this point that in the limit ε = 0, the fast subsystem (5.22b) with ż = f2/ε for f2 ̸= 0
instantaneously converges to the quasi-stationary model, and for sufficiently small ε ≪ 1,
it is also expected that within the boundary layer interval, the initial error z0(ε) − zr0
decays in such a way that the approximation order z(t; ε) − zr(t) = O(ε) holds in the
time interval t ∈ [ts, t1] with ts > t0.

By using the state transformation

y = z − q(t,x) (5.27)

with q(t,x) according to (5.3), the quasi-stationary solution of z is transformed to the
origin, and the system (5.22) in the new state (x,y) is given by

ẋ = f1(t,x,y + q(t,x), ε) (5.28a)

εẏ = f2(t,x,y + q(t,x), ε) − ε
d
dtq(t,x) (5.28b)

with initial values x(t0; ε) = x0(ε) and y(t0; ε) = z0(ε) − q(t0,x0(ε)). If we now perform
a time transformation of the form

τ = t− t0
ε

und damit ε
d
dty = d

dτ y (5.29)

we see that for ε = 0, the new time τ tends to infinity, for any time t that is sufficiently
greater than t0. This means that the quantities t and x change very slowly in the time
scale τ , and in the limit ε = 0, they are kept constant at t = t0 and x = x0(0). Therefore,
the fast subsystem (5.28b) in the time scale τ for ε = 0 reads

d
dτ ys = f2(t0,x0(0),ys + q(t0,x0(0)), 0) , ys(0) = z0(0) − q(t0,x0(0)) . (5.30)

If the equilibrium ys = 0 of (5.30) is asymptotically stable and ys(0) belongs to the basin
of attraction, then one can expect that the initial error ys(0) decays within the boundary
layer interval. Outside the boundary layer interval, it must be ensured that ys(τ) remains
close to zero while the quantities x and t are allowed to move very slowly away from x0(0)
and t0. Therefore, (5.30) is rewritten in the form

d
dτ ys = f2(t,x,ys + q(t,x), 0) (5.31)

with the fixed parameters (t,x) ∈ [t0, t1] × Dx, and (5.31) is referred to as the boundary
layer model. For the boundary layer model (5.31), uniform exponential stability of the
equilibrium ys = 0 is now required in the slowly varying parameters t and x. For this
purpose, the following definition is introduced (compare with Definition 3.12):
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Definition 5.2 (Exponential stability of the boundary layer system). The equilibrium
ys = 0 of the boundary layer model (5.31) is uniformly exponentially stable in the
slowly varying parameters (t,x) ∈ [t0, t1] × Dx if positive constants k1, k2, and k3
exist such that

∥ys(τ)∥ ≤ k1∥ys(0)∥ exp(−k2τ) for alle ∥ys(0)∥ ≤ k3 , (t,x) ∈ [t0, t1] × Dx

(5.32)

holds for all times τ ≥ 0.

The verification of exponential stability according to Definition 5.2 can now be done
either locally based on linearization, i.e., for all eigenvalues λi of the matrix

∂

∂ys
f2(t,x,ys + q(t,x), 0) (5.33)

it holds that Re(λi) ≤ −c < 0 for all (t,x) ∈ [t0, t1] × Dx, or it can be shown using
Lyapunov theory according to Theorem 3.10, i.e., there exists a Lyapunov function
V (t,x,ys) such that

α1∥ys(τ)∥α4 ≤ V (t,x,ys) ≤ α2∥ys(τ)∥α4 (5.34)
∂V

∂ys
f2(t,x,ys + q(t,x), 0) ≤ −α3∥ys(τ)∥α4 (5.35)

for all times τ ≥ 0, (t,x,ys) ∈ [t0, t1] × Dx × Dy with Dy ⊂ Rm and positive constants αj ,
j = 1, . . . , 4.

The previous results can now be summarized in Tikhonov’s theorem. The proof can be
found in the literature cited at the end.

Theorem 5.1 (Tikhonov’s Theorem). Consider the singularly perturbed problem (see
also (5.22))

ẋ = f1(t,x, z, ε), x(t0; ε) = x0(ε) (5.36a)
εż = f2(t,x, z, ε), z(t0; ε) = z0(ε) (5.36b)

with the isolated root zr = q(t,xr) of (5.36b) for ε = 0, see also (5.3). Assume that
for all

[t,x, z − q(t,x), ε] ∈ [t0, t1] × Dx × Dy × [0, ε0]

with Dx ⊂ Rn, Dy ⊂ Rm (furthermore, let Dx be convex), the following conditions
hold:

A.) The functions f1 and f2, whose first partial derivatives with respect to (x, z, ε)
and the first partial derivative of f2 with respect to t are continuous. Furthermore,
the first partial derivatives of q(t,x) and ∂

∂z f2(t,x, z, 0) are also continuous in
the arguments, and the initial conditions x0(ε) and z0(ε) are smooth functions
of ε.

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



5.2 Different Time Scales Page 110

B.) The dimension-reduced quasi-stationary model (see also (5.4))

ẋr = f1(t,xr,q(t,xr), 0) , xr(t0) = x0(0) (5.37)

has a unique solution on a compact subset of Dx in the time interval [t0, t1].

C.) The equilibrium ys = 0 of the boundary layer model (see also (5.31))

d
dτ ys = f2(t,x,ys + q(t,x), 0) (5.38)

is uniformly exponentially stable in the slowly varying parameters t and x (see
Definition 5.2) with the compact basin of attraction Ωy ⊂ Dy.

Then there exists a positive constant ε∗ such that for all z0(0)−q(t0,x0(0)) = ys(0) ∈
Ωy and 0 < ε < ε∗, the singularly perturbed problem (5.36) has a unique solution
x(t; ε) and z(t; ε) in the time interval [t0, t1], and the approximation

x(t; ε) − xr(t) = O(ε) (5.39)

z(t; ε) − q(t,xr(t)) − ys
(
t− t0
ε

)
= O(ε) (5.40)

holds for all t ∈ [t0, t1]. Moreover, there exists a positive constant ε∗∗ ≤ ε∗ such that

z(t; ε) − q(t,xr(t)) = O(ε) (5.41)

holds for all t in the time interval [ts, t1], ts > t0, and all ε < ε∗∗.

The statement of Theorem 5.1 refers to a finite time interval [t0, t1]. If one wishes to
extend this to an infinite time interval t ∈ [t0,∞), point B.) of Theorem 5.1 must be
replaced by the exponential stability of the equilibrium of the quasi-stationary model
(5.37) for all t ∈ [t0,∞).

Exercise 5.2. Given is the singularly perturbed problem

ẋ = x2 + z, x(0) = x0 (5.42a)
εż = x2 − z + 1, z(0) = z0 . (5.42b)

The goal is to find an O(ε) approximation of x(t) and z(t) in the time interval
t ∈ [0, 1]. For x0 = z0 = 0, the approximated model for ε = 0.1 and ε = 0.05 should
be compared with the original model (5.42) in a simulation in Matlab/Simulink.

Remark: For the simulation, consider that the system tends to infinity in finite
time (shortly after t = 1 s).
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Exercise 5.3. Given is the singularly perturbed problem

ẋ = x+ z, x(0) = x0 (5.43a)

εż = − 2
π

arctan
(
π

2 (2x+ z)
)
, z(0) = z0 . (5.43b)

The goal is to find an O(ε) approximation of x(t) and z(t) in the time interval
t ∈ [0, 1]. For x0 = z0 = 1, the approximated model for ε = 0.1 and ε = 0.2 should
be compared with the original model (5.43) in a simulation in Matlab/Simulink.

5.3 Linear Time-Invariant Systems
Given is the singularly perturbed linear time-invariant system in standard form (5.1)

ẋ = A11x + A12z (5.44a)
εż = A21x + A22z (5.44b)

with matrices A11 ∈ Rn×n, A12 ∈ Rn×m, A21 ∈ Rm×n and A22 ∈ Rm×m. Setting ε = 0
in (5.44b), under the assumption that A22 is regular, the resulting algebraic equation can
be explicitly solved in the form

zr = −A−1
22 A21xr (5.45)

Substituting (5.45) into (5.44a) yields the quasi-stationary model as

ẋr =
(
A11 − A12A−1

22 A21
)
xr . (5.46)

The boundary layer model (5.31) is calculated using the state transformation y = z +
A−1

22 A21x (see (5.27)) as

d
dτ y = A21x + A22

(
y − A−1

22 A21x
)

= A22y . (5.47)

For linear time-invariant systems, it is immediately clear that according to Theorem 5.1,
the matrix A22 must be a Hurwitz matrix (all eigenvalues with real part strictly less than
zero). Hence, the following theorem holds (for a proof, refer to the literature cited at the
end):

Theorem 5.2 (On the Eigenvalues of Singularly Perturbed LTI Systems). If A22
from (5.44) is regular, then the first n eigenvalues of the system (5.44) converge to
the eigenvalues of the matrix A11 − A12A−1

22 A21 as ε → 0, see (5.46). The remaining
m eigenvalues approach infinity at a rate of 1/ε along the asymptotes defined by the
eigenvalues of the matrix A22, see (5.47).

Theorem 5.2 is also of great importance for the analysis of nonlinear systems. Typically,
in a first step, one always linearizes the nonlinear system around one or more operating
points and calculates the eigenvalues of the resulting dynamics matrix. If these eigenvalues
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are significantly far apart in magnitude, this is a clear indication of different dynamics in
the system and is usually a starting point for formulating the mathematical model in the
standard form of singular perturbation theory according to (5.1). Consider the nonlinear
system of the form

ẇ = f(w,u) (5.48)
with w ∈ Dw ⊂ Rn+m and u ∈ Rp. The linearization of the system (5.48) around an
equilibrium point (wR,uR) with f(wR,uR) = 0 reads

d
dt∆w =

(
∂

∂wf
)∣∣∣∣w=wRu=uR︸ ︷︷ ︸
A

∆w +
(
∂

∂uf
)∣∣∣∣w=wRu=uR︸ ︷︷ ︸
B

∆u . (5.49)

The eigenvalues of the dynamics matrix A characterize the dynamics of the system in
the vicinity of the equilibrium point (wR,uR). Assuming that these eigenvalues can be
clustered into n slow and m fast eigenvalues (typically, the time constants differ by a factor
of 10 or more) and v1, . . . ,vn and vn+1, . . . ,vn+m denote the corresponding eigen- and
principal vectors or real and imaginary parts of the complex-valued eigen- and principal
vectors for the transformation to real Jordan normal form. The real Jordan normal form
of the linearized system (5.49) is obtained directly using the regular state transformation

∆w =
[
v1, . . . ,vn,vn+1, . . . ,vn+m

]
︸ ︷︷ ︸

V

∆w̄ (5.50)

resulting in
d
dt∆w̄ = V−1AV︸ ︷︷ ︸

Ā

∆w̄ + V−1B︸ ︷︷ ︸
B̄

∆u (5.51)

or with ∆w̄T =
[
∆xT,∆zT

]
d
dt

[
∆x
∆z

]
=
[
Ā11 0
0 Ā22

][
∆x
∆z

]
+
[
B̄1

B̄2

]
∆u . (5.52)

Here, the state ∆x ∈ Dx ⊂ Rn describes the slow part and ∆z ∈ Dz ⊂ Rm the fast part
of (5.52). Through the regular state transformation (5.50), the slow and fast states can
be directly assigned to the original state variables ∆w in the form[

∆x
∆z

]
= V−1∆w (5.53)

This approach can be carried out for different equilibrium points (wR,uR) and is also
very helpful in the analysis of the nonlinear system (5.48). In this way, one obtains an
indication of which states or combinations of states form the fast subsystem of (5.48).
This procedure, combined with domain-specific knowledge of the system model, usually
allows for formulating the system (5.48) in the standard form of singular perturbation
theory (5.1). For the resulting quasi-stationary model (5.4), it must always hold that
the m fast eigenvalues are no longer present in the linearization around the respective
equilibrium point.
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Exercise 5.4. Calculate the first-order quasi-stationary model for the nonlinear system

ẋ1 = −41x3
3 − x3

1 + 8x1x2x3 − 7x2
2x3 − 30x2x

2
3 + 3x2

1x2 − 4x2
1x3 − 3x1x

2
2 + 27x1x

2
3

− 680x3 − 290x2 + 290x1 + 1
2u

ẋ2 = 7x2
2x3 − x3

2 + 37x2x
2
3 + 49x3

3 + 100x1 − 100x2 − 200x3 + 10x2
1x3 − 20x1x2x3

− 40x1x
2
3 + 1

2u

ẋ3 = −10x2
1x3 + 20x1x2x3 + 40x1x

2
3 − 10x2

2x3 − 40x2x
2
3 − 50x3

3 + 100x1 − 100x2

− 200x3

and verify the result through simulation in Matlab.

Example 5.4 (Spring-mass-damper system). Given is the mathematical model of a
linear spring-mass-damper system with the spring stiffness c, damping constant d,
mass m, and external force F in the form[

ẋ

v̇

]
=
[

0 1
− c
m − d

m

]
︸ ︷︷ ︸

A

[
x

v

]
+
[

0
1
m

]
F . (5.54)

The eigenvalues of the dynamics matrix A are calculated as

λ1,2 = − d

2m ±
√(

d

2m

)2
− c

m
. (5.55)

Under the condition d < 2
√
mc there exists a complex conjugate pair of eigenvalues,

for d = 2
√
mc we have λ1 = λ2, and for d > 2

√
mc we obtain two real eigenvalues.

If the damping d ≫ 2
√
mc and tends to infinity in the limit, then eigenvalue λ1

approaches zero and λ2 approaches − d
m . Thus, the system contains slow and fast

dynamics. Choosing ε = m
d , equation (5.54) can be written in the standard form of

singular perturbation theory as follows

ẋ = v (5.56)

εv̇ = − c

d
x− v + 1

d
F (5.57)

and the quasi-stationary model is

ẋr = − c

d
xr + 1

d
F . (5.58)

Under certain conditions, the behavior of a second-order system can be approximated
very well by a first-order system.
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Exercise 5.5. Given is the transfer function of a second-order system

G(s) = V

1 + 2ξ(sT ) + (sT )2 .

Under what conditions and in what form can the system be approximated by a first-
order system? Construct an example and compare the step responses in Matlab.

Example 5.5 (Suspension system). Figure 5.5 shows the schematic representation of
a quarter-car model with the wheel mass mu, wheel stiffness kt, sprung mass ms,
suspension spring and damper constants ks and ds, and the actuator force F due to
an active or semi-active suspension system.

vehicle chassis

road

reference

wheel

ms ds ks

kt

xr

xu

xs

mu

F

F

Figure 5.5: Quarter-car model.

Using conservation of momentum, the two differential equations are obtained as

msẍs = F − ks(xs − xu) − ds(ẋs − ẋu) (5.59)
muẍu = −F + ks(xs − xu) + ds(ẋs − ẋu) + kt(xr − xu) , (5.60)

where xr(t) denotes the excitation caused by road variations. In state-space repre-
sentation, a linear time-invariant dynamic system of 4th order is obtained in the
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form

d
dt


xs

vs

xu

vu

 =


0 1 0 0

− ks
ms

− ds
ms

ks
ms

ds
ms

0 0 0 1
ks
mu

ds
mu

−ks+kt
mu

− ds
mu




xs

vs

xu

vu

+


0
1
ms

0
− 1
mu

F +


0
0
0
kt
mu

xr (5.61)

with input variables F and xr. Considering the two subsystems, wheel and body
mass, separately, the corresponding natural frequencies are

√
kt
mu

and
√

ks
ms

.

For typical vehicles, the natural frequency of the wheel
√

kt
mu

is about an order of

magnitude (i.e., a factor of 10) higher than the natural frequency
√

ks
ms

of the body.
This suggests that (5.61) contains a fast and a slow subsystem, and the ratio of the
two natural frequencies

ε =

√
ks
ms√
kt
mu

=
√
ksmu

ktms
≪ 1 (5.62)

represents a suitable singular perturbation parameter. To transform the system (5.61)
into the standard form of singular perturbation theory (5.44), a time normalization
τ = t

√
ks
ms

is applied to the slow time constant, and a scaling and transformation of
the state variables in the form

x̃s = xs

√
ks
ms

, ṽs = vs, x̃d = (xu − xr)
√
kt
mu

, ṽd = vu − ẋr (5.63)

is carried out. It is important to note at this point that the introduction of the
relative position xu − xr between the road surface and the wheel is crucial, as this
essentially represents the fast dynamics. In contrast, the deflection of the wheel xu
itself also includes slow components due to the partially slowly varying road excitation
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xr(t). The time-normalized and scaled system is given by

d
dτ


x̃s

ṽs

εx̃d

εṽd

 =


0 1 0 0

−1 − ds√
msks

ε ds√
msks

0 0 0 1√
ksms
ktmu

ds√
mukt

−ks+kt
kt

− ds√
mukt


︸ ︷︷ ︸

A(ε)


x̃s

ṽs

x̃d

ṽd

+


0
1√
msks

0
− 1√

mukt


︸ ︷︷ ︸

b

F+

+


0√
ks
ms

0
− ks+kt√

mukt
+
√

kt
mu


︸ ︷︷ ︸

g1

xr +


0
ds√
msks

0
− ds√

mukt


︸ ︷︷ ︸

g2

ẋr +


0
0
0

−ε


︸ ︷︷ ︸

g3

ẍr .

(5.64)

By appropriately factorizing the matrix A(ε) and the vectors b and gj , j = 1, . . . , 3,
the reduced quasi-stationary model is calculated as (see also Theorem 5.2)

d
dτ

[
x̃s

ṽs

]
=
(
A11 − A12(0)A−1

22 A21
)[x̃s
ṽs

]
+
(
b1 − A12(0)A−1

22 b2
)
F+

+
3∑
j=1

(
gj1 − A12(0)A−1

22 gj2
)
x(j−1)
r

(5.65)

with the j-th time derivative x(j)
r (t) of xr(t). Thus, we have

d
dτ

[
x̃s

ṽs

]
=

 0 1
−1 −ds√

msks

[x̃s
ṽs

]
+

 0
1√
msks

F +

 0
ds√
msks

ẋr +

 0√
ks
ms

xr . (5.66)

In the unnormalized state variables at time t, the reduced quasi-stationary model
(5.66) reads

msẍs = F − ks(xs − xr) − ds(ẋs − ẋr), (5.67)

which corresponds to the schematic representation in Figure 5.6.
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vehicle chassis

road

reference

ms ds ks

xr

xs

F

F

Figure 5.6: Reduced quasi-stationary model of a quarter-car.

Exercise 5.6. Show the validity of (5.64).

Exercise 5.7. Calculate the corresponding quasi-stationary model and the associated
boundary layer model for the singularly perturbed linear time-invariant system

d
dt


x1

x2

εz

 =


0 1 0

−1 −2 1
0 1 −1



x1

x2

z

 (5.68)

Investigate the behavior of the eigenvalues as a function of the singular perturbation
parameter ε.

Exercise 5.8. Derive the quasi-stationary model for the mathematical model of the
hydraulic actuator (1.50). Take into account that the typical bulk modulus βT of
hydraulic oil is very large.

Exercise 5.9. Derive the quasi-stationary model for the mathematical model of the
separately excited DC motor (1.38) assuming that the time constant of the armature
circuit is significantly smaller than the time constant of the field circuit and the
mechanical time constant.
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6 Exact Linearization and Flatness

This chapter deals with the basics of designing state feedback using differential geometric
methods. In a first step, the fundamental ideas and relationships are presented based on a
representation in local coordinates. A more detailed differential geometric interpretation
of the concepts is then provided in the appendix A.

6.1 Input-Output Linearization
Although the theory presented here is also applicable to more general nonlinear systems
of the form

ẋ = f(x, u), (6.1a)
y = h(x, u), (6.1b)

we will, for simplicity, focus on the class of nonlinear systems with affine input (also
referred to as affine input systems)

ẋ = f(x) + g(x)u (6.2a)
y = h(x) (6.2b)

with state x ∈ Rn, input u ∈ R, output y ∈ R, smooth vector fields f(x) and g(x), and a
smooth function h(x).

Exercise 6.1. Show that the parallel connection, series connection, inversion, and
feedback of affine input systems remains affine in its inputs.

Examining the time derivative of y along a solution curve of (6.2), we obtain

ẏ = ∂h

∂xẋ = ∂h

∂x(f(x) + g(x)u) = Lfh(x) + Lgh(x)u . (6.3)

In (6.3), the expressions Lfh and Lgh describe the Lie derivative of the scalar function
h(x) along the vector fields f(x) and g(x). Assuming Lgh(x̄) ≠ 0, in a neighborhood
U ⊂ Rn of x̄, the system (6.2) can be transformed, using

u = 1
Lgh(x)(−Lfh(x) + v) (6.4)

into a first-order linear system with new input v and output y of the form

ẏ = v (6.5)
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Now, if the expression Lgh(x) from (6.3) is identically zero in a neighborhood U of x̄, the
time derivative of ẏ = Lfh(x) along a solution curve of (6.2) is calculated as

ÿ = ∂Lfh(x)
∂x ẋ = ∂Lfh(x)

∂x (f(x) + g(x)u) = L2
fh(x) + LgLfh(x)u . (6.6)

It is worth noting that Lkf h(x), k ∈ N is defined by the recursion

Lkf h(x) = Lf
(
Lk−1

f h(x)
)
, L0

fh(x) = h(x), (6.7)

which directly leads to the definition of the relative degree of an affine input system (6.2).

Definition 6.1 (Relative degree of a single-input system). The system (6.2) has the
relative degree r at the point x̄ ∈ U if

(A) LgLkf h(x) = 0, k = 0, . . . , r − 2 for all x in the neighborhood U of x̄, and

(B) LgLr−1
f h(x̄) ̸= 0.

It is easy to see that the relative degree r corresponds exactly to the number of temporal
differentiations that need to be applied to the output y in order for the input u to appear
explicitly for the first time. To see this, consider the following chain

y = h(x)
ẏ = Lfh(x) + Lgh(x)︸ ︷︷ ︸

=0

u

ÿ = L2
fh(x) + LgLfh(x)︸ ︷︷ ︸

=0

u

...
y(r−1) = Lr−1

f h(x) + LgLr−2
f h(x)︸ ︷︷ ︸
=0

u

y(r) = Lrfh(x) + LgLr−1
f h(x)u .

(6.8)

Clearly, the state feedback law

u = 1
LgLr−1

f h(x)
(−Lrfh(x) + v) (6.9)

leads to a linear input-output behavior in the form of an r-fold integrator chain

y(r) = v . (6.10)

Example 6.1. Considering a linear time-invariant single-input system

ẋ = Ax + bu (6.11a)
y = cTx (6.11b)
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with a relative degree r, the conditions (A) and (B) from Definition 6.1 are

(A) cTb = cTAb = . . . = cTAr−2b = 0 (6.12a)
(B) cTAr−1b ̸= 0 . (6.12b)

Since the transfer function associated with (6.11) can be written in the form

G(s) = cT(sI − A)−1b = 1
s

cT
(

I − A
s

)−1
b = 1

s
cT

∞∑
j=0

(A
s

)j
b (6.13)

it is immediately apparent that the first non-vanishing term for j = r − 1 with sr in
the denominator. The relative degree of a linear time-invariant single-input system
corresponds to the difference in degree between the denominator and numerator
polynomials of the associated transfer function.

Using a (local) diffeomorphism z = Φ(x), the system (6.2) with relative degree r
can be transformed into the so-called Byrnes-Isidori normal form. A nonlinear state
transformation of the form

z =


ϕ1(x)
ϕ2(x)

...
ϕn(x)

 = Φ(x) (6.14)

is called a local diffeomorphism if (A) Φ(x) is invertible for all x in an open neighborhood
U ⊂ Rn of a point x̄ (i.e., there exists a Φ−1(z) such that Φ−1(Φ(x)) = x) and (B) both
Φ(x) and Φ−1(z) are smooth mappings.

Lemma 6.1 (State transformation to Byrnes-Isidori normal form). Assume that
system (6.2) has a relative degree r ≤ n at the point x̄. If r is strictly less than n,
then one can always find (n− r) functions ϕr+1(x), . . . , ϕn(x) such that with

z =


z1
...
zn

 = Φ(x) =



h(x)
Lfh(x)

...
Lr−1

f h(x)
ϕr+1(x)

...
ϕn(x)


(6.15)

a local diffeomorphism in a neighborhood U of x̄ is given. Furthermore, it is always
possible to choose the functions ϕr+1(x), . . . , ϕn(x) such that Lgϕk(x) = 0, k =
r + 1, . . . , n, for all x ∈ U .

The proof of this lemma can be found in the literature cited at the end.
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Applying the nonlinear state transformation (6.15) to system (6.2) using (6.8), one
obtains the transformed system in Byrnes-Isidori normal form

Σ1 :



ż1 = z2

ż2 = z3
...

żr = Lrfh
(
Φ−1(z)

)
+ LgLr−1

f h
(
Φ−1(z)

)
u = b(z) + a(z)u

(6.16a)

Σ2 :



żr+1 = Lfϕr+1
(
Φ−1(z)

)
+ Lgϕr+1

(
Φ−1(z)

)
︸ ︷︷ ︸

=0

u = qr+1(z)

...
żn = Lfϕn

(
Φ−1(z)

)
+ Lgϕn

(
Φ−1(z)

)
︸ ︷︷ ︸

=0

u = qn(z) ,
(6.16b)

y = z1 . (6.16c)

Theorem 6.1 (Exact Input-Output Linearization). Assume that the system (6.2)
has a relative degree r ≤ n at the point x̄. The state control law

u = 1
a(z)(−b(z) + v) = 1

LgLr−1
f h(x)

(−Lrfh(x) + v) (6.17)

transforms the system (6.2) or (6.16) in a neighborhood U of x̄ into a system with a
linear input-output behavior from the new input v to the output y with the transfer
function

G(s) = 1
sr

. (6.18)

The theorem can be trivially shown by substituting (6.17) into (6.16). Furthermore, it
is easy to see that by choosing the new input v in the form

v = −
r∑
j=1

aj−1zj + ṽ = −
r∑
j=1

aj−1Lj−1
f h(x) + ṽ (6.19)

the denominator polynomial of the transfer function G̃(s) from input ṽ to output y,

G̃(s) = 1
sr + ar−1sr−1 + . . .+ a1s+ a0

, (6.20)

can be freely specified via the coefficients aj , j = 0, . . . , r − 1.

Example 6.2. For the system

ẋ =


−x3

1
cos(x1) cos(x2)

x2

+


cos(x2)

1
0

u (6.21a)

y = x3 (6.21b)Lecture Nonlinear Dynamical Systems and Control (SS 2026)
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compute a state feedback law using the method of exact input-output linearization.
The relative degree of (6.21) is calculated as

Lgh(x) =
[
0 0 1

]
︸ ︷︷ ︸

∂
∂xx3


cos(x2)

1
0


︸ ︷︷ ︸

g(x)

= 0, LgLfh(x) = 1 ̸= 0 (6.22)

to be r = 2. With ϕ1(x) = h(x) = x3 and ϕ2(x) = Lfh(x) = x2, the first two
components of the state transformation are fixed to Byrnes-Isidori normal form
according to (6.15). The third component ϕ3(x) is chosen such that Φ(x) is a (local)
diffeomorphism and satisfies

Lgϕ3(x) = ∂

∂xϕ3(x)


cos(x2)

1
0

 = ∂

∂x1
ϕ3(x) cos(x2) + ∂

∂x2
ϕ3(x) = 0 . (6.23)

A more detailed analysis of the partial differential equation (6.23) shows that any
function with argument sin(x2) −x1 is a suitable solution. Furthermore, the Jacobian
matrix of Φ(x)

∂

∂xΦ(x) = ∂

∂x


x3

x2

sin(x2) − x1

 =


0 0 1
0 1 0

−1 cos(x2) 0

 , (6.24)

confirms that Φ(x) is a diffeomorphism. The system (6.21) in Byrnes-Isidori normal
form is given by

Σ1 :
{
ż1 = z2

ż2 = L2
fh
(
Φ−1(z)

)
+ LgLfh

(
Φ−1(z)

)
u = b(z) + a(z)u

(6.25a)

Σ2 :
{
ż3 = Lfϕ3

(
Φ−1(z)

)
= q3(z) (6.25b)

y = z1 (6.25c)

with

L2
fh(x) = cos(x1) cos(x2) , (6.26a)

LgLfh(x) = 1 , (6.26b)
Lfϕ3(x) = x3

1 + cos(x1)(cos(x2))2 (6.26c)

and the inverse state transformation

x = Φ−1(z) =


sin(z2) − z3

z2

z1

 . (6.27)
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Thus, (6.25) reads

Σ1 :
{
ż1 = z2

ż2 = cos(sin(z2) − z3) cos(z2) + u
(6.28a)

Σ2 :
{
ż3 = (sin(z2) − z3)3 + cos(sin(z2) − z3)(cos(z2))2 . (6.28b)

Note that for computing the state feedback law (6.17), (6.19) using exact input-output
linearization, the transformation to Byrnes-Isidori normal form (6.28) is not necessary.
One can directly calculate the control law in the original coordinates x with (6.17),
(6.19)

u = − cos(x1) cos(x2) − a0x3 − a1x2 + ṽ . (6.29)

However, notice that for r < n, the input-output behavior of the system controlled
by the state feedback law (6.17) is described by a system of lower order (namely
r) than the system order n, compare (6.2) or (6.16) with (6.18) or (6.20). From
linear control theory it is known that this can only occur if the state-space model
is not fully reachable or not fully observable (or both). Furthermore, it is known
that an unstable non-reachable and/or non-observable subsystem implies that the
plant cannot be stabilized by any designed controller for the given actuator-sensor
configuration. Obviously, the state feedback law (6.17), (6.19) leads to a stable closed
loop only if the – as will be shown in the next section – non-observable subsystem Σ2
according to (6.16) is (asymptotically) stable.

6.2 Zero Dynamics
In the first step, we will discuss the so-called Output-Zeroing Problem: how must the
initial state x0 and the control input u(t) of the system (6.2) be chosen so that the output
y(t) is identically zero for all times t. This question can be immediately answered using
the Byrnes-Isidori normal form (6.16). For a more compact notation, the states of the
subsystems Σ1 and Σ2 are combined into two vectors of the form

ξ =


z1
...
zr

 und η =


zr+1

...
zn

 (6.30)
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and the system (6.16) is rewritten as

Σ1 :



ż1 = z2

ż2 = z3
...

żr = b(ξ,η) + a(ξ,η)u

(6.31a)

Σ2 :
{
η̇ = q(ξ,η) (6.31b)

y = z1 . (6.31c)

It is now immediately clear that from y(t) = h(x) = z1 ≡ 0, it follows

ẏ = Lfh(x) = z2 ≡ 0 ,
ÿ = L2

fh(x) = z3 ≡ 0 ,
. . .

y(r−1) = Lr−1
f h(x) = zr ≡ 0

(6.32)

for all times t. Furthermore, the control input u(t) must satisfy the following condition

b(0,η) + a(0,η)u = 0 ⇒ u(t) = − b(0,η(t))
a(0,η(t)) (6.33)

so that żr = Lrfh(x) ≡ 0 for all times t, see (6.31). Here, η(t) denotes a solution of the
differential equation

η̇ = q(0,η) (6.34)

with the initial state ξ(0) = 0 and η(0) = η0 arbitrarily chosen. The differential equation
(6.34) now describes the so-called internal dynamics of the system, which arises from
selecting the initial value and the input in (6.31) or (6.2) in such a way that the output
y(t) vanishes identically for all times t. This internal dynamics (6.34) is also referred
to as zero dynamics. Geometrically, this can be interpreted as the trajectories of the
system (6.2) for the control input u(t) according to (6.33) remaining on the manifold
MC =

{
x ∈ Rn|h(x) = Lfh(x) =, . . . ,Lr−1

f h(x) = 0
}

for all times, provided that the
initial state x0 lies in MC .

Example 6.3. Consider the linear time-invariant single-input system

ẋ = Ax + bu (6.35a)
y = cTx (6.35b)

with the relative degree r and the transfer function

G(s) = b0 + b1s+ . . .+ bn−rsn−r

a0 + a1s+ . . .+ an−1sn−1 + sn
, bn−r ̸= 0 . (6.36)
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If the system is in the first standard form (controllability canonical form), the system
matrices A, b, and c are given by

A =



0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1

−a0 −a1 . . . −an−2 −an−1


, b =



0
0
...
0
1


, c =



b0
...

bn−r
0
...
0


. (6.37)

To transform the system (6.37) to Byrnes-Isidori normal form, we introduce the
following (linear) state transformation according to (6.15)

z =
[
ξ

η

]
=




z1
...
zr



zr+1

...
zn




= Tx =



cTx
cTAx

...
cTAr−1x

x1
...

xn−r


. (6.38)

It is easy to verify that T is regular, as T has the following structure

T =



(
∗∗
)


bn−r 0 0 . . .

∗ bn−r 0 . . .
...

... . . . ...
∗ ∗ . . . bn−r




1 0 0 . . .

0 1 0 . . .
...

... . . . ...
0 0 . . . 1


︸ ︷︷ ︸

n−r columns


0 0 0 . . .

0 0 0 . . .
...

... . . . ...
0 0 . . . 0


︸ ︷︷ ︸

r columns



. (6.39)

The system (6.35) in the transformed state z is therefore in Byrnes-Isidori normal
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form given by

Σ1 :



ż1 = z2

ż2 = z3
...

żr = cTArT−1z + cTAr−1bu

(6.40a)

Σ2 :
{
η̇ = Pξ + Qη (6.40b)

y = z1 . (6.40c)

From (6.35) and (6.37), it is immediately apparent that for the components of
ηT = [zr+1, . . . , zn] = [x1, . . . , xn−r], the following holds

ẋj = xj+1, j = 1, . . . , n− r . (6.41)

Furthermore, xn−r+1 can be calculated from the relationship z1 = cTx = b0x1 + . . .+
bn−rxn−r+1, which yields (note that bn−r ̸= 0 according to (6.36))

xn−r+1 = 1
bn−r

(z1 − b0x1 − . . .− bn−r−1xn−r) . (6.42)

Thus, the matrices P and Q of the subsystem Σ2 of (6.40) are given as follows

Q =



0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1

− b0
bn−r

− b1
bn−r

. . . − bn−r−2
bn−r

− bn−r−1
bn−r


, (6.43a)

P =


0 0 0 . . . 0
...

... . . . ...
...

0 0 . . . 0 0
1

bn−r
0 . . . 0 0

 . (6.43b)

According to (6.34), the zero dynamics of the system (6.40) are

η̇ = Qη , (6.44a)
η(0) = η0 , (6.44b)
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where the characteristic polynomial of the matrix Q looks as follows

b0 + b1s+ . . .+ bn−r−1s
n−r−1 + bn−rsn−r (6.45)

It can be seen that the eigenvalues of the zero dynamics (6.44) for the output y are
identical to the zeros of the corresponding transfer function G(s) according to (6.36).

Exercise 6.2. Calculate and analyze the zero dynamics of the system

ẋ =


x3 − x3

2
−x2

x2
1 − x3

+


0

−1
1

u (6.46a)

y = x1 . (6.46b)

Without loss of generality, assume that x = xR = 0 is an equilibrium point of the system
(6.2) for u = uR = 0, i.e., f(0) = 0, and h(0) = 0 for the following. The equilibrium
point zR =

[
ξT
R,η

T
R

]T
= Φ(xR) of the corresponding system in Byrnes-Isidori normal

form (6.16) is then ξR = 0 (cf. (6.15), (6.30)) and ηR is calculated as the equilibrium
point of the zero dynamics (cf. (6.34))

0 = q(0,ηR) . (6.47)

Definition 6.2 (Minimum-phase nonlinear system). The system (6.2) is said to be
locally asymptotically (exponentially) minimum-phase at xR = 0 if the equilibrium
point ηR of the zero dynamics (6.34) is locally asymptotically (exponentially) stable.

At this point, it should be noted that according to Definition 6.2, the property of phase
minimality depends on the equilibrium xR and can therefore vary for the same system
from one equilibrium to another.

Considering now the system (6.2) in Byrnes-Isidori normal form (6.31) given as

ż1 = z2

ż2 = z3
...

żr = b(ξ,η) + a(ξ,η)u
η̇ = q(ξ,η)
y = z1

(6.48)
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and substituting the control law (6.17) and (6.19) with ṽ = 0, i.e.,

u = 1
a(ξ,η)

−b(ξ,η) −
r∑
j=1

aj−1ξj


= 1

LgLr−1
f h(x)

−Lrfh(x) −
r∑
j=1

aj−1Lj−1
f h(x)

 ,

(6.49)

the closed loop system becomes

ξ̇ = Arξ (6.50a)
η̇ = q(ξ,η) (6.50b)
y = z1 = ξ1 (6.50c)

with

Ar =


0 1 . . . 0
...

... . . . ...
0 0 . . . 1

−a0 −a1 −ar−2 −ar−1

 . (6.50d)

It is immediately apparent that the subsystem η̇ = q(ξ,η) is not observable via the output
y, as the state η has neither a direct nor an indirect influence on the output y through
the state ξ.

If one chooses the coefficients aj , j = 0, . . . , r − 1 in (6.50) such that Ar is a Hurwitz
matrix, and if the system (6.2) is locally exponentially minimum-phase at xR = 0 according
to Definition 6.2 (corresponding to ξ = ξR = 0 and η = ηR), i.e., all eigenvalues of
∂q
∂η (0,ηR) have strictly negative real parts, then the dynamics matrix of the linearized
closed loop system (6.50) around the equilibrium ξ = ξR = 0 and η = ηR given by

d
dt

[
∆ξ
∆η

]
=
[

Ar 0
∂q
∂ξ (0,ηR) ∂q

∂η (0,ηR)

][
∆ξ
∆η

]
(6.51)

is also a Hurwitz matrix.
Exercise 6.3. Show that the dynamics matrix of (6.51) is a Hurwitz matrix if Ar and
∂q
∂η (0,ηR) are Hurwitz matrices.

According to Theorem 3.8, the equilibrium xR = 0 or ξ = ξR = 0 and η = ηR of the
closed-loop system (6.50) is locally asymptotically (exponentially) stable.

Obviously, the method of exact input-output linearization for the system (6.2) only
yields a stable control loop if the system is asymptotically (exponentially) minimum-phase.
Note that this property can be easily verified without explicit calculation of the zero
dynamics using the indirect method of Lyapunov according to Theorem 3.8. To do this,
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linearize the system (6.2) around the equilibrium point xR = 0, uR = 0 in the form

d
dt∆x = A∆x + b∆u (6.52a)

∆y = cT∆x (6.52b)

with

A =
(
∂f
∂x

)
(xR) +

(
∂g
∂x

)
(xR)uR , (6.52c)

b = g(xR) , (6.52d)

cT =
(
∂h

∂x

)
(xR) . (6.52e)

The eigenvalues of the linearized zero dynamics correspond to the zeros of the transfer
function (see (6.36), (6.44), and (6.45))

G(s) = cT(sI − A)−1b . (6.53)

According to Theorem 3.8, the system is locally asymptotically (exponentially) minimum-
phase at xR = 0, uR = 0 if all zeros of G(s) from (6.53) have strictly negative real parts,
and it is not if at least one zero of G(s) lies in the right open complex half-plane.

6.3 Input-State Linearization
The problems associated with zero dynamics obviously do not arise when the relative
degree r = n. Assuming that the system (6.2) with the output y = h(x) has relative degree
r = n, then the system can be mapped to the new state z by the state transformation
(i.e., a diffeomorphism, see (6.15))

z =


z1
...
zn

 = Φ(x) =


h(x)

Lfh(x)
...

Ln−1
f h(x)

 (6.54)

and the control law (see (6.17))

u = 1
a(z)(−b(z) + v) = 1

LgLn−1
f h(x)

(−Lnf h(x) + v) (6.55)

into an exactly linear system in the new state z of the form

ż =


0 1 . . . 0
...

... . . . ...
0 0 . . . 1
0 0 0 0

z +


0
...
0
1

v (6.56)
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with the new input v. Equation (6.56) is often referred to as the Brunovsky normal form
and z as the Brunovsky state of the system (6.2).

Even if the output y = h(x) of the system (6.2) has a relative degree r < n, one can
ask whether there exists a fictitious output y = λ(x) that has a relative degree r = n.
According to Definition 6.1, λ(x) must satisfy the following conditions:

(A) LgLkf λ(x) = 0, k = 0, . . . , n− 2 for all x in the neighborhood U of x̄ and

(B) LgLn−1
f λ(x̄) ̸= 0.

As can be seen, λ(x) must satisfy several partial differential equations of higher order,
since for example the expression LgLfλ(x) has the following form

LgLfλ(x) = ∂

∂x

((
∂

∂xλ(x)
)

f(x)
)

g(x) (6.57)

One can now transform the partial differential equations of higher order for λ(x) into
a system of first-order partial differential equations of the so-called Frobenius type. For
this purpose, the concept of the Lie bracket [f ,g] or the Lie derivative Lf g of a vector
field g(x) along a vector field f(x) must be introduced, which is defined in coordinates as
follows

[f ,g](x) = Lf g(x) = ∂g
∂xf(x) − ∂f

∂xg(x) . (6.58)

Analogous to the k-fold repeated Lie derivative of a scalar function (6.7), the k-fold Lie
bracket can also be defined recursively in the form

adkf g(x) =
[
f , adk−1

f g
]
(x), ad0

f g(x) = g(x) (6.59)

using the operator ad. With the help of the relationship

L[f ,g]λ(x) = Lf Lgλ(x) − LgLfλ(x) , (6.60)

the higher-order partial differential equations
Lgλ(x) = 0 ,

LgLfλ(x) = 0 ,
. . .

LgLn−2
f λ(x) = 0 ,

LgLn−1
f λ(x̄) ̸= 0

(6.61)

can be rewritten into a system of first-order partial differential equations of the Frobenius
type

Lgλ(x) = 0 ,
Ladf g(x)λ(x) = 0 ,

. . .

Ladn−2
f g(x)λ(x) = 0 ,

Ladn−1
f g(x)λ(x̄) ̸= 0 .

(6.62)
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To show this, note that from Lgλ(x) = 0 and LgLfλ(x) = 0 it follows that

Ladf g(x)λ(x) = Lf Lgλ(x)︸ ︷︷ ︸
=0

− LgLfλ(x)︸ ︷︷ ︸
=0

= 0 . (6.63)

Recursive application of (6.60) shows that from Lgλ(x) = 0, LgLfλ(x) = 0, and
LgL2

fλ(x) = 0 follows

Lad2
f g(x)λ(x) = L[f ,adf g](x)λ(x)

= Lf Ladf g(x)λ(x)︸ ︷︷ ︸
=0

−Ladf g(x)︸ ︷︷ ︸
[f ,g](x)

Lfλ(x)

= −

Lf LgLfλ(x)︸ ︷︷ ︸
=0

−LgLf Lfλ(x)


= LgL2

fλ(x)︸ ︷︷ ︸
=0

= 0 .

(6.64)

All further relationships can be shown in a similar manner. The existence of a solution
λ(x) of the system of first-order partial differential equations (6.62) can now be verified
using the following theorem.

Theorem 6.2 (Existence of an output with relative degree r = n). There exists a
solution λ(x) of the system of first-order partial differential equations (6.62) in a
neighborhood U of the point x̄ if and only if

(A) the matrix
[
g, adf g, . . . , adn−1

f g
]
(x̄) has rank n, and

(B) the distribution D = span{g, adf g, . . . , adn−2
f g} is involutive in a neighborhood

U of the point x̄.

In this case, the system is also called exactly input-state linearizable in the neighborhood
of the point x̄.

The proof of this theorem is based on the Frobenius’ Theorem, see Appendix A, and
can be found in the literature cited at the end. As a reminder, a distribution D is called
involutive if for every pair of vector fields f1(x), f2(x) ∈ D, it holds that [f1, f2](x) ∈ D.

Example 6.4. As a simple example, consider the flexible robot arm shown in Figure
6.1.
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c

l

m, I2

I1

u

x1

x2

Figure 6.1: Simple elastically coupled robot arm.

If we choose the state variables as the angles x1 and x2 and the angular velocities
ẋ1 = x3 and ẋ2 = x4 of the drive motor and the robot arm, and the input as the
motor torque u, then we obtain the equations of motion in the form

ẋ =


x3

x4

− c
I1
x1 + c

I1
x2 − d1

I1
x3

c
I2
x1 − c

I2
x2 − mgl

I2
cos(x2) − d2

I2
x4


︸ ︷︷ ︸

=f(x)

+


0
0
1
I1

0


︸ ︷︷ ︸
=g(x)

u . (6.65)

Here, c denotes the linear stiffness constant of the elastic coupling, m the mass of
the robot arm, g the gravitational constant, l the distance from the drive axis to
the center of mass of the robot arm, and Ik or dk, k = 1, 2, describe the moments of
inertia and the viscous friction constants of the drive motor and the robot arm.
To investigate whether the system (6.65) is exactly input-state linearizable, the
conditions (A) and (B) of Theorem 6.2 must be checked. A simple calculation shows
that

rank
([

g, adf g, ad2
f g, ad3

f g
])

= rank




0 −1

I1
−d1
I2

1

c
I2

1
− d2

1
I3

1

0 0 0 − c
I2I1

1
I1

d1
I2

1

d2
1
I3

1
− c

I2
1

d3
1
I4

1
− 2cd1

I3
1

0 0 c
I2I1

c
I2I1

(
d1
I1

+ d2
I2

)




= 4

(6.66)

holds for all x ∈ R4. Since all vector fields g, adf g, ad2
f g and ad3

f g are independent of
x, all Lie brackets are identically zero (cf. (6.58)), which means that the distribution
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D = span
{

g, adf g, ad2
f g
}

is certainly involutive. Therefore, according to Theorem
6.2, the existence of a solution λ(x) of the system of first-order PDEs (cf. (6.62))

Lgλ(x) = 1
I1

∂

∂x3
λ(x) = 0 (6.67a)

Ladf g(x)λ(x) = − 1
I1

∂

∂x1
λ(x) + d1

I2
1

∂

∂x3
λ(x) = 0 (6.67b)

Lad2
f g(x)λ(x) = −d1

I2
1

∂

∂x1
λ(x) +

(
d2

1
I3

1
− c

I2
1

)
∂

∂x3
λ(x) + c

I2I1

∂

∂x4
λ(x)

= 0
(6.67c)

Lad3
f g(x)λ(x) =

(
c

I2
1

− d2
1
I3

1

)
∂

∂x1
λ(x) − c

I2I1

∂

∂x2
λ(x)

−
(

2cd1
I3

1
− d3

1
I4

1

)
∂

∂x3
λ(x) + c

I2I1

(
d1
I1

+ d2
I2

)
∂

∂x4
λ(x)

= β(x)

(6.67d)

is guaranteed for a β(x̄) ̸= 0. Choosing β(x) = − c
I2I1

≠ 0, we obtain the solution of
(6.67) as λ(x) = x2. This solution can also be guessed directly from the equations of
motion (6.65), by recalling that the quantity with relative degree r = n = 4 is sought,
which needs to be differentiated r = n = 4 times for the input u to appear explicitly
for the first time.

Exercise 6.4. Show that the system

ẋ =


0

x1 + x2
2

x1 − x2

+


exp(x2)
exp(x2)

0

u (6.68)

is exactly input-state linearizable and calculate all possible outputs with relative
degree r = n = 3.

For the following, assume that the output y = h(x) of the system (6.2) has a relative
degree r = n. According to (6.8), the output variable y and its time derivatives can be
expressed as follows:

y = h(x)
ẏ = Lfh(x)
ÿ = L2

fh(x)
...

y(n−1) = Ln−1
f h(x)

y(n) = Lnf h(x) + LgLn−1
f h(x)u .

(6.69)
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Since the state transformation (6.54) is regular, the entire state x can be parameterized
by the output variable y and its time derivatives up to order (n− 1), i.e.,

x = ψ1
(
y, ẏ, . . . , y(n−1)

)
= Φ−1(z), zT =

[
y, ẏ, . . . , y(n−1)

]
. (6.70)

Furthermore, from the last line of (6.69), the input variable u can also be parameterized
by the output variable y as

u = ψ2
(
y, ẏ, . . . , y(n)

)
= y(n) − Lnf h

(
Φ−1(z)

)
LgLn−1

f h(Φ−1(z))
, zT =

[
y, ẏ, . . . , y(n−1)

]
(6.71)

A dynamic system of the form (6.2), where all system variables (states and input
variables) can be parameterized by an output variable y and its time derivatives, is called
differentially flat. In this context, the output y is also referred to as the flat output. A
more precise definition of flat systems will be provided later in this chapter. However,
it is already immediately apparent from the discussion so far that in the single-input-
single-output (SISO) case, an exactly input-state linearizable system of the form (6.2) is
also differentially flat, and each output with relative degree r = n corresponds to a flat
output of the system. Thus, Theorem 6.2 provides necessary and sufficient conditions for
the SISO system (6.2) to be differentially flat, and the parameterization of the system
variables as a function of the flat output and its time derivatives up to order n is given by
(6.70) and (6.71).

6.4 Trajectory Tracking Control
In the first step, assume that the output y ∈ R of the system

ẋ = f(x) + g(x)u, x(0) = x0 (6.72a)
y = h(x) (6.72b)

with state x ∈ Rn, input u ∈ R, smooth vector fields f(x) and g(x), and smooth function
h(x) has a relative degree r = n and thus represents a flat output of the system. The
trajectory tracking control task now consists of designing a controller so that the output
y follows a given sufficiently smooth (at least n times differentiable) reference trajectory
yd(t). According to Lemma 6.1, the system (6.72) can be transformed to Byrnes-Isidori
normal form

ż1 = z2

ż2 = z3
...

żn = Lnf h
(
Φ−1(z)

)
+ LgLn−1

f h
(
Φ−1(z)

)
u

y = z1

(6.73)
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with the new state

z =


z1
...
zn

 = Φ(x) =


h(x)

Lfh(x)
...

Ln−1
f h(x)

 =


y

ẏ
...

y(n−1)

 . (6.74)

Assuming that the entire state x can be measured, the control law

u = 1
LgLn−1

f h(x)

y(n)
d (t) − Lnf h(x) −

n∑
j=1

aj−1

Lj−1
f h(x)︸ ︷︷ ︸

(6.69)
= y(j−1)

−y(j−1)
d (t)


 (6.75)

with suitably chosen coefficients aj , j = 0, . . . , n− 1 leads to an exponentially stable error
dynamics. Namely, by substituting the control law (6.75) into (6.73), the dynamics of the
trajectory error z1e = y − yd using (6.74) is given by


ż1e
...
żne


︸ ︷︷ ︸

że

=



0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1

−a0 −a1 . . . −an−2 −an−1


︸ ︷︷ ︸

Ae


z1e
...
zne


︸ ︷︷ ︸

ze

, (6.76)

where aj , j = 0, . . . , n− 1 represent the freely selectable coefficients of the error dynamics
matrix Ae.

In most practical applications, the entire state is not available for measurement. There-
fore, two methods are presented below on how to solve this problem.

6.4.1 Exact feedforward linearization with output stabilization
In the case where no measurements are available at all, a flatness-based feedforward control
ud(t) utilizing the parameterization (6.70) and (6.71) can be designed in the form

xd = ψ1
(
yd, ẏd, . . . , y

(n−1)
d

)
= Φ−1(zd), zT

d =
[
yd, ẏd, . . . , y

(n−1)
d

]
(6.77a)

ud = ψ2
(
yd, ẏd, . . . , y

(n)
d

)
= y

(n)
d − Lnf h(xd)
LgLn−1

f h(xd)
. (6.77b)

Then, the following theorem holds:

Theorem 6.3 (Exact feedforward linearization). If the desired reference trajectory
yd(t) is consistent with the initial conditions x0 of the system (6.72), i.e., x0 =
ψ1
(
yd(0), ẏd(0), . . . , y(n−1)

d (0)
)

= Φ−1(z0), the mathematical model of the plant is
exact, there are no parameter variations, and no disturbances act on the system, then
the flatness-based control u = ud(t) applied to the system (6.72) for all times t ≥ 0
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via the state transformation z = Φ(x) leads to an identical behavior as the system

żi = zi+1, i = 1, . . . , n− 1 (6.78a)

żn = y
(n)
d (6.78b)

with the initial value z(0) = z0 = Φ(x0). The flatness-based control u = ud(t) is
also referred to as exact feedforward linearization. If the initial conditions are not
consistent, but x0 is sufficiently close to Φ−1(z0), and the model parameters deviate
only slightly from the plant parameters, then the system (flatness-based control (6.77)
applied to (6.72))

ẋ = f(x) + g(x)y
(n)
d − Lnf h(xd)
LgLn−1

f h(xd)
, x(0) = x0 (6.79)

has a unique solution for a finite time interval and remains sufficiently close to the
solution of (6.78).

The proof of this theorem is given in the literature provided at the end.
To suppress modeling inaccuracies and disturbances acting on the system, the flatness-

based feedforward control is extended by an output feedback regulator. For this purpose,
the control variable u is formulated in the form

u = ud + ue (6.80)

with the feedforward component ud and the regulator component ue. Assuming that the
quantity

w = l(x) (6.81)

is available through measurement, one can attempt to stabilize the trajectory error system,
for example, by using a PI controller of the form

ue = kpwe + ki

∫
we dt, we = wd − w, wd = l(xd) (6.82)

with suitable controller parameters kp and ki, and xd = ψ1
(
yd, ẏd, . . . , y

(n−1)
d

)
according

to (6.77). The corresponding control structure is depicted as a block diagram in Figure
6.2. This is often referred to in the literature as a two-degree-of-freedom control structure.

This approach is commonly used in practice and can be justified by the fact that the
flatness-based control ud(t) already ensures that the system trajectories x(t) (and thus
w = l(x(t))) are sufficiently close to the desired trajectories xd(t) (and thus wd = l(xd(t))),
making a linear controller sufficient to stabilize the error system. By substituting (6.77)
and (6.82) into (6.80) and then into (6.73), it is immediately apparent that the trajectory
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trajectory
planning

flatness-
based

feedforward
system

feedforward feedback

output
regulator

w

we
wd

ud

ue

u
y

yd, ..., y
(n)
d

Figure 6.2: Block diagram of the two-degree-of-freedom control system structure.

error system

ż1e = z2e

ż2e = z3e
...

żne = Lnf h(x) + LgLn−1
f h(x)

(
y

(n)
d − Lnf h(xd)
LgLn−1

f h(xd)
+ kp(l(xd) − l(x)) + kiweI

)
− y

(n)
d

ẇeI = l(xd) − l(x)

(6.83)

with x = Φ−1(ze + zd), xd = Φ−1(zd), zje = zj − y
(j−1)
d (t), j = 1, . . . , n, is nonlinear

and time-varying. The stability analysis of the system (6.83) generally proves to be
extremely difficult. One possible, not significantly simpler variant, which can also be
used for designing the controller parameters kp and ki, is to linearize the system (6.83)
around the desired equilibrium ze = 0 and examine the stability of the resulting linear
time-varying system.

Example 6.5. As an application example, consider the electronic stability program
(ESP) of a vehicle. The control strategy is based on the so-called nonlinear single-track
model shown in Figure 6.3.
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Figure 6.3: Schematic representation of the single-track model.

Thereby, it is assumed that the center of gravity of the vehicle is at road level
and thus the forces acting at the center of gravity do not change the wheel loads,
allowing the two wheels on the front and rear axles to be combined into single wheels.
Furthermore, the entire vehicle is considered as a rigid body, without taking into
account pitch and roll movements, and neglecting the vertical dynamics of the vehicle
and the wheel dynamics. Denoting vx and vy as the components of the vehicle velocity
v with respect to the body-fixed coordinate system 0x0y0, and ψ̇ as the yaw rate
(angular velocity around the vertical axis of the vehicle), the equations of motion are
given by

d
dtvy = 1

m
(Ff (αf ) cos(δf ) + Fr(αr)) − vxψ̇ (6.84a)

d
dt ψ̇ = 1

Iz
(Ff (αf )lf cos(δf ) − Fr(αr)lr +Mz) . (6.84b)

Here, m represents the total mass of the vehicle, Iz is the moment of inertia around
the vertical axis, and lf and lr are the distances between the center of gravity and the
front and rear axles, respectively. By adjusting the gas and brake pedal positions, the
driver sets the longitudinal velocity vx of the vehicle, which is subsequently assumed
to be constant for controlling the lateral dynamics of the vehicle. Furthermore, the
front wheel angle δf is determined by the steering kinematics based on the steering
wheel angle specified by the driver and measured. The lateral forces Ff and Fr acting
on the tires cause the tires to roll not straight but sideways. The angle between the
tire’s orientation and its actual motion is called the slip angle, and is calculated for
the front and rear axles as:

αf = arctan
(
vy + ψ̇lf

vx

)
− δf und αr = arctan

(
vy − ψ̇lr
vx

)
. (6.85)

The lateral forces Ff and Fr are nonlinear functions of the slip angles αf and αr,
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whose behavior varies significantly with the ground conditions, as shown in Figure
6.4.

Figure 6.4: Tire characteristics (lateral force as a function of slip angle) for different
ground conditions.

The yaw moment Mz serves as a fictitious input into the system, which can be
realized by selectively braking individual wheels. Apart from the known steering
angle, commercial ESP systems typically measure the yaw rate ψ̇ and the lateral
acceleration

ay = d
dtvy + vxψ̇ . (6.86)

One can easily verify that the lateral velocity y = vy represents a possible flat
output of the system (6.84) and thus all system variables can be parameterized by y
and its time derivatives. Assuming that the steering angle δf is a sufficiently smooth
known time function, the yaw rate ψ̇ can be determined according to (6.84) from the
implicit equation

mẏ − Ff

(
arctan

(
y + ψ̇lf
vx

)
− δf

)
cos(δf ) − Fr

(
arctan

(
y − ψ̇lr
vx

))
+mvxψ̇ = 0

(6.87)

It should be noted that this implicit equation cannot be solved analytically. As shown
in Figure 6.4, the axle characteristics are not monotonically increasing functions
of the slip angles, so the solution of the implicit equation (6.87) for the yaw rate
ψ̇ is no longer unique outside the linear range. However, this is not a problem as
the correct solution can always be determined (numerically). To demonstrate this,
consider initially the linear range of the axle characteristics, i.e.,

Ff (αf ) = −cf
((

y + ψ̇lf
vx

)
− δf

)
und Fr(αr) = −cr

(
y − ψ̇lr
vx

)
(6.88)

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



6.4 Trajectory Tracking Control Page 141

with stiffness coefficients cf , cr > 0 for small steering angles δf . Substituting (6.88)
into (6.87), one obtains, with cos(δf ) ≈ 1, the unique solution for ψ̇ in the linear
range as

ψ̇ = vxδfcf − (cf + cr)y −mẏvx
cf lf − crlr +mv2

x

. (6.89)

Since both the steering angle δf and y and ẏ are continuous, ψ̇ must also be continuous.
Furthermore, it is known that at the beginning of each journey, the vehicle is in the
linear range of the axle characteristics, which is why a unique solution, as in (6.89),
exists. These points now motivate the following strategy. The implicit equation (6.87)
is solved in each sampling step, and in case of multiple solutions, the solution closest
to the previous sampling step is always chosen. This shows that a parameterization
of the yaw rate in the form ψ̇ = χ1(y, ẏ, δf ) is given. The parameterization of the
control input Mz is obtained from the second equation of (6.84)

Mz = Izψ̈ − (Ff (αf )lf cos(δf ) − Fr(αr)lr) (6.90)

and by calculating ψ̈ = χ2
(
y, ẏ, ÿ, δf , δ̇f

)
= χ2N/χ2D from the time-differentiated

equation (6.87)

mÿ − ∂

∂αf
Ff (αf )


(
ẏ + ψ̈lf

)
vx

v2
x +

(
y + ψ̇lf

)2 − δ̇f

 cos(δf ) + Ff (αf ) sin(δf )δ̇f

− ∂

∂αr
Fr(αr)


(
ẏ − ψ̈lr

)
vx

v2
x +

(
y − ψ̇lr

)2

+mvxψ̈ = 0

(6.91a)

with

χ2N = ∂

∂αf
Ff (αf )

δ̇f − ẏvx

v2
x +

(
y + ψ̇lf

)2

 cos(δf ) +mÿ

+ Ff (αf ) sin(δf )δ̇f − ∂

∂αr
Fr(αr)

 ẏvx

v2
x +

(
y − ψ̇lr

)2

 ,

(6.91b)

χ2D = ∂

∂αf
Ff (αf )

 lfvx

v2
x +

(
y + ψ̇lf

)2

 cos(δf )

+ ∂

∂αr
Fr(αr)

 lrvx

v2
x +

(
y − ψ̇lr

)2

−mvx .

(6.91c)
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This example nicely illustrates that in flatness-based control design, it is not
necessarily required to explicitly specify the parameterization.

The control concept is based on the two-degree-of-freedom control loop structure
shown in Figure 6.2. In a reference model, a desired trajectory yd = vy,d of lateral
velocity y = vy is calculated based on the driver’s specifications, which is at least
twice continuously differentiable. Using the flatness-based parameterization of the
control input (6.90) - (6.91), a control law of the form

Mz,d = Iz χ2
(
yd, ẏd, ÿd, δf , δ̇f

)
︸ ︷︷ ︸

ψ̈d

−(Ff (αf,d)lf cos(δf ) − Fr(αr,d)lr) (6.92a)

with

αf,d = arctan

yd +
ψ̇d︷ ︸︸ ︷

χ1(yd, ẏd, δf )lf
vx

, (6.92b)

αr,d = arctan

yd −
ψ̇d︷ ︸︸ ︷

χ1(yd, ẏd, δf )lr
vx

 (6.92c)

is then determined. The stabilization of the trajectory error system is achieved
through the time derivative of lateral velocity

v̇y = ay − vxψ̇ , (6.93)

since this can be directly calculated from the measured lateral acceleration ay and
yaw rate ψ̇.

In the present case, a simple PI controller of the form

Mz,e = kp(v̇y − v̇y,d) + ki

∫
(v̇y − v̇y,d) dt (6.94)

with appropriately chosen controller parameters kp and ki is used. The yaw moment
Mz to be realized for lateral dynamics control is now composed additively of two
components: Mz,d according to (6.92a) and Mz,e according to (6.94), i.e. Mz =
Mz,d +Mz,e.

6.4.2 Exact Input-State Linearisation with State Observer
Another way to circumvent the problem of incomplete state information accessible via
measurements is to construct a state observer for the unmeasurable states. Assuming
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that the only measurements w = l(x) are available for the system

d
dtx = f(x) + g(x)u, x(0) = x0 (6.95a)

w = l(x) , (6.95b)

a state observer can be implemented in the form

d
dt x̂ = f(x̂) + g(x̂)u− k̂(t)(w − ŵ), x̂(0) = x̂0 (6.96a)

ŵ = l(x̂) (6.96b)

with the estimated state x̂ and the time-varying observer gain k̂(t) to be determined. A
state controller according to (6.75) can then be utilized with x replaced by x̂, i.e.,

u = û = 1
LgLn−1

f h(x̂)

y(n)
d (t) − Lnf h(x̂) −

n∑
j=1

aj−1
(
Lj−1

f h(x̂) − y
(j−1)
d (t)

) . (6.97)

From (6.95) and (6.96), it is immediately apparent that the observer error dynamics
x̃ = x − x̂ become

d
dt x̃ = f(x̃ + x̂) − f(x̂) + (g(x̃ + x̂) − g(x̂))u+ k̂(t)(l(x̃ + x̂) − l(x̂)),

x̃(0) = x0 − x̂0

(6.98)

with u = û(t, x̂) from (6.97). Assuming that the state x and the estimated state x̂ are
close to the desired trajectory xd (see also (6.77)), the system (6.96) - (6.98) can be
linearized around x̃ = 0 and x̂ = xd

[ d
dt∆x̂
d
dt∆x̃

]
=

A11(t) −k̂(t)cT(t)
A21(t)︸ ︷︷ ︸

=0

A22(t) + k̂(t)cT(t)

[∆x̂
∆x̃

]
(6.99a)

with

A11(t) = ∂

∂x̂ (f(x̂) + g(x̂)û)|x̂=xd
− k̂(t)

(
∂

∂x̂ l(x̃ + x̂) − ∂

∂x̂ l(x̂)
)∣∣∣∣

x̂=xd, x̃=0︸ ︷︷ ︸
=0

, (6.99b)

cT(t) = ∂

∂x̃ l(x̃ + x̂)
∣∣∣∣
x̂=xd, x̃=0

, (6.99c)
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and

A21(t) =
(
∂

∂x̂(f(x̃ + x̂) − f(x̂))
)∣∣∣∣

x̂=xd, x̃=0︸ ︷︷ ︸
=0

+
(
∂

∂x̂(g(x̃ + x̂) − g(x̂))
)
û

∣∣∣∣
x̂=xd,x̃=0︸ ︷︷ ︸

=0

+ (g(x̃ + x̂) − g(x̂)) ∂
∂x̂ û

∣∣∣∣
x̂=xd,x̃=0︸ ︷︷ ︸

=0

+ k̂(t) ∂

∂x̂(l(x̃ + x̂) − l(x̂))
∣∣∣∣
x̂=xd, x̃=0︸ ︷︷ ︸

=0

= 0,

(6.99d)

A22(t) = ∂

∂x̃(f(x̃ + x̂) + g(x̃ + x̂)û)
∣∣∣∣
x̂=xd,x̃=0

. (6.99e)

Evidently, the linearized closed loop system (6.99a) is of triangular structure. As shown
at the beginning of this section (cf. (6.72) - (6.76)), the control law u = û according to
(6.97) applied to the system

d
dt x̂ = f(x̂) + g(x̂)u (6.100)

results in an exponentially stable trajectory error system for x̂e = x̂ − xd. Note that
simply replacing x with x̂ and u with û in the derivations from (6.72) - (6.76) leads to
the conclusion that the subsystem

d
dt∆x̂ = A11(t)∆x̂ (6.101)

of the linearized system (6.99a) is also exponentially stable.
For the subsystem

d
dt∆x̃ =

(
A22(t) + k̂(t)cT(t)

)
∆x̃ (6.102)

assuming that the pair
(
cT(t),A22(t)

)
is observable, the time-varying observer gain k̂(t)

can be chosen, for example, using the Ackermann formula for linear time-varying systems
in such a way that the eigenvalues of A22(t) + k̂(t)cT(t) are located at specified locations.
For the calculation of observers for linear time-varying systems, refer to the appendix
B. Figure 6.5 shows a structural diagram of the exact input-state linearization with
controller-observer structure.

Example 6.6. Figure 6.6 shows a simple example of a magnetic bearing.
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yd, . . . , y
(n)
d u

y

w

x̂

trajectory
planning

feedback
control

system

observer

(6.97)

(6.96)

Figure 6.5: Block diagram of the exact input-state linearization with state observer.

i

m

coil

ball

g

τl

x1,x2

Figure 6.6: Schematic representation of the magnetic bearing.

The corresponding mathematical model is

ẋ1 = x2 (6.103a)

ẋ2 = k1
m

(
i

k2 − x1

)2
− g − τl

m
(6.103b)

with the two state variables position x1 and velocity x2 of the moving ball with mass
m, gravitational constant g, and an external disturbance force τl.

Furthermore, it is assumed that the input i corresponds to the coil current ensured
by an underlying controller, and k1 and k2 are constant positive parameters for
modeling the magnetic force. The control task now is to follow a sufficiently smooth
trajectory xd(t) in the position x1.

Exercise 6.5. Show that the position x1 of mass m represents a flat output y = h(x) =
x1 of the system.

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



6.4 Trajectory Tracking Control Page 146

Exercise 6.6. Show that for τl = 0, the system variables (state and input) can be
parameterized in the form

x1 = y (6.104a)
x2 = ẏ (6.104b)

i = (k2 − y)
√
m

k1
(ÿ + g) (6.104c)

by the flat output y and its time derivatives.

As a measured variable w, only the position x1 is available, and it is assumed that the
velocity x2 cannot be sensibly determined by approximate differentiation due to the
noisy position measurement signal. For the controller design, the disturbance force τl
is considered as an unknown but constant parameter that satisfies the differential
equation (disturbance model)

d
dtτl = 0 (6.105)

Introducing a new input variable

u = i2 (6.106)

allows the direct application of the control law (6.97) for

d
dt

[
x1

x2

]
︸ ︷︷ ︸

x

=
[

x2

−g − τl
m

]
︸ ︷︷ ︸

f(x)

+

 0
k1

m(k2−x1)2


︸ ︷︷ ︸

g(x)

u, x(0) = x0 (6.107a)

y = h(x) = x1 (6.107b)
w = l(x) = x1 (6.107c)

and one obtains

u = û = 1
LgLfh(x̂)

ÿd(t) − L2
fh(x̂) −

2∑
j=1

aj−1
(
Lj−1

f h(x̂) − y
(j−1)
d (t)

)
= m(k2 − x̂1)2

k1

(
ÿd(t) + g + τ̂l

m
− a0(x̂1 − yd) − a1(x̂2 − ẏd)

) (6.108)

with suitably chosen controller parameters a0 and a1 as well as the estimates τ̂l,
x̂1, and x̂2 of τl, x1, and x2. Note that considering (6.106), the actual manipulated
variable i becomes i =

√
u. The state observer for the system (6.107) extended by
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the disturbance model (6.105) reads according to (6.96)

d
dt


x̂1

x̂2

τ̂l


︸ ︷︷ ︸

x̂a

=


x̂2

−g − τ̂l
m

0


︸ ︷︷ ︸

fa(x̂a)

+


0
k1

m(k2−x̂1)2

0


︸ ︷︷ ︸

ga(x̂a)

û− k̂(t)(x1 − x̂1) (6.109a)

ŷ = ha(x̂a) = x̂1 (6.109b)
ŵ = la(x̂a) = x̂1 (6.109c)

with

x̂1(0) = x̂10

x̂2(0) = x̂20

τ̂l(0) = τ̂l0

(6.109d)

with the state vector xa extended by the state τ̂l. For the design of the time-varying
observer gain k̂(t), the Ackermann formula for linear time-varying systems is used
according to Theorem B.2. By linearizing around the desired trajectory x1d = yd,
x2d = ẏd, and τld = 0 (see 6.104), the relevant quantities for the observer design (cf.
(6.102)) are obtained as

Aa,22(t) = ∂

∂x̃a
(fa(x̃a + x̂a) + ga(x̃a + x̂a)û)

∣∣∣∣
x̂a=xa,d, x̃a=0

(6.110a)

cT
a (t) = ∂

∂x̃a
la(x̃a + x̂a)

∣∣∣∣
x̂a=xa,d, x̃a=0

(6.110b)

with

Aa,22(t) =


0 1 0

2
(k2−yd)(ÿd(t) + g) 0 −1

m

0 0 0

, ca(t) =


1
0
0

 . (6.110c)

It can be easily verified that the pair
(
cT
a (t),Aa,22(t)

)
is uniformly observable ac-

cording to Definition B.2, as the rank of the observability matrix

O
(
cT
a (t),Aa,22(t)

)
=


1 0 0
0 1 0

2
(k2−yd)(ÿd(t) + g) 0 −1

m

 (6.111)

is 3 for all times t ≥ t0. The time-varying observer gain k̂(t) is then directly
obtained from the Ackermann formula according to Theorem B.2 for a suitably
chosen characteristic polynomial s3 + p2s2 + p1s+ p0.
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Exercise 6.7. The theory presented so far is to be applied to the laboratory experiment
Ball-on-Wheel shown in Figure 6.7. This laboratory experiment essentially consists of
a wheel (radius rw, moment of inertia about the z-axis Iw, rotation angle φw, angular
velocity ωw) on which a ball (radius rb, mass mb, moment of inertia about the z-axis
Ib, rotation angle φb, angular velocity ωb) is balanced. The input to the system is
the torque M on the wheel.

ϕb

ϕw

ϕr

x0

y0

xw

yw

xb

yb

ball

rod

wheel
g

M

Figure 6.7: Schematic representation of the laboratory experiment Ball-on-Wheel.

When modeling the ball, assume that it is given in the form of a solid sphere with
radius rb and mass mb, i.e., it holds

Ib = 2
5mbr

2
b (6.112)

Solve the following subtasks:

• Calculate the mathematical model of this system using the Lagrange formalism.
Then represent the system in the form

ẋ = f(x) + g(x)u (6.113)

with the state x = [φw, φr, ωw, ωr]T and the input u = M . Implement the
system in Matlab/Simulink.
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• Calculate all equilibrium points of the system and linearize the system around a
physically meaningful equilibrium point. What statements can you make about
the stability and reachability of the linearized system?

• Calculate the relative degree of the outputs y1 = φw, y2 = φr, y3 = ωw, and
y4 = ωr. Then check if an exact input-state linearization is feasible for this
system.

• Show that the system is differentially flat and calculate a flat output y in
general.

Name Value

Radius Wheel rw 269 mm
Radius Ball rb 68.3 mm
Moment of Inertia Wheel Iw 0.156 kgm2

Mass Ball mb 0.197 kg
Gravitational Constant g 9.81 m/s2

Table 6.1: Parameters of the laboratory experiment Ball-on-Wheel.

Choose for the flat output

y = φw − 1
2

7(rw + rb)φr
rw

(6.114)

and calculate the state and input transformations to Brunovsky normal form.
Then extend the control law with appropriate terms so that the eigenvalues of
the closed transformed loop lie at {γ1, γ2, γ3, γ4}. Choose suitable eigenvalues
and test the designed nonlinear controller by simulation in Matlab/Simulink
using the parameters from Table 6.1.

6.4.3 Trajectory Tracking Control for a Non-Flat Output
In the first step, consider the system (6.95) and assume that y represents a flat output of
the system. According to (6.70) and (6.71), it is then possible to parameterize all system
variables (state x and input u) through the flat output y and its time derivatives, namely

x = ψ1
(
y, ẏ, . . . , y(n−1)

)
= Φ−1(z), zT =

[
y, ẏ, . . . , y(n−1)

]
(6.115a)

u = ψ2
(
y, ẏ, . . . , y(n)

)
= y(n) − Lnf h

(
Φ−1(z)

)
LgLn−1

f h(Φ−1(z))
. (6.115b)
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Next, it is assumed that the trajectory tracking control is not designed for the flat output
y but for a quantity

χ = m(x) , (6.116)

which has a relative degree r < n. According to (6.115), it is plausible that χ can also be
parameterized by the flat output y. It can now be easily verified that the parameterization
of χ only involves derivatives of y up to order (n− r), i.e.,

χ = ψ3
(
y, ẏ, . . . , y(n−r)

)
. (6.117)

The reason for this is that χ has a relative degree r < n and the flat output y has a
relative degree n. Recalling that the relative degree exactly corresponds to the number of
temporal differentiations that must be applied to the respective quantity so that the input
u appears explicitly for the first time, it can be seen from (6.117) that differentiating χ
r times for the first time brings out y(n) and thus u. If χ depended on a higher (lower)
derivative of y, then χ would need to be differentiated fewer (more) than r times for y(n)

and u to appear for the first time, which would correspond to a different relative degree.
If a desired trajectory χd(t) is specified for χ, then one would have to solve the differential

equation (6.117) for y to obtain the corresponding desired trajectory yd(t) of the flat
output. It can now be shown that the differential equation (6.117) corresponds precisely
to the zero dynamics or internal dynamics (6.34) of the system (6.95) with respect to the
output χ of (6.116). The following cases are distinguished:

• If the zero dynamics are stable (phase-minimal system according to Definition 6.2),
then the reference trajectory yd(t) of the flat output can be determined directly
from the specification of a sufficiently differentiable reference trajectory χd(t) for the
desired output χ = m(x) through numerical integration of the internal dynamics

χd = ψ3
(
yd, ẏd, . . . , y

(n−r)
d

)
(6.118)

for the initial values yd(0), ẏd(0), . . . , y(n−r)
d (0).

• In the case that the zero dynamics are unstable (system is not minimum-phase
according to Definition 6.2), the differential equation (6.118) can be solved stably
using special integration algorithms. For more details, refer to the literature cited
at the end of the chapter.

• If only an operating point change is of interest and the exact trajectory between
the two operating points is not relevant, then trajectory planning can always be
done directly in the flat output, taking into account the relationship between the
steady-state values of y and χ for the respective operating points.

If trajectory planning is completed and a flatness-based parameterization of the system
variables is available, then all methods of trajectory tracking control discussed in this
section can be directly applied. Of course, the presented theory can still be used for the

Lecture Nonlinear Dynamical Systems and Control (SS 2026)
©A. Deutschmann-Olek and A. Kugi, Automation and Control Institute, TU Wien



6.4 Trajectory Tracking Control Page 151

design of a trajectory tracking control even if the system is not differentially flat. To
demonstrate this, a control in the sense of exact feedforward design from Section 6.4.1 for
the system (cf. (6.72))

d
dtx = f(x) + g(x)u, x(0) = x0 (6.119)

will be designed. It is assumed that the system (6.119) is not differentially flat and the
controlled variable for the trajectory tracking controller design χ = m(x) according to
(6.116) has a relative degree r < n. By transforming the system (6.119), (6.116) to the
Byrnes-Isidori normal form according to (6.31) and Lemma 6.1, we obtain

Σ1 :



ż1 = z2

ż2 = z3
...

żr = Lrfm
(
Φ−1(z)

)
︸ ︷︷ ︸

b(ξ,η)

+ LgLr−1
f m

(
Φ−1(z)

)
︸ ︷︷ ︸

a(ξ,η)

u

(6.120a)

Σ2 :
{
η̇ = q(ξ,η) (6.120b)

χ = m
(
Φ−1(z)

)
= z1 (6.120c)

with the new state

z =



z1
...
zr

zr+1
...
zn


=
[
ξ

η

]
= Φ(x) =



m(x)
Lfm(x)

...
Lr−1

f m(x)
ϕr+1(x)

...
ϕn(x)


=



χ

χ̇
...

χ(r−1)

ϕr+1(x)
...

ϕn(x)


. (6.121)

If a desired trajectory χd(t) for the desired output is specified with sufficient continuous
differentiability, the control in the sense of exact feedforward design (cf. (6.77)) based on
the subsystem Σ1 of (6.120) is

ud(t) = χ
(r)
d (t) − b(ξd(t),ηd(t))

a(ξd(t),ηd(t))
(6.122)

with

ξT
d (t) =

[
χd(t) χ̇d(t) . . . χ

(r−2)
d (t) χ

(r−1)
d (t)

]
(6.123)

and ηd(t) as the solution of the differential equation system (subsystem Σ2 of (6.120))

η̇d = q(ξd,ηd) (6.124)
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with the input ξd(t) according to (6.123) and the initial value ηd(0) = ηd,0 from the
relation

[
ξd,0
ηd,0

]
= Φ(x0), ξd,0 =


χd(0)
χ̇d(0)

...
χ

(r−1)
d (0)

 . (6.125)

Note that the differential equation system (6.124) of the internal dynamics or zero
dynamics of (6.120) with the state ηd and the input ξd corresponds to the previously
made statements regarding stable and unstable zero dynamics as well as operating point
changes.

Exercise 6.8. Consider how you can transfer the method of exact input-state lineariza-
tion with controller-observer structure from Section 6.4.2 to the trajectory tracking
control of non-flat single-input systems.

Remark: Use the control law from (6.49) as a basis.

Example 6.7. Consider a self-supplied adjustable axial piston pump as shown in
Figure 6.8 with the electro-hydraulic circuit shown in Figure 6.9. The system under
investigation is described by the two differential equations

ϕ̇ = − qPA
APArPA

(6.126a)

ṗL = β

VL

kPϕ− qPA − kL
√
pL︸ ︷︷ ︸

qL

 (6.126b)

with the angle of the swash plate ϕ and the load pressure pL as state variables, and
the flow rate qPA into the adjustment cylinder of the swash plate as input.

The variables APA and rPA denote the piston area and the effective lever arm of
the adjustment cylinder, β is the bulk modulus of oil, kPϕ is the pump flow rate,
VL is the load volume, and kL is the throttle coefficient of the load. Furthermore, a
trajectory tracking control for the load pressure pL is to be designed.
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φ, φ̇

connected

swash plate

slipper

piston barrel valve plate

discharge port

rotation of barrel and pistons

intake port
rP A

actuator

qP AAP A

Figure 6.8: Schematic representation of the basic structure of an axial piston pump
in inclined plate design.

pL

load orifice

qL

pump

actuator piston

control valve

load volume
qP A

qP

φ

Figure 6.9: Hydraulic equivalent circuit of the axial piston pump with load.

Exercise 6.9. Show that the system (6.126) is differentially flat and determine a flat
output. Show that the load pressure pL has a relative degree r = 1.

To transform the system (6.126) to the Byrnes-Isidori normal form (6.120), the
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following state transformation according to (6.121) is performed[
z1

z2

]
=
[

pL

ϕAPArPA − VL
β pL

]
(6.127)

The Byrnes-Isidori normal form of (6.126) is then

Σ1 :
{
ż1 = β

VL

(
kP

AP ArP A

(
z2 + VL

β z1
)

− qPA − kL
√
z1
)

(6.128a)

Σ2 :
{
ż2 = − kP

AP ArP A

(
z2 + VL

β z1
)

+ kL
√
z1 (6.128b)

χ = pL = z1 (6.128c)

It can be seen that the zero dynamics (subsystem Σ2 for z1 = 0)

ż2 = − kP
APArPA

z2 (6.129)

is stable. If a at least once continuously differentiable reference trajectory z1,d(t) =
pL,d(t) is given, then the reference trajectories for z2 and ϕ are calculated from the
differential equation

ż2,d = − kP
APArPA

(
z2,d + VL

β
pL,d(t)

)
+ kL

√
pL,d(t) (6.130a)

ϕd = 1
APArPA

(
z2,d + VL

β
pL,d

)
(6.130b)

with the initial value z2,d(0) = ϕ(0)APArPA− VL
β pL,d(0). An exact feedforward control

according to (6.122) is then given by

qPA,d(t) = −VL
β
ż1,d + kP

APArPA

(
z2,d + VL

β
z1,d

)
− kL

√
z1,d . (6.131)

Exercise 6.10. Extend the control (6.131) by a control component in the sense of the
two-degree-of-freedom control loop structure according to Section 6.4.1.

Exercise 6.11. Design a trajectory tracking controller with a controller-observer
structure for the system (6.126) according to Section 6.4.2.
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6.5 Multi-variable case
6.5.1 Exact Linearization
For the following, consider the affine input multi-variable system

ẋ = f(x) +
m∑
j=1

gj(x)uj

y1 = h1(x)
...

ym = hm(x)

(6.132)

with state x ∈ Rn, input uT = [u1, . . . , um] ∈ Rm, output yT = [y1, . . . , ym] ∈ Rm, smooth
vector fields f(x) and gj(x), j = 1, . . . ,m, and smooth functions hj(x), j = 1, . . . ,m.
Analogous to Definition 6.1, a vector relative degree {r1, r2, . . . , rm} with r = ∑m

j=1 rj ≤ n
can be defined for the multi-variable system (6.132):

Definition 6.3 (Relative degree of a multi-variable system). The system (6.132) has
the vector relative degree {r1, r2, . . . , rm} with r = ∑m

j=1 rj ≤ n at the point x̄ ∈ U , if

(A) Lgj Lkf hi(x) = 0, j = 1, . . . ,m, i = 1, . . . ,m, k = 0, . . . , ri − 2 for all x in the
neighborhood U of x̄ and

(B) the (m×m) decoupling matrix

D(x) =


Lg1Lr1−1

f h1(x) Lg2Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)
Lg1Lr2−1

f h2(x) Lg2Lr2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

... . . . ...
Lg1Lrm−1

f hm(x) Lg2Lrm−1
f hm(x) · · · LgmLrm−1

f hm(x)

 (6.133)

is regular for x = x̄.

If the system (6.132) has the vector relative degree {r1, r2, . . . , rm}, then for the time
derivative of the output yj = hj(x) in a neighborhood of x̄

yj = hj(x)
ẏj = Lfhj(x) + Lg1hj(x)︸ ︷︷ ︸

=0

u1 + . . .+ Lgmhj(x)︸ ︷︷ ︸
=0

um

ÿj = L2
fhj(x) + Lg1Lfhj(x)︸ ︷︷ ︸

=0

u1 + . . .+ LgmLfhj(x)︸ ︷︷ ︸
=0

um

...

y
(rj−1)
j = Lrj−1

f hj(x) + Lg1Lrj−2
f hj(x)︸ ︷︷ ︸

=0

u1 + . . .+ LgmLrj−2
f hj(x)︸ ︷︷ ︸
=0

um

y
(rj)
j = Lrj

f hj(x) + Lg1Lrj−1
f hj(x)u1 + . . .+ LgmLrj−1

f hj(x)um .

(6.134)
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Carrying this out for all outputs yj = hj(x), j = 1, . . . ,m, yields
y

(r1)
1
...

y
(rm−1)
m−1
y

(rm)
m

 =


Lr1

f h1(x)
...

Lrm−1
f hm−1(x)
Lrm

f hm(x)


︸ ︷︷ ︸

b(x)

+D(x)


u1
...

um−1

um


︸ ︷︷ ︸

u

. (6.135)

It is evident that at least in a neighborhood of x̄, using the state feedback law

u = D−1(x)(v − b(x)) (6.136)

an exactly linear input-output behavior from the new input vT = [v1, . . . , vm] to the output
yT = [y1, . . . , ym] in the form of m integrator chains of length rj , j = 1, . . . ,m, can be
generated 

y
(r1)
1
...

y
(rm−1)
m−1
y

(rm)
m

 =


v1
...

vm−1

vm

 . (6.137)

It is observed that compared to the single-input case, in the multi-variable case, the
condition of regularity of the decoupling matrix D(x) from (6.133) plays a crucial role.
By choosing vj in the form

vj = −
rj∑
i=1

aj,i−1Li−1
f hj(x) + ṽj (6.138)

with suitably chosen coefficients aj,i, j = 1, . . . ,m, i = 0, . . . , rj − 1, m decoupled transfer
functions G̃j(s) from the new input ṽj to the output yj are obtained

G̃j(s) = 1
srj + aj,rj−1srj−1 + . . .+ aj,1s+ aj,0

. (6.139)

Analogous to Lemma 6.1, one can show that under the assumption that the system
(6.132) has the vector relative degree {r1, r2, . . . , rm} with r = ∑m

j=1 rj < n at the point
x̄, there always exist (n− r) functions ηT = [ϕr+1(x), . . . , ϕn(x)] such that with
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z =


z1
...
zn

 =
[
ξ

η

]
=



ξ1,1

ξ1,2
...

ξ1,r1

ξ2,1
...

ξ2,r2
...

ξm,1
...

ξm,rm

ϕr+1(x)
...

ϕn(x)



= Φ(x) =



h1(x)
Lfh1(x)

...
Lr1−1

f h1(x)
h2(x)

...
Lr2−1

f h2(x)
...

hm(x)
...

Lrm−1
f hm(x)
ϕr+1(x)

...
ϕn(x)



(6.140)

a local diffeomorphism in a neighborhood U of x̄ is given. In contrast to the single-input
case, the functions ϕr+1(x), . . . , ϕn(x) cannot generally be chosen such that Lgjϕk(x) = 0,
j = 1, . . . ,m, k = r + 1, . . . , n, for all x ∈ U , unless the distribution

G0 = span{g1,g2, . . . ,gm} (6.141)

is involutive in a neighborhood U of the point x̄. Applying the state transformation (6.140)
to the system (6.132) yields the transformed system in the Byrnes-Isidori Normalform (cf.
(6.16))
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Σ1 :



ξ̇1,1 = ξ1,2

ξ̇1,2 = ξ1,3
...

ξ̇1,r1 = b̃1(ξ,η) +
m∑
j=1

D̃1,j(ξ,η)uj

ξ̇2,1 = ξ2,2

ξ̇2,2 = ξ2,3
...

ξ̇2,r2 = b̃2(ξ,η) +
m∑
j=1

D̃2,j(ξ,η)uj

...

ξ̇m,1 = ξm,2

ξ̇m,2 = ξm,3
...

ξ̇m,rm = b̃m(ξ,η) +
m∑
j=1

D̃m,j(ξ,η)uj

(6.142a)

Σ2 :



η̇1 = q1(ξ,η) +
m∑
j=1

P1,j(ξ,η)uj

...

η̇n−r = qn−r(ξ,η) +
m∑
j=1

Pn−r,j(ξ,η)uj

(6.142b)

with the output

yT = [ξ1,1, ξ2,1, . . . , ξm,1] (6.142c)

and

b̃j(ξ,η) = bj
(
Φ−1(ξ,η)

)
= Lrj

f hj
(
Φ−1(ξ,η)

)
, j = 1, . . . ,m

D̃l,j(ξ,η) = Dl,j

(
Φ−1(ξ,η)

)
= Lgj Lrl−1

f hl
(
Φ−1(ξ,η)

)
, j, l = 1, . . . ,m

qi(ξ,η) = Lfϕr+i
(
Φ−1(ξ,η)

)
, i = 1, . . . , n− r

Pi,j(ξ,η) = Lgjϕr+i
(
Φ−1(ξ,η)

)
, i = 1, . . . , n− r, j = 1, . . . ,m .

(6.142d)

The method of exact input-output linearization according to (6.136), (6.138)

u = D̃−1(ξ,η)
(
−b̃(ξ,η) + v

)
(6.143)
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leads for the multi-input multi-output system (6.132) analogously to the single-input case
only to a stable closed loop if the zero dynamics

η̇ = q(0,η) + P(0,η)D̃−1(0,η)
(
−b̃(0,η)

)
(6.144)

is asymptotically or exponentially stable, i.e., phase minimal, see Definition 6.2. Note
that the components of b̃, D̃, q, and P have already been defined in (6.142d).

It is obvious that the dimension of the zero dynamics vanishes when the vector relative
degree {r1, r2, . . . , rm} satisfies the condition r = ∑m

j=1 rj = n. The following theorem
now provides necessary and sufficient conditions for finding (fictitious) output variables
λ1(x), . . . , λm(x) for the system (6.132 ) such that for the corresponding vector relative
degree {r1, r2, . . . , rm} it holds r = ∑m

j=1 rj = n. According to Definition 6.3, a solution
of the system of partial differential equations

Lgj Lkf λi(x) = 0, j = 1, . . . ,m, i = 1, . . . ,m, k = 0, . . . , ri − 2 (6.145)

must then exist with a regular decoupling matrix D(x) according to (6.133) and the
constraint ∑m

j=1 rj = n.

Exercise 6.12. Show that the system of partial differential equations of higher order
(6.145) is equivalent to the system of first-order partial differential equations of
Frobenius type

Ladk
f gj(x)λi(x) = 0, j = 1, . . . ,m, i = 1, . . . ,m, k = 0, . . . , ri − 2 (6.146)

Remark: Use the relations (6.59) and (6.60).

Theorem 6.4 (Existence of outputs with vector relative degree r = n). There
exists a solution λ1(x),. . .,λm(x) in a neighborhood U of the point x̄ for the system
of first-order PDEs (6.146) with the constraints that the decoupling matrix D(x̄) is
regular according to (6.133) and for the vector relative degree {r1, r2, . . . , rm} satisfies
r = ∑m

j=1 rj = n, if the distributions

Gi(x) = span
{

adkf gj(x) : 0 ≤ k ≤ i, 1 ≤ j ≤ m
}

(6.147)

satisfy the following conditions:

(A) G0(x̄) has rank m,

(B) Gi(x) has constant rank in a neighborhood U of x̄ for all i = 1, . . . , n− 1,

(C) Gn−1(x̄) has rank n, and

(D) Gi(x) is involutive in a neighborhood U of x̄ for all i = 0, . . . , n− 2.
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In this case, the system (6.132) is also called exactly input-state-linearizable in the
neighborhood of the point x̄.
The vector relative degree {r1, r2, . . . , rm} is calculated by first constructing the quan-
tities

δi = rank(Gi(x̄)) − rank(Gi−1(x̄)), i = 1, . . . , n− 1 (6.148)

with the property 0 ≤ δi+1 ≤ δi. The component rj, j = 1, . . . ,m, of the vector relative
degree {r1, r2, . . . , rm} is determined as the number of quantities δi, i = 1, . . . , n− 1,
that are greater than or equal to j, increased by 1. Although the order of rj is arbitrary
in principle, the above definition implies that rj ≥ rj+1 and ∑m

j=1 rj = n always holds.

The proof of this theorem can be found in the literature cited at the end.
If the system (6.132) is exactly input-state linearizable, then for the state transformation

(6.140), dim(η) = 0, and the transformed state z = ξ is called the Brunovsky state of the
system (6.132). Using the state transformation (6.140) and the control transformation
(6.143), the system (6.132) is transformed into an exactly linear system in the new state z
with the new input v consisting of m integrator chains of lengths {r1, r2, . . . , rm}. This
transformed system is also known as the Brunovsky normal form (see (6.54)-(6.56)), and
the components rj of the vectorial relative degree {r1, r2, . . . , rm} are also referred to as
Kronecker indices in this context.

Example 6.8. Consider the system as an example

ẋ =



x2 + x2
2

x3 − x1x4 + x4x5

x2x4 + x1x5 − x2
5

x5

x2
2


︸ ︷︷ ︸

f(x)

+



0
0

cos(x1 − x5)
0
0


︸ ︷︷ ︸

g1(x)

u1 +



1
0
1
0
1


︸︷︷︸
g2(x)

u2 . (6.149)

The distribution G0(x) according to (6.147) reads

G0(x) = span





0
0

cos(x1 − x5)
0
0


︸ ︷︷ ︸

g1(x)

,



1
0
1
0
1


︸︷︷︸
g2(x)


. (6.150)

It is easy to verify that at a generic point x = x̄, the rank of G0(x) is 2, and due to
[g1,g2](x) = 0, the distribution G0(x) is involutive in a neighborhood of x̄.
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Analogously, it can be shown that the distribution

G1(x) = span





0
0

cos(x1 − x5)
0
0


︸ ︷︷ ︸

g1(x)

,



1
0
1
0
1


︸︷︷︸
g2(x)

,



0
− cos(x1 − x5)

− sin(x1 − x5)x2

0
0


︸ ︷︷ ︸

adf g1(x)

,



0
−1

−x1 + x5

−1
0


︸ ︷︷ ︸

adf g2(x)


(6.151)

at a generic point x = x̄ has rank 4 and is involutive in a neighborhood of x̄, since

[g1, adf g1](x) = 0 , (6.152a)
[g1, adf g2](x) = 0 , (6.152b)
[g2, adf g1](x) = 0 , (6.152c)
[g2, adf g2](x) = 0 , (6.152d)

[adf g1, adf g2](x) = [0, 0,− sin(x1 − x5), 0, 0]T = − tan(x1 − x5)g1(x) . (6.152e)

Without explicitly calculating the distributions G2(x), G3(x), and G4(x), it is worth
mentioning that they have rank n = 5 and are consequently involutive. Thus,
conditions (A) - (D) of Theorem 6.4 are satisfied, and the system (6.149) is exactly
input-state linearizable. The auxiliary variables δi, i = 1, . . . , n − 1, according to
(6.148), are

δ1 = rank(G1(x)) − rank(G0(x)) = 4 − 2 = 2 (6.153a)
δ2 = rank(G2(x)) − rank(G1(x)) = 5 − 4 = 1 (6.153b)
δ3 = rank(G3(x)) − rank(G2(x)) = 5 − 5 = 0 (6.153c)
δ4 = rank(G4(x)) − rank(G3(x)) = 5 − 5 = 0 , (6.153d)

from which the vectorial relative degree {r1, r2} = {3, 2} is immediately obtained. To
determine the corresponding output variables λ1(x) and λ2(x), the first-order PDEs
of Frobenius type (see (6.146))

Lg1(x)λ1(x) = 0 , (6.154a)
Lg2(x)λ1(x) = 0 , (6.154b)

Ladf g1(x)λ1(x) = 0 , (6.154c)
Ladf g2(x)λ1(x) = 0 (6.154d)
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and

Lg1(x)λ2(x) = 0 , (6.154e)
Lg2(x)λ2(x) = 0 (6.154f)

must be solved for functionally independent λ1(x) and λ2(x). Obviously, this is
fulfilled if ∂

∂xλ1(x) lies in the kernel of G1(x) and ∂
∂xλ2(x) lies in the kernel of G0(x).

Since the kernel of G1(x) is calculated as [−1, 0, 0, 0, 1], a possible solution for λ1(x)
is immediately derived as

λ1(x) = x1 − x5 . (6.155)

Analogously, it can be shown that

λ2(x) = x2 or λ2(x) = x4 (6.156)

are possible outputs with relative degree r2 = 2.

Exercise 6.13. Show that the decoupling matrix D(x) according to (6.133) is singular
when choosing λ1(x) = x1 − x5 and λ2(x) = x2, and regular for λ1(x) = x1 − x5 and
λ2(x) = x4.

All methods discussed for the single-input case of trajectory tracking control can now
be directly transferred to the multi-input case.

Example 6.9. Consider the laboratory helicopter shown in Figure 6.10 as another
example.
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x0x1

x2

x3

y0
y1

y2

y3

z2

z3

z0 = z1

q1

q2

q3

q4
q5

ff

fb

Figure 6.10: Schematic representation of the laboratory helicopter.

The laboratory helicopter consists of a mast, which can rotate freely by the angle q1,
the arm with rotation by the angle q2, and the suspension with rotation by the angle
q3. Two rotors are attached to the ends of this suspension, which are driven by direct
current motors. Applying an electrical voltage to the motors results in a rotation of
the rotor blades, and the resulting lift forces ff and fb serve as control variables for
the system. With the help of these two control variables, the three degrees of freedom
q1, q2, and q3 are to be regulated. Such mechanical systems that have fewer control
inputs than degrees of freedom are also referred to as underactuated mechanical
systems in the literature. It is well known that the nonlinear control of this class of
mechanical rigid body systems is orders of magnitude more difficult compared to the
case where there is one control input available for each degree of freedom. Assuming
that the friction in the rotational axes is negligible and sin(q2) ≈ 0, the mathematical
model can be written in the form

q̇1

v̇1

q̇2

v̇2

q̇3

v̇3


︸ ︷︷ ︸

ẋ

=



v1

0
v2

α1
d22

sin(q2) + α2
d22

cos(q2)
v3

− α3
d33

cos(q2) sin(q3)


︸ ︷︷ ︸

f(x)

+



0
−ax

23
d11

sin(q3) cos(q2)
0

−ax
23
d22

cos(q3)
0
0


︸ ︷︷ ︸

g1(x)

u1 +



0
0
0
0
0
ay

34
d33


︸ ︷︷ ︸
g2(x)

u2 (6.157)

with the constant parameters α1, α2, and α3 depending only on mass and geometry,
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the constant entries of the mass matrix d11, d22, and d33, the distances ax23 and ay34,
and the transformed input variables u1 = fb + ff and u2 = fb − ff .

Exercise 6.14. Derive the mathematical model of the laboratory helicopter from
Figure 6.10 using the Lagrange formalism.

Remark: Take your time for this task!

The task now is to develop a trajectory tracking control for the laboratory helicopter.
When calculating the vector relative degree for the simplified mathematical model of the
laboratory helicopter (6.157) with y1 = q1 and y2 = q2 as output variables according to
Definition 6.3, it is found that the decoupling matrix

D(x) =
[
−ax

23
d11

sin(q3) cos(q2) 0
−ax

23 cos(q3)
d22

0

]
(6.158)

is singular at a generic point. Obviously, this means that the state control law according
to (6.136), (6.138) cannot be realized. Without going into detail, it is only mentioned
here that, in the literature, the so-called Dynamic Extension Algorithm is proposed as
one of the solutions to this problem.

On the other hand, if we take a closer look at the system (6.157), we can see that
all system variables (state and control variables) can be parameterized by the output
yT = [y1, y2] = [q1, q2] and its time derivatives. Multiplying the second row of (6.157) by
− 1
d22

and the fourth row by 1
d11

cos(q2) tan(q3), q3 ̸= 0, and adding them, we obtain

−q̈1
1
d22

+
(
q̈2 − α1

d22
sin(q2) − α2

d22
cos(q2)

) 1
d11

cos(q2) tan(q3) = 0 (6.159)

and thus immediately the parameterization of q3

q3 = arctan

 d11q̈1

d22
(
q̈2 − α1

d22
sin(q2) − α2

d22
cos(q2)

)
cos(q2)

 . (6.160)

It is easy to verify that (6.160) is also valid for q3 = 0. Furthermore, the parameterization
of the control variables u1 and u2 follows directly from the second and last rows of (6.157)
in the form

u1 = −d11q̈1
ax23 sin(q3) cos(q2) (6.161a)

u2 = d33q̈3 + α3 cos(q2) sin(q3)
ay34

(6.161b)

with q3 according to (6.160).
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Exercise 6.15. Show that the parameterized control variable u1 from (6.161) ap-
proaches a finite value as q3 → 0.

This flatness-based parameterization now allows for a simple way to set up a trajectory
tracking control according to Section 6.4.1 or Section 6.4.2. The flatness-based feedforward
control uT

d (t) = [u1,d(t), u2,d(t)] for example, is directly obtained by substituting the
sufficiently differentiable reference trajectories yT

d (t) = [y1,d(t), y2,d(t)] = [q1,d(t), q2,d(t)]
into (6.160), (6.161).

From the previous example, it is evident that while the system is not exactly input-state
linearizable (singular decoupling matrix), a flatness-based parameterization of all system
variables (state and control variables) does exist. In fact, in the multi-input case, the
converse holds true: an exactly input-state linearizable system is also differentially flat,
meaning that the necessary and sufficient condition for the exact input-state linearizability
of Theorem 6.4 is merely a sufficient condition for the flatness of the system. The following
section will provide a more detailed formulation of the concept of differential flatness.

6.5.2 Flatness
To define differential flatness, let us consider a general representation of a finite-dimensional
dynamic system of the form

Ei
(
w, ẇ, . . . ,w(ρ)

)
= 0, i = 1, . . . , n , (6.162)

where in w ∈ Rs all system variables (state and descriptor variables, input variables,
control variables) are combined.

Definition 6.4 (Flatness). The system (6.162) is called differentially flat if functions
yT = [y1, y2, . . . , ym] of the system variables wj , j = 1, . . . , s and their time derivatives
exist, i.e.

yk = ϕk
(
w, ẇ, . . . ,w(µk)

)
, k = 1, . . . ,m , (6.163)

such that the following two conditions are satisfied:

(A) The functions y1, y2, . . . , ym are differentially independent, i.e. there is no
differential equation of the form

χ
(
y, ẏ, . . . ,y(υ)

)
= 0 . (6.164)

This condition is equivalent to being able to find m functionally independent
quantities yj , j = 1, . . . ,m for a system with m linearly independent control
inputs.

(B) All system variables w can be locally parameterized by y and their time
derivatives, i.e.

wj = ψj
(
y, ẏ, . . . ,y(σj)

)
, j = 1, . . . , s . (6.165)
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In this case, y is referred to as the flat output.

Example 6.10. Consider the bridge crane shown in Figure 6.11 as an example.

0

θ

xL

yL

mL

xC

mC

r

F

M

g

FR

FR

drum ID, rD

x

y

Figure 6.11: Schematic representation of a bridge crane.

It is assumed that the rope is massless and inextensible, and remains completely
straight during the movement. Denoting FR as the tension force in the rope and θ as
the angle of the rope with respect to the y-axis, the conservation of momentum for
the cart can be expressed as

mC ẍC = F − dC ẋC + FR sin(θ) (6.166)

with the cart mass mC , the friction force proportional to velocity dC ẋC , and the
external force F acting as the control input. The dynamics of the load with mass mL

can also be derived from the conservation of momentum in the x and y directions as

mLẍL = −FR sin(θ) (6.167a)
mLÿL = −FR cos(θ) +mLg . (6.167b)

The load can be wound up on a drum with moment of inertia ID. Assuming that
neither the drum radius rD nor the moment of inertia ID change during the winding
of the rope, the motion equation is given by

ID
r̈

rD
= M − dD

ṙ

rD
+ FRrD (6.168)
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with the torque applied by a motor M as the control input and the friction coefficient
proportional to angular velocity dD. In addition to the differential equations (6.166) -
(6.168), the following algebraic constraint equations also hold

xL = r sin(θ) + xC (6.169a)

and

yL = r cos(θ) . (6.169b)

The mathematical model of the bridge crane (6.166) - (6.169) is thus in the form of
(6.162) with the system variables wT = [xC , xL, yL, r, θ, FR, F,M ].

A simple calculation shows that all system variables w can be parameterized by
the flat output yT = [xL, yL] (position of the load). From (6.167), FS and θ can be
calculated as

FR = mL

√
ẍ2
L + (ÿL − g)2 (6.170a)

θ = arctan
(

ẍL
ÿL − g

)
(6.170b)

and from (6.169), the parameterization of r and xC follows as

r = yL
cos(θ) =

yL

√
ẍ2
L + (ÿL − g)2

g − ÿL
(6.171a)

xC = xL − r sin(θ) = xL − yL
ẍL

ÿL − g
. (6.171b)

The remaining parameterization of the two control inputs F and M can be directly
obtained from (6.166) and (6.168) in the form

F = mC ẍC + dC ẋC − FR sin(θ) (6.172a)

M = ID
r̈

rD
+ dD

ṙ

rD
− FRrD (6.172b)

with r, xC , FR, and θ according to (6.170) and (6.171). Based on this flatness-based
parameterization, it is relatively easy to develop a flatness-based trajectory tracking
control for the load.
Note that in the example shown above, the flatness-based analysis was carried out

without explicitly deriving a state representation of the mathematical model. In many
cases, this leads to a drastic simplification of the computation of the (nonlinear) control
law. Finally, it should be noted that in recent years, the theory of flatness-based control
has been successfully extended to certain classes of distributed-parameter systems, i.e.,
systems described by partial differential equations.
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A Fundamentals of Differential Geometry

This appendix shall briefly introduce and explain some fundamental concepts of differential
geometry as have arisen in the context of differential geometric control methods. For
further details, refer to the literature cited at the end of the chapter.

A.1 Manifolds
In the first step, the concept of a manifold will be explained. For this, the following
definition is given:

Definition A.1 (Manifold). An n-dimensional differentiable manifold (shortly n-
manifold) is a set M together with a family of subsets U , V , . . . such that

(1) M = U ∪ V ∪ . . .

(2) for each subset U , there exists an injective mapping xU : U → Rn such that
xU (U) is open in Rn, and

(3) for all subsets U , V , if U ∩ V ≠ { }, then the set xU (U ∩ V ) is open in Rn and
the composition

xV ◦ x−1
U : xU (U ∩ V ) → xV (U ∩ V ) (A.1)

is differentiable.

Each pair (U,xU ) is called a chart, x−1
U is called a parameterization, and xU (U)

is called a parameter domain. Two charts (U,xU ) and (V,xV ) with differentiable
mappings (coordinate transformations) xV ◦ x−1

U and xU ◦ x−1
V in the overlap region

U ∩ V are called compatible. The union of charts that are pairwise compatible and
cover the entire set M according to (1) is called an atlas.

An n-manifold is a Cr manifold (smooth manifold) if the coordinate transformations
xV ◦ x−1

U or xU ◦ x−1
V are r times continuously differentiable (smooth).

The mapping xU (similarly for all other mappings xV ) is often represented in the form
of coordinate functions

(
x1
U , x

2
U , . . . , x

n
U

)
with xkU : U → R, k = 1, . . . , n. For the point

p ∈ U , the n-tuple(
x1
U (p), x2

U (p), . . . , xnU (p)
)

describes the local coordinates of p in the chart (U,xU ). Figure
A.1 provides a geometric illustration of this concept.

Example A.1. To explain the concepts, consider the unit sphere S2 in R3. As shown
in Figure A.2, it is possible to describe the entire S2 using two compatible charts
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Rn = R2 Rn = R2

x1
U

x2
U

x1
V

x2
V

xU
xV

U
V

U ∩ V

xU ◦ x−1
V

xV ◦ x−1
U

M

Figure A.1: Manifolds and charts.

with the help of the so-called stereographic projection.

p
N

q / 2

q

p

y

x
U

2 ,  x
V

2

x
U

1 ,  x
V

1

p
S

Figure A.2: Stereographic projection.

The chart 1 is (U,xU ) with

U :
{

p ∈ S2
∣∣∣0 ≤ θ < π

}
(A.2)

and the mapping xU : U → R2, which denotes the stereographic projection from the
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point pS (South pole θ = π) to the equatorial plane, where

xU :
[
x1
U

x2
U

]
=

tan
(
θ

2

)
cos(ψ)

tan
(
θ

2

)
sin(ψ)

 . (A.3)

The chart 2 is analogous (V,xV ) with

V :
{

p ∈ S2
∣∣∣0 < θ ≤ π

}
(A.4)

and the mapping xV : V → R2, which denotes the stereographic projection from the
point pN (North pole θ = 0) to the equatorial plane, where

xV :
[
x1
V

x2
V

]
=

cot
(
θ

2

)
cos(ψ)

cot
(
θ

2

)
sin(ψ)

 . (A.5)

It can be easily verified that the mappings xV ◦ x−1
U and xU ◦ x−1

V on U ∩ V (all
points of the unit sphere except the North pole pN and the South pole pS) represent
coordinate transformations with

x1
V = x1

U(
x1
U

)2 +
(
x2
U

)2 , x2
V = x2

U(
x1
U

)2 +
(
x2
U

)2 (A.6a)

x1
U = x1

V(
x1
V

)2 +
(
x2
V

)2 , x2
U = x2

V(
x1
V

)2 +
(
x2
V

)2 . (A.6b)

The charts (U,xU ) and (V,xV ) form an atlas of the unit sphere S2.

A.2 Tangent Space
First, a physical definition of a tangential vector is given, where tangential vectors are
nothing but elements of Rn with a specific transformation behavior. As motivation,
consider a curve p(t) on an n-dimensional smooth manifold M. In a chart (U,xU ) around
the point p0 = p(0), this curve can be described by the n smooth coordinate functions
xkU (t), k = 1, . . . , n. The velocity vector ṗ(0) can then be represented as an n-tuple of real
numbers

(
dx1

U/ dt
∣∣
t=0, dx2

U/ dt
∣∣
t=0, . . . , dxnU/ dt|t=0

)
. If p0 also lies in another compatible

chart (V,xV ) with coordinate functions xkV (t), k = 1, . . . , n, the same velocity vector can
also be described using the n-tuple

(
dx1

V / dt
∣∣
t=0, dx2

V / dt
∣∣
t=0, . . . , dxnV / dt|t=0

)
. Since,

according to Definition A.1, the coordinate transformations in the overlap region U ∩ V
are uniquely invertible, i.e., xV = xV (xU ) or xU = xU (xV ), it follows from the chain rule

d
dtx

k
V

∣∣∣∣
t=0

=
n∑
j=1

(
∂xkV
∂xjU

)
(p0) d

dtx
j
U

∣∣∣∣
t=0

(A.7)
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for k = 1, . . . , n. This consideration is the starting point for the physical definition of a
tangential vector:

Definition A.2 (Physical Definition of a Tangential Vector). A tangential vector or
contravariant vector v assigns to each chart (U,xU ) with p0 ∈ U an n-tuple of real
numbers

(
v1
U , v

2
U , . . . , v

n
U

)
in such a way that in another chart (V,xV ) with p0 ∈ U ∩V ,

the same vector is described by an n-tuple
(
v1
V , v

2
V , . . . , v

n
V

)
and the two n-tuples are

connected as follows

vkV =
n∑
j=1

(
∂xkV
∂xjU

)
(p0)vjU , k = 1, . . . , n . (A.8)

Second, the tangential vector is interpreted as aderivative operator. To do this, let
M again denote a smooth manifold of dimension n and p a point on M. A real-valued
function h is smooth in a neighborhood of the point p if the domain of h includes an open
neighborhood of the point p and the restriction of h to this neighborhood is a smooth
function. The set of all smooth functions in a neighborhood of the point p forms a linear
vector space over the scalar field R and is denoted by C∞(p). If h1, h2 ∈ C∞(p), then for
the function λ1h1 + λ2h2 ∈ C∞(p) with λ1, λ2 ∈ R, and for all q in a neighborhood of
the point p

(λ1h1 + λ2h2)(q) = λ1h1(q) + λ2h2(q) . (A.9)

Furthermore, the function obtained by multiplication h1h2 ∈ C∞(p) and for all q in a
neighborhood of the point p

(h1h2)(q) = h1(q)h2(q) . (A.10)

Definition A.3 (Tangential vector as a derivative operator). A tangential vector v
at a point p is a mapping v : C∞(p) → R with the properties

(1) Linearity: v(λ1h1 + λ2h2) = λ1v(h1) + λ2v(h2) for all h1, h2 ∈ C∞(p) and
λ1, λ2 ∈ R

(2) Leibniz Rule: v(h1h2) = h1v(h2) + h2v(h1) for all h1, h2 ∈ C∞(p)

A mapping that satisfies properties (1) and (2) of Definition A.3 is also called a
derivation. In particular, vp(h) denotes the directional derivative (Lie derivative) of the
scalar function h in the direction of v at the point p and is defined as follows

vp(h) = Lvh(p) = d
dt(h(p + tv))

∣∣∣∣
t=0

=
n∑
k=1

(
∂h

∂xk

)
(p)vk , (A.11)

assuming that the function h can be described in the neighborhood of the point p by the
local coordinates x1, . . . , xn. To show that the directional derivative is independent of
the chosen coordinate system, consider two compatible charts (U,xU ) and (V,xV ) with
p ∈ U ∩ V and the corresponding n-tuple of tangential vectors

(
v1
U , v

2
U , . . . , v

n
U

)
and
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(
v1
V , v

2
V , . . . , v

n
V

)
according to Definition A.2 and calculate

vVp (h) =
n∑
k=1

(
∂h

∂xkV

)
(p)vkV

(A.8)=
n∑
k=1

(
∂h

∂xkV

)
(p)

n∑
j=1

(
∂xkV
∂xjU

)
(p)vjU

=
n∑
j=1

(
∂h

∂xjU

)
(p)vjU = vUp (h) .

(A.12)

Now, one is able to define the tangent space of a manifold M at the point p.

Definition A.4 (Tangent space). The tangent space TpM at the point p of an
n-dimensional manifold M is an n-dimensional linear vector space consisting of all
tangent vectors of M at the point p. Denote x1, . . . , xn as the local coordinates of a
chart, then the vectors {

∂

∂x1

∣∣∣∣
p
,
∂

∂x2

∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣
p

}
(A.13)

form a coordinate basis of the tangent space TpM.

It is immediately clear that for v1,v2 ∈ TpM and λ1, λ2 ∈ R, we have λ1v1 + λ2v2 ∈
TpM.

A (smooth) vector field defined in an open neighborhood of a point p is a (smooth)
differentiable assignment of a vector v to each point in this neighborhood and can be
expressed in local coordinates x =

(
x1, . . . , xn

)
as follows

v =
n∑
j=1

vj(x) ∂

∂xj
(A.14)

where the components of the (smooth) vector field vj(x), j = 1, . . . , n are (smooth)
differentiable functions of x. If xk, k = 1, . . . , n are the coordinate functions of the
chart, then the components vk(x) of the vector field v are calculated in the form, see
(A.11)

Lvx
k = v

(
xk
)

=
n∑
j=1

(
∂xk

∂xj

)
vj = vk . (A.15)

Next, we want to clarify how tangent vectors from the tangent space of one manifold
transform into the tangent space of another manifold when a smooth mapping is defined
between the two manifolds.

Definition A.5 (Differential). Let N and M be n- and d-dimensional smooth
manifolds, respectively, and let t : N → M be a smooth mapping. The differential of
t at the point q ∈ N is the linear mapping

t∗ : TqN → TpM (A.16)
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with p = t(q) ∈ M. The mapping t∗ is also referred to as the pushforward. For
w ∈ TqN and h ∈ C∞(p), we have

(t∗w)︸ ︷︷ ︸
v∈TpM

(h) = w (h ◦ t)︸ ︷︷ ︸
∈C∞(q)

. (A.17)

Figure A.3 illustrates this concept.

Rd = R2 Rn = R2

x1
U

x2
U

x1
W

x2
W

xU xW

t

w

q

t∗

t∗w
p=t(q)

N M
TqN TpM

Figure A.3: Illustration of the mapping between two manifolds.

Let (U,xU ) denote the chart around point q with coordinates
(
x1
U , x

2
U , . . . , x

n
U

)
and

(W,xW ) denote the chart around point p = t(q) with coordinates
(
x1
W , x

2
W , . . . , x

d
W

)
,

then the mapping xW ◦ t ◦ x−1
U in local coordinates can be expressed in the form

t1
(
x1
U , x

2
U , . . . , x

n
U

)
...

td
(
x1
U , x

2
U , . . . , x

n
U

)
 (A.18)

and the differential t∗ formulated in local coordinates corresponds to the Jacobian matrix

t∗ =


∂t1
∂x1

U

∂t1
∂x2

U
· · · ∂t1

∂xn
U

...
... . . . ...

∂td
∂x1

U

∂td
∂x2

U
· · · ∂td

∂xn
U

 . (A.19)
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Thus, the components vj , j = 1, . . . , d of the tangent vector v = t∗w ∈ Tt(q)M can be
determined from the components wk, k = 1, . . . , n of the tangent vector w ∈ TqN using
the calculation rule

vj =
n∑
k=1

(t∗)jkw
k, j = 1, . . . , d (A.20)

A.3 Cotangent Space
For the following, consider an n-dimensional linear vector space X with the basis
{e1, e2, . . . , en}. Each element v ∈ X can then be uniquely expressed with respect
to the basis in the form

v =
n∑
j=1

vjej (A.21)

with components vj ∈ R, j = 1, . . . , n.

Definition A.6 (Linear Functional). A linear functional σ on X is a linear mapping
σ : X → R, i.e., the relationship

σ(λ1v1 + λ2v2) = λ1σ(v1) + λ2σ(v2) (A.22)

holds for all v1,v2 ∈ X and λ1, λ2 ∈ R.

Note that σ is not an element of the vector space X but lies in the dual space X ∗ of X .
The following definition applies:

Definition A.7 (Dual Space). The set of all linear functionals σ on a linear vector
space X generates a new vector space, the so-called dual space X ∗ of X , where the
following properties

(1) (σ1 + σ2)(v) = σ1(v) + σ2(v) for σ1, σ2 ∈ X ∗ and v ∈ X

(2) (λσ)(v) = λσ(v) for σ ∈ X ∗,v ∈ X and λ ∈ R

are satisfied.
The dual space X ∗ itself is also a linear vector space, and for a finite-dimensional vector

space X , the relationship dim(X ) = dim(X ∗) holds.
The dual basis

{
µ1, µ2, . . . , µn

}
of X ∗ associated with the basis {e1, e2, . . . , en} of X is

defined in the form

µiej = δij =
{

1 for i = j

0 otherwise
. (A.23)

Note that µi is the linear functional which can be used to determine the i-th component
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of a vector v = ∑n
j=1 v

jej with respect to the dual basis {e1, e2, . . . , en}, since

µi

 n∑
j=1

vjej

 =
n∑
j=1

vjµi(ej) = vi . (A.24)

In general, a linear functional σ can be expressed as follows

σ =
n∑
j=1

ajµ
j (A.25)

and σ(v) denotes the expression

σ(v) =
n∑
j=1

ajµ
j

(
n∑
k=1

vkek
)

=
n∑
j=1

n∑
k=1

ajv
k µj(ek)︸ ︷︷ ︸

δj
k

=
n∑
j=1

ajv
j . (A.26)

This concept can now be transferred to the tangent space TpM of an n-dimensional
manifold M.

Definition A.8 (Cotangent space). The dual space T ∗
p M of a tangent space TpM

at the point p of an n-dimensional manifold M is called the cotangent space.

As shown in Definition A.3, a tangent vector can be interpreted as a derivative operator.
In this context, the concept of a differential form can be introduced.

Definition A.9 (Differential form). Given the function f : M → R. The differential
form df of f at the point p is a linear functional df : TpM → R defined by (see also
(A.11))

df(v) = vp(f) = Lvf(p) (A.27)

with v ∈ TpM.

It is important to note at this point that the definition of df is independent of the
choice of basis on TpM. Denoting x1, . . . , xn as the local coordinates of a chart, according
to Definition A.4, the vectors

{
∂
∂x1

∣∣∣
p
, ∂
∂x2

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

}
form a coordinate basis of the

tangent space TpM. The dual basis of the cotangent space T ∗
p M is then given by the

linear functionals
{
dx1, dx2, . . . ,dxn

}
, because it holds

dxi
(
∂

∂xj

)
= ∂xi

∂xj
= δij . (A.28)

The general representation of a differential form is given by (see (A.25))

σ =
n∑
j=1

aj dxj (A.29)

It is important to note that not every differential form σ is a so-called exact differential,
i.e., the differential

df =
n∑
j=1

∂f

∂xj
dxj (A.30)
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Definition A.10 (Covector). A linear functional σ : TpM → R is called a covector,
covariant vector, or 1-form.

A (smooth) covector field, defined in an open neighborhood of a point p, is a (smooth)
differentiable mapping of a linear functional σ to each point in this neighborhood and can
be expressed in local coordinates x =

(
x1, . . . , xn

)
as follows

σ =
n∑
j=1

aj(x) dxj (A.31)

where the components of the (smooth) covector field aj(x), j = 1, . . . , n are (smooth)
differentiable functions of x.

Next, we will show how the components of a covector transform. Consider a covector
σ expressed in local coordinates

(
x1
U , x

2
U , . . . , x

n
U

)
of the chart (U,xU ) and in the local

coordinates
(
x1
V , x

2
V , . . . , x

n
V

)
of the compatible chart (V,xV )

σ =
n∑
j=1

aUj dxjU =
n∑
j=1

aVj dxjV . (A.32)

Now, by substituting the coordinate transformation xU = xU (xV ) into (A.32), we obtain

n∑
j=1

aUj dxjU =
n∑
j=1

aUj

n∑
k=1

(
∂xjU
∂xkV

)
dxkV =

n∑
k=1

n∑
j=1

aUj

(
∂xjU
∂xkV

)
dxkV =

n∑
k=1

aVk dxkV (A.33)

and thus the transformation rule for the components of the covector in the form

aVk =
n∑
j=1

aUj

(
∂xjU
∂xkV

)
, k = 1, . . . , n . (A.34)

Note that this is precisely the inverse transformation of the components of a tangent
vector according to (A.8).

In the previous section, Definition A.5 showed how a mapping between two manifolds
implies a mapping between the tangent spaces through the differential. The following
definition extends this concept to covectors.

Definition A.11 (Pull-back). Assume N and M are n- and d-dimensional smooth
manifolds, t : N → M is a smooth map, and t∗ : TqN → TpM denotes the differential
of t at the point q ∈ N with p = t(q) ∈ M. The pull-back t∗ : T ∗

p M → T ∗
q N is a

linear map that transforms covectors from T ∗
p M to covectors of T ∗

q N . For w ∈ TqN
and σ ∈ T ∗

p M, we have

(t∗σ)︸ ︷︷ ︸
η∈T ∗q N

(w) = σ (t∗w)︸ ︷︷ ︸
v∈TpM

. (A.35)

When the chart around the point q with coordinates (x1
U , x

2
U , . . . , x

n
U ) is denoted by

(U,xU ) and the chart around the point p = t(q) with coordinates (x1
W , x

2
W , . . . , x

d
W ) is
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denoted by (W,xW ), the mapping xW ◦ t ◦ x−1
U can be expressed in local coordinates

according to (A.18), and the differential t∗ formulated in local coordinates corresponds
to the Jacobian matrix of (A.19). Furthermore, by v = t∗w ∈ Tt(q)M and w ∈ TqN
being tangent vectors with components vj , j = 1, . . . , d and wk, k = 1, . . . , n, and by
η = t∗σ ∈ T ∗

q N and σ ∈ T ∗
p M being covectors with components ηk, k = 1, . . . , n and

σj , j = 1, . . . , d, it must hold according to Definition A.11 and equation (A.26):

η(w) =
n∑
k=1

ηkw
k = σ(v) =

d∑
j=1

σjv
j . (A.36)

Substituting the relation (A.20) for vj into (A.36), we obtain:

n∑
k=1

ηkw
k =

d∑
j=1

σj

n∑
k=1

(t∗)jkw
k =

n∑
k=1

d∑
j=1

σj(t∗)jkw
k (A.37)

and thus the computational rule for the components of the covectors expressed in local
coordinates:

ηk =
d∑
j=1

σj(t∗)jk, k = 1, . . . , n . (A.38)

Combining (A.20) and (A.38) in matrix form, the components of v = t∗w ∈ Tt(q)M,
w ∈ TqN , η = t∗σ ∈ T ∗

q N , and σ ∈ T ∗
p M transform in the form:


v1
...
vd

 =


∂t1
∂x1

U

∂t1
∂x2

U
· · · ∂t1

∂xn
U

...
... . . . ...

∂td
∂x1

U

∂td
∂x2

U
· · · ∂td

∂xn
U



w1
...
wn

 (A.39)

and

η1
...
ηn

 =


∂t1
∂x1

U

∂t1
∂x2

U
· · · ∂t1

∂xn
U

...
... . . . ...

∂td
∂x1

U

∂td
∂x2

U
· · · ∂td

∂xn
U


T
σ1
...
σd

 . (A.40)

A.4 Lie Bracket
The Lie bracket describes the change of a vector field along the integral curve of another
vector field. Consider a smooth n-manifold M with smooth vector fields v and w.
Furthermore, let Φv

t denote the local flow (see Definition 2.1) of the vector field v. To
recap, the flow Φv

t satisfies the following properties:

(1) Φv
0 = I with the identity mapping I

(2) Φv
s+t = Φv

s ◦ Φv
t = Φv

t ◦ Φv
s ,
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(3) (Φv
t )−1 = Φv

−t and

(4) ẋ(t) = v(x(t)) with v(x(t)) = ∂
∂tΦv

t

∣∣∣
t=0

(x(t))

At time t = 0, we are at point p, i.e., Φv
0 (p) = p, with vector fields vp and wp.

Moving along the integral curve of v for time ∆t, we arrive at point q = Φv
∆t(p) with

the corresponding vector fields vΦv
∆t

(p) and wΦv
∆t

(p). From Figure A.4, it is immediately
clear that the two vector fields wp and wΦv

∆t
(p) cannot be directly compared, as they are

defined in different tangent spaces TpM and TΦv
∆t

(p)M.

integral curve

TpM

p

M

wp

vp

wΦv
∆t

(p)

vΦv
∆t

(p)

q = Φv
∆t(p)

TΦv
∆t

(p)M

Φv
−∆t,∗(Φv

∆t(p))

Figure A.4: Geometric interpretation of the Lie bracket.

However, from Definition A.5, we know that through the pushforward map Φv
∆t,∗(p),

the vector field wp can be transformed into the tangent space TΦv
∆t

(p)M or conversely,
the vector field wΦ∆t(p) can be transformed back into the tangent space TpM with the
pushforward map Φv

−∆t,∗(Φv
∆t(p)) of the inverse map p = Φv

−∆t(q) (see property (3) of
the flow Φv

t ). Based on these considerations, the Lie bracket can be defined as follows.

Definition A.12 (Lie Bracket). The Lie derivative or Lie bracket of the (smooth)
vector field wp along the (smooth) vector field vp on a (smooth) n-manifold M is
defined as

Lvpwp = [vp,wp] = lim
∆t→0

1
∆t
(
Φv

−∆t,∗(Φv
∆t(p))wΦv

∆t
(p) − wp

)
. (A.41)
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The Lie bracket satisfies the following properties:

(1) Skew-symmetry: vp,wp ∈ TpM

[vp,wp] = −[wp,vp] (A.42)

(2) Bilinearity: v1,p,v2,p,wp ∈ TpM and λ1, λ2 ∈ R

[λ1v1,p + λ2v2,p,wp] = λ1[v1,p,wp] + λ2[v2,p,wp] (A.43)

(3) Jacobi identity: v1,v2,v3 ∈ TpM

[v1,p, [v2,p,v3,p]] + [v2,p, [v3,p,v1,p]] + [v3,p, [v1,p,v2,p]] = 0 (A.44)

For the following, let xT =
[
x1, . . . , xn

]
denote the local coordinates of a chart for an

open set of the manifold M containing points p and q = Φv
∆t(p), and let v(x) and w(x)

describe the representations of the vector fields in local coordinates x. To express the Lie
bracket (A.41) in local coordinates x, we calculate several Taylor series expansions with
respect to time t around t = 0. For Φv

∆t(p), we obtain

Φv
∆t(x) = Φv

0 (x)︸ ︷︷ ︸
=x

+ ∂

∂∆tΦ
v
∆t

∣∣∣∣
∆t=0

(x)︸ ︷︷ ︸
=v(x)

∆t+ · · · . (A.45)

Since, according to (A.19), the pushforward map in local coordinates corresponds to the
Jacobian matrix, we can calculate Φv

−∆t,∗(x) using (A.45) as

Φv
−∆t,∗(x) = ∂

∂xΦv
−∆t(x) = I − ∂

∂xv(x)∆t+ · · · . (A.46)

Similarly, we can express wΦv
∆t

(p) as

wΦv
∆t

(p) = w(x + ∆tv(x) + · · · ) = w(x) + ∂

∂xw(x)v(x)∆t+ · · · (A.47)

and Φv
−∆t,∗(Φv

∆t(x)) as

Φv
−∆t,∗(Φv

∆t(x)) = I − ∂

∂xv(x + ∆tv(x) + . . .)∆t+ · · ·

= I − ∂

∂xv(x)∆t+ · · ·
(A.48)

Substituting (A.45) - (A.48) into (A.41) and truncating the Taylor series expansions after
the linear term in ∆t, we obtain

[v,w](x) = lim
∆t→0

1
∆t

((
I − ∂

∂xv(x)∆t
)(

w(x) + ∂

∂xw(x)v(x)∆t
)

− w(x)
)

= ∂w(x)
∂x v(x) − ∂v(x)

∂x w(x) .
(A.49)

Using the operator ad, we can define the k-fold recursive Lie bracket as

adkvw(x) =
[
v, adk−1

v w
]
(x), ad0

vw(x) = w(x) (A.50)
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Note A.1. The Lie bracket according to Definition A.12 can also be interpreted as
the time derivative of the time function

Λ(∆t) = Φv
−∆t,∗(Φv

∆t(p))wΦv
∆t

(p) − wp (A.51)

at ∆t = 0. It can now be shown that in local coordinates x, the following holds

dk
d∆tkΛ(∆t)

∣∣∣∣∣
∆t=0

= adkvw(x), k = 0, 1, 2, . . . . (A.52)

If the function Λ(∆t) is analytic near ∆t = 0, then Λ(∆t) can be expressed using the
so-called Campbell-Baker-Hausdorff formula

Λ(∆t) =
∞∑
k=0

adkvw(x)(∆t)k

k! (A.53)

The Lie bracket [v,w] of two vector fields v and w is itself a vector field. The question
that will be answered next is with which flow the vector field [v,w] is associated. For this
purpose, the following theorem is given without proof:

Theorem A.1 (Lie bracket as commutator). Let Φv
t and Φw

t be the local flows of the
vector fields v and w on a manifold M. Furthermore, let ϕ(t) denote the composition
of the flows Φv

t and Φw
t in the form

ϕ(t) := Φw
−t ◦ Φv

−t ◦ Φw
t ◦ Φv

t (p) (A.54)

Then, for every smooth function h ∈ C∞(p), the following holds

[v,w](h) = lim
∆t→0

h
(
ϕ
(√

∆t
))

− h(ϕ(0))
∆t . (A.55)

Figure A.5 provides a graphical interpretation of this fact. The flow generated by the
Lie bracket [v,w] is evidently a measure of how strongly the flows Φv

t and Φw
t on M

commute. For this reason, the Lie bracket [v,w] is often referred to as the commutator of
the two vector fields (derivative operators according to Definition A.3) v and w. It can
be easily shown that [v,w] vanishes identically, i.e., [v,w] = 0, if the following condition
holds

Φv
τ1 ◦ Φw

τ2 = Φw
τ2 ◦ Φv

τ1 (A.56)

for all τ1 and τ2.
For v(x) = Ax and w(x) = Bx with A,B ∈ Rn×n, it is obvious that

[v,w] = (BA − AB)x , (A.57)

where the matrix [A,B] = BA − AB is also known as the commutator of the matrices A
and B.
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[ , ]v w

p

v

w

Φt ( )p
v

Φt ( )p
v

Φt
w

Φt ( )p
v

Φt
w

Φ
−t
v

Φ
−t
w

Φt ( )p
v

Φt
w

Φ
−t
v

Figure A.5: The Lie bracket as a commutator.

A.5 Distribution and Codistribution
In this section, linear subspaces of the tangent space TpM or the cotangent space T ∗

p M
of a manifold M are examined in more detail. The following definition is introduced:

Definition A.13 (Distribution). Let M be a smooth n-dimensional manifold. A
rule that assigns to each point p ∈ U ⊂ M a linear subspace ∆p of the tangent space
TpM in the form

∆p = span{v1,p,v2,p, . . . ,vd,p} (A.58)

is called a (smooth) distribution. The distribution is called regular in a neighborhood
V of the point p ∈ V ⊂ U with basis vi,p, i = 1, . . . , d, if for all q ∈ V it holds that

dim(∆q) = d . (A.59)

If xT =
[
x1, . . . , xn

]
denotes the local coordinates of a chart for an open set of the

manifold M that completely contains the neighborhood V , then the distribution can be
expressed in local coordinates in the form

∆(x) = span{v1(x),v2(x), . . . ,vd(x)} (A.60)

If a smooth vector field f(x) satisfies f(x) ∈ ∆(x), then f(x) can always be expressed in
V in the form

f(x) =
d∑
i=1

hi(x)vi(x) (A.61)

with smooth functions hi(x), i = 1, . . . , d. It is also said that a distribution ∆1(x) contains
a distribution ∆2(x), ∆2(x) ⊂ ∆1(x), if for every f(x) ∈ ∆2(x) ⇒ f(x) ∈ ∆1(x).

With this, the concept of involutivity can now be formally defined. A geometric
interpretation of this concept will be provided in the following section.
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Definition A.14 (Involutivity). A regular distribution
∆p = span{v1,p,v2,p, . . . ,vd,p} is said to be involutive on V if for all q ∈ V it holds
that

[vi,q,vj,q] ∈ ∆q, i, j = 1, . . . , d . (A.62)

It is important to note that a 1-dimensional distribution and an n-dimensional distribu-
tion defined on an n-dimensional manifold are always involutive. If a distribution ∆(x)
is not involutive, one is often interested in the smallest possible dimension distribution
that is involutive and contains ∆(x). This distribution is called the involutive closure
inv(∆(x)) of ∆(x) with ∆(x) ⊂ inv(∆(x)).

Example A.2. Is the distribution ∆(x) = span{v1(x),v2(x)} with xT =
[
x1, x2, x3, x4]

and the smooth vector fields

v1(x) =


2x2

1
0
2

, v2(x) =


1
0
x2

0

 (A.63)

involutory? By the expression of the Lie bracket

[v1,v2](x) =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0




2x2

1
0
2

−


0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1
0
x2

0

 =


0
0
1
0

 (A.64)

it is immediately recognized that

rang{v1(x),v2(x), [v1,v2](x)} = 3 (A.65)

and thus ∆(x) is not involutory. A simple calculation shows that

[v1(x), [v1,v2](x)](x) = 0, [v2(x), [v1,v2](x)](x) = 0 (A.66)

and thus the involutory closure inv(∆(x)) of ∆(x) is given by

inv(∆(x)) = span{v1(x),v2(x), [v1,v2](x)} (A.67)

In an analogous way, a codistribution can now also be defined as a linear subspace of
the cotangent space T ∗

p M of a manifold M.

Definition A.15 (Codistribution). Let M be a smooth n-dimensional manifold.
A prescription that assigns to each point p ∈ U ⊂ M a linear subspace ∆∗

p of the
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cotangent space T ∗
p M in the form

∆∗
p = span{σ1,p, σ2,p, . . . , σm,p} (A.68)

is called a (smooth) codistribution. The codistribution is called regular in a neighbor-
hood V of the point p ∈ V ⊂ U with the basis σi,p, i = 1, . . . ,m, if for all q ∈ V it
holds

dim
(
∆∗

q
)

= m . (A.69)

If xT =
[
x1, . . . , xn

]
denotes the local coordinates of a chart for an open set of the

manifold M that completely contains the neighborhood V , then the codistribution is
written in local coordinates in the form

∆∗(x) = span{σ1(x),σ2(x), . . . ,σm(x)} (A.70)

If now for a smooth covector field η(x) it holds η(x) ∈ ∆∗(x), then η(x) can always be
expressed in V as

η(x) =
m∑
i=1

hi(x)σi(x) (A.71)

with the smooth functions hi(x), i = 1, . . . ,m. It is also said that a codistribution ∆∗
1(x)

contains a codistribution ∆∗
2(x), ∆∗

2(x) ⊂ ∆∗
1(x), if for every η(x) ∈ ∆∗

2(x) ⇒ η(x) ∈
∆∗

1(x).
A special codistribution that will play a crucial role later on is the so-called annihilator

∆⊥ of a distribution ∆.
Definition A.16 (Annihilator). Let M be a smooth n-dimensional manifold with a
regular d-dimensional distribution ∆ = span{v1,v2, . . . ,vd} in a neighborhood V of
the point p. The annihilator ∆⊥ is the set of all linear functionals σ such that

σ(vi) = 0, i = 1, . . . , d (A.72)

with

dim
(
∆⊥

)
= n− dim(∆) = n− d (A.73)

for all q ∈ V .

It is immediately clear from Definition A.16 that if ∆2(x) ⊂ ∆1(x), then ∆⊥
1 (x) ⊂

∆⊥
2 (x). In local coordinates x of a chart, if we consider the vector fields vi(x), i = 1, . . . , d,

of the distribution ∆(x) = span{v1(x),v2(x), . . . ,vd(x)} as column vectors of a matrix

V(x) = [v1(x),v2(x), . . . ,vd(x)], (A.74)

then the components of the annihilator ∆⊥(x) = span{σ1(x),σ2(x), . . . ,σn−d(x)} can
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be summarized as row vectors in the matrix

Σ(x) =


σ1(x)
σ2(x)
σn−d(x)

 (A.75)

and the relationship holds

Σ(x)V(x) = 0 . (A.76)

Thus, the annihilator can be determined through the null space or kernel of VT(x).

A.6 Frobenius’ Theorem
In Section 6.3, specifically (6.57) - (6.64), and in section 6.5.1, in particular (6.146), the
independent solutions hj(x), j = 1, . . . , n − d of a specific system of first-order partial
differential equations of the form (

∂

∂xhj(x)
)

vk(x) = 0 (A.77)

were sought with the linearly independent smooth vector fields vk(x), k = 1, . . . , d and
the local coordinates xT =

[
x1, . . . , xn

]
. If we combine the vector fields vk(x) into a

regular distribution ∆(x) = span{v1(x),v2(x), . . . ,vd(x)}, the solvability of (A.77) can
also be traced back to the question of whether an annihilator ∆⊥(x) of ∆(x) can be found,
which can be spanned by n− d exact differentials (see also (A.30)) of n− d functionally
independent smooth functions hj(x), j = 1, . . . , n− d of the form

∆⊥(x) = span{dh1(x),dh2(x), . . . , dhn−d(x)}, dhj(x) =
n∑
i=1

∂hj
∂xi

dxi (A.78)

with dim
(
∆⊥(x)

)
= n− d. If such an annihilator can be found, i.e., a solution to (A.77)

exists, then one also says that the distribution ∆(x) is completely integrable. The Frobenius
Theorem now provides a necessary and sufficient condition for the complete integrability
of a distribution.

Theorem A.2 (Frobenius Theorem). A regular distribution is completely integrable
if and only if it is involutive.

For the proof of this theorem, we refer to the literature, but a geometric interpretation
can be given as follows: Consider a smooth n-dimensional manifold M with a regular
d-dimensional distribution ∆. An r-dimensional submanifold N of M is called an integral
manifold of ∆ if every vector field from ∆ lies in the tangent space of N . A distribution
is called completely integrable if local coordinates y1, y2, . . . , yd, yd+1, . . . , yn exist such
that the submanifolds characterized by yd+1 =const, yd+2 =const, . . ., yn =const are
d-dimensional integral manifolds. A chart with these coordinates is also called a Frobenius
chart. That is, if a d-dimensional distribution ∆p is involutive in a neighborhood U of a
point p, then there always exists a d-dimensional manifold (integral manifold) N such
that the tangent space TpN coincides with ∆p in U .
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B State Observer Design for Linear
Time-Varying Systems

In this appendix, linear time-varying systems of the form

d
dtx = A(t)x + B(t)u, t > t0, x(t0) = x0 (B.1a)

y = C(t)x, t ≥ t0 (B.1b)

with state x ∈ Rn, input u ∈ Rp, and output y ∈ Rq are considered. Furthermore, it
is assumed that the entries of the matrices A(t), B(t), and C(t) are sufficiently often
continuously differentiable functions of time t. If a state transformation is performed for
the system (B.1) as

x = V(t)z (B.2)

with the properties that

(A) V(t) is regular for all t ≥ t0, i.e., |det(V(t))| > ε > 0 for all t ≥ t0, and

(B) the entries of V(t) are continuously differentiable functions of time t for all t ≥ t0,

then the equivalent transformed system is obtained as

d
dtz = V−1(t)

(
−V̇(t) + A(t)V(t)

)
︸ ︷︷ ︸

Ã(t)

z + V−1(t)B(t)︸ ︷︷ ︸
B̃(t)

u, t > t0, z(t0) = V−1(t0)x0︸ ︷︷ ︸
=z0

(B.3a)
y = C(t)V(t)︸ ︷︷ ︸

C̃(t)

z, t ≥ t0 . (B.3b)

Definition B.1 (Lyapunov Transformation). The transformation (B.2) is called
a Lyapunov transformation if V(t) and V−1(t) are bounded for all t ≥ t0, i.e.,
∥V(t)∥i < κ1 and

∥∥V−1(t)
∥∥
i < κ2 for suitable positive constants κ1, κ2, and all times

t ≥ t0.

For the relationship of stability between the two systems (B.1) and (B.3), the following
theorem holds:

Theorem B.1 (Stability of Equivalent Linear Time-Varying Systems). If the two
systems (B.1) and (B.3) are connected through a Lyapunov transformation according
to Definition B.1, then the exponential stability of one system implies the exponential
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stability of the other system.

Exercise B.1. Prove Theorem B.1.
Remark: Use Definition 3.12 of the exponential stability of non-autonomous
systems.

Next, one requires a definition of observability for linear time-varying systems.

Definition B.2 (Uniform Observability of Linear Time-Varying Systems). The system
(B.1) is called uniformly observable in the time interval [t0, t1] if the observability
matrix

O(C(t),A(t)) =


M0

A C(t)
M1

A C(t)
...

Mn−1
A C(t)

 (B.4)

with the operator

Mk
A C = M1

A
(
Mk−1

A C
)

,

M1
A C = d

dtC + CA ,

M0
A C = C

(B.5)

has rank n for all times t ∈ [t0, t1].

Exercise B.2. Show that the observability matrix O
(
C̃(t), Ã(t)

)
of the equivalent

transformed system (B.3) is related to the observability matrix of the original system
(B.1) through the relationship

O
(
C̃(t), Ã(t)

)
= O(C(t),A(t))V(t) (B.6)

The exercise above demonstrates that a state transformation of the form (B.2) does not
alter the observability property.

Although the theory of observer design presented below is directly applicable to multi-
input systems of the form (B.1), for the sake of clarity, we will focus on linear time-varying
single-input systems

d
dtx = A(t)x + b(t)u, t > t0, x(t0) = x0 (B.7a)

y = cT(t)x, t ≥ t0 (B.7b)

.
In the first step of the observer design, a state transformation (B.2) is sought for the
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system (B.7) such that the system in the transformed state z is in observability canonical
form

d
dt



z1

z2
...

zn−1

zn


︸ ︷︷ ︸

z

=



0 . . . . . . 0 −a0(t)
1 0 . . . 0 −a1(t)
... 1 . . . ...

...

0 0 . . . 0 −an−2(t)
0 0 . . . 1 −an−1(t)


︸ ︷︷ ︸

AB(t)



z1

z2
...

zn−1

zn


︸ ︷︷ ︸

z

+



b0(t)
b1(t)

...
bn−2(t)
bn−1(t)


︸ ︷︷ ︸

bB(t)

u (B.8a)

y =
[
0 0 . . . 0 cn(t)

]
︸ ︷︷ ︸

cT
B(t)



z1

z2
...

zn−1

zn


︸ ︷︷ ︸

z

(B.8b)

where the function cn(t) ̸= 0, t ≥ t0 represents a degree of design freedom. According to
(B.3), the transformation matrix V(t) must satisfy the following conditions

V−1(t)
(
−V̇(t) + A(t)V(t)

)
= AB(t) (B.9a)

cT(t)V(t) = cT
B(t) (B.9b)

If we express V(t) in terms of column vectors vj(t), j = 1, . . . , n as

V(t) =
[
v1(t) v2(t) . . . vn(t)

]
, (B.10)

then condition (B.9a) can be formulated as follows
−V̇T(t) + VT(t)AT(t) = AT

B(t)VT(t) (B.11)
or

−v̇T
1 (t) + vT

1 (t)AT(t)
−v̇T

2 (t) + vT
2 (t)AT(t)

...
−v̇T

n−1(t) + vT
n−1(t)AT(t)

−v̇T
n (t) + vT

n (t)AT(t)


=



0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1

−a0(t) −a1(t) . . . −an−2(t) −an−1(t)





vT
1 (t)

vT
2 (t)
...

vT
n−1(t)
vT
n (t)


(B.12)

It is immediately apparent that the column vectors of the transformation matrix V(t)
must satisfy the following equations

−v̇T
j−1(t) + vT

j−1(t)AT(t) = vT
j (t), j = 2, . . . , n (B.13a)

−v̇T
n (t) + vT

n (t)AT(t) = −
n∑
j=1

aj−1(t)vT
j (t) (B.13b)
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Analogous to the operator Mk
A from (B.5), the operator Nk

A is introduced in the form

Nk
A B = N1

A
(
Nk−1

A B
)

, (B.14)

N1
A B = − d

dtB + AB , (B.15)

N0
A B = B (B.16)

Then the equations (B.13) can be rewritten as follows

vj(t) = −v̇j−1(t) + A(t)vj−1(t) = Nj−1
A v1(t), j = 2, . . . , n (B.17a)

Nn
A v1(t) = −

n−1∑
j=0

aj(t) Nj
A v1(t) (B.17b)

Substituting vj(t), j = 2, . . . , n from (B.17a) into (B.9b), we obtain

cT(t)V(t) = cT(t)
[
N0

A N1
A . . . Nn−1

A

]
v1(t) = cT

B(t) . (B.18)

Lemma B.1. The two following sequences of conditions

cT(t) N0
A v1(t) = 0 ,

cT(t) N1
A v1(t) = 0, . . . , cT(t) Nk

A v1(t) = 0
(B.19)

and (
M0

A cT(t)
)
v1(t) = 0 ,(

M1
A cT(t)

)
v1(t) = 0, . . . ,

(
Mk

A cT(t)
)
v1(t) = 0

(B.20)

are equivalent for k ≥ 0.

Exercise B.3. Prove Lemma B.1.

Remark: Note that from cT(t)v1(t) = 0 it follows d
dt

(
cT(t)v1(t)

)
= ċT(t)v1(t)+

cT(t)v̇1(t) = 0.

Applying Lemma B.1 to (B.18), we obtain the relation
M0

A cT(t)
M1

A cT(t)
...

Mn−1
A cT(t)


︸ ︷︷ ︸

O(cT(t),A(t))

v1(t) = cB(t) =


0
0
...

cn(t)

 (B.21)
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and assuming the system (B.7) is uniformly observable according to Definition B.2, v1(t)
can be calculated in the form

v1(t) = O−1
(
cT(t),A(t)

)


0
0
...

cn(t)

 (B.22)

Thus, the transformation matrix V(t) to observability canonical form (B.12) reads

V(t) =
[
N0

A N1
A . . . Nn−1

A

]
v1(t) (B.23)

with v1(t) as the last column of the inverse observability matrix O−1
(
cT(t),A(t)

)
(see

(B.4)) multiplied by the function yet to be chosen cn(t).
If the system is in observability canonical form according to (B.8)

d
dtz = AB(t)z + bB(t)u, t > t0, z(t0) = z0 (B.24a)

y = cT
B(t)z, t ≥ t0, (B.24b)

then the time-varying observer gain

k̂T
B(t) =

[
kB,0(t) kB,1(t) . . . kB,n−1(t)

]
(B.25)

for the full observer

d
dt ẑ = AB(t)ẑ + bB(t)u− k̂B(t)(y − ŷ), t > t0, ẑ(t0) = ẑ0 (B.26a)

ŷ = cT
B(t)ẑ, t ≥ t0 (B.26b)

with the estimated state ẑ can be calculated in a simple way by examining the error
dynamics z̃ = z − ẑ

d
dt z̃ =

(
AB(t) + k̂B(t)cT

B(t)
)

︸ ︷︷ ︸
AB,e

z̃ =



0 0 . . . 0 kB,0(t)cn(t) − a0(t)
1 0 . . . 0 kB,1(t)cn(t) − a1(t)
...

... . . . ...
...

0 0 . . . 0 kB,n−2(t)cn(t) − an−2(t)
0 0 . . . 1 kB,n−1(t)cn(t) − an−1(t)


z̃ (B.27)

more closely. Choosing

kB,j(t) = 1
cn(t)(aj(t) − pj), j = 0, . . . , n− 1 , (B.28)
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with the coefficients pj , j = 0, . . . , n−1, the characteristic polynomial of the error dynamics
matrix AB,e in the form sn + pn−1sn−1 + . . .+ p0 can be arbitrarily specified. To calculate
the time-varying observer gain k̂(t) for the observer in the original state x

d
dt x̂ = A(t)x̂ + b(t)u− k̂(t)(y − ŷ), t > t0, x̂(t0) = x̂0 (B.29a)

ŷ = cT(t)x̂, t ≥ t0 (B.29b)

for the system (B.7), one simply performs the inverse state transformation for the observer
(B.26) ẑ = V−1(t)x̂, t ≥ t0 with V(t) according to (B.23) in the form

d
dt x̂ = V(t)

(
−V̇−1(t) + AB(t)V−1(t)

)
︸ ︷︷ ︸

A(t)

x̂ + V(t)bB(t)︸ ︷︷ ︸
b(t)

u− V(t)k̂B(t)︸ ︷︷ ︸
k̂(t)

(y − ŷ) (B.30a)

ŷ = cT
B(t)V−1(t)︸ ︷︷ ︸

cT(t)

x̂, (B.30b)

for t > t0 and x̂(t0) = V(t0)ẑ0. Using (B.23) and (B.28), the expression for the observer
gain k̂(t) can be simplified as follows

k̂(t) = V(t)k̂B(t)

= 1
cn(t)

n−1∑
j=0

(
Nj

A v1(t)
)
(aj(t) − pj)

= 1
cn(t)

n−1∑
j=0

(
Nj

A v1(t)
)
aj(t)︸ ︷︷ ︸

(B.17b)
= − Nn

A v1(t)

− 1
cn(t)

n−1∑
j=0

(
Nj

A v1(t)
)
pj .

(B.31)

This procedure can also be found in the literature as "pole placement" for linear
time-varying systems and is summarized as follows.

Theorem B.2 (Ackermann’s formula for linear time-varying systems). Assuming
that the linear time-varying system (B.7) is uniformly observable for t ≥ t0 according
to Definition B.2, i.e., the observability matrix

O
(
cT(t),A(t)

)
=


M0

A cT(t)
M1

A cT(t)
...

Mn−1
A cT(t)

 (B.32)
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with the operator

Mk
A cT = M1

A
(
Mk−1

A cT
)

, (B.33)

M1
A cT = d

dtc
T + cTA , (B.34)

M0
A cT = cT (B.35)

has rank n for all times t ≥ t0. Then, the time-varying observer gain k̂(t) of the state
observer (B.29) is given by

k̂(t) = − 1
cn(t)

(
p0 N0

A +p1 N1
A + . . .+ pn−1 Nn−1

A + Nn
A
)
v1(t) (B.36)

with

v1(t) = O−1
(
cT(t),A(t)

)


0
0
...

cn(t)

 , (B.37)

the operator

Nk
A v1 = N1

A
(
Nk−1

A v1
)

,

N1
A v1 = − d

dtv1 + Av1 ,

N0
A v1 = v1

(B.38)

and the freely chosen function cn(t) ≠ 0 for all times t ≥ t0. This leads to a time-
invariant error dynamics matrix AB,e = AB(t) + k̂B(t)cT

B(t) in the transformed state
z̃ of the observability canonical form (see (B.27)), whose characteristic polynomial
sn+pn−1sn−1 + . . .+p0 with coefficients pj, j = 0, . . . , n−1, can be arbitrarily chosen
as a Hurwitz polynomial.
Under the assumption that the transformation (B.2) with

V(t) =
[
N0

A N1
A . . . Nn−1

A

]
v1(t) (B.39)

to the observability canonical form (B.8) according to Definition B.1 is a Lyapunov
transformation, it follows from Theorem B.1 the exponential stability of the observer
error dynamics

d
dt x̃ =

(
A(t) + k̂(t)cT(t)

)
︸ ︷︷ ︸

Ae

x̃ (B.40)
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in the original state x. Note that the observation errors x̃ and z̃ are related through
the equation x̃ = V(t)z̃.

Exercise B.4. Show that Theorem B.2 for linear time-invariant systems of the form

d
dtx = Ax + bu, x(t0) = x0 (B.41a)

y = cTx (B.41b)

reduces to the well-known Ackermann formula for linear time-invariant systems.

Exercise B.5. In linear systems, finding a state feedback controller and a state observer
are dual problems. Consider how you can design a state feedback controller for linear
time-varying systems of the form (B.7) using the theory presented here. Analogous to
Definition B.2, the system (B.7) is called uniformly controllable in the time interval
[t0, t1] if the controllability matrix

R(A(t),b(t)) =
[
N0

A b(t),N1
A b(t), . . . ,Nn−1

A b(t)
]

(B.42)

with the operator Nk
A according to (B.16) has rank n for all times t ∈ [t0, t1].

Example B.1. Consider the simple linear time-varying system as an example:

d
dtx =

[
0 3

−1 5 exp(−3t)

]
x +

[
0
2

]
u, x(t0) = x0 (B.43a)

y =
[
sin(t) 4

]
x . (B.43b)

The determinant of the observability matrix in

O
(
cT(t),A(t)

)
=
[
M0

A cT(t)
M1

A cT(t)

]

=
[

sin(t) 4
cos(t) − 4 3 sin(t) + 20 exp(−3t)

] (B.44)

is calculated as

det
(
O
(
cT(t),A(t)

))
= 3(sin(t))2 + 20 exp(−3t) sin(t) − 4 cos(t) + 16 , (B.45)

from which it can be seen that the system (B.43b) is uniformly observable for all
t ≥ t0 ≥ 0 according to Definition B.2. Choosing in (B.22)

cn(t) = det
(
O
(
cT(t),A(t)

))
, (B.46)
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leads to

v1(t) =
[

−4
sin(t)

]
(B.47)

or for the transformation matrix V(t) obtained from (B.23)

V(t) =
[

−4 3 sin(t)
sin(t) − cos(t) + 4 + 5 exp(−3t) sin(t)

]
. (B.48)

Exercise B.6. Show that x = V(t)z with V(t) from (B.48) is a Lyapunov transforma-
tion according to Definition B.1.

Choosing a desired characteristic polynomial of the error system in observability
canonical form as a Hurwitz polynomial of the form s2 + p1s + p0 with suitable
coefficients p0 and p1, the corresponding observer in the original state x is given by

d
dt x̂ =

[
0 3

−1 5 exp(−3t)

]
x̂ +

[
0
2

]
u− k̂(t)(y − ŷ), t > t0, x̂(t0) = x̂0 (B.49)

ŷ =
[
sin(t) 4

]
x̂, t ≥ t0 (B.50)

with the time-dependent observer gain

k̂(t) = − 1
cn(t)

[
k1(t)
k2(t)

]
(B.51)

and

k1(t) = 4p0 − 12 − 3p1 sin(t) + 6 cos(t) − 15 exp(−3t) sin(t),
k2(t) = −4p1 + exp(−3t)(10 cos(t) − (15 + 5p1) sin(t) − 20),

− (4 − p0) sin(t) + p1 cos(t) − 25 exp(−6t) sin(t) .
(B.52)
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