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1 Dissipativity and Passivity
In simple terms, the concept of dissipativity and passivity is the system-theoretic gener-
alization of the principle of conservation of energy, which states that in a closed system
energy is neither created nor destroyed. A closer look at the system-theoretic concept
of dissipativity will show, however, that this is a priori not related to the principle of
conservation of energy and only allows analogous statements for certain physical systems.
This analogy to physical systems certainly contributes to the understanding of these con-
cepts, which is why two physical systems, a heat transfer system and an electromechanical
system, are discussed below.

1.1 Annealing Simulator
Figure 1.1 shows the schematic representation of a so-called annealing simulator, which is
used to generate predefined temperature profiles for metal samples by ohmic heating and
free or forced convection (compressed air or fan). It is obvious for this system to neglect

Fan

α(χ)
Ts,wall

Irms

Metal sample δ(T ), c(T )

lAc

Ts,air

Figure 1.1: Annealing simulator.

the electromechanical effects and to capture the change in the energy stored in the system
solely by the change in the thermally stored energy. The principle of conservation of energy
then states that the change in the thermally stored energy V satisfies the relationship

d
dtV = pin − pout (1.1)

where pin and pout describe the energy flows into the system and out of the system. It is
assumed that the temperature T in the metal sample is uniformly distributed at any time
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t, that the surface of the sample is very small compared to the surrounding walls and that
heat conduction can be neglected. The thermal energy stored in the sample V is given by

V (T ) = c(T )mT (1.2)

with the constant sample mass m and the specific heat capacity c(T ). Using Ohm’s law,
the energy flow into the sample is calculated as

pin = I2
rmsδ(T ) l

Ac
(1.3)

with the RMS value of the current flowing through the sample Irms, the specific resistance
δ(T ), the length of the sample l and the cross-sectional area of the sample Ac. The energy
flows from the sample to the environment are caused on the one hand by free and forced
convection

pout,1 = α(χ)As(T − Ts,air) (1.4)

and on the other hand by thermal radiation

pout,2 = εσAs
(
T 4 − T 4

s,wall

)
(1.5)

caused. As denotes the surface of the metal sample, Ts,air and Ts,wall are the temperatures
of the surrounding air and walls, ε is the emissivity, σ = 5.67 · 10−8 Wm−2K−4 is the
Stefan-Boltzmann constant and α(χ) is the convection coefficient, where χ stands for the
rotational speed of the fan in the case of a fan and for the pressure in the case of compressed
air. For free convection, α(χ) is constant and lies in the range of 2 − 25 Wm−2K−1. The
mathematical model of the annealing simulator is obtained simply by inserting (1.2) - (1.5)
into (1.1) with the state variable T and the input variables uT = [Irms, χ, Ts,air, Ts,wall].
Integrating (1.1) along a solution curve from time t0 = 0 to time t for given input variables
u(τ), 0 ≤ τ ≤ t, then we obtain

V (T (t)) − V (T (0)) =
∫ t

0
s(Irms, χ, Ts,air, Ts,wall, T )dτ (1.6)

with

s(Irms, χ, Ts,air, Ts,wall, T ) = I2
rmsδ(T ) l

Ac
− α(χ)As(T − Ts,air) − εσAs

(
T 4 − T 4

s,wall

)
.

(1.7)
Equation (1.6) states that the thermal energy V stored in the system at time t is equal to
the energy stored at time t0 = 0 plus or minus the energy added to or removed from the
system during this time with the so-called supply rate s(Irms, χ, Ts,air, Ts,wall, T ).

1.2 Solenoid Valve
Figure 1.2 shows the solenoid valve with a cylindrical housing and a cylindrical plunger
with mass m and diameter D. The coil consisting of N windings with a total internal
resistance R is supplied with a voltage U0. It is assumed that the magnetic resistance of

Lecture Advanced Methods in Nonlinear Control (Winter semester 2025/2026)
© A. Deutschmann-Olek, T. Glück, A. Kugi, M.N. Vu, Automation and Control Institute, TU Wien



1.2 Solenoid Valve Page 3

Housing

Coil

Plunger

Sliding sleeve

U0

iL

R

z

h

D

b
δ Fext

Fd

Fc

Figure 1.2: Simple solenoid valve.

the housing and the plunger is zero, that the sliding sleeve has the same permeability as air,
and that the geometric dimensions satisfy h ≪ D and δ ≪ b (no stray flux). Analogously
to (1.1), the change in the energy stored in the system V is given by the relationship

d
dtV = pin − pout − pdiss (1.8)

with the energy flows pin and pout, which flow across the system boundaries into the system
or out of the system, and with the power dissipated pdiss. Under the above assumptions,
the co-energy stored in the magnetic circuit is calculated in the form

w̌L = 1
2L(z)i2L (1.9)

with the equivalent inductance of the magnetic circuit

L(z) = µ0N2D2π(D + δ)πb
4(h− z)(D + δ)πb+ δD2π

(1.10)

and the permeability of air µ0 = 4π × 10−7 V s/(A m).

Exercise 1.1. Calculate the relationship for the inductance L(z) from (1.10).

Since the considered solenoid valve is magnetically linear, the expressions for energy ŵL
and co-energy w̌L are identical. The magnetic force acting on the plunger is calculated as

Fmag = ∂

∂z
w̌L = 1

2
∂L(z)
∂z

i2L . (1.11)

As depicted in Figure 1.2, the plunger acts against a linear spring-damper system with the
damping force Fd = dv, v = ż, d > 0, the spring force Fc = cz(t), c > 0, and an external
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force Fext. The mathematical model of the solenoid valve is then
d
dtz = v (1.12)

d
dtv = 1

m

(1
2
∂L(z)
∂z

i2L − cz − dv + Fext

)
(1.13)

d
dt iL = 1

L(z)

(
U0 −RiL − ∂L(z)

∂z
iLv

)
(1.14)

with the state variables xT = [z, v, iL] and the input variables uT = [U0, Fext]. The energy
stored in the system now consists of the magnetic energy (1.9), the kinetic energy of the
plunger, and the potential energy of the spring

V = 1
2
(
L(z)i2L +mv2 + cz2

)
. (1.15)

The change in stored energy V along a solution curve is obtained in the form
d
dtV = U0iL + Fextv︸ ︷︷ ︸

pin−pout

−
(
dv2 +Ri2L

)
︸ ︷︷ ︸

pdiss

. (1.16)

Integrating (1.16) along a solution curve from time t0 = 0 to time t for given input
variables u(τ), 0 ≤ τ ≤ t, we obtain

V (x(t)) − V (x(t0)) ≤
∫ t

t0
s(U0, Fext, iL, v) dτ (1.17)

because pdiss ≥ 0 and using the supply rate

s(U0, Fext, iL, v) = U0iL + Fextv . (1.18)

1.3 System-theoretic Concept
1.3.1 Dissipativity
The following considerations are based on a nonlinear dynamic system of the form

d
dtx = f(x,u)

y = h(x,u)
(1.19)

with the state x ∈ X ⊂ Rn, the input u ∈ U ⊂ Rm and the output y ∈ Y ⊂ Rp. It is
assumed that the state x(t) at any time t is uniquely determined by the choice of the
input u(t) and the initial state x(0) = x0. This allows to define the so-called supply rate
s(u,y) : U × Y → R, a real-valued function that for all initial values x0 ∈ X and all input
variables u satisfies the condition ∫ t

0
|s(u,y)|dτ < ∞ (1.20)

for all times t ≥ 0.
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Definition 1.1. The system (1.19) is called dissipative with respect to the supply
rate s if a non-negative function V (x) : X → R exists such that the so-called integral
dissipativity inequality

V (x(t)) − V (x(0)) ≤
∫ t

0
s(u(τ),y(τ))dτ (1.21)

for all initial values x(0) ∈ X and all input variables u(t) for all times t ≥ 0 is fulfilled.
The function V (x) is called storage function. If the equality sign holds in (1.21), the
system (1.19) is called lossless with respect to the supply rate s.

In the sense of this definition, the annealing simulator of Figure 1.1 is lossless with respect
to the supply rate (1.7) and the solenoid valve of Figure 1.2 is dissipative with respect to
the supply rate (1.18). If the storage function V (x) is continuously differentiable with
respect to x, then one can calculate the change of V (x) along a solution curve of (1.19)
and one obtains the so-called differential dissipativity inequality

d
dtV (x) ≤ s(u(t),y(t)) (1.22)

for all times t ≥ 0.

1.3.2 Passivity
Passivity can be viewed as a special case of dissipativity. For the definition, consider
again the system (1.19), where now the dimension of the system input m is equal to the
dimension of the output p.

Definition 1.2. The system (1.19) with m = p is called passive, if a constant δ exists
such that the inequality ∫ t

0
yTudτ ≥ δ (1.23)

for all admissible input variables u(t) and all t ≥ 0 is fulfilled. If in addition for
suitable real constants α, β the inequality∫ t

0
yTudτ ≥ δ + α

∫ t

0
uTudτ bzw.

∫ t

0
yTudτ ≥ δ + β

∫ t

0
yTydτ (1.24)

for all admissible input variables u(t) and all t ≥ 0 is fulfilled, then the system is
called α-input passive or β-output passive.

Obviously, δ ≤ 0 because the inequality (1.23) must also hold for the input variable
u(t) = 0.

Theorem 1.1 (Connection Passivity and Dissipativity). For the system (1.19) with
m = p, a non-negative function V (x) : X → R exists such that ( integral passivity
inequality)

V (x(t)) − V (x(0)) ≤
∫ t

0
yTudτ (1.25)
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for all admissible input variables u(t), all x(0) and all t ≥ 0, then the system (1.19)
is passive from the input u to the output y. Obviously, according to Definition 1.1
this is equivalent to the fact that the system (1.19) with respect to the special bilinear
supply rate s(u,y) = ⟨y,u⟩ = yTu is dissipative. If in addition the system (1.19)
is dissipative with respect to the supply rate s(u,y) = yTu − α∥u∥2 or s(u,y) =
yTu − β∥y∥2 for suitable real constants α, β, then (1.19) is α-input passive or β-
output passive. A lossless passive system is also called a conservative system in this
context.

Proof. The proof of the theorem is trivial, since due to V (x) ≥ 0 from (1.25) it
immediately follows ∫ t

0
yTudτ ≥ −V (x(0)) = δ . (1.26)

With this definition, the solenoid valve of Figure 1.2 with the input uT = [U0, Fext] and
the output yT = [iL, v] is passive, indeed even β-output passive with 0 < β < min(d,R),
since for the dissipated power from (1.16) we have pdiss = dv2 + Ri2L ≥ β∥y∥2. The
physical interpretation of the passivity inequality (1.25) is now as follows: If the expression
yTu represents power (e.g., suitable pairs of currents and voltages in electrical systems
or collocated velocities and forces in mechanical systems) and V (x) is the energy stored
in the system, then the passivity inequality (1.25) states that the increase in the energy
stored in the system is less than or equal to the energy supplied to the system.

Exercise 1.2. Show that the integrator with the state-space representation

d
dtx = u

y = x
(1.27)

is passive.
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Exercise 1.3. Under what conditions on the parameters σ0, σ1, σ2, rC , rH , and v0
does the LuGre friction model (see lecture notes for the VO Nonlinear Dynamic
Systems and Control [1.1]) describe a passive system from the input ∆v to the output
FR. The LuGre friction model can be written in the form

d
dtz = ∆v − abs(∆v)

χ(∆v) σ0z

FR = σ0z + σ1
d
dtz + σ2∆v

(1.28)

with
χ(∆v) = rC + (rH − rC) exp

(
−
(∆v
v0

)2)
. (1.29)

Exercise 1.4. Show that a nonlinear characteristic y = ψ(u) that satisfies the sector
condition k1u2 ≤ ψ(u)u ≤ k2u2 is k1-input passive and

(
1
k2

)
-output passive according

to Definition 1.2.

1.3.3 Properties of Passive Systems
Passive systems now have the remarkable property that the parallel connection and the
feedback of passive systems, as shown in Figure 1.3, are again passive.

u1 y1 e1

u2

y2

u y

u1 y1

e2

y2

u2

passive system 1 passive system 1
(x1,u1,y1) (x1,u1,y1)

passive system 2 passive system 2
(x2,u2,y2) (x2,u2,y2)

Figure 1.3: Parallel connection and feedback of two passive systems.

Proof. To show this, we assume two passive systems of the form (1.19) with m = p.
There are two non-negative storage functions V1(x1) and V2(x2) that satisfy the
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passivity inequalities

V1(x1(t)) − V1(x1(0)) ≤
∫ t

0
yT

1 u1 dτ

V2(x2(t)) − V2(x2(0)) ≤
∫ t

0
yT

2 u2 dτ.
(1.30)

For the parallel connection according to Figure 1.3 we have u1 = u2 = u, y = y1 + y2,
and thus

V1(x1(t)) + V2(x2(t)) − V1(x1(0)) − V2(x2(0)) ≤
∫ t

0

(
yT

1 + yT
2
)
udτ (1.31)

or
V (x(t)) − V (x(0)) ≤

∫ t

0
yTudτ (1.32)

with the non-negative storage function V (x) = V1(x1)+V2(x2) and the state xT = [xT
1 ,

xT
2 ].

Exercise 1.5. Show that the closed loop of the feedback of two passive systems (see
Figure 1.3, right picture) from the input (e1, e2) to the output (y1, y2) is passive.

Furthermore, the cascade connection of two passive systems according to Figure 1.4 is
passive, provided the connecting system is energy-conserving, i.e., the following intercon-
nection condition ∫ t

0

(
yT

1 uI + yT
2 yI

)
dτ = 0 (1.33)

is fulfilled. It is easily verified that this is the case, since the following passivity inequality

u1

y1

e1

u2

y2uI

yI

e2

passive system 1 passive system 2
(x1,u1,y1) (x2,u2,y2)

interconnecting
system

Figure 1.4: Cascade connection of passive systems.

V (x(t)) − V (x(0)) ≤
∫ t

0

(
yT

1 e1 + yT
2 e2

)
dτ (1.34)

with V (x) = V1(x1) + V2(x2) and xT = [xT
1 , xT

2 ] holds. It is precisely this property that
is used in certain passivity-based controller design methods, where system 1 corresponds
to a passive plant and system 2 to a passive controller. For the interconnected system, a
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system of the form [
uI
yI

]
=
[

0 UI(x)
−UT

I (x) 0

][
y1

y2

]
(1.35)

with an arbitrary quadratic matrix UI(x) is chosen.

Exercise 1.6. Show that (1.35) satisfies the interconnection condition (1.33).

1.3.4 Passivity and Lyapunov Stability
It is assumed that the system (1.19) is passive with a continuously differentiable, positive
definite storage function V (x). Then it follows immediately from the passivity inequality
(1.25) in its differential form

d
dtV (x) ≤ yTu (1.36)

that the equilibrium x = 0 of the free system (1.19), i.e., for u = 0, is stable in the sense
of Lyapunov with the Lyapunov function V (x). Whether the equilibrium is asymptotically
stable must be investigated on a case-by-case basis using the invariance principle of
Krassovskii-LaSalle. For the feedback of two passive systems, as shown in the right part
of Figure 1.3, the asymptotic stability of the equilibrium of the free closed-loop system,
i.e., for e1 = e2 = 0, can be traced back to properties of the subsystems.

Theorem 1.2. Assume that the equilibrium x1 = 0 of subsystem 1 is asymptotically
stable and α-input passive according to Definition 1.2 with a continuously differentiable,
positive definite storage function V1(x1). Furthermore, let subsystem 2 be zero-
state detectable and β-output passive according to Definition 1.2 with a continuously
differentiable, positive definite storage function V2(x2). Then the equilibrium of the
closed-loop system (x1, x2) = (0, 0) is asymptotically stable if α+ β > 0 holds.

Before this theorem is shown, the concepts of zero-state detectability and zero-state
observability should be defined.

Definition 1.3. The system (1.19) is called zero-state detectable (zero-state observ-
able) if from u(t) = 0 and y(t) = 0 for all times t ≥ 0 it follows limt→∞ x(t) = 0
(x(t) = 0 for all times t ≥ 0).

Proof. To prove Theorem 1.2, choose a Lyapunov function V (x) = V1(x1) + V2(x2)
and calculate its time derivative

d
dtV (x) ≤ −(α+ β)∥y2∥2 . (1.37)

However, according to Theorem 1.2, α+ β > 0, so it follows immediately that the
equilibrium of the closed-loop system (x1, x2) = (0, 0) is stable in the sense of
Lyapunov. Due to the zero-state detectability of subsystem 2 and the asymptotic
stability of the equilibrium x1 = 0 of subsystem 1, one can show that the largest
positive invariant set contained in H =

{
x ∈ X | d

dtV (x) = 0
}

is the origin (x1, x2) =
(0, 0). However, according to the invariance principle of Krassovskii-LaSalle, the
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equilibrium of the closed-loop system (x1, x2) = (0, 0) is asymptotically stable.

Theorem 1.2 is needed in connection with the concept of absolute stability, in particular
for the derivation of the circle and Popov criterion.

1.4 Linear Passive Systems
For a linear time-invariant system of the form

d
dtx = Ax + bu

y = cTx + du,
(1.38)

the property of passivity can also be determined from the associated transfer function

G(s) = ŷ(s)
û(s) = cT(sE − A)−1b + d. (1.39)

Without loss of generality, only single-input systems are considered here, for multi-input
systems, see the literature cited at the end. According to Definition 1.2, the system (1.38)
is passive if and only if the following inequality∫ t

0
yudτ ≥ 0 (1.40)

is fulfilled. Thus, the following theorem for the passivity of linear time-invariant single-
input systems can be given:

Theorem 1.3. The linear time-invariant system (1.38) with the transfer function
G(s) from (1.39) is

(1) passive if and only if
Re(G(Iω)) ≥ 0 for all ω, (1.41)

(2) α-input passive with α > 0 if and only if

Re(G(Iω)) ≥ α > 0 for all ω (1.42)

(3) and β-output passive with β > 0 if and only if

Re(G(Iω)) ≥ β|G(Iω)|2 > 0 for all ω . (1.43)

Note that verifying the conditions (1.41) - (1.43) is simple by using the Nyquist locus
of G(s).

Proof. To prove this theorem, one needs the so-called Parseval theorem. Let x(t) and
y(t) denote two square-integrable time functions, i.e. x(t), y(t) ∈ L2(−∞,∞), and

x̂(ω) =
∫ ∞

−∞
x(t) exp(−Iωt)dt and ŷ(ω) =

∫ ∞

−∞
y(t) exp(−Iωt)dt (1.44)
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are the corresponding Fourier transforms, then we have for the inner product∫ ∞

−∞
x(t)y(t)dt = ⟨x, y⟩ = ⟨x̂, ŷ⟩ = 1

2π

∫ ∞

−∞
x̂(ω)ŷ∗(ω)dω . (1.45)

From (1.45), we get
∥x∥2 = ∥x̂∥2 . (1.46)

To apply the Parseval theorem for the proof of Theorem 1.3, the cut-off operator ( )T
in the form

uT (t) =
{
u(t) für t ≤ T

0 für t > T
(1.47)

is introduced. Furthermore, it is assumed that the time functions u(t) and y(t) are
causal, i.e., u(t) = 0 and y(t) = 0 for t < 0. This yields∫ T

0
u(t)y(t)dt =

∫ ∞

−∞
uT (t)yT (t)dt = 1

2π

∫ ∞

−∞
ûT (ω)ŷ∗

T (ω)dω (1.48)

and with ŷ(ω) = G(Iω)ûT (ω), we obtain∫ T

0
u(t)y(t) dt = 1

2π

∫ ∞

−∞
G∗(Iω)ûT (ω)û∗

T (ω) dω

= 1
2π

∫ ∞

−∞
(Re(G(Iω)) − I Im(G(Iω)))|ûT (ω)|2 dω .

(1.49)

Since the left-hand side of (1.49) is purely real, the imaginary part on the right-hand
side must vanish, and we have∫ T

0
u(t)y(t)dt = 1

2π

∫ ∞

−∞
Re(G(Iω))|ûT (ω)|2dω . (1.50)

”⇐”: Now assume that (1.42) holds, then it follows∫ T

0
u(t)y(t)dt ≥ α

2π

∫ ∞

−∞
|ûT (ω)|2dω = α

∫ T

0
u2(t)dt (1.51)

and thus, according to Definition 1.2, the α-input passivity of (1.38).
”⇒”: Conversely, if the system (1.38) is α-input passive, then there exists an α > 0
such that the inequality ∫ T

0
u(t)y(t)dt ≥ α

∫ T

0
u2(t)dt (1.52)

is fulfilled, or using the Parseval theorem, we obtain

1
2π

∫ ∞

−∞
(Re(G(Iω)) − α)|ûT (ω)|2dω ≥ 0 . (1.53)
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The inequality (1.53) is only valid for all input variables u(t) if for all ω we have
Re(G(Iω)) ≥ α. Assume that there exists an ω0 such that Re(G(Iω0)) < α, then
one sees that for the input variable u(t) = U sin(ω0t) and sufficiently large T the
inequality (1.53) is not fulfilled. Thus, point (2) and for α = 0 also point (1) of
Theorem 1.3 is proven.

Exercise 1.7. Prove point (3) of Theorem 1.3.

As a simple application example, it will be shown that the PID controller

R(s) = V
1 + TIs

s

1 + TDs

1 + αTDs
(1.54)

with the positive parameters V , TI , TD, and 0 < α < 1 is passive. To do this, simply
calculate

Re(R(Iω)) = V
(
TI + TD(1 − α) + αT 2

DTIw
2)

1 + α2T 2
Dw

2 > 0 . (1.55)

Exercise 1.8. Show that a PI controller is passive.

Exercise 1.9. Show that the linear time-invariant system (1.38) with the transfer
function G(s) from (1.39) is passive if

|arg(G(Iω))| ≤ π

2 . (1.56)

Exercise 1.10. Consider a standard control loop with a passive plant G(s) and an
α-input passive controller R(s) with α > 0. Show that the closed-loop system is
BIBO-stable.

Remark: Use the Nyquist criterion for this purpose.

Exercise 1.11. The relationship between current ı̂(x, s) and voltage û(x, s) at the
location x = 0 and at the location x = l of a long electrical line with the capacitance
per unit length c, the inductance per unit length l, the resistance per unit length r,
and the conductance per unit length g is

[
û(0, s)
ı̂(0, s)

]
=

 cosh(γ(s)l) Z0(s) sinh(γ(s)l)
1

Z0(s) sinh(γ(s)l) cosh(γ(s)l)

[û(l, s)
ı̂(l, s)

]
, (1.57)

where Z0(s) denotes the characteristic impedance and γ(s) the propagation coefficient

Z0(s) =
√
r + sl

g + sc
and γ(s) =

√
(r + sl)(g + sc). (1.58)
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Check for different load impedances ZL(s) with

û(l, s) = ZL(s)̂ı(l, s) (1.59)

the passivity of the transfer function G(s) = û(0, s)
ı̂(0, s) .

1.5 Positive Realness
For linear time-invariant systems (1.38), the term positive realness of the associated
transfer function (1.39) is very often used instead of passivity. Without proof, it should
be noted that the system (1.38) is passive if and only if (1.39) is positive real.

Theorem 1.4. A transfer function G(s) is positive real if and only if

(1) G(s) has no poles in the right open s-half plane,

(2) Re(G(Iω)) ≥ 0 for all ω, for which Iω is not a pole of G(s), and

(3) if s = Iω0 is a pole of G(s), then this pole is simple and for finite ω0 the residual

lim
s→Iω0

(s− Iω0)G(s) (1.60)

must be positive and real. If ω0 is infinite, then the limit

lim
ω→∞

G(Iω)
Iω (1.61)

must be positive and real.

We call G(s) strictly positive real if G(s− δ) for a suitable δ > 0 is positive real.

Exercise 1.12. Show that the conditions

(1) the degree difference between the numerator and denominator polynomial of
G(s) is −1, 0 or 1, and

(2) G(s) has no zeros in the right open s-half plane

are necessary for G(s) to be positive real.

Exercise 1.13. Are the following transfer functions

G1(s) = −(s− 3), G2(s) = 1
s2 + 2s+ 1, G3(s) = s+ 1

s2 + 1, G4(s) = s+ 10
(s+ 1)(s+ 2)

(1.62)
positive real?
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As shown in the following theorem, the positive realness of a transfer function G(s) is
closely related to the solvability of a system of equations. For the proof of this theorem,
see the literature cited at the end.

Theorem 1.5 (Kalman-Yakubovich-Popov (KYP)-Lemma). Given is the system
(1.38), where it is assumed that the pair (A, b) is reachable and the pair

(
cT, A

)
is observable. The transfer function (1.39) is positive real (passive) if and only if a
scalar w, a vector m, and a positive definite matrix P exist such that the following
conditions

PA + ATP = −m mT

Pb = c − mw

w2 = 2d
(1.63)

are fulfilled. The transfer function (1.39) is strictly positive real according to Theorem
1.4 if and only if scalars w and ε > 0, a vector m, and a positive definite matrix P
exist such that the following conditions

PA + ATP = −m mT−εP
Pb = c − mw

w2 = 2d
(1.64)

are fulfilled.

Exercise 1.14. Assume w, m, P > 0, and ε > 0 are solutions of (1.64). Show that in
the case d ̸= 0 the Riccati equation

P
(
ε

2E + A
)

+
(
ε

2E + AT
)

P+(c − Pb) 1
2d
(
cT − bTP

)
= 0 (1.65)

is fulfilled.
As an application of the KYP lemma, consider the closed-loop control system of Figure
1.5 with the nonlinear passive plant in the forward path and the strictly positive real
controller in the feedback path. Assume the passive nonlinear system has a continuously
differentiable, positive definite storage function V1(x1), which satisfies the differential
passivity inequality (see (1.36))

d
dtV1(x1) = −W1(x1) + y1u1 ≤ y1u1 , (1.66)

with the positive semidefinite function W1(x1). For the following, the strictly positive real
controller is described by the following minimal realization

d
dtx2 = Ax2 + bu2

y2 = cTx2 + du2.
(1.67)

Due to the KYP Lemma according to Theorem 1.5 one finds for the system (1.67) scalars
w and ε > 0, a vector m, and a positive definite matrix P such that (1.64) is fulfilled.

Lecture Advanced Methods in Nonlinear Control (Winter semester 2025/2026)
© A. Deutschmann-Olek, T. Glück, A. Kugi, M.N. Vu, Automation and Control Institute, TU Wien



1.6 Canonical Form of Passive Systems Page 15

u1 y1

u2y2

passive system 1
(x1, u1, y1)

y2 = cTx2 + du2

ẋ2 = Ax2 + bu2

Figure 1.5: Passive system with linear controller.

This results in the Lyapunov function of the closed-loop system

Ve(x1,x2) = V1(x1) + 1
2xT

2 Px2 . (1.68)

Then, we calculate the time derivative of (1.68) along the solution curve and considers
the interconnection condition u1 = −y2 and u2 = y1 together with (1.64) and (1.66)

d
dtVe(x1,x2) = −W1(x1) + y1u1 + 1

2 ẋT
2 Px2︸ ︷︷ ︸

(xT
2 AT+u2bT )Px2

+1
2 xT

2 Pẋ2︸ ︷︷ ︸
xT

2 P(Ax2+bu2)

= −W1(x1) + y1u1 + 1
2xT

2
(
ATP + PA

)
︸ ︷︷ ︸

−mmT−εP

x2 + xT
2 Pb︸︷︷︸

c−mw

u2

= −W1(x1) − y1cTx2︸ ︷︷ ︸
=

−dy2
1 − 1

2xT
2 mmTx2 − 1

2εx
T
2 Px2 + xT

2 cy1︸ ︷︷ ︸
=

−xT
2 mwy1

= −W1(x1) − 1
2εx

T
2 Px2 − 1

2y
2
1 (2d)︸︷︷︸

w2

−1
2xT

2 mmTx2 − xT
2 mwy1

= −W1(x1) − 1
2εx

T
2 Px2 − 1

2
(
mTx2 + wy1

)T(
mTx2 + wy1

)
≤ 0.

(1.69)

This directly shows the stability of the closed-loop system of Figure 1.5.

1.6 Canonical Form of Passive Systems
Before a canonical form for passive systems is presented, it will be shown that the
well-known Euler-Lagrange equations are passive.

1.6.1 Hamiltonian Systems
Consider a finite-dimensional Lagrangian system with n degrees of freedom and the
generalized coordinates q ∈ Rn, then the equations of motion are known to follow from
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the Euler-Lagrange equations in the form

d
dt

(
∂L

∂vk

)
− ∂L

∂qk
= τk , k = 1, . . . , n (1.70)

with the Lagrangian L(q,v), the generalized velocities d
dtq = v, and the generalized

forces τk, k = 1, . . . , n. For simple Lagrangian systems, the Lagrangian corresponds to
the difference between kinetic and potential energy

L(q,v) = T (q,v) − V (q) . (1.71)

It is assumed that the generalized forces τ are composed of external forces τ e (control and
disturbance inputs) and dissipative forces τT

d = −
(
∂
∂vR

)
(v) with the Rayleigh dissipation

function R(v) and (
∂

∂vR
)

(v)v ≥ 0. (1.72)

This gives
d
dt

(
∂L

∂vk

)
− ∂L

∂qk
+ ∂

∂vk
R = τe,k , k = 1, . . . , n . (1.73)

Definition 1.4. The Lagrangian system (1.73) is called fully damped, if the Rayleigh
dissipation function R(v) satisfies the following inequality condition(

∂

∂vR
)

(v)v ≥
n∑
k=1

βkv
2
k, βk > 0, k = 1, . . . , n (1.74)

If βk = 0 for at least one k, then the Lagranian system is not fully damped.

Using the generalized momentum coordinates

pk = ∂L

∂vk
, k = 1, . . . , n (1.75)

and the Legendre transformation (qk, vk) → (qk, pk), we obtain directly from the Euler-
Lagrange equations (1.70) the equivalent Hamiltonian equations

d
dtqk = ∂H

∂pk
d
dtpk = −∂H

∂qk
+ τk, k = 1, . . . , n

(1.76)

with the Hamiltonian
H(q,p) =

n∑
k=1

pkvk − L(q,v) . (1.77)

The implicit function theorem states that the generalized velocities vk from (1.75) can be
calculated locally if and only if the matrix

[
∂2

∂vi∂vj
L
]

is non-singular. Then, L is said to
be a nondegenerate Lagrangian.
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Proof. To prove this, consider the derivatives

∂H

∂pk
= vk +

n∑
j=1

pj ∂vj∂pk
− ∂L

∂vj︸︷︷︸
=pj

∂vj
∂pk

 = vk = d
dtqk (1.78)

and

∂H

∂qk
=

n∑
j=1

pj ∂vj∂qk
− ∂L

∂vj︸︷︷︸
=pj

∂vj
∂qk

− ∂L

∂qk
= τk − d

dt

(
∂L

∂vk

)
= τk − d

dtpk . (1.79)

If the kinetic energy T (q,v) in (1.71) has the form

T (q,v) = 1
2vTD(q)v (1.80)

with the positive definite mass matrix D(q), then the Hamiltonian corresponds to the
energy stored in the system

H(q,p) =
n∑
k=1

pkvk − 1
2vTD(q)v + V (q) = 1

2vTD(q)v + V (q). (1.81)

Calculating the time change of the Hamiltonian (1.81)

d
dtH(q,p) =

n∑
k=1

∂H∂qk ∂H∂pk + ∂H

∂pk︸︷︷︸
vk

(
−∂H

∂qk
− ∂

∂vk
R+ τe,k

) ≤
n∑
k=1

vkτe,k, (1.82)

we see that the Lagrangian system according to Definition 1.2 is passive with the input
variable τ e, the output variable v = d

dtq, and the storage function H(q,p). If in addition
the Lagrangian system according to Definition 1.4 is fully damped, then the Lagrangian
system due to (1.74) is even β-output passive with β = mink(βk), k = 1, . . . , n

d
dtH(q,p) ≤

n∑
k=1

vkτe,k −
n∑
k=1

βkv
2
k ≤

n∑
k=1

vkτe,k − min
k

(βk)∥v∥2
2 . (1.83)

One then also says that vk is the collocated output to the generalized force τe,k. I.e., the
pairing (τe,k, vk) describes an energy input into the system, such as corresponding currents
and voltages, forces and velocities, or moments and angular velocities. In network theory,
such pairings of current and voltage that form an energy input are also called a port. The
generalization of the Hamiltonian equations (1.76) in combination with the port concept
leads directly to the class of Port-Hamiltonian systems.
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1.6.2 Port-Hamiltonian Systems
A finite-dimensional Port-Hamiltonian system can be written in the form

d
dtx = (J(x) − S(x))

(
∂V

∂x

)T
+ Gu(x)u (1.84)

with the state x ∈ X ⊂ Rn and the input u ∈ U ⊂ Rm. Here, V (x), V (0) = 0, denotes a
continuously differentiable positive definite storage function, and the entries of the matrices
Gu(x), J(x) = −JT(x) and S(x) = ST(x) ≥ 0 are smooth functions in x. Choose the
output y ∈ Y ⊂ Rm as the collocated output

y = GT
u (x)

(
∂V

∂x

)T
, (1.85)

then we immediately see from the differential passivity inequality

d
dtV = yTu −

(
∂V

∂x

)
S(x)

(
∂V

∂x

)T
≤ yTu, (1.86)

that the system (1.84) is passive with the storage function V (x). The representation
in the form of (1.84) provides more than a simple determination of passivity - if the
storage function V (x) corresponds to the total energy stored in the system, it offers a
deeper insight into the internal energy flows of the system and its interaction with the
environment.The skew-symmetric matrix J(x) is connected to the energy flows within the
system, the symmetric, positive semidefinite matrix S(x) encompasses the behavior of
the dissipative effects, and Gu(x) describes the energy exchange of the system with the
system environment through the system ports. If (1.84) contains no dissipative elements,
i.e., S(x) = 0, then the system is lossless with respect to the supply rate yTu. Perfect
actuator/sensor collocation has the advantage that a simple (state-dependent) feedback
of the collocated output (1.85) of the form

u = −K(x)y = −K(x)GT
u (x)

(
∂V

∂x

)T
, (1.87)

with the positive definite matrix K(x) > 0 for all x ∈ X for stable plants preserves
stability in the closed-loop system

d
dtV = −

(
∂V

∂x

)(
S(x) + Gu(x)K(x)GT

u (x)
)(∂V

∂x

)T
≤ 0 . (1.88)

In the literature, this type of feedback (1.87) in connection with Port-Hamiltonian systems
is called damping injection or for general nonlinear systems with affine input as Jurdjevic-
Quinn feedback.

Example 1.1 (Port-Hamiltonian representation of the solenoid valve (1.14)). To bring
the mathematical model of the solenoid valve (1.14) into Port-Hamiltonian form
(1.84), we introduce the new state variables xT = [z, p = mv,ψL = L(z)iL]. The
energy stored in the solenoid valve according to (1.15) formulated in the new state
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[z, p, ψL]
V = 1

2

( 1
L(z)ψ

2
L + 1

m
p2 + cz2

)
(1.89)

is used as the storage function in the following. With

∂V

∂x =
[
cz − 1

2
∂L(z)
∂z

ψ2
L

L2(z)
p

m
ψL
L(z)

]
(1.90)

and the system equations (1.14) in the transformed state

d
dtz = p

m

d
dtp =

(
1
2
∂L(z)
∂z

ψ2
L

L2(z) − cz − d
p

m
+ Fext

)
d
dtψL = U0 −R

ψL
L(z) ,

(1.91)

we directly obtain the Port-Hamiltonian representation (1.84)

d
dt


z

p

ψL

 =




0 1 0

−1 0 0
0 0 0


︸ ︷︷ ︸

J(x)

−


0 0 0
0 d 0
0 0 R


︸ ︷︷ ︸

S(x)


(
∂V

∂x

)T
+


0 0
0 1
1 0


︸ ︷︷ ︸

Gu(x)

[
U0

Fext

]
︸ ︷︷ ︸

u

. (1.92)

The corresponding collocated output according to (1.85) is

y = GT
u (x)

(
∂V

∂x

)T
=

 ψL
L(z)
p

m

 =
[
iL

v

]
. (1.93)

Exercise 1.15. Represent the mathematical models of the beam with rolling ball and
the crane with a swing arm from the lecture notes VO Nonlinear Dynamic Systems
and Control [1.1] as Port-Hamiltonian systems.

Exercise 1.16. Represent the different DC machines from Section 1.7 of the lecture
notes VO Regelungssysteme 2 [1.1] as Port-Hamiltonian systems.

1.7 Passivity-Based Controller Design
A controller design method directly related to the Port-Hamiltonian structure (1.84) is the
so-called IDA-PBC (Interconnection and Damping Assignment Passivity-Based Control).
To this end, the following theorem is formulated:
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Theorem 1.6 (IDA-PBC). Given is the nonlinear system

d
dtx = f(x) + Gu(x)u (1.94)

with the state x ∈ X ⊂ Rn and the input u ∈ U ⊂ Rm with m < n. It is assumed
that the matrix Gu(x) is column regular for all x ∈ X , i.e., rang(Gu(x)) = m.
Furthermore, let G⊥

u (x) denote the left annihilator of Gu(x), i.e., G⊥
u (x)Gu(x) = 0,

and Vd(x) be the storage function of the closed-loop system and have a strict minimum
at the desired equilibrium x = xd

Vd(x) > Vd(xd) for all x ̸= xd,
(
∂Vd
∂x

)
(xd) = 0 and

(
∂2Vd
∂x2

)
(xd) > 0 .

(1.95)
Thus, Vd(x) − Vd(xd) is positive definite and suitable as a Lyapunov function for the
closed-loop system. Assume the matrices Jd(x) = −JT

d (x), Sd(x) = ST
d (x) ≥ 0, the

left annihilator G⊥
u (x) and the storage function Vd(x) satisfy the condition (PBC

matching equation)

G⊥
u (x)f(x) = G⊥

u (x)(Jd(x) − Sd(x))
(
∂Vd
∂x

)T
, (1.96)

then with the state feedback

u = β(x) =
(
GT
u (x)Gu(x)

)−1
GT
u (x)

{
(Jd(x) − Sd(x))

(
∂Vd
∂x

)T
− f(x)

}
(1.97)

inserted into (1.94), a closed-loop system in Port-Hamiltonian form is obtained

d
dtx = (Jd(x) − Sd(x))

(
∂Vd
∂x

)T
(1.98)

with the stable desired equilibrium x = xd. If the set {xd} is the largest positive
invariant set of {

x ∈ Rn|
(
∂Vd
∂x

)
Sd(x)

(
∂Vd
∂x

)T
= 0

}
, (1.99)

then x = xd is asymptotically stable.

Proof. Setting the right-hand sides of (1.98) and (1.94) equal to (1.97)

f(x) + Gu(x)β(x) = (Jd(x) − Sd(x))
(
∂Vd
∂x

)T
(1.100)

and multiplying from the left by G⊥
u (x), we immediately obtain the PBC matching

equation (1.96). The state feedback (1.97) follows directly from (1.100) by multiplying
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from the left by the pseudoinverse
(
GT
u (x)Gu(x)

)−1
GT
u (x). Note that the previously

assumed column regularity of Gu(x) guarantees the regularity of the pseudoinverse.
The next step is to show that (1.94) with (1.97) actually corresponds to (1.98)

Ψ = f(x) + Gu(x)
(
GT
u (x)Gu(x)

)−1
GT
u (x)

{
(Jd(x) − Sd(x))

(
∂Vd
∂x

)T
− f(x)

}

−(Jd(x) − Sd(x))
(
∂Vd
∂x

)T
= 0 .

(1.101)

To do this, multiply (1.101) by the non-singular matrix

T(x) =
[
GT
u (x)

G⊥
u (x)

]
(1.102)

and due to the PBC matching condition (1.96), it follows T(x)Ψ = 0 and thus Ψ = 0.

The difficulty of this controller design method is obviously to solve the PBC matching
equation (1.96), which represents a system of partial differential equations. To this end, it
should be mentioned that

• the matrices Jd(x) = −JT
d (x) and Sd(x) = ST

d (x) ≥ 0 are free to choose,

• the storage function of the closed -loop system Vd(x) apart from the condition (1.95)
can also be chosen freely,

• and the left annihilator G⊥
u (x) can be multiplied from the left by any non-singular

(n−m) × (n−m) matrix Λ(x), i.e., G̃⊥
u (x) = Λ(x)G⊥

u (x), without changing the
PBC matching equation (1.96). The matrix Λ(x) thus represents a further degree
of freedom in the design.

In recent years, the following variants of the IDA-PBC design method have essentially
prevailed:

• Non-Parametrized IDA-PBC: In this case, the structure of the interconnection in
the form of the matrices Jd(x) = −JT

d (x) and Sd(x) = ST
d (x) ≥ 0 is given. With

known G⊥
u (x), the PBC matching equation (1.96) results in a partial differential

equation for the storage function Vd(x). From the family of all solutions, those must
then be extracted that satisfy the condition (1.95). In the literature, see for example
[1.2], one can also find conditions for the existence of a solution to the underlying
partial differential equation (1.96).

• Algebraic IDA-PBC: In this case, the storage function Vd(x) is fixed under the
condition (1.95), and the PBC matching equation (1.96) degenerates to an algebraic
equation for the determination of the matrices Jd(x) = −JT

d (x) and Sd(x) =
ST
d (x) ≥ 0.
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• Parametrized IDA-PBC: Here, the storage function Vd(x) is restricted to a certain
class, for example, the desired potential energy only depends on the generalized
position coordinates and the desired kinetic energy is a quadratic form in the
generalized velocities. This special form of Vd(x) implies a new PBC matching
equation with restrictions regarding the choice of Jd(x) = −JT

d (x) and Sd(x) =
ST
d (x) ≥ 0.

Example 1.2. As an application example, consider a permanently excited synchronous
machine in dq-representation

Ld
d
dt id = −Rsid + ωLqiq + ud

Lq
d
dt iq = −Rsiq − ω(Ldid + Φ) + uq

J
d
dtω = p((Ld − Lq)idiq + Φiq) − τl

(1.103)

with the stator currents id and iq as well as the rotor speed ω as state variables, the
stator voltages ud and uq as control variables, and the load torque τl. Furthermore, J
denotes the moment of inertia, Rs the stator winding resistance, Ld and Lq the stator
inductances, p the number of pole pairs, and Φ the flux of the permanent magnet in
the rotor. It should be mentioned at this point that for the case of a uniform air gap,
we have Ld = Lq = L, and the mathematical model (1.103) simplifies accordingly.
Now choose the state variables xT = [x1, x2, x3] = [Ldid, Lqiq, Jω/p], then (1.103)
can be written in the form of a Port-Hamiltonian system

d
dtx = (J(x) − S)

(
∂V

∂x

)T
+ Guu + gdτl (1.104)

with the energy function as the storage function

V (x) = 1
2Ld

x2
1 + 1

2Lq
x2

2 + p

2J x
2
3 (1.105)

and

J(x) =


0 0 x2

0 0 −(x1 + Φ)
−x2 x1 + Φ 0

, S =


Rs 0 0
0 Rs 0
0 0 0

 (1.106)

as well as

Gu =


1 0
0 1
0 0

, gd =


0
0

−1/p

, and u =
[
ud

uq

]
. (1.107)
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Exercise 1.17. Show the validity of (1.104).

Now, using Non-Parametrized IDA-PBC, a state feedback according to Theorem 1.6
should be designed so that the stationary operating point

xT
d = [0, x2,d, x3,d] with x2,d = τ̄lLq

Φp (1.108)

for a constant torque τ̄l and a desired speed ωd = x3,dp/J is stabilized. The structure of
the closed-loop system Jd(x) and Sd is now chosen according to a machine with uniform
air gap, i.e., we have Ld = Lq = L.

Exercise 1.18. Show that for Ld = Lq = L, the matrices Jd(x) and Sd of the
Port-Hamiltonian system associated with (1.103) have the following structure

Jd(x) =


0 Lp

J x3 0
−Lp

J x3 0 −Φ
0 Φ 0

 and Sd = S . (1.109)

The PBC matching equation (1.96) is then

(J(x) − S)
(
∂V

∂x

)T
+ Guβ(x) + gdτ̄l = (Jd(x) − Sd)

(
∂Vd
∂x

)T
, (1.110)

or with the left annihilator of Gu

G⊥
u = [0, 0, 1] (1.111)

and the quantities Va(x) = Vd(x) − V (x) and

Ja(x) = Jd(x) − J(x) =


0 Lp

J x3 −x2

−Lp
J x3 0 x1

x2 −x1 0

, (1.112)

we obtain

G⊥
u (J(x) − S)

(
∂V

∂x

)T
+ G⊥

u gdτ̄l = G⊥
u (J(x) + Ja(x) − S)

((
∂Va
∂x

)T
+
(
∂V

∂x

)T)
(1.113)

or
−G⊥

u Ja(x)
(
∂V

∂x

)T
+ G⊥

u gdτ̄l = G⊥
u (Jd(x) − S)

(
∂Va
∂x

)T
. (1.114)

Evaluating (1.114) results in the following partial differential equation

−x2x1
Ld

+ x2x1
Lq

− 1
p
τ̄l = Φ∂Va

∂x2
, (1.115)

whose general solution can be written as

Va(x1, x2, x3) = α1

(
1
2x

2
2x1

(
Ld − Lq
LdLqΦ

)
− x2

Φp τ̄l
)

+ ψ(x1, x3) (1.116)
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with the positive parameter α1 and a function ψ(x1, x3) still to be chosen. Thus, the
storage function of the closed-loop system Vd = V + Va has the following structure

Vd = 1
2Ld

x2
1 + 1

2Lq
x2

2 + p

2J x
2
3 + 1

2α1x
2
2x1

(
Ld − Lq
LdLqΦ

)
− α1

x2
Φp τ̄l + ψ(x1, x3) . (1.117)

The task is to determine the function ψ(x1, x3) such that the conditions (1.95) are fulfilled.
It can be easily verified that the ansatz

ψ(x1, x3) = −1
2α1

(
Ld − Lq
LdLqΦ

)
x1x

2
2,d + α2

2 x2
1 − p

2J x
2
3 + α3

2 (x3 − x3,d)2 − 1
2Lq

x2
2,d (1.118)

with the positive design parameters α1, α2, and α3 satisfies these conditions. To do this,
calculate for

Vd =
( 1

2Ld
+ α2

2

)
x2

1+
(

1
2Lq

+ α1
2 x1

(
Ld − Lq
LdLqΦ

))(
x2

2 − x2
2,d
)
−α1
Lq
x2x2,d+

α3
2 (x3 − x3,d)2

(1.119)
first the gradient and evaluate it at the point x = xd (see (1.108))

(
∂

∂xVd
)T

(xd) =


(

1
Ld

+ α2
)
x1,d(

1
Lq

+ α1x1,d
(
Ld−Lq

LdLqΦ

))
x2,d − α1

Lq
x2,d

0

 . (1.120)

Obviously for α1 = 1, the requirement
(
∂
∂xVd

)T
(xd) = 0 is fulfilled. To ensure that xd is

a strict local minimum of Vd, we must further ensure that

(
∂2

∂x2Vd

)
(xd) =


1
Ld

+ α2
(
Ld−Lq

LdLqΦ

)
x2,d 0(

Ld−Lq

LdLqΦ

)
x2,d

1
Lq

0
0 0 α3

 (1.121)

is positive definite, which can be guaranteed by a suitable choice of the parameters α2 > 0
and α3 > 0 with

1
Ld

+ α2 > 0 und
( 1
Ld

+ α2

) 1
Lq

−
(
Ld − Lq
LdLqΦ

)2

x2
2,d > 0. (1.122)

The state feedback is then calculated according to (1.97) in the form

β(x) =
[

1 0 0
0 1 0

]{
(Jd(x) − Sd)

(
∂Vd
∂x

)T
− (J(x) − S)

(
∂V

∂x

)T
− gdΦpx2,d

}
. (1.123)

Exercise 1.19. Determine the explicit expressions of the state control law (1.123).
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2 Iterative learning control

A large number of physical or industrial processes operate in an repetitive fashion,
whereby the same task is performed over and over again under identical or at least
very similar conditions. Iterative learning control (ILC) is based on the notion that the
performance of such repetitive processes can be improved by learning from previous trials
(i.e., iterations). Typical application examples include various robotic pick-and-place tasks,
switched operation of electronic or optical systems or batched manifacturing processes.

Learning on observed information from previous trials is a very general idea and holds
true for many every-day activities. For example, a basketball player throwing a ball
repeatedly towards the hoop from a fixed position can improve his or her success rate
over time. By observing the trajectories of the ball, the player obtains information on
how to subsequently modify the throwing motion such that the future outcome improves.
Iterative learning strategies can thus be seen as an adaptive open-loop control scheme
that refines its input signals during operation through repetition and learning. This way,
iterative learning strategies achieve high control performance in the presence of large
uncertainty - either due to any inevitable model-plant mismatch or under the effect of
external disturbances - as long as its effect is (almost) identical in each trial. Conversely,
a non-learning controller is not able to leverage this additional information and thus
reproduces the same residual control error in each subsequent iteration.

While learning can be applied to a large variety of problems, ILC specifically considers
tracking problems, i.e., a system G is operated in a repetitive fashion whereby the input
uj(t) ∈ U during the j-th iteration yields the corresponding output yj(t) ∈ Y as

yj(t) = G[xj(0),uj(t)]. (2.1)

Within such a setting, ILC methods typically assume that:

(i.) every iteration ends within an identical time interval t ∈ [0, tf ],

(ii.) every iteration starts from an (almost) identical initial state xj(0) ≈ x(0),

(iii.) there exists a unique input ud(t) that yields the desired output yd(t).

The main goal is now to design an operator Ψ : U × Y → U that produces an updated
input

uj+1(t) = Ψ(uj(t), ej(t)) (2.2)

based on the previous input and the resulting tracking error ej(t) = yd(t) − yj(t) such
that the output sequence asymptotically converges to the desired output yd(t), i.e.,

lim
j→∞

G[x(0),uj(t)] = yd(t). (2.3)
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This iterative learning process is illustrated in Fig. 2.1. In some sense, ILC can be seen as
a method to increase the robustness of feedforward control against model uncertainties and
repetitive disturbances by determining it online through a fixed-point iteration (2.2), whose
properties depend on the chosen operator Ψ. For simplicity, we will restrict ourselves to
linear operators Ψ, wherefore the learning law (2.2) can be written as

uj+1(t) = Luuj(t) + Leej(t) = Q(uj(t) + Lej(t)) (2.4)

with the linear operators Lu, Le, Q, and L, respectively. Correspondingly, we will mainly
restrict ourselves to linear, time-invariant systems of the form

ẋj(t) = Axj(t) + Buj(t) (2.5)
yj(t) = Cxj(t) + Duj(t) (2.6)

with the state vector xT
j (t) ∈ Rn, the input vector uT

j (t) ∈ Rl and the output vector
yT
j (t) ∈ Rm.

-

0 0

1 1

j j

j + 1j + 1
G

k k

uj ej

yd

yj+1

uj+1

uj ejΨ

Figure 2.1: Graphical illustration of iterative learning control (ILC).

There are a number of different concepts in control theory that aim to include some
element of learning. Most notably, adaptive control is using information from the past to
increase the performance of the closed-loop system by continuously modifying model or
(feedback) control parameters. All uncertainty is thus represented in a parametric form.
Conversely, ILC modifies the feedforward inputs applied to the system and is thus not
limited to parametric uncertainties. However, this entails that the learned input signal is
specific to the desired output yd(t). One property that is used to distinguish ILC [2.1–2.5]
from other learning concepts [2.6] is the so-called identical initialization condition, i.e.,
that every iteration starts from the exact same initial state xj(0) = x(0). In a more
relaxed formulation, xj(0) may be a stochastic quantity, but at least is independent of
previous iterations. Repetitive control on the other hand assumes that the initial state
of the current iteration is given by the terminal state of the previous one such that the
sequence of all iterations can be seen as a continuously operated system.
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2.1 Fixed-point iterations
Calculating zeros of a function

γ(z) = 0 (2.7)

with γ(z) : RN → RN and zT =
[
z1 . . . zN

]
can always be recast as a fixed-point

problem

ψ(z) = z. (2.8)

A fixed-point iteration is a sequence z0, z1, . . . given by

zj+1 = ψ(zj) , j = 0, 1, 2, . . . . (2.9)

that converges to a solution z∞ of (2.8) depending on the chosen function ψ. Note that
there is no unique fixed-point formulation for a given zero-point problem, i.e., the choices

• ψ(z) = z − γ(z)

• ψ(z) = z + 2γ(z)

• ψ(z) = z − (
∂
∂zγ

)−1(z)γ(z)

are equally valid. However, the choice of ψ crucially determines the convergence properties
of the fixed-point iteration. Therefore, we define:

Definition 2.1 (Convergence). The iteration (2.9) is

• locally convergent (LC) to z∞ if there exists a δ > 0 such that the iteration (2.9)
exists and converges to z∞ for all starting points ∥z0 − z∞∥ < δ,

• globally convergent (GC) if the iteration (2.9) converges to z∞ for all z0.

Definition 2.2 (Stability). A fixed-point z∞ is

• stable (S) (in a Lyapunov sense), if for every ε > 0 there exists a δ > 0 such
that if ∥z0 − z∞∥ < δ, the sequence {zj} exists and ∥zj − z∞∥ < ε for all j ≥ 1,

• attractive (A), if there exists a δ > 0 such that ∥z0 − z∞∥ < δ implies that {zj}
exists and limj→∞ zj = z∞,

• globally attractive (GA) if δ = ∞ above,

• asymptotically stable (AS), if stable and attractive and globally asymptotically
stable (GAS), if stable and globally attractive.

Attractivity and convergence are equivalent concepts, whereby the following relations [2.7]
hold true

GAS =⇒ GA ⇐⇒ GC =⇒ A ⇐= AS . (2.10)
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In the following we will consider the special case of linear fixed-point iterations

zj+1 = Ψzj , j = 0, 1, 2, . . . . (2.11)

Definition 2.3 (Stability and asymptotic stability of linear fixed-point iterations). A
linear iteration (2.11) is stable, if

sup
j≥1

∥Ψj∥ < ∞ , (2.12)

and asymptotically stable if

lim
j→∞

∥Ψj∥ = 0 . (2.13)

Definition 2.4 (Spectral radius). The spectrum of a matrix Γ denotes the set of all
its eigenvalues, i.e.,

σ(Γ) = {λ ∈ C | det(λI − Γ) = 0} (2.14)

and

ρ(Γ) = max
λ∈σ(Γ)

|λ| (2.15)

denotes the spectral radius of Γ.

Theorem 2.1. A linear iteration (2.11) is stable iff ρ(Ψ) ≤ 1 and all eigenvalues at
1 are distinct eigenvalues, i.e., their algebraic multiplicity equals 1. The iteration is
further asymptotically stable iff ρ(Ψ) < 1.

Definition 2.5 (BIBO stability). A linear iteration

zj+1 = Ψzj + Λvj , z0 = 0 (2.16)

is called bounded-input-bounded-output (BIBO) stable if every bounded input se-
quence {vj} results in a bounded output sequence {zj}.

Theorem 2.2. A linear iteration zj+1 = Ψzj + Λvj , z0 = 0 is BIBO stable iff
ρ(Ψ) < 1.

Lemma 2.1. For a bounded sequence {zj} and ε > 0 ∈ R with

∥zj+1∥ ≤ ρ∥zj∥ + ε , 0 ≤ ρ < 1 (2.17)
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it follows that

lim sup
j→∞

∥zj∥ ≤ 1
1 − ρ

ε . (2.18)

Proof. Iterative application of the iteration (2.17) yields

∥z1∥ ≤ ρ∥z0∥ + ε

∥z2∥ ≤ ρ2∥z0∥ + (1 + ρ)ε
...

∥zj∥ ≤ ρj∥z0∥ +
j−1∑
j=0

ρjε = ρj∥z0∥ + 1 − ρj

1 − ρ
ε. (2.19)

Since 0 ≤ ρ < 1, one directly obtains (2.18) for j → ∞.

While asymptotic stability ensures that an iteration (2.11) eventually converges, this
is not necessarily happening in a monotonic way. Since the notion of iterative learning
somewhat suggests that one is successively progressing towards a desired solution, i.e.,
that the control performance improves with every iteration, monotonicity is an important
property of ILC algorithms.

Definition 2.6 (Largest singular value). The largest singular value of a matrix Ψ is
given by

σ̄(Ψ) =
√
ρ(ΨTΨ) . (2.20)

Our main interest in the largest singular value of a matrix stems from the fact that it
is the induced norm of a matrix mapping two spaces equiped with the Euclidean norm
∥z∥ =

√
zTz, i.e.,

∥Ψzj∥ ≤ ∥Ψ∥i,2∥zj∥ = σ̄(Ψ)∥zj∥ . (2.21)

The largest singular value can thus be seen as an upper bound of the gain or amplification
of the mapping given by the matrix Ψ.

Theorem 2.3 (Monotone convergence of linear iterations). A linear iteration zj+1 =
Ψzj converges monotonically towards 0 in the l2-norm, i.e., it holds true that

∥zj+1∥ ≤ β∥zj∥ and thus ∥zj+1∥ ≤ βj∥z0∥ (2.22)

for 0 ≤ β < 1, if

σ̄(Ψ) < 1 . (2.23)

Note that since ρ(Ψ) ≤ σ̄(Ψ), monotonic convergence unsurprisingly implies convergence.
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2.2 Signals, systems, and the frequency domain
Integral transforms are essential tools to analyze temporal signals and their interaction
with dynamical systems. Here, we consider a signal as a real-valued (measureable) function
that maps the real numbers R to Rn. The set of all signals

S = {f : R → Rn} (2.24)

can intuitively be conceived as a set that contains all signals that can possibly occur in
an engineering system - and many more. Since the sum of two signals f and g and the
product of a signal with a scalar are again contained in this set, signals form a natural
linear vector space.

Definition 2.7. A linear vector space over a field K is a set S with a binary operation
+ : S × S → S (addition) and a binary operation · : K × S → S (multiplication) that
fulfils

1. The set S and the operation + are a commutative group.

2. Multiplication with scalars a, b ∈ K for f ,g ∈ S satisfies
• a(f + g) = af + ag
• (a+ b)f = af + bf
• (ab)f = a(bf)
• 0f = 0 and 1f = f .

To measure the size of a signal, one typically equips vector spaces with a suitable
norm.

Definition 2.8. A normed linear vector space S is a linear vector space equipped
with real-valued function ∥ · ∥p : S → R that adheres to the following properties:

1. ∥f∥p ≥ 0

2. ∥f∥p = 0 ⇐⇒ f = 0

3. ∥af∥p = |a|∥f∥p
4. ∥f + g∥p ≤ ∥f∥p + ∥g∥p

Note that a vector space can be equipped with different norms. The resulting normed
vector spaces are different and may contain different elements.

We will now introduce typical signal spaces that we will require to analyze ILC algorithms.
Since we consider signals with values in some Rn, this implicitly requires a notion of size
in this underlying vector space, for which we simply use the Euclidean norm. One of the
most intuitive candidates for an ILC setting is the finite-horizon 2-norm defined by

∥f∥2,[0,tf ] =
{∫ tf

0
∥f(t)∥ dt

} 1
2

=
{∫ tf

0
f(t)Tf(t) dt

} 1
2
. (2.25)
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The set of signals for which this norm is finite is known as the finite-horizon Lebesque
2-space

L2([0, tf ];Rn) =
{

f ∈ S : ∥f∥2,[0,tf ] < ∞
}
. (2.26)

For simplicity, we will simply write L2([0, tf ]) in cases where the dimension of the vector-
valued signals is not important. Any signal that is continuous on [0, tf ] is bounded and
thus contained in L2([0, tf ]) but signals like 1

|2t−tf | are not. In order to address stability
issues or to apply frequency-domain methods, one must consider signals over infinite time
intervals. Extending the considered horizon to infinity on both sides yields the usual
infinite-horizon Lebesque 2-space

L2(R) = {f ∈ S : ∥f∥2 < ∞} (2.27)

with the corresponding norm

∥f∥2 =
[∫ ∞

−∞
∥f(t)∥ dt

] 1
2
. (2.28)

The spaces L2([0,∞)) and L2((−∞, 0]) can be defined analogously.
For conveniance, we will restrict ourselves to Hilbert spaces, i.e., complete spaces whose

norm is generated by an inner product ∥f∥2 =
√

⟨f , f⟩.

Definition 2.9 (Inner product). A mapping S × S → K that assigns a scalar to each
two elements of a vector space is called an inner product if the conditions

1. ⟨f + g,h⟩ = ⟨f ,h⟩ + ⟨g,h⟩

2. ⟨f ,g⟩ = ⟨g, f⟩∗

3. ⟨af ,g⟩ = a⟨f ,g⟩

4. ⟨f , f⟩ > 0 and ⟨f , f⟩ = 0 ⇐⇒ f = 0

hold true for f ,g,h ∈ S and a ∈ K.

The space L2(R) is a Hilbert space with inner product defined by

⟨f ,g⟩ =
∫ ∞

−∞
g(t)Tf(t) dt. (2.29)

Two signals f and g are called orthogonal if ⟨f ,g⟩ = 0 analogous to orthogonality in Rn.
The spaces L2([0,∞)), L2((−∞, 0]), and L2([0, tf ]) are all Hilbert spaces in their own
right, with the inner product integral taken over the appropriate time interval, e.g., for
L2([0, tf ]) we have

⟨f ,g⟩[0,tf ] =
∫ tf

0
g(t)Tf(t) dt. (2.30)
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The Fourier transform
The Fourier transform is a unique mapping of certain (real-valued) functions of time to
complex-valued functions of a single real variable ω using

f̂(jω) = F{f} =
∫ ∞

−∞
f(t) e−jωt dt. (2.31)

Note that the Fourier transform in (2.31) is performed for each component individually
and a vector-valued signal thus simply yields a vector of all transformed components. To
ensure that such a function f̂(jω) exists and is reasonable well behaved, classical Fourier
analysis assumes that each component of f(t) is absolutely integrable over the real line∫ ∞

−∞
|fi(t)| dt < ∞, (2.32)

i.e., each component is a L1(−∞,∞) function. With some mathematical effort, the Fourier
transform can be extended to L2(R) (and functions beyond that such as the Dirac delta
function). To motivate this, one can introduce the inner product of the transformed
signals

⟨f̂ , ĝ⟩ = 1
2π

∫ ∞

−∞
ĝ(jω)H f̂(jω) dω, (2.33)

which again introduces an Lebesque 2-space L2(R) in the frequency domain. Here, (·)H
denotes the conjugate transpose or Hermitian transpose.

Theorem 2.4 (Parseval’s theorem). For f ,g ∈ L2(R) and f̂(jω) = F{f}, ĝ(jω) =
F{g} ∈ L2(R) it follows that

⟨f ,g⟩ = ⟨f̂ , ĝ⟩ (2.34)

and thus

∥f∥2 = ∥f̂∥2. (2.35)

The Fourier transform is thus a mapping between two Lebesque 2-spaces that preserves
the inner product and the norm, i.e., a Hilbert space isomorphism. Finally, the inverse
transform is given by

f(t) = F−1{f̂} = 1
2π

∫ ∞

−∞
f̂(jω) ejωt dω. (2.36)

The bilateral Laplace transform
For reasons that are quite obvious to a control engineer, one is interested to extend the
Fourier transform from the imaginary axis jω to the complex plane s = σ + jω, which
directly yields the bilateral Laplace transform
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f̂(s) = B{f} =
∫ ∞

−∞
f(t) e−st dt (2.37)

that is equivalent to the Fourier transform for σ = 0. In general, the Laplace transform
will not converge for arbitrary values of s. From

f̂(σ + jω) =
∫ ∞

−∞
f(t)e−σt e−jωt dt (2.38)

we see that the region of convergence (ROC) of the Laplace transform is directly linked to
the convergence of f(t)e−σt.

Theorem 2.5. The ROC of a signal has the following properties:

1. The ROC consists of strips parallel to the jω-axis in the s-plane.

2. If f(t) is of finite duration and is absolutely integrable, then the ROC is the
entre s-plane.

3. If f(t) is right-sided (i.e., f(t) = 0 for t < t) and if the line Re{s} = σ0 is in
the ROC, then all values of s with Re{s} > σ0 are also included in the ROC.

4. If f(t) is left-sided (i.e., f(t) = 0 for t > t) and if the line Re{s} = σ0 is in the
ROC, then all values of s with Re{s} < σ0 are also included in the ROC.

5. If the Laplace transform f̂(s) is rational, then its ROC is bounded by poles or
extends to infinity. No poles are contained in the ROC.

In particular, a signal that is contained in L2([0,∞)) (and assuming that it is absolutely
integrable for simplicity) is thus bounded and analytic (i.e., holomorphic) for Re{s} > 0,
which is the definition of the Hardy 2-space H2. Conversely, a signal that is contained
in L2((−∞, 0]) is bounded and analytic for Re{s} < 0, which is the definition of the
complementary Hardy 2-space H⊥

2 . Since for every f̂ ∈ H2 it follows that limσ→+0 f̂ ∈
L2(R) and analogous f̂ ∈ H⊥

2 implies that limσ→−0 f̂ ∈ L2(R), we regard H2 and H⊥
2

closed subspaces of the frequency-domain L2(R). Since any time signal can be decomposed
as

f(t) = f1(t) + f2(t) with f1 ∈ L2([0,∞)), f2 ∈ L2((−∞, 0]) (2.39)

and ⟨f1, f2⟩ = 0, one can see from L2(R) = H2 ∪ H⊥
2 and Parseval’s theorem that

⟨f̂1, f̂2⟩ = 0 and H2 ∩ H⊥
2 = 0, (2.40)

which justifies the already used nomenclature H2 and H⊥
2 , respectively. A graphical

illustrations of these connections is given in Fig. 2.2. Finally, the inverse transformation
to 2.37 is given by the contour integral

f(t) = B−1
{

f̂
}

= 1
2πj

∫ σ+j∞

σ−j∞
f̂(s) est ds (2.41)
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∫ 0
−∞ f(t)e−st dt

∫∞
0 f(t)e−st dt

∫∞
−∞ f(t)e−jωt dt

lim
σ→0−

f(σ + jω) lim
σ→0+

f(σ + jω)

t

L2(R)

t

L2((−∞, 0])

t

L2([0,∞))

Re{s} Re{s}

Im{s} Im{s}

L2(R)

σ

H⊥
2 H2

Figure 2.2: On L2((−∞, 0]), L2([0,∞)), H2, and H⊥
2 .

where the line of integration Re{s} = σ is within the corresponding ROC of f̂(s).
By definition, the bilateral Laplace transform shares most of its properties with the uni-

lateral Laplace transform. For convenience, the most common properties are summarized
in Table 2.1. Selected pairs of (scalar) time-domain signals f(t) and their corresponding
frequency-domain functions f̂(s) are listed in Table 2.2. In the following, we will not
make a notational distinction between time-domain signals and their frequency-domain
representations and drop the hat notation unless it is necessary to avoid confusion. In
general, the argument or the context sufficiently determines whether one is dealing with a
time-domain or frequency-domain signal, which are anyhow isomorphic under the used
integral transformations.
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Property Expression ROC

Linearity B{af(t) + bg(t)} = af̂(s) + bĝ(s) Intersection of ROCs

Time Shifting B{f(t− t0)} = e−st0 f̂(s) Same as f̂(s)

Frequency Shifting B{eatf(t)} = F (s− a) Re(s) shifted by a

Time Reversal B{f(−t)} = F (−s) Reflect ROC about Re(s)

Differentiation (in t) B{f ′(t)} = sf̂(s) Same as f̂(s)

Differentiation (in s) B−1
{

− d
ds f̂(s)

}
= tf(t) Same as f̂(s)

Integration B
{∫ t

−∞ f(τ) dτ
}

= 1
s f̂(s) ROC extends to include s = 0

Convolution B{f(t) ∗ g(t)} = f̂(s)ĝ(s) Intersection of ROCs

Table 2.1: Selected properties of the bilateral Laplace transform.

Signal f(t) Bilateral Laplace Transform f̂(s) ROC

δ(t) 1 all s

h(t) 1
s Re(s) > 0

−h(−t) 1
s Re(s) < 0

tn+1

(n−1)!h(t) 1
sn Re(s) > 0

− tn+1

(n−1)!h(−t) 1
sn Re(s) < 0

e−ath(t) 1
s+a Re(s) > −a

−e−ath(−t) 1
s+a Re(s) < −a

tn+1

(n−1)!e
−ath(t) 1

(s+a)n Re(s) > −a

− tn+1

(n−1)!e
−ath(−t) 1

(s+a)n Re(s) < −a

e−at sin(bt)h(t) b
(s+a)2+b2 Re(s) > −a

e−at cos(bt)h(t) s+a
(s+a)2+b2 Re(s) > −a

e−a|t| 2a
a2−s2 −a < Re(s) < −a

e−a2t2
√
π
a e

s2
4a2 all s

Table 2.2: Selected transform pairs of the bilateral Laplace transform and their associated
ROC with the Dirac delta function δ(t) and the Heaviside step function h(t).
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Input-output representation of linear systems
The input-output behavior of a dynamical system can be seen as a mapping from one
signal space, the input space U , to another space, the output space Y:

G : u ∈ U 7→ y = Gu ∈ Y (2.42)

For the case U = L2(R;Rl) and Y = L2(R;Rm), the input-output behavior of any linear
system can be represented by the integral operator

y(t) =
∫ ∞

−∞
G(t, τ)u(t) dτ (2.43)

with the kernel function G(t, τ) ∈ Rm×l that is usually referred to as the systems impulse
response matrix. The system is said to be causal iff G(t, τ) = 0 for all τ > t and time-
invariant if G(t, τ) = G(t− τ, 0) for all t, τ . Linear time-invariant (LTI) systems are thus
represented by a convolution-type integral

y(t) =
∫ ∞

−∞
G(t− τ)u(t) dτ (2.44)

where G(t−τ, 0) is denoted as G(t−τ) for simplicity. A system is called causal if G(t) = 0
for t < 0 and anticausal if G(t) = 0 for t > 0. If a system is neither causal nor anticausal,
it is called non-causal or acausal. By applying the Laplace transform (2.37) to (2.44), one
obtains

y(s) = G(s)u(s) (2.45)

with the transfer function matrix

G(s) =
∫ ∞

−∞
G(t) e−st dt. (2.46)

The following properties of a dynamic system are directly related to the ROC of the
transfer function matrix:

Theorem 2.6 (Causality and stability). For an LTI system G(s) with corresponding
ROC it holds true that:

1. If it is causal then its ROC is a right-half plane. If G(s) is rational, then
causality is equivalent to the ROC being the right-half plane to the right of the
rightmost pole.

2. If it is anticausal then its ROC is a left-half plane. If G(s) is rational, then
anticausality is equivalent to the ROC being the left-half plane to the left of the
leftmost pole.

3. It is stable iff the ROC includes Re{s} = 0.

Note that if one assumes a system to be rational and causal, then this is equivalent to
the usual stability criterion that all poles have negative real part, i.e., they lie in the
left-half of the s-plane. Unlike feedback control, ILC methods do not need to be causal
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in time. In fact, strictly causal ILC algorithms are known to be inferior to noncausal
algorithms since they lack the ability to plan ahead. This ability is closely linked to
so-called adjoint systems that regularly appear in (optimation-based) feedforward control
methods.

Exercise 2.1. Show that the system

G(s) = exp(s)
s+ 1 with Re{s} > −1 (2.47)

is not causal although the ROC is right to the rightmost pole.

Exercise 2.2. Specify all possible ROCs for the system

G(s) = s− 1
(s+ 1)(s− 2) (2.48)

and determine the corresponding impulse response functions.

The L∞ norm
That a linear time-invariant system indeed maps some L2(R;Rl) to L2(R;Rm) is only
true if Gu ∈ L2(R;Rm) for any u ∈ L2(R;Rl). Due to Parseval’s theorem 2.4, one can
evaluate the norm of a signal either in the time or frequency domain. The 2-norm of the
output is thus

∥Gu∥2
2 = ⟨Gu,Gu⟩ = 1

2π

∫ ∞

−∞
∥G(jω)u(jω)∥ dω

≤ 1
2π

∫ ∞

−∞
σ̄(G(jω))2∥u(jω)∥ dω

≤ sup
ω
σ̄(G(jω))2 1

2π

∫ ∞

−∞
∥u(jω)∥ dω. (2.49)

Using the definition of the supremum norm or L∞-norm

∥G∥∞ = sup
ω
σ̄(G(jω)) (2.50)

yields

∥Gu∥2 ≤ ∥G∥∞∥u∥2, (2.51)

i.e., the L∞-norm is the induced operator norm of a mapping between two L2-spaces.
Consequently, a sufficient condition for Gu ∈ L2(R;Rm) is supω σ̄(G(jω)) < ∞. Note
that if G(s) is a rational transfer matrix, this is true if and only if G(s) has no poles on
the imaginary axis.
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Systems in state-space representation
For a given state-space representation of a LTI system with measurement noise

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0 (2.52a)
y(t) = Cx(t) + Du(t) + w(t), (2.52b)

which is the main type of system we will investigate in this chapter, one obtains a
corresponding input-output representation (2.1) as

y(t) = CΦ(t)x0 + Du(t) +
∫ t

0
CΦ(t− τ)Bu(τ) dτ + w(t) (2.53)

with Φ(t) = exp(At). If x0 = 0, the system is said to be relaxed at t = 0. It is often
convenient to assume that the system is relaxed in the infinitely remote past, wherefore
CΦ(t)x0 vanishes and (2.53) can be extended to an infinite time horizon

y = Gu + w (2.54)

and G(t) = B−1{G(s)} = CΦ(t− τ)B + Dδ(t) using the Dirac-delta function δ(t). Note
that (2.54) is more general than (2.52), since it can describe dynamic systems that do
not have a state-space representation or whose state-space is infinite-dimensional, i.e.,
distributed-parameter systems described by partial differential equations. Further, the
noise term w can be arbitrary and may thus be used to also include process noise which
is not present in (2.52).

Adjoint systems
For a given system G : L2(R;Rl) → L2(R;Rm), the adjoint system is defined as the linear
system G† : L2(R;Rm) → L2(R;Rl) such that

⟨Gw,y⟩ = ⟨w,G†y⟩. (2.55)

It is easy to show that this uniquely defines G† and that (G†)† = G. Furthermore, if a
real-valued G has a state-space representation (A,B,C,D), then G† has a realization
(−AT,−CT,BT,DT) and the transfer matrix

G†(s) = GT(−s). (2.56)

Exercise 2.3. Determine the adjoint G† in the Hilbert space L2([0, tf ]) using (2.55).

2.3 Frequency-domain ILC methods on infinite time horizons
Following the previous section, we consider a linear LTI system that is relaxed in the
infinitely remote past and performs the same task over and over again. Each iteration is
then described by

yj = Guj + wj (2.57)
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with the input and output quantities yj(t) ∈ Rl and uj(t) ∈ Rm, respectively, as well
as a exogenous disturbance wj(t) ∈ Rl. We assume that the system G is inherently
BIBO-stable and thus G(jω) < ∞ for all ω. Since ILC can be seen as an adaptive
open-loop control strategy, this assumption is quite natural. Unstable plants thus have to
be stabilized before applying ILC methods. By using a linear ILC law (2.4) on an infinite
time horizon, i.e.,

uj+1 = Q(uj + Lej) (2.58)

with

Qu =
∫ ∞

−∞
Q(t− τ)u(τ) dτ and Lu =

∫ ∞

−∞
L(t− τ)u(τ) dτ, (2.59)

we want to iteratively track a desired output yd that exists and is uniquely defined by
yd = Gud. Following a signal processing nomenclature, Q and L are usually referred to
as Q-filter and L-filter or learning filter, respectively.

2.3.1 Analysis of ILC laws
To analyze stability and convergence of the learning law (2.58), we assume a deterministic
input-output behavior with wj = 0. Using the output error ej = yd − yj and the learning
law (2.58) yields

uj+1 = Ψuj + Λyd , (2.60)

with Ψ = Q
(
I − LG

)
and Λ = QL. The asymptotic input uj+1 = uj = u∞ of the input

iteration (2.60) is given by

u∞ =
(
I − Ψ

)−1Λyd . (2.61)

By introducing the input error ūj = uj − u∞, one obtains the input error iteration

ūj+1 = Ψūj , (2.62)

for which the follow theorem assures stability:

Theorem 2.7 (Asymptotic stability of the ILC law). The input error iteration (2.62)
of the ILC law (2.58) is asymptotically stable if

sup
ω
ρ
(
Q(jω)

(
I − L(jω)G(jω)

))
< 1 (2.63)

and uj converges to u∞.

For practical reasons, we are usually much more interested in making stability assertions
for the output error ej . Assuming that there exists a formal inverse G−1, we can rewrite
the input-output behavior as uj = G−1(yd − ej) which yields the output iteration

ej+1 = GΨG−1ej + (I − GQG−1)yd . (2.64)
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It is immediately clear from this equation that perfect tracking, i.e., a vanishing asymptotic
output error e∞ = 0, is only possible for Q = I and one may be inclined to question other
choices for Q. We will get back to this issue later. The asymptotic output error e∞ is
given by

e∞ = yd − Gu∞

=
(
I − G

(
I − Ψ

)−1Λ
)
yd .

(2.65)

Using ēj = ej − e∞ yields

ēj+1 = GΨG−1ēj . (2.66)

Since

ρ
(
GΨG−1

)
= ρ(Ψ), (2.67)

it follows that:
Theorem 2.8 (Asymptotic stability of the output iteration). The output iteration
(2.64) of the ILC law (2.58) is asymptotically stable iff the input iteration is stable,
i.e.,

sup
ω
ρ
(
Q(jω)

(
I − L(jω)G(jω)

))
< 1 (2.68)

and ej then converges to the asymptotic tracking error

e∞ =
(
I − G

(
I − Ψ

)−1Λ
)
yd =

(
I − GΨG−1

)−1(
I − GQG−1

)
yd . (2.69)

Exercise 2.4. Show the equivalence of both expressions in (2.69).

If one wants to avoid (potentially) large transient errors during the learning process,
monotonic convergence of the learning law has to be ensured.

Theorem 2.9 (Monotonic convergence of the input iteration). The input iteration
(2.60) of the ILC law (2.58) converges monotonically to u∞, i.e., it holds that

∥uj+1 − u∞∥2 ≤ α∥uj − u∞∥2 (2.70)

for 0 ≤ α < 1 if

∥Ψ∥∞ = sup
ω

σ̄
(
Q(jω)

(
I − L(jω)G(jω)

))
= α < 1 . (2.71)

Theorem 2.10 (Monotonic convergence of the output iteration). The output iteration
(2.64) of the ILC law (2.58) converges monotonically to e∞, i.e., it holds that

∥ej+1 − e∞∥2 ≤ β∥ej − e∞∥2 (2.72)
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for 0 ≤ α < 1 if

∥GΨG−1∥∞ = sup
ω

σ̄
(
G(jω)Q(jω)

(
I − L(jω)G(jω)

)
G−1(jω)

)
= β < 1 . (2.73)

Note that monotonic convergence of the input iteration does not imply monotonic conver-
gence of the output iteration and vice versa.

2.3.2 Deterministic design methods
All types of ILC algorithms try to perform some kind of approximate inversion of the
input-output behavior of the system. Since this inversion has to be performed online
based on measurements, it is inherently constrained by the presence of disturbances and
measurement noise. Ideally, an ILC algorithm is able to iteratively separate repeating
disturbances and effects of a model-plant mismatch from non-repeating disturbances and
measurement noise. Nevertheless, most ILC designs are developed within a deterministic
framework with w = 0 which we will adopt in this section. Note that we introduce ILC
as a pure open-loop control strategy here, henceforth ILC algorithms are not able to
respond to non-repeating (and unanticipated) disturbances. For the performance of the
complete control concept, it is thus advisable to incorporate feedback control methods.
For simplicity, we thus assume that the system G already incorporates a suitable feedback
control strategy and thus G is BIBO-stable.

We know from the previous section that Q = I is a necessary condition to achieve
perfect tracking. One thus only wants do deviate from this ideal if necessary to achieve a
stable ILC algorithm that is sufficiently robust to model variations. We will thus start
with three typical design strategies to obtain suitable learning operators before considering
the relation between Q-filtering and robustness. As we will see later, good learning filters
usually avoid to learn at high frequencies due to the presence of measurement noise. By
assuming Q = I, however, I − L(jω)G(jω) → I for ω → ∞, which would always violate
the stability condition in Theorem 2.7. We will therefore consider a finite frequency range
up to some ω̄ and assume Q = 0 above, which is always possible.

PD-type ILC laws

As the name implies, PD-type learning laws combine proportional and derivative action,
i.e,

Lej = Kpej(t) + Kd
dej(t)

dt (2.74)

with the proportional and derivative gain matrices Kp and Kd, respectively, that are
tunable parameters that have to be chosen such that a desired performance is reached.
These heuristic designs are arguably the most widely used ILC laws in the literature since
they do not require an accurate model but rely on intensive tuning of the gain matrices.
Since this can be a quite tedious task for MIMO systems, PD-type ILC laws are typically
used for SISO systems only, which yields the learning filter

L(s) = kp + kds (2.75)
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in the frequency domain. While there are no tuning guidelines, it is usually suggested to
start with small gain values and increase them until a growth of (usually) high-frequency
components indicate that the learning law left the stable parameter regime [2.8].

The fact that such simple ILC laws perform quite well for a large class of systems
is somewhat surprising. However, this can be explained by observing that a PD-type
laws (2.74) is the exact inverse of a first-order lag (i.e., P-T1) element. Since most
technical systems exhibit some kind of low-pass behavior, PD-type laws can be seen as an
approximate inverse of their behavior. Note that the learning filter (2.75) yields infinite
gains for ω → ∞, which is problematic in the presence of measurement noise.

Example 2.1. Consider a system described by the scalar transfer function

G(s) = s+ 1/2
s2 + s+ 3 (2.76)

together with the PD-type law (2.75). To evaluate stability for different parameter
choices of kp and kd, the absolute value of I − L(jω)G(jω) is plotted in Fig. 2.3
together with the resulting convergence behavior of the ILC law. Note that the ILC
law ultimately reaches the precision of the numerical simulation. Observing that the
inverse of the system’s transfer function is

G−1(s) = 1/2 + s+ 11
2(2s+ 1) , (2.77)

one could try to use kp = 1/2 and kd = 1, which is in fact unstable according to
Theorem 2.7.
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Figure 2.3: Stability and convergence behavior of a PD-type learning law for different
parameters kp and kd.
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Inversion-based ILC law

A particularly intuitive choice is to use L = G−1, which yields

uj+1 = Q
(
uj + G−1ej

)
= Q

(
uj + G−1(yd − Guj)

)
= Q

(
G−1yd

)
. (2.78)

The input uj thus remains unchanged after the first iteration (dead-beat behavior) with a
resulting output error

ej+1 = e∞ = yd − GQ
(
G−1(yd − y0)

)
. (2.79)

Using Q = I further implies e∞ = 0. There are several caveats to this result: First of
all, G is never known exactly which limits the usability of inversion-based ILC laws and
mandates an additional Q-filter. Further, G(s) is strictly proper for any physical process,
wherefore its inverse G−1(s) is unbound for s = jω → ∞ and thus e∞ is undefined for
arbitrary yd − y0 ∈ L2(R). Finally, G−1 is unstable for non-minimum phase systems
although this can be alleviated by (non-causal) stable-inversion methods [2.9].

Pseudo-Inversion-based ILC law

Using an inversion-based ILC law is essentially determining an exact feedforward input
signal from output data. Unlike for feedforward purposes, however, we cannot demand
certain levels of regularity of the output signals due to the presence of stochastic distur-
bances and measurement noise. The obvious solution is to regularize the system inversion
by using a pseudo-inverse learning filter [2.10], i.e.,

L(s) =
(
αI + G†(s)G(s)

)−1
G†(s) (2.80)

with the regularization parameter α > 0 and the transfer matrix of the adjoint system
G†(s). The regularization parameter separates regions where the learning law is approach-
ing an inversion-based law (i.e., L(s) ≈ G−1(s)) from regions where learning is almost
prohibited (i.e., L(s) ≈ 0) depending on whether ∥G†(s)G(s)∥ is much larger or smaller
than α, respectively. For systems with low-pass behavior where G(s) is strictly proper,
the learning filter (2.80) thus naturally avoids learning in the high-frequency region, i.e.,
lim
s→∞ L(s) = 0. It still remains to be shown that (2.80) results in a stable learning iteration.
Using

I − LG = I −
(
αI + G†G

)−1
G†G =

(
I + 1

α
G†G

)−1
(2.81)

it follows with the definition of the adjoint system that

ρ
(
I − L(jω)G(jω)

)
= ρ

((
I + 1

α
(G(−jω))TG(jω)

)−1
)

(2.82)

= ρ

((
I + 1

α
(G(jω))HG(jω)

)−1
)
. (2.83)
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Assuming that G(jω)u ̸= 0 for any u ̸= 0, the matrix 1
α(G(jω))HG(jω) is positive

definite and thus all of its eigenvalues are strictly positive. This implies the asymptotic
stability of the learning law since ρ

(
I − L(jω)G(jω)

)
< 1 for all ω.

Example 2.2. Consider again the plant (2.76). According to Figure 2.3, the magnitude
of G(jω) is above 1 · 10−1 for the essential part of its dynamic behavior. The resulting
Pseudo-Inversion-based learning filter (2.80) for different choices of the regularization
parameter α = {1 · 10−1, 5 · 10−2, 1 · 10−2, 1 · 10−3} is illustrated in Figure 2.4. As one
can see, the learning filter (2.80) is an approximation of the exact inverse G−1(jω).
While L(jω) deviates (significantly) over the whole frequency range for high values
of α, small values of α only introduce a roll-off for high-frequency components. Since
asymptotic convergence is equivalent to monotonic convergence for SISO plants
according to Theorem 2.7 and Theorem 2.9, the learning law (2.80) always converges
exponentially. Note that this holds only true for infinite time horizons and that the
convergence rate in Theorem (2.9) is in general not equivalent (but determined by)
the regularization parameter α.
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Figure 2.4: Learning filter and convergence behavior of the Pseudo-Inversion-based learning
filter (2.80) for different regularization parameters α.

2.3.3 Stochastically optimal learning laws
We already mentioned in the previous section that the approximate inversion due to the
learning filter L is inherently constrained by the presence of stochastic quantities, namely
(non-repeating) process disturbances and measurement noise wj(t) ∈ Rl in

yj(t) = Guj(t) + wj(t) (2.84)

that is given by a zero-mean wide-sense stationary (WSS) process with identical stochastic
properties in each iteration. To analyze this problem in a stochastic framework, we
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introduce the following notation: For two vector-valued stochastic signals ak(t) and bl(t)
with the iteration indices k and l, their cross-correlation function is given by Rakbl(τ) =
E
{

ak(t+ τ)(bl(t))T
}

where E{·} denotes the expectation operator. The corresponding
power spectral density (PSD) reads as Sakbl(s) = B

{
Rakbl(τ)

}
. In case k = l, the common

index is written as subscript, i.e., Rab
k (τ) = Rakbk(τ) and Sabk (s) = Sakbk(s).

For generality, we use a iteration-varying learning law (again without Q-filter)

uj+1(t) = uj(t) + Ljej(t). (2.85)

Our goal now is to design a learning filter Lj in a stochastically optimal way, i.e. uj+1(t)
should be determined such that it minimizes the expected value of the mean-square output
error E

{
(ej+1(t))Tej+1(t)

}
. Following section 2.3.1, the output error ej(t) = yd(t) − yj(t)

of the iteration j is given by

ej(t) = Gνj(t) − wj(t) (2.86)

using the input error νj(t) = ud(t) − uj(t). Together with the learning law, the evolution
of the input error is described by

νj+1(t) = νj(t) − Ljej(t) (2.87)

and the output error of the iteration j + 1 yields

ej+1(t) = (I − GLj)ej(t) + wj(t) − wj+1(t). (2.88)

The problem of learning in a stochastically optimal sense can be written as the optimization
problem

min
Lj(t)

E
{

(ej+1(t))Tej+1(t)
}
. (2.89)

Since we only consider LTI systems and the stochastic disturbance wj is WSS, the
optimization problem (2.89) can be treated in the Laplace domain by applying the
bilateral Laplace transform, which yields

min
Lj(t)

E
{

(ej+1(t))Tej+1(t)
}

= min
Lj(t)

Tr
{

Ree
j+1(0)

}
= min

Lj(s)

1
j2πTr

{∫ ∞

−∞
Seej+1(jω) dω

}
, (2.90)

where Tr {·} denotes the trace operator. To obtain the output error PSD Seej+1(s), one
can use (2.88) together with (2.86), which yields

ej+1(t) = (G − GLjG)νj(t) + GLjwj(t) − wj+1(t). (2.91)

In general, the stochastic quantities νj , wj and wj+1 will be correlated. We thus make
the following assumptions:
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A1 different instances of the disturbance are uncorrelated, i.e., E
{

wi(t+ τ)(wj(t))T
}

=
0 for i ̸= j

A2 the input error νj is uncorrelated with the exogenous disturbance of the current and
the following iteration, i.e., E

{
νj(t+ τ)(wi(t))T

}
= 0 for i ∈ {j, j + 1}. Together

with A1, this is equivalent to E
{
ν0(t+ τ)(wj(t))T

}
= 0

A3 the stochastic properties of of the disturbance do not change over iterations, i.e.,
E
{

wj(t+ τ)(wj(t))T
}

= Sww.

Using these assumption, we obtain

Seej+1 = (G − GLjG) Sννj (G − GLjG)† + GLj Sww (Lj)†G† + Sww (2.92)

The optimization problem (2.90) can be solved by variational calculus. The resulting
learning filter

Lk(s) = Sννj (s)G†(s)
[
G(s)Sννj (s)G†(s) + Sww(s)

]−1
(2.93)

is an iterative version of the well-known (non-causal) Wiener filter, which is used to
estimate the input deviation that optimally explains the measured output error. A
common problem of Wiener-filter-based approaches is that the optimal solution (2.93)
requires knowledge of the input error PSD Sννj (s), which is typically handled using a-priori
knowledge of the problem.

Due to the learning process, the measured output error ej(t) will be increasingly
dominated by stochastic disturbances. A stochastically optimal learning law will therefore
reduce its learning action with increasing iterations. Such a behavior is intrinsic to (2.93)
due to the decreasing input error PSD Sννj (s). From (2.86), (2.87) and (2.93) we obtain
the iterative relation

Sννj+1(s) = (I − Lj(s)G(s))Sννj (s). (2.94)

By starting from an initial PSD Sνν0 (s) and the corresponding learning filter (2.93), one
can iterate forward in time to obtain a stochastically optimal ILC method.

Theorem 2.11 (Stochastically optimal learning). If Sww(s) and the initial input
error PSD Sνν0 (s) are positive definite and the system’s transfer matrix G(s) does not
exhibit transmission zeros on the imaginary axis, the learning filter (2.93) together
with (2.94) yields a stable learning law that ensures convergence to the optimal error
PSDs

Sνν∞ (s) = 0, Sηη∞(s) = Sww(s). (2.95)

The fact that one can iteratively construct a noise-less representation of the unknown
desired input u∞ from noisy output measurements and an output error containing only
noise sounds like a very attractive solution. However, there is a severe limitation to this
seemingly nice result: By design, the learning filter is asymptotically vanishing and thus
the learning process comes to a halt. Since the forward iteration (2.94) is independent
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of actual measurements, this is the case even if some unforeseen disturbance (i.e., not
represented in the stochastic model) is causing large output errors.

Since iteration-varying learning laws furthermore increase the effort of implementation,
one may thus prefer to accept sub-optimal performance by using a fixed input error PSD
Sννj (s) = Sνν(s).

Theorem 2.12 (Stochastically sub-optimal learning). If Sww(s) and the chosen input
error PSD Sνν(s) are positive definite and the system’s transfer matrix G(s) does not
exhibit transmission zeros on the imaginary axis, the iteration-invariant learning filter

L(s) = Sνν(s)G†(s)
[
G(s)Sνν(s)G†(s) + Sww(s)

]−1
(2.96)

yields a stable learning law that converges to a positive definite asymptotic output
error PSD See∞(s) given by the solution of

(I−G(s)L(s))See∞(s)(I−G(s)L(s))† − See∞(s) + GL(s)Sww(s) + Sww(s)L†(s)G†(s) = 0.
(2.97)

This sub-optimal learning law is structurally similar to pseudo-inversion-based learning
laws. For the special case of Sνν(s) = σνI and Sww(s) = σwI, it is easy to show that (2.96)
is identical to (2.80) with α = σw

σν
. Stochastically optimal learning filters thus regularize

the system inversion according to the expected signal-to-noise ratio.

2.3.4 Q-filtering and robustness
One of the main advantages of ILC over other control approaches is its ability to achieve
(almost) perfect tracking in the presence of external disturbances and model-plant mis-
match. While we have investigated external disturbances in the previous section, we
may now shift our attention to an inevitable model-plant mismatch. Assuming that the
plant can be described by G(s) = G0(s)∆G(s) with the nominal (design) model G0(s)
and the unknown deviation ∆G(s), it is expected that ρ

(
I − L(jω)G0(s)∆G(s)

)
will in

general be larger than one for some ω since we designed the learning filter L(s) such that
ρ
(
I − L(jω)G0(s)

)
< 1. However, it is clear that the asymptotic stability criterion

sup
ω
ρ
(
Q(jω)

(
I − L(jω)G(jω)

))
< 1 (2.98)

can always be met by choosing Q(s) sufficiently small. For example, for a known ∆G(s)
one could always use Q(s) = κI with κ > 1/ supω ρ

(
I − L(jω)G0(jω)∆G(jω)

)
.

Using a spectrally uniform Q-filter is usually not recommended, since ∆G(s) is typically
small in those parts of the frequency range within which we want to learn. To avoid
unnecessary large asymptotic tracking errors, a spectrally selective Q-filter is thus usually
advisable. The most common case in practice is that the (identified) nominal model
fits quite accurately up to a certain frequency ωc and starts to deteriorate beyond that
frequency, which motivates the use of low-pass filters.
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Example 2.3. Consider the plant (2.76) again with an additional model-plant mismatch
given by

G0(s) = s+ 1/2
s2 + s+ 3 and ∆G(s) = 1

1 + s/30 + (s/15)2 (2.99)

and a pseudo-inverse learning law L(s) with α = 1 · 10−2 for the nominal model
G0(s). Simulation scenarios for different choices of Q(s) are illustrated in Figure 2.5.
For Q(s) = 1, we can see that |1 − L(jω)G(jω)| > 1 for ω > 10, which leads to
high-frequency oscillations that build up over time. Note that the error seems to
converge initially but diverges after 20 iterations. Using a simple first-order low-pass
filter

Q(s) = 10
s+ 10 (2.100)

stabilizes the learning iteration, but at the cost of a significantly higher asymptotic
output error. Interestingly, for the more aggressive choice (see left-hand side of
Figure 2.5)

Q(s) = 102

(s+ 10)(−s+ 10) , (2.101)

the asymptotic output error is vastly improved. The main reason for this is that
simple first-order low-pass filter introduces a phase shift to the learned signal, which
in turn results in a slight temporal mismatch between yd(t) and y∞(t) that dominates
all other error sources. The latter choice of Q(s) is a so-called zero-phase filter.
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Figure 2.5: Robustness to model-plant mismatch by using a Q-filter.

Since there is no systematic design for Q in the MIMO case, we will restrict ourselves
to the SISO case in the following. In line with Example 2.3, it is generally recommended
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to use zero-phase filters for Q(s), i.e.,

Im{Q(jω)} = 0. (2.102)

Exercise 2.5. Show that a zero-phase filter Q(s) that is not a constant gain matrix is
necessarily noncausal.

Gaussian filter

A particularly simple type of zero-phase filter is the Gaussian filter given by the impulse
response

Q(t) = 1
σq

√
2π

exp
(

− t2

2σ2
q

)
(2.103)

with the standard deviation σq that is related to the 3-dB bandwidth fc

σq =
√

ln(2)
2πfc

(2.104)

of the corresponding frequency-domain representation

Q(jω) = exp
(

−σ2
qω

2

2

)
. (2.105)

Forward-Backward-Filtering

A popular alternative with arbitrary spectral behavior is to use

Q(s) = Q†
f (s)Qf (s) (2.106)

whereQf (s) is stable and causal. As a result, Q(s) can be easily implemented by integrating
the realization of Qf (s) forward and Q†

f (s) backward in time (see Matlab command
filtfilt). This procedure was used in Example 2.3 to implement the zero-phase Q-filter.

Time delay

One particular type of model-plant mismatch in ILC applications is a temporal delay by
time T , i.e.,

∆G(s) = exp(−sT ). (2.107)

Using a pseudo-inversion-based learning law, it follows that

|1 − L(jω)G(jω)| = |1 − L(jω)G0(jω) exp(−jωT )| (2.108)

=
∣∣∣∣∣1 − |G0(jω)|2

α+ |G0(jω)|2 exp(−jωT )
∣∣∣∣∣.

As one can see, the resulting ILC law is always unstable in the absence of a Q-filter for
sufficiently high frequencies ω. Any predictable time-delay should thus be compensated
by shifting the time axis respectively.
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2.3.5 Implementation aspects
After having designed a suitable learning filter L(s), there are still some open questions
on how to implement the resulting learning law for a practical problem that is typically
defined on a finite time horizon t ∈ [0, tf ].

Spectral factorization

A direct method to achieve this is to use spectral factorization methods to decompose the
learning filter into the product of two parts: one that is causal (i.e., its impulse response
matrix is in H2), and one that is anti-causal (i.e., its impulse response matrix is in H⊥

2 ).
Since the anti-causal part can also be written as the adjoint of a causal system, one obtains
the factorization

L(s) = L†
b(s)Lf (s) (2.109)

As a result, the learning filter L(s) can be implemented by finding a state-space represen-
tation of Lf (s) that is solved forward in time and a state-space representation of L†

b(s)
that is solved backwards in time. Note that this solution procedure requires corresponding
initial and terminal conditions for the state-space representations that are not determined
from the infinite time-horizon design.

FIR-filter approximation

Finding a factorization (2.109) can be quite tedious except for SISO systems. An alternative
solution is to determine the impulse response matrix L(t) directly. Since L(t) is in general
not of finite support, it has to be truncated in time to a finite-impulse response (FIR)
approximation to implement the convolution (2.59). Along this line, L(t) can either be
transformed back analytically using the inverse bilateral Laplace transform and truncated
afterwards or one chooses to use numerical methods. By assumption, the system’s transfer
matrix G(s) has no poles on the imaginary axis s = jω, wherefore L(s) has a ROC around
the imaginary axis where L(t) is given by

L(t) = F−1{L(jω)}. (2.110)

A convolution with L(t) is therefore equivalent to a forward and backward integration of
the spectral factorization (2.109). The continuous Fourier transform can be approximately
computed using the discrete Fourier transform (DFT) on a sampled temporal and spectral
grid. By assuming that L(jω) = 0 outside the finite interval [−ωs

2 ,
ωs
2 ], we can approximate

the inverse Fourier transform for t ∈ [− ts
2 ,

ts
2 ] on the discrete grids tn = (n− N/2) tsN and
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ωm = (m− N/2)ωs
N with 0 ≤ n,m < N by

L(tn) = 1
2π

∫ ωs/2

−ωs/2
L(jω) exp[jωtn] dω

≈ ωs
2πN

N−1∑
m=0

L(jωm) exp
[
j
tsωs
N2

(
n− N

2

)(
m− N

2

)]
(2.111)

= ωs
2πN exp

[
−j tsωs2N

(
n− N

2

)]N−1∑
m=0

L(jωm) exp
[
−j tsωs2N m

]
exp

[
j
tsωs
N2 mn

]

Calculating the right-hand side of (2.111) can be computationally quite expensive. For
the case ωsts = 2πN , however, this can be reformulated as1

L(tn) ≈ ωs
2πN exp

[
−jπ

(
n− N

2

)]N−1∑
m=0

L(jωm) exp[−jπm] exp
[
j

2π
N
mn

]
= ωs

2πN exp
[
−jπ

(
n− N

2

)]
DFT{L(jωm) exp[−jπm]} (2.112)

which is computationally very efficient by using FFT algorithms to compute the DFT for
N chosen as a power of 2. Note that this method does not require L(s) to be a rational
transfer matrix, see Example 2.4.

Boundary effects

Finally, to implement such learning laws requires information that is not provided by the
infinite time horizon design. This lack was already quite explicit when factorizing the
learning law and finding state-space representations for forward and backward integra-
tion, where suitable boundary conditions at t = 0 and t = tf are required. Using the
convolutional representation (2.59) with a FIR filter of length ts, i.e., L(t) ̸= 0 only if
t ∈ [−ts/2, ts/2], yields

(Lej)(t) =
∫ tf +ts

−ts
L(t− τ)ej(τ) dτ for t ∈ [0, tf ]. (2.113)

Rather than additional boundary values, the convolutional representation requires values
of ej(t) for t ∈ [−ts, tf + ts], which extends beyond the available measurements. Since
we assumed that the system is correctly (and identically) initialized, ej(0) = 0 and thus
ej(t) = 0 for t ∈ [−ts, 0] is a obvious choice. For t = tf , the two most widely used options
are:

1. e(t) = 0 for t ∈ [tf , tf + ts] (truncation)
2. e(t) = e(tf ) for t ∈ [tf , tf + ts] (extension)

1This links the temporal resolution ts/N with the spectral resolution ωs/N, which can be problematic for
some applications with large bandwidths where a sufficient temporal resolution requires a very high
number of discretization points.
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Note that this choice will impact the stability of the learning law in general [2.11]. However,
if an infinite time horizon convolution operator Ψ according to

Ψe =
∫ ∞

−∞
Ψ(t− τ)e(τ) dτ, (2.114)

with e ∈ L2(−∞,∞) is a contraction mapping, i.e., ∥Ψe∥2 < ∥e∥2, then its truncated
version

ΨTe′ =
∫ tf

0
Ψ(t− τ)e′(τ) dτ (2.115)

is a contraction mapping on the truncated space e′ ∈ L2([0, tf ]), too. This can be seen by
using the standard truncation operator

(Te)(t) =
{

e(t) for t ∈ [0, tf ],
0 otherwise,

(2.116)

since

∥ΨTe′∥2,[0,T ] = ∥TΨTe∥2 ≤ ∥ΨTe∥2 ≤ ∥Ψ∥∞∥Te∥2 = ∥Ψ∥∞∥e′∥2,[0,T ] (2.117)

using the identity ΨT = TΨT and the fact that the induced norm ∥T ∥∞ = 1.

Example 2.4. Consider the coupled system of parabolic PDEs

∂x
∂t

(z, t) =
[
λ1 0
0 λ2

]
︸ ︷︷ ︸

=Λ

∂2

∂z2 x(z, t) +
[

0 σ12

σ21 0

]
︸ ︷︷ ︸

=Σ

x(z, t) (2.118a)

defined on the spatial domain z ∈ [0, 1], with the initial condition x(z, 0) = 0, the
boundary conditions

x(0, t) = u(t) ∂x
∂z

(1, t) =
[
Γ11 Γ12

Γ21 Γ22

]
︸ ︷︷ ︸

Γ

x(1, t), (2.118b)

and the output equation
y(t) = x(1, t). (2.118c)

To obtain a transfer function description of the system (2.118), we apply the bilateral
Laplace transform to (2.118a). This gives the spatial ODE

∂2

∂z2 x(z, s) = Λ−1(sI − Σ)︸ ︷︷ ︸
=H(s)

x(z, s). (2.119)

The dependence of H(s) on the Laplace variable s will be omitted for the following
calculations. The matrix H can be diagonalized by using the state transform x(z, s) =
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Pχ(z, s), which yields
∂2

∂z2χ(z, s) = H̃2χ(z, s), (2.120)

with the diagonal matrix H̃ =
√

P−1HP and the corresponding boundary conditions

χ(0, s) = P−1u(s), ∂χ

∂z
(1, s) = Γ̃χ(1, s) (2.121)

with Γ̃ = P−1ΓP. Applying the ansatz

χ(z, s) = cosh
(
H̃z
)[c11

c21

]
+ sinh

(
H̃z
)[c12

c22

]
(2.122)

to (2.120), (2.121) yields the solution

x(z, s) = P
[
cosh

(
H̃z
)

− sinh
(
H̃z
)
Ξ
]
P−1u(s), (2.123)

with

Ξ =
[
H̃ cosh

(
H̃
)

− Γ̃ sinh
(
H̃
)]−1[

H̃ sinh
(
H̃
)

− Γ̃ cosh
(
H̃
)]
. (2.124)

Finally, with (2.118c) the transfer matrix is given by

Gu = P
[
cosh

(
H̃
)

− sinh
(
H̃
)
Ξ
]
P−1. (2.125)

In the absence of stochastic disturbances, a simple pseudo-inversion-based law (2.80)
with α = 1 · 10−3 is chosen. Using the parameter values λ1 = λ2 = 1, σ12 = 1/2,
σ21 = −1, Γ11 = 0, Γ12 = 1/2, Γ21 = 1, and Γ22 = 1/10, one obtains a numerical
solution of the impulse response matrix L(t) using (2.112) as shown in Figure 2.6.
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Figure 2.6: Entries of the (non-causal) learning kernel L(t) calculated as a FIR-
approximation using the FFT.

Using the calculated learning kernel to track a desired output trajectory yd(t) =
[yd1(t), yd2(t)]T, t ∈ [0, 10] given by

yd1(t) = Θ5(t− 2.5), yd2(t) = 3 d
dt(Θ5(t) + Θ5(t− 5)) (2.126)

with the smoothed step function

ΘT (t) =


0 t ≤ 0
1 t ≥ T∫ t

0 θT (τ) dτ∫ T

0 θT (τ) dτ
t ∈ (0, T ),

(2.127)

whereby

θT (t) =

0 t ̸∈ (0, T )
exp

[
−((1 − t/T)t/T

)−1.5]
t ∈ (0, T ),

(2.128)

the system (2.118) converges up to numeric precision of the solver after the first
iteration with the resulting state profile x1(z, t) shown in (2.7). Using higher values
for α reduces the learning rate as expected.

Lecture Advanced Methods in Nonlinear Control (Winter semester 2025/2026)
© A. Deutschmann-Olek, T. Glück, A. Kugi, M.N. Vu, Automation and Control Institute, TU Wien



2.4 Discrete-time systems on finite time horizons Page 56

0
0.2

0.4
0.6

0.8
1 0 2 4 6 8 10

−1

0

1

2

z
t

x
1 1(

z
,t

)

0
0.2

0.4
0.6

0.8
1 0 2 4 6 8 10

−4

−2

0

2

z
t

x
1 2(

z
,t

)

Figure 2.7: State x1(z, t) of the PDE system (2.118) with the input u1(t) = x1(0, t)
(blue) that yields y1(t) = x1(1, t) ≈ yd(t) (red) after the first iteration.

2.4 Discrete-time systems on finite time horizons
Frequency-domain methods are a very valuable tool to gain insight and intuition, but
they are limited to infinite time horizons by design. For the finite time horizon, one
has to either analyze the input-output behavior using the (linear) integral operator of
the convolution in time-domain or to revert to state-space methods. For discrete-time
systems, however, there exist an alternative approach: since the signal spaces of the
system input and output are reduced to finite dimensions, every linear mapping between
these spaces can be represented as a matrix. This is the basis of the so-called lifted system
representation, which is commonly used to analyze ILC schemes.
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2.4.1 Lifted system respresentation
In this section, we restrict the general state-space description (2.52) to the SISO case
without measurement noise, i.e.,

ẋj(t) = Axj(t) + buj(t) , xj(0) = x0 (2.129a)
yj(t) = cTxj(t) + duj(t), (2.129b)

Note that the lifted-system representation is in principle open to time-varying and MIMO
systems. Using a zero-order hold (ZOH) model with a sampling time Ta, we obtain the
discrete time system

xj [k + 1] = Φxj [k] + Γuj [k] , xj [0] = x0 (2.130a)
yj [k] = cTxj [k] + duj [k] (2.130b)

with time index k = 0, 1, . . . and the sampled state of the j-th iteration xj [k] = xj(kTa),
the input uj [k] = uj(kTa), the output yj [k] = yj(kTa), and

Φ = exp(ATa) und Γ =
∫ Ta

0
exp(Aτ)dτb =

(
exp(ATa) − I

)
A−1b . (2.131)

The corresponding input-output representation in discrete time reads
yj [0] = cTx0 + duj [0] , (2.132a)

yj [k] = cTΦkx0 + cT
k−1∑
m=0

(
Φk−m−1Γuj [m]

)
+ duj [k] , k = 1, 2, . . . . (2.132b)

that can be rewritten using

g[k] =
{
d for k = 0
cTΦk−1Γ for k = 1, 2, . . .

, (2.133)

to obtain the discrete-time input-output representation

yj [k] = cTΦkx0 +
k∑

m=0
g[m]uj [k −m] . (2.134)

This equation is the analogous result to (2.53) using the discrete convolution with the
impulse response g[k], except that on a finite horizon we cannot assume that the system
is relaxed initially and thus there is a remaining contribution of the initial state x0. By
introducing the shift operator δ : δ(zj [k]) = zj [k + 1] and assuming x0 = 0, one can again
define the transfer operator

G(δ) = yj [k]
uj [k] = d+ cT(δI − Φ)−1Γ = d+ δ−1cT

(
I − δ−1Φ

)−1
Γ

= d+ δ−1cT
(
I + δ−1Φ1 + δ−2Φ2 + . . .

)
Γ = d+ δ−1cT

∞∑
k=0

(δ−kΦk)Γ

= d+
∞∑
k=1

cTΦk−1Γδ−k =
∞∑
k=0

g[k]δ−k.

(2.135)
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Note 2.1. The infinite-horizon methods introduced in the previous section for continuous-
time systems can be transferred to the discrete-time case directly using (2.135).

Note 2.2. The relative degree of a discrete-time systems is defined as follows:

Definition 2.10. A system (2.130) with d = 0 is of relative degree r if

(A) cTΦkΓ = 0 , k = 0, 1, . . . r − 2

(B) cTΦr−1Γ ̸= 0 .

The relative degree of a discrete-time systems thus merely corresponds to the time
index k of yj [k] at which the input uj [0] appears for the first time, i.e.,

yj [0] = cTx0 (2.136a)
yj [1] = cTΦx0 + cTΓ︸︷︷︸

=0
uj [0] (2.136b)

yj [2] = cTΦ2x0 + cTΦΓ︸ ︷︷ ︸
=0

uj [0] + cTΓ︸︷︷︸
=0

uj [1] (2.136c)

...

yj [r − 1] = cTΦr−1x0 + cT
r−2∑
m=0

Φr−m−1Γ︸ ︷︷ ︸
=0

uj [m] (2.136d)

yj [r] = cTΦrx0 + cT
r−1∑
m=0

Φr−m−1Γ︸ ︷︷ ︸
̸=0

uj [m] (2.136e)

The case of a discrete-time system (2.130) obtained by (ZOH-) sampling of a continous-
time system (2.129) begs the questions how the relative degrees of these two systems
compare. Using a series expansion of the exponential matrix exp(Aτ) yields

cTΓ = cT
∫ Ta

0

∞∑
m=0

(Aτ)m
m! bdτ (2.137a)

= cT
∫ Ta

0
b + Abτ + . . .+ 1

(n− 1)!A
n−1bτn−1 + O(Tna )dτ (2.137b)

= cTbTa + 1
2!c

TAbT 2
a + . . .+ 1

n!c
TAn−1bTna + O(Tn+1

a ) (2.137c)

which is always unequal to zero. A discrete-time system derived from a continous-time
system via ZOH is thus always of relative degree r = 1 for d = 0 (and r = 0 for
d ̸= 0).

Before trying to obtain a matrix representation of the system’s input-output behavior
(2.134), it makes sense to carefully define suitable input and output sequences that shall
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be related by this mapping. Specifically, the initial input uj [0] will only start to act on the
output yj [m] with some temporal delay m = r + w, where r is the relative degree of the
system (2.130) and w is an additional delay due to sampling, conversion and processing
of data that is unavoidable in real-world applications. For a finite time horizon t ∈ [0, tf ]
with tf = NTa we will thus consider the input and output sequences

uj [k] , k = 0, 1, . . . , N − 1 (2.138a)
yj [k] , k = m,m+ 1, . . . , N +m− 1 (2.138b)

as well as a desired output sequence

yd[k], k = m,m+ 1, . . . , N +m− 1. (2.139a)

Note that this is essentially shifting the time axis of the output sequence relative to the
input sequence to compensate for the total system delay (cf. the time delay analysis in
Section 2.3.4). Rewriting the corresponding input and output sequences in vector notation,
i.e.,

uT
j =

[
uj [0] uj [1] . . . uj [N − 1]

]
∈ RN (2.140a)

yT
j =

[
yj [m] yj [m+ 1] . . . yj [m+N − 1]

]
∈ RN (2.140b)

yT
d =

[
yd[m] yd[m+ 1] . . . yd[m+N − 1]

]
∈ RN (2.140c)

yT
0 =

[
y0[m] y0[m+ 1] . . . y0[m+N − 1]

]
∈ RN (2.140d)

eT
j = yT

d − yT
j =

[
ej [m] ej [m+ 1] . . . ej [m+N − 1]

]
∈ RN , (2.140e)

and using (2.134) yields the so-called lifted system representation

yj = y0 + Guj (2.141)

with the matrix

G =


g[m] 0 · · · 0

g[m+ 1] g[m] · · · 0
...

... . . . 0
g[m+N − 1] g[m+N − 2] · · · g[m]

 ∈ RN×N . (2.142)

For LTI systems this is a so-called Toeplitz matrix where the entries Gij only depend on
the difference i− j. An equivalent representation for time-varying systems can be found
in [2.12]. Note that since G is a lower triangular matrix due to causality of the system
(2.129) and we assured by definition that g[m] ̸= 0, G is of full rank and thus always
invertible. Analogous to (2.4), a linear ILC law for the lifted system representation is
given by

uj+1 = Q
(
uj + Lej

)
(2.143)
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with the Q-filtering matrix

Q =


q[0] q[−1] · · · q[−(N − 1)]
q[1] q[0] · · · q[−(N − 2)]

...
... . . . ...

q[N − 1] q[N − 2] · · · q[0]

 ∈ RN×N (2.144)

and the learning gain matrix

L =


l[0] l[−1] · · · l[−(N − 1)]
l[1] l[0] · · · l[−(N − 2)]
...

... . . . ...
l[N − 1] l[N − 2] · · · l[0]

 ∈ RN×N . (2.145)

Exercise 2.6. Reformulate a PD-type learning law analogous to (2.74) with a Gaussian
Q-filter (2.103) in the lifted framework. What options do you have? What about the
boundaries of the time horizon?
The system description (2.141) and the learning law (2.143) are very similar to the

infinite-horizon case (2.57) and (2.58) except for the constant term y0. Defining ỹd =
yd − y0, one obtains the input iteration

uj+1 = Ψuj + Λỹd (2.146)

with Ψ = Q(I − LG) and Λ = QL and the corresponding iteration of the output error
ej = yd − yj as

ej+1 = GΨG−1ej + (I − GQG−1)yd . (2.147)

Both iterations are algebraically identical to the infinite-horizon case. We can thus directly
transfer stability and convergence results to the lifted system representation, which are
restated in the following for completeness.

Theorem 2.13 (Asymptotic stability of the ILC law). The input iteration (2.146) of
the ILC law (2.143) is asymptotically stable if

ρ
(
Q
(
I − LG

))
< 1 (2.148)

and uj converges to u∞.

Theorem 2.14 (Asymptotic stability of the output iteration). The output iteration
(2.147) of the ILC law (2.143) is asymptotically stable iff the input iteration is stable,
i.e.,

ρ
(
Q
(
I − LG

))
< 1 (2.149)
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and ej then converges to the asymptotic tracking error

e∞ =
(
I − G

(
I − Ψ

)−1Λ
)
yd =

(
I − GΦG−1

)−1(
I − GQG−1

)
yd . (2.150)

Theorem 2.15 (Monotonic convergence of the input iteration). The input iteration
(2.146) of the ILC law (2.143) converges monotonically to u∞, i.e., it holds that

∥uj+1 − u∞∥ ≤ α∥uj − u∞∥ (2.151)

for 0 ≤ α < 1 if

∥Ψ∥ = σ̄
(
Q
(
I − LG

))
= α < 1 . (2.152)

Theorem 2.16 (Monotonic convergence of the output iteration). The output iteration
(2.64) of the ILC law (2.58) converges monotonically to e∞, i.e., it holds that

∥ej+1 − e∞∥ ≤ β∥ej − e∞∥ (2.153)

for 0 ≤ α < 1 if

∥GΨG−1∥ = σ̄
(
GQ

(
I − LG

)
G−1

)
= β < 1 . (2.154)

Note 2.3. These results are structurally very similar to the infinite time horizon case
with a number of significant differences: By applying the Laplace transform on infinite
time horizons, one is considering stability for every ω ∈ R independently. While
stability can be transferred to the finite time horizon as shown in the previous section,
frequency-domain criteria are rather conservative. Conversely, stability criteria using
the lifted system representation are sharp by accurately accounting for boundary
effects. The dimension of Q and L is determined by the length of the sampled time
horizon N , which can be problematic for long time horizons.

2.4.2 ILC as an online optimization strategy
Using measurements of a system’s behavior to iteratively improve its performance with
respect to some cost function can also be seen as an optimization problem that is solved
online. Consider the problem

min
u

1
2eTPe + 1

2uTWu + uTFe (2.155a)

subject to e = yd − Gu , (2.155b)

with the symmetric, positive (semi-) definite weighting matrices P und W. One can
assume that FG is a skew-symmetric matrix without loss of generality since any symmetric
component could always be absorbed into W. This becomes apparent when plugging
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(2.155b) into (2.155a), which yields the equivalent problem

min
u

J(u) = 1
2uTĀu + uTb̄ + c̄ (2.156)

with

Ā = GTPG + W (2.157a)

b̄ =
(
F − GTP

)
yd (2.157b)

c̄ = 1
2yT

d Pyd. (2.157c)

The quadratic expression uTFGu vanishes due to FG being skew-symmetric. Since we
further assumed that P and W are symmetric and positive (semi-) definite matrices,
the same holds true for Ā. In case Ā is indeed positive definite, the cost function J(u)
is strictly convex and thus has a unique global minimum at u∞ = −Ā−1b̄ which is
determined by the necessary and sufficient first-order condition ∇J(u∞) = Āu∞ + b̄ = 0.

Alternatively, such an optimization problem can be solved iteratively using a gradient-
descent method with constant step width α, e.g.,

uj+1 = uj − α∇J(uj) = (I − αĀ)uj − αb̄, (2.158)

where 0 < α < 2/∥Ā∥ ensures (monotone) convergence, cf. Theorem 2.1.13 in [2.13].
Plugging (2.157b) into (2.158) and suppressing yd in favor of uj and ej using (2.155b)
yields an ILC-like update law

uj+1 = Q
(
uj + Lej

)
(2.159)

with

Q = Lu = I − α(W + FG) (2.160a)

QL = Le = α
(
GTP − F

)
. (2.160b)

2.4.3 Norm-optimal ILC strategies
Along the same line of thought, norm-optimal ILC methods [2.12, 2.14] avoid the explicit
design of a Q-filter and learning filter by solving the optimization problem

min
uj+1

J(uj+1) = 1
2eT

j+1Vej+1︸ ︷︷ ︸
J1(uj+1)

+ 1
2uT

j+1Suj+1 + 1
2(uj+1 − uj)TR(uj+1 − uj)︸ ︷︷ ︸

J2(uj+1)

u.B.v. ej+1 = yd − yj+1 = ej + Guj − Guj+1

(2.161)

for every iteration. Note that this is in contrast to the previous section, where ILC was
rewritten as an iterative solution of a single optimization problem. We assume that V
and S are symmetric, positive semidefinite matrices and R, GTVG + R, GTVG + S are
symmetric, positive definit matrices.
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Plugging the constraint into the cost function of (2.161) yields

J1(uj+1) = 1
2(ej + Guj − Guj+1)TV(ej + Guj − Guj+1)

= 1
2
(
eT
j Vej + uT

j GTVej − 2uT
j+1GTVej

+eT
j VGuj + uT

j GTVGuj − 2uT
j+1GTVGuj + uT

j+1GTVGuj+1
) (2.162)

and

J2(uj+1) = 1
2uT

j+1Suj+1 + 1
2(uT

j+1 − uT
j )R(uj+1 − uj)

= 1
2
(
uT
j+1Suj+1 + uT

j+1Ruj+1 − 2uT
j+1Ruj + uT

j Ruj
)

.
(2.163)

Using the first-order optimality condition(
∂

∂uj+1
J

)
(uj+1) = 0 (2.164)

results in input update(
GTVG + S + R

)
uj+1 =

(
GTVG + R

)
uj + GTVej (2.165)

that is equivalent to an ILC law (2.143) with Q-filtering and learning matrices

Q =
(
GTVG + S + R

)−1(
GTVG + R

)
(2.166a)

L =
(
GTVG + R

)−1
GTV. (2.166b)

By considering

Q
(
I − LG

)
=
(
GTVG + S + R

)−1(
GTVG + R

)(
I −

(
GTVG + R

)−1
GTVG

)
=
(
GTVG + S + R

)−1
R . (2.167)

one can show that the derived norm-optimal ILC scheme is asymptotically stable, i.e.,

ρ
((

GTVG + S + R
)−1

R
)
< 1. (2.168)

The values of V, S and R are tuning parameters that are often simplified by using
diagonal matrices, i.e., V = vI > 0, S = sI > 0 und R = rI > 0. It follows that:

• Large values of v increases the weighting of the output error ej , which increases the
convergence rate and reduces e∞. The learning gain is becoming more aggressive
and the action of the Q-filter is reduced. The limit v → ∞ yields L → G−1 and
Q → I.

• Large values of s penalize the control input uj , which increases the asymptotic
output error e∞. Note that s only affects Q where s → 0 yields Q → I.

• Large values of r penalize changes of the control input uj+1 − uj , which decreases
the convergence rate. For r → 0 it follows that L → G−1.
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