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Abstract. The paper presents a preliminary study on the feasibility of a Neural Networks based
methodology for the calibration of Industrial Manipulators to improve their accuracy. A Neural
Network is used to predict the pose inaccuracy due to general sources of error in the robot (e.g.
geometrical inaccuracy, load deflection, stiffness and backlash of the mechanical members, etc. . .).
The network is trained comparing the ideal model of the robot with measures of the actual poses
reached by the robot. A back-propagation learning algorithm is applied. The Neural Network out-
put can be used by the robot controller to compensate for the errors in the pose. The proposed
calibration technique appears extremely simple. It does not need any information on the pose er-
rors nature, but only the ideal robot kinematics and a set of experimental pose measures. Different
schemes of calibration procedures are applied to a simulated SCARA robot and to a Stewart Plat-
form and compared, in order to select the most suitable. Results of the simulations are presented
and discussed.

Keywords. robot calibration, Neural Network, SCARA robot, Stewart Platform, compensation

1 Introduction

1.1 Kinematics calibration

A robot is a mechanical system in which constructive tolerances (geometrical inaccuracy), load
deformations, stiffness and backlash of the mechanical members, etc. .., cooperate to create inac-
curacy in the gripper pose (position and orientation).

Industrial robots are generally quite repetitive while their accuracy is generally worse. Cali-
bration is a methodology to improve the robot accuracy without mechanical means working only
on its controller. Computer simulations and experimental verifications show that very often a
proper calibration can improve the robot accuracy up to a value close to the robot repeatability
[Mooring et al.(1991), Trevelyan et al.(1996)]. Calibration is possible whenever a procedure to pre-
dict the robot error can be established. Many research activities have been carried on this subject,
nevertheless the search for a simple and effective calibration procedure for on-field applications is
still open.
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A procedure to improve the robot accuracy (which for not calibrated industrial robots is some-
times up to some millimeters) consists of two main parts:

1. the measurement of the gripper position and orientation error for a predefined set of gripper
poses in the workspace;

2. the development of a mathematical technique to predict and to compensate for the measured
errors.

These two problems can be considered quite independent. The authors attention in this work
is focused on the second aspect: supposing given a data set of gripper pose measures, a new
method to predict the gripper pose inaccuracy is proposed. This will make possible a compen-
sation [Faglia et al. (1993), Legnani et al.(1996), Trevelyan et al.(1996)].

Classical methods are based on the well-known parametric approach and consist in two phases:

e the definition of a model of the robot considering some of the possible causes of inaccuracy
(defining a priori the relating complexity);

e the identification of the unknown value of the parameters of the model.

Usually the models consider only geometrical inaccuracy. The complexity of the model and the
high number of parameters involved often prevents considering other phenomena, such as the de-
flection of the elements, the backlash in the joints, etc. ... This is the principal limit of the paramet-
ric approach.

1.2 The proposed methodology

To overlap the limits of parametric calibration we try to find a simple method, able to predict the
pose errors in a way completely independent of the nature of their causes and without requiring any
complex model [Tiboni et al. (2003), Fazenda et al. (2006)].

A Neural Network (NN) appeares a good instrument to achieve this goal. A robot can be con-
sidered a system that performs a transformation of the input (the joint angles) in a corresponding
set of the gripper coordinates in the robot workspace (the output). The input/output transfer func-
tion in a real robot may be quite different from the theoretical one. Moreover, theory assures that a
proper feed-forward Neural Network, with a back-propagation training technique is able to approx-
imate any kind of mathematical transformation [Haykin (1999)]. The basic idea is to use a Neural
Network to learn the input/output direct and inverse transfer function of the real robot.

This preliminary study has the aim to verify the effectiveness of this methodology comparing
a number of different computational schemes involving a Neural Network and an ideal model of
the robot kinematics. The methodology is applied to different serial and parallel manipulators. The
network is trained and tested using simulated pose measures generated by an external program im-
plementing the kinematics of a robot with geometrical errors, plus joint backlash and compliance.
The results obtained by the different schemes are compared taking into account:

a. the accuracy in the prediction of the real pose;
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b. the difficulty in the NN parameter tuning;
¢. the capacity of generalization;
d. the immunity to the noise included in the measures.

Many different calibration schemes have been tested. Two of them, which will be more deeply
analyzed in the paper, produced very good results. They are able to improve the accuracy up to a
value comparable with the measuring error and the robot repeatability.

To have the possibility to examine different schemes with different variants, a suitable simula-
tion procedure was adopted.

Different calibration scheme are initially compared on a simplified SCARA robot. As a second
step, the more promising schemes are applied to a parallel manipulator and to a full model SCARA
manipulator for their final validation.

2 The SCARA robot used for the preliminary tests

Being the aim of the first step of the research just a feasibility analysis, we consider a very
simple SCARA robot. In spite of its simplicity, this robot is characterized by the same problems of
more complex robots, as singularities, multiple solutions, etc.

The robot considered is formed by two links which move the gripper in the x-y plane by means
of two rotoidal joints; the end-effector vertical translation is not considered. Let us denote with o
and P the two joint variables, with /; and /5 the link lengths, with x and y the end-effector cartesian
coordinates (Fig. 1).

The nominal direct kinematic problem for this robot is solved by equations 1, the inverse one
by eq. 2.

x =1 coso+lcos(a+P)
{ = [jsinot+ L sin (o + ) M
y=14 2
{ o= iarccos(%) )
B = atan2(y,x) — atan2(lysin P, 1} + I cosP)

By introducing geometrical inaccuracy the direct kinematic is solved by eq. 3, where the “prefix”
d denotes small unknown errors, while Ax,Ay represent the gripper error that can be measured for
given values of o and 3. The errors can be constant, random or depending on the external loads.
The nature of the errors is better described in sect. 3.2.

xr=x+Ax= (I} +9l)cos(o+da)+

+(lp + 0l,) cos (ot + do + B+ )
yr=y+Ay= (l1+0l;)sin(o+ da)+

+(l, + 8L) sin (. + do. + B + OP)

3)
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3 Calibration methodology

3.1 The Neural Network

In a problem of system identification (nonlinear input-output mapping) a right choice for a NN
is a multilayer feed-forward network, trained in a supervised manner with the back-propagation
learning technique [Haykin (1999)].

The chosen network contains just one layer of hidden neurons (Fig. 2) with sigmoidal activa-
tion functions. Linear activation functions are used for the output neurones. In accordance with
the “universal approximation theorem”, this NN can approximate an arbitrary continuous func-
tion [Haykin (1999)]. Moreover, this choice is the optimum in the sense of easy implementation,
learning time and generalization.

Input level

v I5IO80
Tool center point @ + @ * Hidden level

Output level

Motor 1

Figure 1: The SCARA robot joint variables. Figure 2: The feed-forward network used.

3.2 The tested calibration schemes

The authors attention has been focused first on the direct kinematic calibration and then on the
inverse one.

For the direct kinematics, the idea is to create a neuro-kinematic (NK) model of the real robot
(Fig. 3), merging a model of the ideal robot with a NN describing the manipulator errors. Different
schemes have been analyzed (Fig. 5) to select the more effective one.

In Fig. 3 we denoted as Q;, = [o; B]’ the values of the joint variables measured by the joint
transducers, while S;, = [x;y]" and S,. = [x,;y,]" are the theoretical and real gripper pose.

The NN is trained in order to reduce the quantity E = ||S,. — Syk ||, which represents the error
in the gripper pose prediction, where || - || is the Euclidean norm.

The schemes of NK model in Fig. 5 enable the prediction of the actual gripper pose S;., knowing
the joint rotations Q,;, (direct kinematics calibration).
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S'l'll Q'l'll
QTH STH THEORETIC
THEORETIC —_—P : INVERSE >
4’- DIRECT ; KINEMATICS
KINEMATICS
SRF. QRF
Q'm p| REAL ROBOT . E=AS STH p| REAL ROBOT N AQ AS
S - - Sl
= KINEATATIC g
r = Snxc QNK
Figure 3: The direct kinematics calibration Figure 4: The inverse kinematics calibration
model. model.

For the inverse kinematics calibration is required to predict the joint rotation Q,. that bring the
gripper of an actual robot in a desired pose Sth. A NK inverse model has to be trained (Fig. 4);
different possible schemes are shown in Fig. 6.

In order to make results comparable with those of the direct kinematics, instead of the joint error
E =||Qr. — Onk||, as performance index was used the equivalent pose error E = ||AS|| = |[JAQ||,
where J is the jacobian matrix and AQ = Q. — Oy,

4 Comparison of the different Neuro-Kinematics schemes

4.1 Angular coordinates

The first simulations highlighted a problem related to large variations of the angles.

The robot behaviour depends on the sine and the cosine of rotation angles rather than on the angles
themselves. And so a rotation of o or o+ 2km produces the same effect. However, since the
NN activation functions are continuous and not periodical, if an angle is used as input to a NN,
the output value would be different when the input is o or o+ 2kw. This fact makes the NN
behaviour unreliable for large rotation of the joint angles and for the representation of the gripper
attitude. After several tests, it was decided to replace each angular input of the NN with two
inputs representing the sine and the cosine of the angles, that means that the joint vector Q = [o f]
(trigonometric form) was defined as Q = [sina. cosa sinf3 cosP] (angular form).

A second aspect of this problem was the identification of the best way to add joint rotations in
the schemes like 2,3,4 and 6 of Fig. 5 and Fig. 6. This operation can be done in three different ways
as described in Tab. 1. In the preliminary tests, all the considered NN performed better using the
second type of angular addition.

Generalizing previous observations, every time a coordinates set X (X = Q or X = S) contains
some angular values, in order to avoid discontinuity and singularity, a transformation 7'(-) between
the angular form X, and trigonometric one X; have to be defined:

X =T(X,) 4)
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| 0 | do | ( |
0 do 0+do
0 | sind® 0 + atan2(sind®; cosd0) | X | ax | X |
cosdO X, ax, X +dX
sin® | Asin® | atan2(sin®+Asin®;cos0+Acos0) X, | T(dXx,) | X+T1(adx)
cos® | Acos® T(X,) | dT(X,) | T1(X +dX)
Table 1: Different types of angular sum Table 2: Different types of angular sum

The choice of the inverse transformation form 7~!(-) have to take in to account that, if X; is re-
dundant, some fundamental trigonometric relations may be not satisfied (cosa? + sina> ~ 1). The
transformation chosen for the joint coordinates Q of the SCARA robot is:

Xa [0 ]
X, =T(X,) = [sinXy cosXy sinXyn cosXyo]
= [sino cosa sinf cosP]
T-YX,) = l|atan2(X;1,Xs2) atan2 (X3, X;4)]
[

atan2(sino, coso.) atan2(sinf3, cosp)]

Gripper coordinates S do not contain angular values, so no transformation is necessary .
Generalizing cases of Tab. 1, there are three types of angular sum shown in Tab. 2.

4.2 Preliminary tests

The simulation tests were performed as follows.

A first computing program based on Eq. 3 and simulating the real robot was used to generate
a set of robot poses S, starting from a given set of joint coordinates. Some of the poses and the
corresponding joint coordinates were used to train the NN of the NK models, while the others were
used as validation set.

Proper tests suggested the correct values for the number of hidden neurons and for the training
parameters: learning rate 1 (0.01) and momentum o (0.9). These values proved to be suitable for all
the considered NK schemes. Scheme 8 using a plain NN without robot kinematics was discharged
due to its poor performances.

The first tests were performed on the direct kinematics schemes considering the sources of
the pose errors described in Tab. 3, excluding random components. Compliance is modeled by
torsional springs representing elasticity in the kinematics transmissions; k; and k; are their stiffness
constants. Constant forces are applied to the links at points P; and P, (Fig. 1) and produce extra joint
angular deflections whose amplitude depends on the robot configuration. The tests were repeated
three times, simulating the real robot with the numerical values reported in Tab. 4. The considered
errors are much more severe than those usually present in actual robots.

The two last lines of Tab. 4 contain the mean and maximum position error before calibration.

Forty-six poses uniformly distributed in the working area were used to train the network. The
back-propagation learning phase of the NN was performed in batch-mode [Haykin (1999)] and
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’ H case 1 ‘ case 2 ‘ case3 ‘

[ [mm] 330 330 330

[ [mm] 330 330 330

0l/; [mm)] 5 5 0.5

0/, [mm)] -6 -6 -1

da [deg] 2 2 0.15
dl; || error in the length of the first link 5P [deg] 13 13 0.05
dl, || error in the length of the second link ki [Nm/rad] || rigid 1000 80000
do || error in the first joint rotation k> [Nm/rad] || rigid 1000 70000
dB || error in the second joint rotation Fi.; Fiy [N] [0:0] | [100;0] | [200;-100]
kq torsional stiffness of the first joint Fay; By [N] [0:0] | [100:0] | [-300:200]
ko || torsional stiffness of the second joint E e [mm] 6.67 803 0.76
Fy || force applied on point P; (first link) E,pay [mm] 10.2 17.0 1.26
F, || force applied on point P, (second link)

Table 4: Values of the components of error con-
Table 3: Components of error considered sidered

lasted for 1000 epochs.

During and after this learning process, the NK models were used to predict the pose of 1244
robot configurations forming the validation set.

Results are presented in Tab. 5 and in Fig. 7. Last column of Tab. 5 contains the optimal number
of hidden neurons of the NN for each scheme (among those tested (10,15,20)).

All the considered NK schemes (except for 6 and 7) performed well on the training set giving
an error in the range (10~7 < 107>) m. Results on the validation set (Tab. 5) confirm the ability of
some NK schemes to generalize the learning.

] scheme H case 1 \ case 2 \ case 3 \ HN ‘

1 0.03950 | 0.03230 | 0.00990 | 20
0.00019 | 0.00094 | 0.00077 | 20
0.00405 | 0.02880 | 0.00317 | 20
0.00114 | 0.00607 | 0.00105 | 20
0.02340 | 0.02350 | 0.00163 | 20
0.52100 | 0.50700 | 0.06140 | 15
0.77000 | 0.47300 | 0.06220 | 20

~N| NN K| WIN

Table 5: Average error [mm]| on validation set after the training phase and optimal number of hidden
neurons

4.3 Optimal NN selection

An analysis of the results shows that schemes 2 and 4 perform much better than the others in all the
considered situations.
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mean error on the validation set [m]

10- L 5 L
10 10
iterations

mean error on the validation set [m]

10° 10
iterations

Case 3

mean error on the validation set [m]

10° 10°
iterations

Scheme || 1 (2|3 |4 5|67
Symbol || o | x| 0|7 ||| X

Figure 7: Average error on the validation set, during the learning process, for the considered
schemes in the 3 error cases
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First at all, schemes 1 to 5 using joint coordinates Q as input for the NN performed better with
respect to those based only on gripper coordinates S, probably because the same gripper position
can be reached with different values of the joint coordinates resulting in different pose errors.

Moreover, the parallel schemes (2,3,4,5 and 6) are preferred than the series ones (1,7); probably
because the NN has to learn just the difference between the nominal and the actual robot kinematics.

As already mentioned a scheme adopting only a NN without a nominal kinematic model was
rejected after the preliminary tests because its performances were clearly worse.

After all the tests the NK models 2 and 4 confirmed to be a good tool to predict the kinematic
behaviour of the actual robot. Few neurons were sufficient to reproduce the direct kinematics even
in presence of load deflecting the joints. These two schemes were selected for further tests.

4.4 Tests with random errors

After having identified the more efficient NK schemes, further tests permitted to verify the NN
behaviour in presence of noise or random errors like backlash.

All the poses constituting the training set were corrupted adding random errors with the max-
imum amplitude described in Tab. 6. E is the average pose error while the random component of
the pose error E, is computed as difference between the pose reached by the robot with constant
and random errors and the pose reached by the robot with only the constant part of the errors.

Then the NN of the NK models 2 and 4 were trained using the corrupted set following the
procedure denoted as “early stopping method” [Haykin (1999)].

The number of training poses was dropped to 36 and the number of the neurons was experimentally
minimized in order to avoid the overfitting risk while keeping good convergence on the corrupted
training set.

Finally the average and maximum pose error were evaluated with respect to the validation set.
Results are reported in Tab. 7 for the direct kinematics and in Tab. 8 for the inverse one.

In this case for the NK schemes two performance indexes were evaluated: the “actual error”
and the “apparent error”. The actual error (E,.) is the error evaluated comparing the gripper pose
predicted by the NK model with the pose of the validation set not affected by random noise. The
apparent error (E,) is the difference between the predicted poses and the poses of the validation
set corrupted by the random noise. It is important to note that E,- < E;,. In other words, the NN
reduces the effect of the random noise filtering it. With reference to the symbols of Tab. 6, 7 and 8,
we evaluated the filtering index as:

Eac
E,

Depending on the NK scheme, the filtering index was in the range 30% = 80%.

This result means that if the NN is trained using data having a certain amount of random error
E,, the apparent error in the validation set would be nearly equal to E,, but the actual error would
probably be much lower (30% <+ 80%) because the NN produces an “average” effect on the data.
This is quite desirable.

The same considerations can be made for the inverse NK schemes: using the same values of
the errors of Tab. 6, the results obtained (Tab. 7, Tab. 8) show that schemes 2 and 4 are suitable for
inverse kinematic calibration too.

FI=

®)
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parameters || const rand
&l; [mm] 5 +0.1

Sl [mm] -6 +0.12
o0 [deg] 2 +0.04
OP [deg] -6 | £+0.026
Ox [mm] 0 +0.01
Oy [mm] 0 +0.01
pose error || ave. max.

E [mm] 12.6 20.0
E, [mm] 0.17 0.49

Table 6: Parameters for tests with random noise and corresponding pose error before calibration.

scheme 2 4 scheme 2 4
HN 8 2 HN 7 5
error ave. | max. || ave. | max. error ave. | max. || ave. | max.
E,p [mm] || 0.21 | 0.67 || 0.17 | 0.44 E,p [mm] || 0.18 | 0.54 || 0.19 | 0.66
E,. [mm] || 0.14 | 0.43 || 0.05 | 0.17 E, [mm] || 0.08 | 0.28 || 0.10 | 0.38
FI 86% 32% FI 49% 62%
Table 7: Results of the tests with random Table 8: Results of the tests with random errors
errors on validation set after direct Kine- on validation set after inverse kinematics cali-
matics calibration bration

4.5 Considerations

Schemes 2 and 4 proved to perform well even in presence of random errors and guarantee a final
actual error close to the robot repeatability. Of course in experimental application only the apparent
error can be estimated, but it is reassuring that the actual error would be a little better than it.

This good results encouraged the adoption of similar calibration techniques to more compli-
cated robot models.

S Application to a simulated Stewart platform

The main feature of the NN based calibration is that it does not require any kind of information
about the causes of inaccuracy of the robot. This quality becomes fundamental when the robot has
a complex structure.

The authors applied the proposed methodology to a Stewart platform robot having the configu-
ration of Fig. 8.

The spherical hinges of the base (B;) and the platform (P;) are placed at the vertices of a regular
hexagon and an equilateral triangle inscribed in a circle with a radius of 1 m and 0.5 m respectively.
Their position with respect to the base and the platform frames are

B; = [xpi Ybi 2bil'

P = [xpi Ypi 2pi)'
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Six translational joints (Q;) link the platform to the base and control its position and orientation
(6 dof).

Three frames are used: frame {b} fixed to the base, frame {p} fixed to the platform and frame
{g} fixed to the gripper (translated with respect to {p} of z,,, = 0.2 m). The gripper pose is defined
by the vector S = [xg yg zg ¥ 0 ¢] (using Tait Brian orientation angles); the length of the six legs”

are used as joint coordinates Q = [l [ 3 Iy Is lg] = [Q1 Q> O3 Q4 Qs Q¢]".
The pose of the gripper with respect to the base is represented by the position matrix

Mg = Trans(X ,x,) - Trans(Y,yg) - Trans(Z,z,)-
Rot(X,y)-Rot(Y,8)-Rot(Z,0) =

CeCy —CoSy So Xg
| seco +cysd —SyseSe +CyCy  —SyCo Vg

—CySeCH + SySo  CySeSo + SyCo CyCo g

0 0 0 1

the position of the mobile platform with respect to the gripper is

1 000

0100
Mop=10 01 -z
0 001

The inverse kinematic problem is easily solved: the positions of platform hinges [x),;y,;z),,]" with
respect to the base frame {b} are computed using the transformation matrix M;, which represents
the position of the platform frame with respect to the base one

Mpp = MpgMgp
x;n Xpi
/
y
Z;” — My, )Z’pl
pi pi
1 1
the leg’s length are computed as
i = \/ (oebi =X ) 2+ (Vi =)+ (26— 7)) (6)
i = 1...6

The direct kinematic problem is solved using iterative numerical methodologies (extended Newton-
Raphson method).
Three different types of structural errors were added to this simulated robot:

e position error of the hinges of the base and the platform (dx; dy; 0z;);

e length error of the legs (3/;);
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e position (dxg Oy, 8z,) and orientation (3y 80 6¢) error of the gripper with respect to the
platform.

The actual value of the geometrical parameters of the robot L is obtained adding three compo-
nents:
L=1L,+8L, +3L, (7)

where L, is the nominal (theoretic) value, dL. is the constant part of the error and dL, is the
random component which varies in each pose. Random component represents backlash and the
measurement tool uncertainty. For each geometrical parameter a value of the constant error L. in
the ranges specified in Tab. 9 was randomly chosen.

| | dL. | oL, |
dx; Oy; Oz; [mm] +1 | £0.02
0/; [mm] +3 +0.02

dxg 8yg Ozg [mm] || £0.1 | £0.01
Sy 86 80 [mrad] | +0.25 | £0.02

Table 9: Ranges of the constant (8L.) and the random (8L,) geometrical error values.

Inside the work space of the robot, defined as

—02m <x,< 02m

—02m <y, < 02m

LOm <zg< 14m
—30deg <y < 30deg
—30deg <0< 30deg
—30deg <0< 30deg

50 poses (randomly distributed) for learning set (lea) and 100 for validation (val) were selected.
As a consequence of the (small) geometrical errors, the theoretical gripper pose differs from the

actual pose. The homogeneous matrix M that describes the roto-translation between them has the
following form

I —-Ad A0 |Ax
Ad 1 —Ay | Ay 8)
—A0 Ay I | Az

0 0 0 \ 1
Calibration has the aim of minimizing the difference between predicted and actual pose, i.e. min-

imizing the extra diagonal elements of M. To measure the pose prediction quality two different
error index were computed, the first for position, the second for orientation:

M ~

Ey, = \/ A + Ay + A 9)

Eug = \/Aq;2+A92+A¢2 (10)
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[mm] | set E SL, oL, /2 SL, =0
ave | max | ave | max | ave | max
xyz 5.98 143 | 598 | 20.7 | 598 | 20.6
lea ang 9.60 | 17.1 9.34 | 20.5 | 9.34 | 20.5
SL. XyZr 0.10 | 0.26 | 0.04 | 0.14 0 0
angy 0.08 | 0.17 | 0.03 | 0.10 0 0
val xyz 599 | 288 | 6.47 | 50.0 | 648 | 50.1
ang 9.62 | 26.0 | 993 | 59.9 | 9.96 | 60.1
XYz 0.11 0.60 | 0.05 | 0.40 0 0
ang, 0.09 | 0.56 | 0.04 | 0.31 0 0
xyz 3.22 135 | 2.87 | 7.03 | 324 | 13.5
lea ang 4.88 123 | 4.62 | 7.12 | 4.88 12.3
8L /2 XYz, 0.10 | 0.38 | 0.05 | 0.18 0 0
angy 0.08 | 0.27 | 0.04 | 0.13 0 0
xyz 293 | 991 | 3.10 | 253 | 293 | 9.76
val ang 4.70 10.5 4.86 | 24.7 | 4.70 10.1
Xyzr 0.10 | 046 | 0.05 | 0.24 0 0
ang, 0.08 | 038 | 0.04 | 0.23 0 0

Table 10: Pose errors for the Stewart platform before calibration (mm or mrand).

Average and maximum values on the validation set before calibration are shown in Tab. 10; to
highlight the effects of constant and random errors, simulation tests were repeated 6 times with
different combinations of the constant (8L.,d8L./2) and of the random (8L,,dL,/2,0) errors. In
Tab. 10 values labelled by xyz and ang are the average linear and angular error, while xyz, and ang,
are the random components.

Contrary to serial robots, in parallel ones a joint configuration Q can bring the robot gripper

in several different poses with different pose errors. This means that the robot configuration is
completely defined only when the pose vector S is known. However, in actual uses of parallel
robots, only one of the possible joint configuration is used because the change of the configuration
implies the crossing of a singularity (where the structure is under-constrained). With this restriction
even vector Q gives full information. For this reason, the calibration schemes that can be used are
2,4 and 6.
Scheme 4 and 6 involve an angular sum on gripper coordinates S (orientation angles y,0 and 0).
In order to avoid singularities of Tait Brian angles (6 = +m/2) and discontinuity across +m the
transformation 7'(-) was built choosing eight elements of matrix M, and defining the angular S,
and the trigonometric S; form of S:

S = xyzweg
Si=T(Sa) = [xy 2z cocy —cosy
so —SyCo Cycol’
= [Si1 Sz Si3 i Susl
Sa=T7'(S) = [Su S Si3 atan2(—Sy7,Ss)
asin(Sye) atan2(—S;s,Su)|"

Pose error after calibration of the inverse kinematics are shown in Tab. 11. The average actual error
on the validation set was strongly reduced but not enough to reach the repeatability of the robot E,:
for this reason the filter index F/ is greater than 100%.

The proposed calibration methodology applied to a 6 dof robot had worse performance than the
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2 dof SCARA. It is important to notice that NN’s learning is, practically, an interpolation proce-
dure so the density of the poses in the training set is a main factor for a good performance. If the
robot has several dof, a great number of measured poses are necessary to cover the n-dimensional
work-space of the robot (with n=dof).

Some comments are: the pose errors after calibration in the validation set is 2 or 3 times that of
the calibration set having the same initial value of constant and random error. The two considered
schemes have in average the same performances: the average accuracy error is reduced from some
millimeters to about 0.1 mm. The presence of the random error significantly degrades the calibra-
tion performance.

[mm] | set E oL, oL, /2 0L, =0
ave. | max. | ave. | max. | ave. | max.
xyzap || .074 | 203 | .054 | .118 | .026 | .078
lea | angap || .160 | .504 | .111 | 299 | .061 | .190
xyzac || .066 | .182 | .054 | .110 | .026 | .078
3L, ang ac 142 1 501 | .108 | .338 | .061 | .190
xyzap | .133 | 1.03 | .112 | 1.49 | .087 | .737
val | angap || .327 | 3.40 | 282 | 5.15 | 225 | 247
Xyz ac 123 ) 924 | 111 1.55 | .087 | .737
ang ac 304 | 3.01 | 280 | 5.32 | 225 | 2.47
FI Xyz 132% 217% -
ang 386% 669% -
xyzap || .040 | .114 | .019 | .036 | .010 | .023
lea | angap 101 | 320 | .041 | .106 | .025 | .077
xyzac || .039 | .098 | .021 | .049 | .010 | .023

SL./2 ang ac 084 | 280 | .044 | .121 | .025 | .077
xyzap | .096 | 384 | .045 | 258 | .032 | .115
val | angap || .198 | 1.19 | .107 | .755 | .086 | .465

xyzac || .083 | .046 | .040 | 246 | .032 | .II5
angac || .173 | 1.50 | .097 | .689 | .086 | .465
FI Xyz 217% 86% -
ang 669% 258% -

Table 11: Pose errors after inverse kinematics calibration of the Stewart platform using scheme 2.

6 Full SCARA model

The set of structural errors used for the SCARA robot simulated in the previous case was not
complete. This means that not all possible geometrical inaccuracy were considered for the simu-
lated robot. In order to test the NN based calibration methodology with a full robot model, a 3 dof
SCARA manipulator was used.

The kinematics model is shown in Fig. 9: reference frames are positioned on the robot using
Denavit & Hartenberg conventions.

In a generic serial robot the number of geometrical errors is

N=6+4R+2P (11)

were R is the number of rotational joint and P the number of translational one. However, de-
pending on the measuring instrumentation, just some of them can be estimated. Assuming that G
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[mm] | set E oL, oL, /2 oL, =0
ave. | max. | ave. | max. | ave. | max.
xyzap || .039 | .087 | .025 | .057 | .021 | .053
lea | angap || .080 | .178 | .056 | .182 | .051 | .174
Xyz ac .039 | .092 | .026 | .054 | .021 | .053
SL, angac || .085 | .286 | .061 | .155 | .051 | .174
xyzap || 115 | 659 | .068 | .648 | .081 | .832
val | angap 287 | 2.01 | .161 | 2.24 | 183 | 2.41
XyZ ac 103 | 600 | .064 | 559 | .081 | .832
ang ac 264 | 1.62 | 153 | 1.94 | .183 | 241
FI Xyz 110% 125% -

ang 336% 366% -
xyzap || .033 | .108 | .030 | .076 | .010 | .033
lea | angap 084 | 382 | .066 | 417 | .022 | .110
Xyz ac .032 | .066 | .030 | .087 | .010 | .033
8L /2 angac || .068 | .227 | .067 | 256 | .022 | .110
xyzap || .073 | 259 | .071 | 213 | .041 | .303
val | angap 143 | 750 | 160 | 1.28 | .095 | 1.05
XyZ ac .061 | .160 | .061 | .383 | .041 | .303
ang ac A13 ) 505 | 149 | 1.18 | .095 | 1.05
FI Xyz 60% 131% -

ang 137% 395%

Table 12: Pose errors after inverse kinematics calibration of the Stewart platform using scheme 4.

I zb=20 |21 l 22 ‘
Xb=X0 X1 X2
Zp
Xp
Figure 8: Simulated Stewart platform. Figure 9: Simulated 3 DOF SCARA.

coordinates of the gripper pose can be measured the number of the identifiable parameters is
N=G+4R+2P (12)

Eq. 11 and Eq. 12 are obtained generalizing the concepts described in [Mooring et al.(1991)]. Since
we assumed that only the position (x y z) of the gripper could be measured (and not its orientation),
the number of geometrical error parameters which have to be defined to describe the robot geometry
iISN=3+4-2+2-1=13.

A complete set of parameters describing the 3 dof SCARA geometry and compliance was se-
lected [Omodei et al. (2000), Legnani et al.(2001)]. Nominal values and errors of the geometrical
and compliance parameters are shown in Tab. 13 and Tab. 14 respectively.

A force F, whose components are function of the pose coordinates was applied to the gripper
causing joint and gripper deflections (Tab. 15).

Fo = cix+cxy+cesz
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| L | Ln | 8L | 3L |
Xo trans(Xp) [mm] 0 2.5 | £0.02
Yy trans(Y},) [mm] 0 | —-2.2|=£0.02
Xo rot(Xp) [mrad] 0 2.3 | £0.02
0
0

Yo rot(¥,) [mrad] —1.7 | £0.02
0, rot(Zp) [mrad] 1 | —=1.7 | £0.02
a; trans(Xp) [mm] || 330 | 0.4 | £0.02
o) rot(Xp) [mrad] 0 0.1 | £0.02
vy rot(¥p) [mrad] 0 | —0.3 | £0.02
0, rot(Z;) [mrad] O, | 0.7 | £0.02
a> trans(X;) [mm] || 330 | —0.4 | £0.02
oo rot(X;) [mrad] 0 0.2 | £0.02
Yy rot(Yy) [mrad] 0 1.7 | £0.02

d trans(Zp) [mm] || QO3 | 0.1 | £0.02

Table 13: Geometrical parameters of the 3 dof SCARA.

| Za |3 [ 8L ]

ci | 0] 3 [£2

| 0] -6|=x2

| L | L, | 8L. | 8L, | | 0] 12 | £2

Ky [m/N] rigid | 107> | £107° ca || O ]-15]£2

K, [m/N] rigid | 107> | £107° cs || 0| 30 | £2

Koy [rad/Nm)] || rigid | 107> | £107° | 0] 3 [£2

Kgo [rad/Nm] || rigid | 107> | £107° c7 | 0] 6 | £2

K, [m/N] rigid | 107% | £107° cg || O |-18] 2
Table 14: Compliance parameters of the 3 Table 15: Coefficients of Eq. 13: forces in [N]

dof SCARA. distances in [m].

F, = caxp+csxz (13)

F, = c¢+crz+cgxy

Inside the work space (which has a torus shape R;;; = 0.13 m, R,y =0.53 m,0m <z < 0.3
m) 72 uniformly distributed poses for the learning set (lea) and 430 for the validation set (val) were
selected. The pose error is computed using Eq. 9. Average and maximum values of the pose error
E and the random component E, before calibration are shown in Tab. 16. To better analize the
properties of the calibration technique in different situations, the algorithms have been tested with
different combinations of constant (0L.) and random (8L,) errors values.

Apparent and actual pose error after direct kinematics calibration using scheme 3 and 4 are
shown in Tab. 17 and Tab. 18 respectively. Gripper coordinates don’t include angular values, so no
transformation 7'(-) is needed.

Results reported in Tab. 16, Tab. 17 and Tab. 18 show that the calibration procedure proposed
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Table 17: Pose errors after direct kinematics calibration of 3 dof SCARA using scheme 3.

Table 18: Pose errors after direct kinematics calibration of 3 dof SCARA using scheme 4.

[mm] | set | E OL, dL, /2 0L, =0
ave | max | ave | max | ave | max
lea E 344 | 4.61 | 3.51 | 444 | 3.50 | 4.50

SL, E, 028 | 0.65 | 0.15 | 0.29 0 0
val E 3.51 493 | 3.51 485 | 3.50 | 4.74

E, 030 | 0.65 | 0.14 | 0.32 0 0
lea E 1.80 | 2.60 | 1.77 | 2.36 1.76 | 2.28

SL./2 E, 0.26 | 0.54 | 0.13 | 0.28 0 0
val E 1.76 | 2.85 1.76 | 2.35 1.74 | 2.42

E, 0.27 | 0.64 | 0.14 | 0.32 0 0

Table 16: Pose errors for the 3 dof SCARA before calibration.

[mm] | set | E oL, oL, /2 0L, =0
ave | max | ave | max | ave | max
lea | ap 0.27 | 052 | 0.21 | 045 | 0.07 | 0.16
oL, ac 0.18 | 039 | 0.16 | 0.38 | 0.07 | 0.16
val | ap 0.38 1.01 | 0.23 | 0.60 | 0.12 | 0.48
ac 023 | 0.70 | 0.18 | 0.44 | 0.12 | 0.48
FI 76% 131% -
lea | ap 0.29 | 0.65 | 0.12 | 0.25 | 0.04 | 0.10
8L /2 ac 0.21 | 0.60 | 0.10 | 0.20 | 0.04 | 0.10
val ap 037 | 096 | 0.17 | 0.39 | 0.05 | 0.18
ac 0.24 | 0.80 | 0.10 | 0.34 | 0.05 | 0.18
FI 89% 74% -

[mm] | set | E oL, oL, /2 0L, =0
ave | max | ave | max ave max
lea | ap 0.29 | 0.57 | 0.19 | 0.50 0.03 0.08
OL, ac 0.19 | 034 | 0.15 | 0.41 0.03 0.08
val | ap 036 | 096 | 0.21 | 0.53 0.05 0.30
ac 0.21 0.54 | 0.15 | 0.41 0.05 0.30
FI 69% 109% -
lea | ap 0.25 | 0.58 | 0.12 | 0.25 | 0.006 | 0.02
SL./2 ac 0.14 | 031 | 0.09 | 0.18 | 0.006 | 0.02
val | ap 0.30 | 0.63 | 0.17 | 043 0.01 0.10
ac 0.14 | 037 | 0.10 | 0.30 0.01 0.10
FI 51% T4% -
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is very effective in the reduction of the positioning error. By using both scheme 3 and 4 the error is
reduced to values close. For the considered manipulator the best results are achieved by scheme 4.
As observed for the 2 DOF SCARA robot, the NN partially filters the random errors.

7 Conclusions

The paper presents a preliminary study on an innovative Neural Network based calibration pro-
cedure. Different schemes of a Neuro-Kinematic model were tested in direct and inverse kinematic
calibration both on serial and parallel simulated robots. Three of them obtained good performances:
in all considered cases accuracy error was reduced nearly to robot repeatability. It was also shown
that the NK model is able to filter part of the noise component present in the measures.

The NN based procedure seems to be suitable to the calibration of all robot types and extremely
simple to use: only the nominal kinematic model of the robot is needed, the procedure is able to
compensate for all type of ripetitive errors present in the robot (geometrical, load deflections, ...)
without modelling them.

Similarly to other procedures, a proper (quite large) number of measured poses distributed in the
workspace (or in a part of it) is needed. The results obtained in the simulated cases encouraged the
authors to apply the proposed procedure to actual robots.
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Abstract

In this paper the development of an intelligent control system with integrated robot vision is
considered to enable the solving of complex assembly and quality control tasks with high
accuracy and speed. The application of machine vision is a multilayer problem which
demands a great amount of expert knowledge, experiences and innovations. The developed
algorithm, presented in the paper, is used for the diameter and the roundness measurement of
welded rings. Three different quality range systems are presented and discussed at the end of
the paper. The results enable the successful replacement of manual (carried out by operators)
quality control of the welded ring by a machine-vision control, which ensures better efficiency
and accuracy of the ring’s quality-control process over an unlimited time period,
independently of various subjective and objective disturbances.

1 Introduction

Robot welding is well known operation in many industrial applications despite of its problems
appearing during the process. The welding process is confronted with one of its major
problems, the contraction or extension of a welding area, i.e. the heating zone. Therefore the
products are not the same size before and after the welding process. The other, even more
complex problem is to bend a ring into a perfect circle and keep it in that shape after the
welding process is finished. To assure the appropriate dimensions of the welded ring at the
end of the welding process, the process itself must be carried out adequately and the quality
control at the end of the welding process must be carried out accurately and with high speed
without interrupting the assembly process too much.

Development of an intelligent control system with integrated robot vision for the above
mentioned task, presented in this paper, is successfully accomplished at the end by the
industrial application. In spite of numerous research works done in the past, every new
application of the robot vision is faced with a multilayer problem which demands a great
amount of expert knowledge, experiences and innovations (Trdic, F., 2006; West, P., 2006).

Introducing machine vision control into assembly process demands in the beginning the
clarification of the purpose of the application, which is usually not only the problem of
measuring of one or more product parameters in a very short time but also the fault detection,
usually detected in manual assembly by workers, based on adequate sample. The control
system, considered in this paper, must work also in the industrial environment, where the
available control time expenses are limited.

In many assembly processes the control process is still done by workers. They are capable
to make estimation and judgment about a product or a part accuracy and shape fault using
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personal skinless of quick and accurate decisions based on human vision system. The tasks
are usually complex and the accuracy and speed depends on worker’s psychical and physical
condition. The consequences are untrustworthy results and huge possibility of overlooking the
faults. The reliability of human decisions is decreased also by monotony and tiredness.

Today's machine vision systems are more and more reliable and robust and therefore
convenient for industrial applications and are becoming indispensable in assembly process
(Braggins, D., 2006). Control systems, based on machine vision, are capable of performing
control process even more efficient than the human, if the conditions for an appropriate usage
of technical benefits of machine vision are assured.

The machine vision system, being used in industrial environment for tasks such as
inspection, measurement and fault detection, has to be a robust and very reliable system. For
that reason the development process of the measurement equipment using machine vision has
to follow the fixed procedure (Trdic, F., 2006; West, P., 2006). Usually the procedure is split
into precise determination of tasks (measuring, fault detection) and goals, into machine vision
component selection and working conditions (illumination, position determination),
component selection of machine vision (camera, computer, lenses and optics), and finally
development of an automatic part robot handling system.

This paper is focused on the development of a mathematical algorithm, which is adapted in
a computer software program as a numerical algorithm. The chosen mathematical algorithm is
a starting point for the development of an automatic control system. At the end of the paper
the analysis of a system’s quality is presented and discussed, where three different kinds of
control systems: theoretical, experimental and industrial application are compared and
discussed.

2 Control goals determination

In the industrial ring welding process, the final product quality control represents the
measuring of diameter and roundness of a welded ring, which is then taken into the further
assembly operation.

Control process of the ring diameter and roundness follows the previous production
processes like cutting the raw material, bending and welding the ring. In all mentioned
production processes inaccuracy and faults can occur. Since customer demands high accuracy
and repeatability of a measurement, the /00 percent control process should be introduced.

Existent quality control procedure of the welded ring involves visual observing of inner
surface on welded ring, where the laser ray is pointed. Using the calibre for dimension
checking can cause wrong interpretation of the ring’s accuracy. Putting the ring into calibre
verifies only the minimum diameter. The maximum diameter range is not considered in this
situation. These are additional reasons for introducing a non contact control methods, such as
machine vision control is.

Theoretical algorithm for measuring, software program and correct installation of
experimental system using the machine vision are developed for the above mentioned
application and presented in this paper. The control process involves measurement of:

— diameter Dn (measuring accuracy +0.05mm, repeatability £0.01mm)

— roundness Ov (measuring accuracy £0.25mm, repeatability +0.05mm)

The meaning and explanation of measuring parameters are shown and marked in Fig. 2.1. The
real shape of the ring is shown as a double thick curve, the minimum (Dmin) and maximum
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(Dmax) diameters of the ring are shown as two low thick curves. The difference between
maximum and minimum diameter represents roundness of the ring (Ov).

o]
Figure 2.1. Graphical presentation of measuring ring curve.
3 Experimental setup and equipment
The measuring system is placed in a specific position alongside of the transportation line

(conveyor belt). The Fig. 3.1 presents only one of the many possibilities, where measuring
system is involved in totally automated control centre (Herakovic, N., 2007).

the rng

Figure 3.1. Robot handling with machine vision system.
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The welded ring is handled by a robot arm from the transportation line to the rotating table on
the other side (loading zone). The rotating table is placed in the precise lift up manipulator
shown in Fig. 3.1 as mark a (Pauli, J., 2001; Redford, Alan H., 1986).

Main components of typical vision system, used also in presented measuring system, are
(Skvar¢, J., 2000):

— cameras and camera lenses,

— digitizers (digital, analogue, USB),

— light sources,

— mechanical construction — manipulation of specimens,

— 1/O hardware,

— processing units,

— vision software.

The measuring principle of the diameter and the roundness of the welded ring is shown in Fig.
3.2. The construction consists of one camera and one laser source which are mounted in the
fixed holder. The welded ring is fixed in the rotating table as shown in Fig. 3.2.

RATATING

FABLE
LIET A

MAMNELY ATOR

Figure 3.2. The measuring principle.

When the ring is rotating, the camera is taking a snapshot (grabbing) in every 3.6 degrees of
the rotating angle, so the /00 photos are taken during one turn of the ring.

4 Theoretical description of the algorithm
4.1 Principles of the triangulation method

The basics of the laser triangulation method are represented in this chapter. The laser ray is
directed to the inside of the ring surface as shown in Fig. 4.1, so it is possible to get a
measuring lighting line or a point. That line or a point is observed by a camera, which has to
be set up correctly. A 30 to 60 degree angle between camera and laser ray is needed to
achieve optimal conditions (Gruen, A., 2001; Hecht, E., 1987). If the welded ring is rotated,
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the observing line or point is moving along the radius or laser ray direction. All parameters,
which are needed for a triangulation method calculation, are shown in Fig. 4.1 and Fig. 4.2.

d,v

axtrame position ~—-—-___L____ﬂ r
of ring Vf ﬂ \ |

faser path : * A
o |

fimage piane ,.1, . ,,, Ty

oa3mara \aw

Figure 4.1. Principles of laser triangulation method.

The transformation equation for the presented triangulation method, which defines the
deviation of the ring from the previously defined parameters, is given in the Eq. (1):

v = -x )k (1)

Considering the Eq. (1) it is possible to calculate the movement of a ring (y;) by knowing the
parameters x; (actual movement of a laser ray), x; (the extreme left position of the laser ray
used for scale calibration) and transformation factor k, which can be calculated by using the
Eq. (2) (see Fig. 4.2).

2)

Figure 4.2. Main display: white laser lines on the ring surface captured by the camera.



122 INNOVATIVE ACCESSION TO THE RING MEASUREMENT IN THE CONTROL PROCESS USING MACHINE VISION

The camera image, presented in the main display at the computer, is shown in Fig. 4.2. The
laser ray, shown as a white vertical line, is moving right and left. For better presentation and
understanding of the problem, two white lines are sketched on the screen (see Fig 4.2). They
represent the extreme right and left position of the laser ray while the ring is rotating.

4.2 Theoretical description of the measuring point trajectory

The system, which is described above, needs to be ideal, which means:
— the rotating axle of rotating table is ideal without any oscillations,
— the welded ring and the rotating table are represented as rigid body.

First, the movement of the measuring point for the ideal circular ring has to be explained,
where the centre of the ring is placed outside of the rotating axle. It is clear that in the
industrial application it is impossible to place the welded ring exactly on the rotating axle.

When the ring is rotating, the centre of the ring is moving on the centre trajectory as shown
in Fig. 4.3. For this case the laser line or the observed laser point movement on the ring is
represented by Eq. (3), where R;(@) represents the radii of the ring in the dependence from the
rotating angle o

CENTRE OF |

SOTATION | CENTRE OF

RATATING TABLE

Figure 4.3. Ideal circular ring centred outside of the rotating axle.

R.(a)=E -cosa, "‘\/sz —(E-sine, )’ 3)

Legend: E - eccenter of ring [mm]
Ry -radius of ring [mm)]
o - rotation angle [°]

In Fig. 4.4 the results of the points R;(¢), calculated by the Eq. (3), are presented graphically.
In the next step the influence of the eccentric position of laser ray on the diameter value is
explained. The critical situation appears only when the position of the laser is changed during
the rotation of the ring (during the measuring process).
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Figure 4.4. Sketched points R;(¢).

The eccentric position of the laser is shown in Fig. 4.5. If the laser position is changed for
the distance #z, the radii value can be calculated by Eq. (4).

RING
b
"'\.\'

Figure 4.5. Eccentric position of the laser — influence on the diameter value.

R (a)zE-cosai+\/Rv2—(E-sin05i—z)2 4

z

Legend: z - eccenter position of laser ray [mm]
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Figure 4.6. Comparison between the Ri(a) and the R ().

Comparison of the calculated values of the diameter values R;(e) and R.(a) in the dependence

on the rotating angle « is shown in Fig. 4.6.

4.3 Calculating the area and the geometrical centre of the measuring points of the ring

The main idea of the measuring algorithm is to calculate the area and the centre of this
area, which is generated by measuring points, connected with lines. Knowing the velocity and
the centre of the area, it is possible to eliminate the eccentric placement of the ring on the

rotating table.

The curve is placed in 2D plane, where the &4 represents the edge of the area and A4
represents the inside of the observed area (see Fig. 4.7).

=1

— =
r

S

Figure 4.7. Area in x-y coordinate system.

If the area is constructed of points and connected together to create polygon (Fig. 4.8), the
area A4 can be calculated by Eq. (5) (Marjetic, T., 2004).
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Figure 4.8. Area, constructed by lines with points on the corners.

1 N-1
A:_EZ(xi+l_xi)(yi+l+yi) 2
in1

Parameters x and y represent coordinates of the measuring point. The centre of the area (x;, y;)
is calculated by Eq. (6) and (7) (Smith, L., 2006-2008; Borke, P., 1988).

*

S

Yr = /; (6)
S*

XT = 7)} (7)

S*y and S”, are static momentums of surface form around x and y axis, given by Eq. (8) and (9)
(Smith, L., 2006-2008; Borke, P., 1988):

. N-1
Sy = Z(xizﬂ XX +xi2)'(yi+1 _yi) (8)
i=1

|~

S, :_EZ(J’M"'J’;'J’M"'J’,‘ )'(xm_xi) )
il

5 Final mathematical algorithm examination
The mathematical measuring algorithm consists of six steps.

Step one: Grabbing the measuring points. The sketched points, shown in Fig. 5.1,
represent the absolute movement of the laser line orientated on the ring’s surface, which
represents an eccentric placement and roundness of the welded ring. The equation of the laser
triangulation is used:

v, =(x,—x)k (10)
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Figure 5.1. Measuring points.

Step two: The points are connected with lines and the radius correction R _offset is used
(Eq. 11).

R. =R _offset+y, (11)

The correction gives us a regular value of the radius.
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Figure 5.2. Corrected non centred points.
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Step three: Calculating the centre of points by Eq. (6) and (7) given in chapter 4.3.
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Figure 5.3. Centre of points.

Step four: Shifting the measuring points of the ring into the origin. The eccentric
placement of the welded ring is herewith eliminated. Coordinates of the original point x; and y;

are given with the following equations:
(12)

Xi (a) =R, COS(O{i)
Vi (a) =R, 'Sin(ai)

Where R; presents radius 7 at the rotation angle ¢;. Coordinates of the shifted points x,; and y,;:

(13)

(14)

(15)
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Figure 5.4. Original (cross) and shifted (point) points.

Step five: Calculating the average radius or diameter (shown as full curve in Fig. 5.5) and
comparing it with measuring points transformed into curve (shown as hatched curve in Fig.

5.5).
R_atvg:\/E (16)
V4

The parameter 4 represents the area calculated by the Eq. (5). The diameter of the ring is
(17)

calculated as:
D, =2-R_avg

Step six: Graphical presentation of ring curve and average diameter curve in one X-y
graph.
Difference between the full and the hatched curve is given by Eq. (18) and is calculated for
every single point of the ring circumference at the given angleo:
O(a):RW. -R _avg (18)
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Figure 5.5. Average and ring diameter curves.

The minimum - O,,;, and the maximum - O,,,, difference between these two curves is used for
calculating the roundness of the ring - O, (J. W. Zhao and G. Q. Chen, 2005).
(19)

Omin (a) = min(Rvi - R — an)
Omax (a) = maX(Rvi - R — avg)
OV = ‘Omin (ax + ‘Omax (ax (20)

Graphic explanation of the ring roundness is shown in Fig. 5.5. Roundness of the ring,

depending on the rotation angle « is shown in the Fig. 5.6.
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Figure 5.6. Roundness of ring depending on the rotation angle alfa « [°]



130 INNOVATIVE ACCESSION TO THE RING MEASUREMENT IN THE CONTROL PROCESS USING MACHINE VISION

6 Experimental results

In our research the following experimental tests are used:
— the response of eccentric laser position,
— comparison of the results using regular and telecentric lens,
— repeatability of one part placed on a rotating table in different positions and the
— results comparison with other knowing parts.

Only the last two tests are presented in this paper’s experimental results.

In this research the measuring results deviation of three systems, using the same basic
mathematical algorithm, are compared. The first one is represented already as the theoretical
system, where basic mathematical algorithm is used without any corrections. The MS Excel
and MathCad programs are used for calculations and graphical analyzes.

Table 6.1: Results of the theoretical system

Measuring value Quality range
[mm] [mm]

Ring diameter 0.002 —0.038 (0.02)

Ring roundness | 0.018 —0.053 (0.1)

The second system is represented as the experimental one, where basic mathematical
algorithm is accomplished by necessary corrections for numerical program called Visual
Basic for applications (Trdi¢ F., 2000). The results, quality range, are given by Tab.6.1.

Corrections: Elimination of external vibrations by mechanical and numerical solution.

Table 6.2: Results of the experimental system

Measuring value Quality range
[mm] [mm]

Ring diameter 0.002 —0.019 (0.02)

Ring roundness | 0.005 —0.045 (0.1)

The third system is represented as the industrial application, where all necessary corrections
are used to improve the repeatability of results.

Table 6.3: Results of industrial application

Measuring value Quality range
[mm] [mm]

Ring diameter 0.005—-0.01 (0.02)

Ring roundness | 0.005—0.04 (0.1)

The graphical presentations of the results of the ring diameter and the ring roundness for all
three systems are shown in Fig. 6.1 and Fig. 6.2.
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The first graph in the Fig. 6.1 represents the repeatability of the ring diameter measurement
and the second graph in the Fig. 6.2 represents the repeatability of the ring roundness
measurement. The circular points show the measuring results for the theoretical system, the
triangular points for the experimental system and the quadratic points for the final industrial
system.

The hatched line in Fig. 6.1 and Fig. 6.2 shows the limit of good or bad, the suitable or
unsuitable measuring system. A suitability criterion is given in the chapter 2.
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Figure 6.1. Repeatability of diameter measurement.
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Figure 6.2. Repeatability of roundness measurement.
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7 Conclusions

In the presented paper the research work is focused in the development of a mathematical -
numerical algorithm, which is involved in modern robot vision measuring system. The
machine vision experimental system for the ring diameter and ring roundness measurement
was also developed.

The results enable a successful replacement of a manual (done by workers) quality control
of welded rings by a machine vision control, which enables better efficiency and accuracy of
the ring quality control process through the unlimited time period, independently of different
subjective and objective disturbances. At the same time the machine vision control can help
with the humanization of the pretentious labour filed, where the human work with the
execution of the ring quality control would be much easier.

The experimental analysis of the results is presented for three systems. Their quality
depends on the reliability of the repeatability of results. The theoretical system does not reach
the customer’s request, so the system is not good enough for the direct industrial application.
The experimental system comprises the improved theoretical algorithm, where the results of
the repeatability are much better. This was the first step into introducing the reliable industrial
system. The industrial system has better mechanical construction, its illumination has been
proved and the measurement of outsides temperature is involved.

The experimental results prove that the quality control with introducing the machine vision
into the measuring process of the welded ring depends on the right choice of the techniques
and the type of mechanical components of the system, measurement algorithm and
illumination of the object.
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Abstract

In this paper we consider the problem of real manipulation in a realistic environment — a flexible
fabrication cell. In the first parts of the article are presented some methods for automatic grasp
planning using a three-finger manipulator. Information presented here consist of a method for
automatic grasp planning using shape primitives, a vision-based method used for grasping
extruded objects and an algorithm used for grasping deformable objects. In the last section, is
presented a general algorithm used for grasping deformable and rigid objects in flexible
fabrication cells.

1 Introduction

Selecting a good grasp of an object using an articulated robotic hand is a difficult problem
because of huge number of possibilities.

One way of limiting the large number of possible hand configurations is to use grasp pre-
shapes. Before grasping an object, humans unconsciously simplify the task to selecting one of
only a few different prehensile postures appropriate for the object and for the task to be
performed. Medical literature has attempted to classify these postures into grasp taxonomies.
Cutkosky and Wright (Cutkosky M.R., 1986) extended this classification to the types of grasps
need in a manufacturing environment and examined how the talk and object geometry affect the
choice of grasp.

A number of papers present contact-level grasp synthesis algorithms (Ding D., 2000; Ferrari
C., 1992; Hester R.D., 1999; Itu A., 2007). These algorithms are concerned only with finding a
fixed number of contact locations without taking into consideration the hand geometry.

Other systems built for use with a particular hand, restrict the problem to choosing precision
fingertip grasps, where there is only one contact per finger (Hester R.D., 1999). These types of
grasps are good for manipulating an object, but are not necessarily the most stable grasps
because they do not use inner finger surfaces or the palm.

Most robotic systems currently in existence have been built under the assumption that
manipulation of rigid objects remains the primary task. In reality though, many objects are non-
rigid. Most are unsymmetrical, compliant, and have alterable shapes. Ayanna Howard and
George Bekey developed an algorithm for handling of 3-D deformable objects. They defined a
‘3-D deformable object’ as an object whose three flexible degrees of freedom are characterized
by viscoelastic interactions between molecules (Howard A.M., 2000).

Even for a simple three-fingered hand, such as the Barrett Hand, there are a total of 10 degrees
of freedom: 6 degrees of freedom in placing the wrist relative to the object and 4 internal degrees
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of freedom which set the finger positions. More complex hands have even more possibilities. Of
course, large portion of this 10 dimensional space are the worthless because the fingers are not in
contact with the object, but even if the problem was re-parameterized, a brute force search would
still be intractable ( Itu A., 2008)

2 Shapes Primitives

An object can be approximated with a sphere, a cylinder, a cone or a box or with a sum of these.
The names of these geometric forms are shapes primitives. By modeling an object as a set of
shape primitives, we can use a set of rules to generate a set of grasp starting positions and pre-

grasp shapes.

Fig. 2.1. Grasp pre-shapes for the Barrett hand: spherical,
cylindrical, precision-tip, and hook grasps

Our service robot is outfitted with the relatively simple Barrett hand which has only 4 degrees
of freedom. For this hand Miller et al. identified four distinct pre-shapes, shown in Fig. 1(Miller
A.,2003).

The first step of the grasp planning processes is to generate a set of grasp starting positions. To
generate a set of starting positions, the system requires a simplified version of the object’s
geometry that consists only of shape primitives such as spheres, cylinders, cones and boxes.

For each shape, they identified a set of grasping strategies to limit the huge number of
possible grasps:

Spheres should be grasped with the spherical pre-grasp shape and the palm approach vector
should pass through the center of the sphere.

Cylinders may be grasped from the side, or from either end. From the side grasp the cylindrical
pre-grasp should be used. The grasp approach should be perpendicular to the side surface, and
the thumb should either be perpendicular to the central axis of the cylinder, in order to wrap
around it, or in the plane containing both the approach direction and the central axis, in order to
pinch it at both ends. For the end grasp, the spherical pre-grasp should be used. The palm should
be parallel to the end face and aligned with the central axis.
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Cones can be grasped in the same ways as a cylinder. However, in the case of a cone with a large
radius and small heath, the side grasps will be very similar to a grasp from the top. To handle
this, we have added as set of grasps around the bottom rim of the cone, where the palm approach
vector is aligned with the bisector of the angle between the bottom face and the side face.

Boxes should be grasped using the cylinder pre-grasp shape, such that the two fingers and the
thumb will contact opposite faces. The palm should be parallel to a face that connects the two
opposing faces, and the thumb direction should be perpendicular to the face it will contact.

3 Three-finger Grasp Synthesis of the planar objects using Vision

This chapter presents a practical approach for synthesizing three-finger grasps on planar
unknown objects by means of vision. It is used visual perception to reduce the uncertainty and to
obtain relevant information about the objects.

An important element of grasp synthesis is contact stability. Contact stability includes those
aspects that involve the contact of a single finger against the surface of the object (Molares A.,
2004).

First they need define a practical criterion that encompasses the contact stability constraints.
This is the finger adaptation criterion. It evaluates the fitting of the gripper’s finger against the
object surface in terms of the estimated contact area. The criterion establishes that the object’s
surface curvature must not exceed a threshold ¢ (curvature threshold) for being considered
stable. The contiguous regions on the contour that comply with the finger adaptation criterion are
called grasp regions: those having curvature under ¢ for all their points. The grasp regions are
determined by grouping consecutive points with absolute curvature below the curvature
threshold & .

Finally, each grasp region is abstracted as a straight segment called grasp region segment.
These segments are computed from the line defined by the minimal square fitting of the points of
the region, bounded by the first and last points of the region. Ideally, it should be possible to
approximate these regions as straight lines

The use of such an abstraction of grasp regions has important practical implications. First, the

use of grasp regions discards those points with a high curvature, that is, with an unstable contact.
And second, the use of grasp regions reduces the complexity of the problem of converting a
contour composed, potentially, of hundreds of point, to a few grasp regions. This allows for the
combinatorial techniques of the further stages to perform their computations in a reasonable
amount of time.
For grasp synthesis Molares et al. defined the force-closure criterion with the goal of
characterizing force-closure grasps using three fingers. The purpose of this criterion is to ensure
that the gripper does not cause the object to slide due to a torque when it closes its fingers to
grasp it. The evaluation of this criterion is based on the concept of friction cone.

A sufficient condition for reaching force-closure with three fingers is that the intersection of
the friction cones of the three contact points is not empty, and that the unit normal vectors to the
surface defined by the contact points positively spans plane. (Molares A., 2004).

Three vectors positively span the plane if any of them can be written as a positive
combination of other two (see figure 3.1).
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(a) (b)

Fig. 3.1. The grasp (a) achieves force closure, whereas the grasp
(b) does not

In a more formal way n vectors u,,i =1...n span the plane if and only if:

n
Viji=l..n,3¢c,>0,u, = chuj 3.1)
j=l,i%j

The goal when constraining a three-finger grasp is to find a configuration of the hand such that
the positions of the three fingers is the same as in the original grasp, and the orientation of forces
exerted by the fingers are similar. This problem can be very complex since the description of the
configuration is composed by a lot of parameters that have to be determined. Antonio Morales
and Pedro J. Sanz developed a procedure which consists of fixing the contact points of the hand
configuration in the same location as the three-finger grasp. This, along with the constraints
imposed with the hand kinematics, reduces the problem to a more tractable one.

4 Grasp Planning for Deformable Objects

For the problem of grasping for non-rigid objects, in the first step it must to calculate
deformation characteristics for object and in the second step, it must calculate the minimum
force required to successfully lift the object.

If F, is the force required to lift a rigid object of weight w with frictional coefficient u, we
define the minimum deformable object lifting force L, as F,+F, where F,is a minimum
additional force term required to compensate for the deformation of the object.

At the sub-microscopic scale, all solid material is composed of atoms. Adjacent atoms in a solid

exhibit both attractive and repulsive forces which keep the atoms at equilibrium distance from
each other. Deformation of a material is caused at the microscopic level by visco-elastic
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interactions between atoms. This visco-elastic interaction can be modeled by the Kelvin Model
which is characterized by a spring and damper in parallel. Zhao et al. have utilized this model
and have characterized a deformable object as a set of particles locally interconnected by damped
springs (Zhao X.C., 2008).

The mathematical model for deformable objects is presented in the following. Let £,
represent the external force applied to particley, . Let m, represent the mass of the particley, .
Let S, represent the number of damped springs connected to particley,. Based on the

mathematical equations defining the Kelvin Model, the forces acting on the nth particle are
accumulation of external force, inertial force, damping force and spring force. Using Newton’s
law of motion, the partial differential equation of motion for the nth particle can be written as:

5 92N p . — 5.0 IA . —
Som, (T Y A, e (T )

i=1 i=1

(4.1)

S - - -
z Dn,iApn,j(fnﬁt): fn

i=1
where D, , the deformability coefficient, is a function of the force and the change in spring length,
4, , the damping coefficient, is a function of the force and the instantaneous change in spring

aApn,i
ot

)

length, Ap,, represents the change in spring length in each Cartesian direction, and

represents the instantaneous change in spring length.

From equation 4.1, we see that the only parameters which are not directly defined as a
function of time are the mass, deformability, and damping coefficients. If we assume that the
mass of the object is given, then we can classify the overall deformation of the object in terms of
the deformability function D and the damping function 2. For determining the deformability
function are used the following steps:

1. Apply a force against the object’s surface. At time ¢, =1,,1,....¢, , record the force f(z,)

2. Calculate the particle displacement vector d(f(z,).z,) forall ¢, e

3. The deformability function is D(f,d)= =) forall ; :

dif@,.e,)

The damping function is determined in the same mode. The difference is that here is
calculated the particle displacement velocity vector.

To learn the characteristics of an adequate grasp, we must determine the relationship between
mass, deformation and force. The steps required to handle manipulation of 3-D deformable
objects are as follows:

1. Record dimensions of a known object

2. Calculate the deformability and damping functions

3. Determine the minimum force necessary to grasp known object by iteratively lifting

object

4. Links object attributes and grasping force into an index table.
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5 Algorithm used for grasping deformable and rigid objects

5.1 General requirements for using efficiently the algorithm

This algorithm is used for grasping objects in a flexible cell, where should be placed a robot arm.
This robot arm has attached a three-finger manipulator. Near this cell must be placed the
conveyor. On the conveyor’s pallets deformable and non-deformable objects must be placed. The
robot must grasp these objects and place them, for example into storage. Each pallet must have a
certain code; some of these codes are used for identifying deformable objects and the other are
used for identifying the rigid ones. Using the codes of the pallets the robot knows that the object
which must grasp is deformable or rigid. In this cell must be placed a vision system with two
cameras and a laser sensor. The vision system helps robot to detect objects contour, locate it and
extract some features to match with predefined grasping models.

5.2 The algorithm used for grasping

The algorithm has two important parts. The first one consists in learning an adequate grasp
for deformable objects. The grasping for non-deformable objects does not need to be learned.
The second part is, in fact, grasping of objects.

The steps for learning an adequate grasp for deformable objects are presented below:

1. Determine deformability and damping coefficient for the deformable object which must
be grasped. These coefficients are computed in the mode presented in the 4™ section.

2. Determine the minimum force necessary to grasp known object by iteratively lifting
object.

3. Weight the object with a balance placed under the conveyor’s belt.

4. Memorize, into an index table, the relationship between mass, deformability, damping
and force required for lifting.

5. Resume the algorithm from the first step and learn this relationship for the objects made
from the same material, but with the different weight. After that it can be determined a
characteristic between mass and force (damping and deformability are known). Using the
interpolation, we have to compute the lifting force, for a certain type of object after we
know the mass of the object.

6. Resume the algorithm from the first step for all types of deformable objects.

If we learn to grasp all deformable objects we can pass to the last part of algorithm: the

effective grasping. The grasping steps of the objects are presented below:

1. Read the code of pallet and establish what type of object is, deformable or non-
deformable.

2. If the object is deformable then go to the next step. If the object is non-deformable one,
then give to the force-closure of the gripper the maximal value and, after that, go to step

7.

3. Weight the object.

4. Use the mode presented in the 4™ chapter for determine the deformability and damping
coefficient.

5. For known mass, deformability and damping coefficients, extract the lifting force from
the index table.
6. Give the force-closure this value.
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7. Using the vision system to determine if the object is an extruded one or have a shape

similarly with shapes primitives presented in the 2™ chapter.

If it is an extruded one go to the next step. If not, go to the step 13.

9. Measure the object’s height with a laser sensor and establish the grasp height at 2/3 of
object’s height from for the object with them height less than a predefined value or to a
predefined height value for the rest of the objects.

10. Determine grasp regions from the 2D image of the object.

11. Take a combination of three regions and verify if these regions offer a stable grasp. If this
is a good one, grasp the object using the gripper kinematics and the computed lifting
force. Then, go to the step 15. If is not stable go to the step 12.

12. Go to the step 10.

13. Determine which primitive shape can be used.

14. Grasp the object using the determined primitives shape on the step 13, compute lifting
force and gripper kinematics. Go to the next step.

15. Finish.

0¢]

6 Conclusions

Grasping has a great relevancy in the context of robotics field. The results of the actions
performed depend of the accuracy and the precision of grasping. Objects have different forms
and can be rigid or deformable. For the rigid objects the grasping problem is not so complicated,
but for the deformable objects the problem of lifting force determination is not so simple. It
requires that the deformability and the damping coefficients to be previously calculated.

The algorithm presented in the preview chapter is a general algorithm used for grasping objects.
Until now, we have not tested this algorithm; its testing is for our future work. The algorithm
gathers, in a simple logic scheme, the methods for different type of grasping. With this
algorithm, the system (the equipment) can grasp many types of objects; the only constraint is that
the robot must know if the object is deformable or non-deformable. For a deformable object,
after the system learns an adequate grasp, it can compute, in a very simple mode, the lifting
force. It must determine the deformability and damping coefficients and from the index table it
must extract the lifting force. With the vision system the robot can extract the object features and
can establish what type of grasp to use.
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Abstract

The paper addresses an extension of the classical Popov absolute stability criterion in the
presence of a two-parameter structured uncertainty in the linear part of the control system.
A general two-dimensional contour bound in the plane of uncertain parameters is taken
into consideration.

Keywords: Popov sector, absolute stability, SISO systems, two-parameter uncertainty

1 Introduction. Classical Popov Criterion for Nomi-

nal Systems

The stability criterion of Popov is a sufficient criterion to detect absolute stability (Popov,
V.M., 19738). There is an extensive bibliography of this topic (Aiserman, M.A., and
Gantmacher, F.R., 1965; Vidal, P., 1969; Cremer, M., 1995; Hsu, J.C., and Meyer,
A.U., 1986; Liao Xiaoxin, 1993; Follinger, O., 1993; Unbehauen, H., 1983; Adamy, .J.,
2009 ) with many extensions, back to early days, e.g. Desoer, C.A., 1965. Uncertainties are
taken into consideration via a set of corner points of the interval family in the literature,
e.g., Bhattacharyya, S.P., Datta, A., and Keel, L.H., 2009.

For a system in Fig. 1, a linear part with transfer function L(s) and a nonlinear part
u(e)

with characteristics u(e) in a sector (0, K), & < < K, are taken into consideration.

Stability in the Popov sense is guaranteed in sufficient sense if for any positive number ¢
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the inequality

Re [(1+q j w)L(jw)] > —% Vw0 (1)

holds.

Linear Part with Uncertainty

K u Output
P L(s) put y

Figure 1: Nonlinear element with a sector-oriented nonlinear characteristic and a linear

part of the control system with contour-oriented uncertainty. Kp is the critical gain K.

From Eq.(1),
1
pp(w) 2 Re L(jw) —qwSSm L(jw) +? >0 . (2)
€ K

Further definitions are the

1
Popov line &—gn+—==0 (3)
K
and the
Popov polar plot  Lp(jw) 2 Re L(jw) + jwSm L(jw) . (4)

The Popov line intersects the real axis at (—4,0) with an ascent of tana = % . The
Popov polar plot Lp(jw) results from the linear system frequency response polar plot
L(jw) with equal real part and an imaginary part stretched with a factor corresponding
to the angular frequency w. Any characteristic inside the sector is admissible, definite and
continuous. All the poles of L(s) are in the left s-half-plane. If a single pole is located at
the imaginary axis, then € > 0 is required.

If Re L(jw) > —+ is satisfied for all w > 0, this is sufficient to a higher extent: ¢ = 0
corresponds to an infinite slope of the Popov line.

From Eqs.(3) and (4), the Popov criterion alternative is: The Popov polar plot Lp(jw)
must be located to the right of the Popov line. [Comparison of Popov function and Popov
line, Eq.(2) and Eq.(3), leads to the following basic facts: (1) Equating n = Sm Lp in
horizontal direction requires e Lp > & referring to “> 07 in the Popov condition.

(2) Equating & = Re Lp in vertical direction requires Sm Lp < 1 referring to “> 07

in the Popov condition once more. ]
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For a linear system with integral behavior, the geometric figures are depicted in Fig.
2, namely in the case of critical stability bound. Correspondingly, the function pp(w) is

portrayed in Fig. 3.

nem.m figure(1), neq.fig
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Figure 2: Complex plane with classical Popov figures with data from Example 1
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In general, the Popov line is characterized by two tangent points. In the critical sta-
bility point, the Popov line is tangential to Lp(jw). In the case of integral linear part of

Fig. 2, there are three points of interest: The initial point F at (f;, f2), the tangent point
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Re Lp(jw),Im Lp(jw) ) and the slope 1. Hence,
q
0Sm Lp(jw)
1 B Ow _ Qm L(jw) +wSm Ly(jw) A Sm {Lp(jw)} — fo %)
q~ O%e Lp(jw) Re La(jo) Re {Lr(jo)} — i
ow

where L, 2 LLa(Z)w), Re Ly(jw) = 78%68i(j“’) , Sm Ly(juw) = 25m Liw) L(jw)

From Eq.(5), "
vp(w) 2 [wSm L(jw) — fo)Re La(jw) — [Re L(jw) — f1][Sm L(jw) + wSm Ly(jw)] . (6)

Equating vp(w) = 0 leads to w,. For pointwise use of the uncertainty contour ¢, see Section
2, the extreme slope is the solution.

For another type of linear proportional systems with two humps in the Popov polar
plot, the Popov line can be modified. Two presumable lines Ly, and Ly, are used, see
Fig. 4. Instead of F, select an arbitrary point H in the complex plane. Reuse Eq.(6)
both for Ly and Lyo. Modify H in order to reduce the angle k. For kK = 0 one has
Ly = Lys = Lp.

nfg.m figure(3), nfk.fig
60 T T T

40

20

—60
-9

Figure 4: Approximation for a Popov polar plot with two humps
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2 Linear System with Structured Uncertainty

For a perturbed linear system, we select a two-dimensional uncertainty contour. A vector
A
norm ||(})|

ne = [V + 6”“}1/"“ is used with n, an even integer; to cover an entire cycle,
0 < a, < 27 is considered ( Weinmann, A.; 2010). In Fig. 9, the uncertainty contour in a

tilted version is shown. The contour is the bound for all the uncertainties in the parameter
plane. The uncertainty-driven contour ¢ around the nominal Lp(jw) is checked for each
frequency w. Using the revolution parameter «,. (within the contour ¢, Fig. 5), the touching

condition requires

nem.m figure(8), nfl.fig
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1
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Figure 5: Minimum search versus Popov line
lim lim min infd(a., w 7
d—0 k=0 @ e ( @ )’ ( )

where d is the distance perpendicular to the Popov line with slope 1/¢,. The additive

index v stands for the perturbation. The slope parameter ¢, and the coordinates (g, ng)
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are unknown up to the final step of minimum search for x = 0, d = 0. For a given
uncertainty contour, Eq.(7) yields an analytic detection with zero differential quotients; if
it is too complicated, numerical search is preferred (Weinmann, A., 2010a). The Eqs.(7)
and (6) must be solved alternately. In between, x — 0 is executed. The process usually
converges rapidly due to the geometric constellation. The perturbed Popov plot Lp,(jw)
in Fig. 5 is
Lp,(jw) 2 Lp(jw,c,a) Yai = arg min d, (8)
where d refers to Eq.(11).
The minimum search outline is as follows. Following Fig. 5, the presumptive Popov

line Ly; and a perpendicular line obey

(=) = (€ =)y and (1= n) = g€ = &) @
The intersection of these lines yields
e+ gc - + f 1
€ = et 1 1 +7Z]I;)q B ns = (& — gH)g + N (10)
~ d2 = (gs - 50)2 + (775 - 770)2 — 0. (11)

3 Example 1. IT;,-Linear Part

Consider the linear part of the control system

1
L(s) = o )(1+2D N i 2). (12)
s(s+a —S+ —5
wy - wk
For s = jw, note the following limes values
. . . , 2D 1 A
lim Re Lp(jw) = lim Re L(jw) = Twon @ fi (13)
I a
sy . _ A8
lim Sm Lp(jw) = o= fa . (14)

In Fig. 2, the intersection of the Popov line with the negative real axis is at (7%;:7 0)

where Kp = _f1+q/a' Hence, the complex Popov polar plot Lp(jw) starts at an ultimate
point F with coordinates (f;, fo) = (—ai)?v - a%, - %) and just touches Lp(jw) for

K = Kp. The Popov line is (n — fo) = (£ — f1)
In Fig. 6, zeroing Eq.(6) is illustrated.

1
e
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nem.m figure(3), nev.fig
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Now, perturbations of @ and D are considered, a by v and D by §. In Fig. 7, the Popov
polar plot including uncertainty contours ¢ is depicted. The corresponding pp(w) is given
in Fig. 8.

In Fig. 10 the uncertainty contours of Fig. 9 in superposition to the nominal pp(w)
are uncoiled versus parameter «,. The uncertainty contours for the critical stability point
are enlarged in width.

The slope of the Popov polar plot at an arbitrary w results from

0Sm Lp(jw)

g2 Ow _ Sm L+w3m Ly(jw) (15)
IRe Lp(jw) Re L)
ow
The ascent of the real Popov function
8pg(w) =Re Ly — qSm L — quwIm L, (16)
w

is zero both at 0 and w,.

All the parameters involved in Example 1 are concatenated in the sequel:

D = 0.045; a = 1.05; wy = 4.1; w, = 4.0238; n, = 20; Kp = 1.3323; ¢ =
0.1862; Kp, = 1.0309; ¢, = 0.1418; f; = —0.9279; f, = —1/a = —0.9524; g(w =
0) =1.05; g(w,) = 5.37.
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Figure 7: Popov polar plot including uncertainty
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4 Example 2. PT,, Linear System

Now, consider the linear part of the control system

1 1
L) =—5p 1, oD, 1, (17)
1+—S+TS 1+—S+TS
Wy W1 WN2 )

In Fig. 11, the nominal Popov polar plot Lp(jw) is given. In Fig. 13 the corresponding
pp(w) is shown. The parameters D; and D, are additively perturbed by ¢, and wy; and
wpe by 7, following Fig. 9. The perturbed Popov polar plot is portrayed in Fig. 12.

nfg.m figure(1), nfj.fig
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Figure 11: Nominal Popov polar plots for Example 2

The parameters involved in Example 2 are D = 0.045; Do = 0.03; wy; = 4.1; wyo =
8.1; ¢ = 0.077; q, = 0.0545; the critical slopes without and with uncertainty are Kp =
0.1786; Kp, = 0.1111.
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Figure 12: Popov polar plot including uncertainty contours for Example 2
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Nnfg.m figure(2)., nfm.fig
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Figure 13: Nominal pp(w) for Example 2

5 Conclusion

The Popov polar plot with envelope-perturbed linear part of the control system is studied.
It is suitable for robust absolute stability analysis in order to balance the uncertainty norm

and stability requirements. Two examples are selected for extensive illustration.
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Abstract

Based on a general vector norm of the uncertainties in the linear part of a nonlinear
system and the analytic properties of the envelope of the uncertainties, an extension of
the Circle Criterion for absolute stability is addressed. In this context, the c-perturbed
frequency locus is an appropriate object for the assessment of stability degree. Results of
the numerical minimum search and the analytic derivations are presented.

Keywords: Stability degree, robustification, conus margin

1 Introduction

The Circle Criterion is a well-known criterion for the absolute stability with the same
assertion as the Popov version. However, there is the advantage that, in contrast to the
Popov characteristic, the regular frequency locus of the linear part of the nonlinear control
system can be utilized. This is the reason for the broad acceptance in control engineering,
even though the stability criterion remains a sufficient one. An additive approach referring
to the Circle Theorem is presented in this paper. Unlike the common methods based on
interval systems, the uncertainties are considered by means of their envelope and general
vector norm bound. Varying an exponential parameter n, enables the design from deltoid,
spherical, up to rectangular of various precision. This type of uncertain systems is termed

c-perturbed. Taking a stability degree into consideration (not the stability at all), one is



ROBUST CIRCLE CRITERION BASED ON AN UNCERTAINTY ENVELOPE

155

permitted to tolerate a slight violation of the uncertainty bounds. Only if two or more
uncertainties should happen to stay at their extreme interval values, the stability falls
insignificantly under the limits in the magnitude of neglected high-frequency dynamics.
This does not mean that stability at all is violated. The advantage results from the fact
that the envelope is an analytic function and can be considered as a walk around the set
of uncertain parameters. Due to the analyticity of the uncerainty bound, differentiation
is possible even close to the parameter constellations corresponding to the corners of an
interval system.

Recalling the Circle Theorem (Hsu, J.C., and Meyer, A.U., 1986; Liao Xiaozin, 1993;
Féllinger, O., 1993; Unbehauen, H., 1983; Adamy, J., 2009) one has: For a positive gain
sector (e.g., Fig. 1), the circle, termed p.-circle, must be excluded. For a zero lower bound,
the circle tends to infinity and a half-plane must not be entered. For a gain sector in all
the quadrants, i.e., the lower bound negative, the gain circle must be excluded, i.e., the
polar locus must be located inside the gain circle.

Uncertainties are taken into consideration in most cases by using the plant as an
interval system (Chapellat, H., et al., 1991; Marquez, H.J., and Diduch, C.P., 199/;
Bhattacharyya, S.P., et al., 2009 ) or after having been transformed from Nyquist to gain
plane and using off-axis circles (Atherton, D.P., and Nusret Tan, 2002).

Linear Part with Uncertainty

K u Output
P L(s) put y

Figure 1: Nonlinear element with a sector-oriented nonlinear characteristic
Kp1 < Kp < Kpy and a linear part of the control system with contour-oriented

uncertainty

2 Perturbed Linear System

We consider the system of Fig. 1 with the transfer function L(s) of the linear part.

Referring to the presumptive centre of the p.-circle, a frequential characteristic L.(jw, p.)
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of the c-perturbed linear system is defined. Among the set of uncertainties inside the

envelope
A ,7 A Ty Ny Ny __
q:(é)’ lallr = (v + ") = g , (1)
the quantity qs yields the shortest distance
. A
in|L — = . 2
argmin [L(jw,q) = pcf] = ds(w) (2)
Alternatively, with the uncertainty assumption
A ’y Ny . Ny
q= (6)’ v =[l = (cosae)™], & =0d[1 — (sin )™, (3)
the c-perturbed linear system obeys
argmin |L(jw, c) — p.| = argmin| Lijw, (o) — pe| £ o (1)
hac)
A .
h(ag) = Le(jw, pe) - (5)
The absolute value of the complex-valued distance is
A .
Lf(w) = |Le(jw) = pel (6)
and the minimum distance itself
fEinfLy(w) (7)

see Fig. 2. The parameter f corresponds to a robust conus margin.
Referring to the sector (Kpq, Kps), where Kp; < Kpo, and the well-known correspon-

dences

1
_pc_f 3

_K—m_ =p.+[f (8)

Kpo
one has

2f
pz— f? )

and a tradeoff between the slope sector and the upper or lower extreme slope. In order to

Kpy— Kpy =
obtain a large sector, i.e., K; large and K5 small, one should try to provide f — max.

3 Satifying the Conditions and Robustification

Based on MATLAB fmincon, L.(jw,p.) of Eq.(5) is determined. The result is depicted

in Fig. 2. In parallel, the c-envelope ¢(q) of the uncertainties is shown.
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Figure 2: L.(jw,p.) and c-envelopes (Example 1 with p. = —0.7; f = 0.24)

If there are two (or more) uncertainty groups, referring, e.g., to pressure, temperature
etc., these groups are not concatenated. Then, in each group an uncertainty can arrive at
an extreme value. For groups of uncertainties, they are considered by separate Lagrange

multipliers ;. One has to state a resulting function

IL(jw,ak) — pe| + > prlllarllr — qox] — min (10)
k

and to follow MATLAB

solve(’fun’, mu_init)

function [f1,f1,f3]=fun(mu)
f1=\1 \q_1 \|_r-q_{0 1};
£2=\| \q_2 \l_r-q_{0 2};
£3=\1 \q_3 \|_r-q_{0 3};

The robust p.-based conus margin cg is defined as

A 1 . 1
S oo = ILe(iw, )] oo = = 11
CR IILC(jw,pC)II [[Ze(ieo, )] lloo = sup 7 (11)

see Fig. 6.
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Robustification can be achieved as follows: For a given cone Kpy, — Kpy, i.e., given
pe-circle, varying a linear system parameter a, preferably a controller parameter, leads to

the maximum ¢y. Alternatively, by varying a the maximum gain sector can be obtained

(see Fig. 10 in Example 1).

4 Example 1. Linear IT;,-System

The Example 1 of Weinmann, A., 2010, is repeated based on the circle theorem,

1
L(s) = (12
s(s+a)(1+ ilzzs + :252)

with n, =8; D =0.045; a = 1.05; wy =4.1; p. = —0.8.

The parameters a and D perturbed by 3,7, (40, where 5, = 0.1, 4 = 0.015. The
minimum distance in Fig. 3 is f = 0.2890 at w, = 3.91.

The Fig. 3 depicts the uncertainty envelope coordinates. In Figs. 4 and 5, the c-
perturbed characteristic L.(jw, p.) and the p.-circle are shown. For better distinctness and
in order to put emphasis on this graph, the c-perturbed graph L.(jw,p.) is exclusively

presented in Fig. 5, omitting the c-envelopes. The inverse of L is given in Fig. 6.

nfx.m figure(1), nfz.fig
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Figure 3: Uncertainty in 100 points
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Figure 4: Characteristic L(jw, ¢) and perturbed characteristic L.(w, p.) and p.-circle

Fig. 7 shows a set of eight p.-circles for p, =

nfx.m figure(2), nfy.fig
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cone (Kpy — Kpy) is depicted.

Consider the parameter a as the controller parameter. Varying a causes a change in
touching the p.-circle. In Fig. 9, small a leads to the minimum f at low frequencies close to
1, large a are responsible for the minimum close to frequency 4. For a = 0.68 the extrema

are equal. This parameter represents the optimally robustified system, see Fig. 10.

0.2

{—0.4,—1.1}. In Fig. 8 the admissible



160 ROBUST CIRCLE CRITERION BASED ON AN UNCERTAINTY ENVELOPE

nfx.m figure(3), nga.fig
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Figure 7: Set of eight p.-circles for p. = {—0.4, —1.1}
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nfx2.m figure(4), nhu.fig
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5 Example 2. Linear System with Conditioned Sta-
bility
The transfer function set up of the linear part is
—0.25% + 1.145% — 1.625 + 0.9
L(s) = 13
(s) 0.1s* 4+ s3 — 1.25%2 + 9s (13)
with poles and zeros at {0; —11.6859;0.8430 4+ 2.6440;5} and {3.9305;0.8848 4+ 0.6017},
respectively.
For V. = 4, the linear closed-loop system poles are located at {—0.6228 +

5.57945; —0.3772 £ 1.0000;5 }. Hurwitz stability is given for the following supplemental
factors of V' = 4: approximately from 1/1.9=0.52 to 1/0.7=1.41 (see Fig. 12).

The parameter —1.62 in the numerator of Eq.(13) is perturbed by /3,7 and the pa-
rameter 9 in the denominator by 3,0, where 8, = 0.2; 6p = 0.4; p. = —1.4.

The Hurwitz based stability sector is 0.52 to 1.41. Following the circle theorem without
uncertainty, the stability sector is Kp; = 0.59 to Kpy = 0.9, slightly smaller than the
Hurwith sector. The stability range result with uncertainty, i.e., the admissible sector for
the perturbed system, is Kp; = 0.6204 to Kpy = 0.8417 (see Fig. 12). The minimum
distance is f = 0.2119 at w, = 4.01.

ngbim figure(3), ngr.fig

Figure 11: Root locus for

_ 17 —0.25%4+1.1452—1.625+0.9
L(s)=V 0.159+53—1.252+9s

Imaginary Axis
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ngc.m figure(2), ngs.fig
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Figure 12: Frequency response polar plot for V' = 4 with uncertainty and n, = 8
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6 Example 3. Linear PT,-System

The linear part is
10°

(s+a)(s+b)
The parameters a and b are perturbed by 3,7 and (3,49, respectively. The set up is a =
500; b = 300; n, =8; B, =70; B. =60; p. =0.4.

L(s) = (14)

nfp1.m figure(2), ngu.fig
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Figure 13: Polar loci for Example 3

From Fig. 13 one finds the p.-circle radius f = 0.6109; w, = 260; L.(jws,p.) =
0.117 — j0.542; Kpy = 4.7412; Kpy = —0.9892.
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7 Example 4. Linear PT;-System and Algebraic Dif-

ferentiation

Consider a PT; linear part of the control system and its perturbations

(V+1)
§) = ——— < <
L) = sy <L <1, (15)
where
A
v=1—(cosar)™ 0<y<1 (16)
21— (sina)™ 0<86<1. (17)
Referring to Eq.(4) and Fig. 2,
|h(ac)[* = (Re [L(jw) = pe))* + (Sm [L(jw)])* . (18)

Numerical data are V =18; b =2; p. = —0.97; w = 4.

Even though this is a very simple example, the function |h(a.)|? is characterized by

several in-between-extrema and points of inflection; thus, the derivative %:c)? has a
curious shape, see Figs. 15, 17, 19.

For three different n, = {4, 8 16}, typical shapes are shown in the sequel.

Several different and appropriate initial values are required for solving antae)® _

da

For negative values of 7, ¢, see Eq.(19). Finally, the details of h? and g—’(i are displayed.

The flags u, v, x, y are +1 factors in order to achieve an monotonous display of the

uncertainties v, ¢ versus .. The function is analytic and differentiable whenever needed

vy=u—z(cosa.)", §=v—y(sina.)". (19)
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nhe.m figure(1), nhi4.fig
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Figure 14: Envelope distance |h(c,.)| and the derivative of its square

for w = 4 = constant and n, = 4

with respect to a,
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nhe.m figure(1), nhi8.fig
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Figure 16: Envelope distance |h(c.)| and the derivative of its square with respect to a.

for w = 4 = constant and for n, = 8
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Figure 17: Corresponding Nyqist diagramm and uncertainty walk for n, = 8
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Figure 18: Envelope distance |h(c.)| and the derivative of its square with respect to a.

for w = 4 = constant and n, = 16
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[h|~2 [== t3] =

(pc - ((V + u - xxcos(alphac) nr)*(b + v - y*sin(alphac) "nr))

/((b + v - y*sin(alphac) nr)"2 + om~2))"2

+ (om™2%(V + u - x*cos(alphac) nr)~2)/((b + v - y*sin(alphac) nr)"2 + om~2)"2

d |h|"2/d alphac [== tb5 == g] =

(2#nr*om”2*x*cos (alphac) “(nr - 1)*sin(alphac)*(V + u - x*cos(alphac) "nr))
/((b + v - y*sin(alphac) nr)"2 + om~2)"2

- 2%(pc - ((V + u - x*cos(alphac) "nr)*(b + v - y*sin(alphac) "nr))

/((b + v - y*sin(alphac) nr)"2 + om~2))

* ((nr*x*cos(alphac) “(nr - 1)#*sin(alphac)*(b + v - y*sin(alphac) nr))

/((b + v - y*sin(alphac) nr)"2 + om~2)

- (nr*yxcos(alphac)*sin(alphac) "(nr - 1)*(V + u - x*cos(alphac) "nr))

/((b + v - y*sin(alphac) nr)"2 + om”~2)

+ (2#nr*y*cos(alphac)*sin(alphac)”(nr - 1)*(V + u - x*cos(alphac) "nr)

*(b + v - yxsin(alphac) nr)"2) /((b + v - y*sin(alphac) nr)”~2 + om~2)"2)
+ (4*nr*om”2*y*cos(alphac) *sin(alphac) "(nr - 1)*(V + u - x*cos(alphac) "nr) "2

*(b + v - y*sin(alphac) nr)) /((b + v - y*sin(alphac) "nr)~2 + om~2)"3

8 Conclusion

The c-perturbed frequency polar plot and the robust conus margin have been introduced.
They are suitable measures for absolute stability discussion. Algebraic differentiation for
the uncertainty envelope was carried out in detail. The c-perturbed frequency polar plot
itself can also be used to determine the robust stability of the linear system with c-envelope

perturbation. Four comprehensive examples are chosen for illustrating the results.
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Report
IFAC Workshop
Supplemental Ways for Improving International Stability
Bucharest, Romania
October 28 — 30, 2009

Supplemental Ways for Improving International Stability - SWIIS - has a long tradition
in IFAC. According to the triennial cycle after Prishtina (Kosovo) 2006 the Workshop
was organised this year by the Faculty of "Control and Computers™ of the "University
Politechnica of Bucharest” from October 28 to 30, 2009 in Bucharest, Romania.

The program included 3 plenary papers, 18 technical papers and 2 panel discussions.
The plenary papers dealt with a new approach for simulation of sociotechnical systems,
international stability issues and globalisation. According to the scope of SWIIS the
topics of the technical papers were heterogenous. One block of papers dealt with
complex - adaptive - systems. Such systems are more and more introduced not only for
modelling and control of socioeconomic systems. Another session was about software
piracy, existing laws and the impact to economy. Cooperative networks offer the
possibility to design an umbrella for different applications. Further topics adressed were
fuzzy methods, ethics in IT, collaborative software platforms, .......

The two survey papers by F. Kile "Improving Policy Choices through Simulation™ and
G. Dimirovski " International Stability Issues: Individual vs. Collaborative behaviours
in Complex Dynamical Networks by Controlled Synchronisation™ gave an excellent
overview on these subjects.

In the panel discussion " Impact of the crisis on Social Stability" was mentioned that in
terms of SWIIS the problem could be seen as a stability problem of a very complex
system. To solve this problem new theoretical approaches are necessary. The other
panel discussion "Education and Research in a Global Society” was naturally
concentrated to Universities.

42 participants attended the very well organised event.

The next Workshop will take place in Prishtina, Kosovo, October 27 — 29, 2010 and is
organised by the local IFAC NMO.

P. Kopacek
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KOOPERATIONSWORKSHOP UBER MENSCHENAHNLICHE ROBOTER

Kooperationsworkshop tber menschenéhnliche Roboter
TU Wien, 26 Janner 2010

Im Rahmen der Kooperationsabkommen der TU Wien mit der University of Manitoba (
Kanada) und der National Kaohsiung First University of Science and Technology
(NKFUST),Taiwan, R.O.C, fand am 26. Janner 2010 an der TU Wien eines der ersten
internationalen, wissenschaftlichen Workshops tiber humanoide Roboter in Osterreich
statt.

Wie in der, vor kurzen fertiggstellten, BMVIT Studie ,, Robtics in Austria“ ausgefihrt
liegen in Osterreich, von der theoretischen Seite, Potenziale brach welche unmittelbar
auf diese moderne Technologie angewandt werden kodnnen. Hauptzweck dieser
Veranstaltung war es daher oOsterreichischen Universitats- und Forschungsinstituten
sowie der einschldgigen Industrie einen tieferen Einblick in die theoretischen
Hintergriinde dieses rapid wachsenden Marktes zu geben. Der Schwerpunkt lag dabei
auf, menschenahnlichen, intelligenten, mobilen Robotern sowie auf dreidimensionalen ,,
Sehen*.

P. Kopacek berichtete tiber den Stand der Robotertechnik in Osterreich und ergéanzte
seine Ausfiihrungen. durch Beispiele ausgefiihrter Projekte. Sodann stellten B.
McKinnon, J. Baltes und J. Anderson von der Universitdat Manitoba ein neues Verfahren
fir dreidimensionales Sehen basierend auf der Liniensegmenterkennung vor. Fuzzy
Methoden haben an der NKFUST eine lange Tradition. K.Y. Tu beschéftigte sich in
seinem Vortrag mit der Anwendung dieser Methode zum ,Robusten Gehen*
humanoider Roboter. AnschlieBend gab P. Kopacek einen Uberblick iber
Forschungsarbeiten auf dem Gebiet der autonomen, mobilen Roboter an der TU Wien.
Wettkampfe humanoider Roboter werden immer beliebter. J. Baltes und J. Anderson
gaben daher im nichsten Vortrag einen Uberblick tber diese ,,Sportdisziplinen“. Ein
neuer an der NKFUST entwickelter Roboter (NeiDau) mit Kraft- und Momenten
Sensoren wurde von K. Y Tu vorgestellt. Uber das Gemeinschaftsprojekt ,,Humanioder
Roboter Archie” referierten J. Baltes und P. Kopacek. Den Abschluss bildete ein
Vortrag von Y. T. Yang von der Tamkang Universitat in Taiwan ber das emotionelle
Verhalten von Spielzeugrobotern.

Laut Ubereinstimmender Meinung der ungefdhr 50 Teilnehmer erfullte diese
Veranstaltung ihren Zweck einen Einblick in Arbeiten aus Osterreich, Kanada und
Taiwan zu geben um zukinftige, kooperative Forschungsprojekte zu initialisieren. und
der Roboterforschung in Osterreich weitere Impulse zu verleihen.

Die Bedeutung der Veranstaltung wurde dadurch unterstrichen, dafll diese vom
Botschafter Taiwans, dem Handelsrat Kanadas und seitens der TU Wien, von
Vizerektor H. Kaiser eroffnet wurde.

P.Kopacek
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Bausteine mechatronischer Systeme
W. Bolton

3. Auflage, Pearson Studium, 2006
ISBN 3-8273-7098-1

Die Integration der verschiedenen Ingenieurwissenschaften in Studium und Beruf wird
immer wichtiger. Dieses interdisziplindr ausgerichtete Lehrbuch zu den Bausteinen
mechatronischer Systeme vermittelt daher die wichtigsten Kenntnisse aus der
Elektrotechnik, des Maschinenbaus und der Informatik, um mechatronische Systeme in
der Theorie und in der spateren Berufspraxis zu verstehen.

Der Leser lernt an vielen Beispielen mit Ubungsaufgaben und Lésungen, wie sich die
Verzahnung der Teilgebiete in der Mechatronik gestaltet. Zugleich ermdglicht dieser
Blick tber den Tellerrand, dass Mechatronik-Studenten mit Kollegen aus den anderen
Fachgebieten problemlos kommunizieren konnen. Diese ganzheitliche Sichtweise hilft
Studierenden, mechatronische Systeme, wie sie in der Industriepraxis Ublich sind, zu
verstehen und eigenstandig zu entwerfen. Es werden sowohl grundlegende
Systemelemente, Antriebssysteme, Systemmodelle, Microprozessorsysteme behandelt.
Den Abschluss bilden zeitgemélie Beispiele mechatronischer Systeme

Das Buch kann sowohl Studenten der Ingenieurwissenschaften als auch den in der
Praxis stehenden warmstens empfohlen werden.

P. Kopacek
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Moderne Regelungssysteme
Richard C. Dorf und Robert H. Bishop,

10. Uberarbeitete Auflage, Pearson Studium, 2007
ISBN 3-8273-7162-7

Einer der Klassiker unter den Lehrblchern Uber Einfihrung in die Regelungstechnik
liegt nun in der 10. Gberarbeiteten deutschen Auflage vor. Wie bereits die vorghehenden
englischen und deutschen Auflagen bietet es den Lesern in anschaulicher Form einen
ersten Einblick in die moderne Regelungstechnik. Dies wird dadurch erreicht, dass die
Verfahren und Methoden durch anschauliche Beispiele erlautert werden. Dadurch
erkennt der Leser sehr schnell die kaum (berschaubare Vielfalt moderner
regelungstechnischer Anwendungen, wodurch sein Interesse am Fach Regelungstechnik
geweckt wird.

Ziel des Buches ist es, die Grundlagen des Entwurfs von Regelungssystemen im Zeit-
und Frequenzbereich in klarer und anschaulicher Weise darzustellen. Der Bogen
erstreckt sich dabei Uber Verfahren der klassischen Regelungstechnik bis hin zu
Zustandsraumverfahren. Dariiber hinaus werden auch die neuesten Entwicklungen der
Regelungstechnik, wie beispielsweise robuste Regelungssysteme, Anwendung
computerunterstitzter digitaler Regelungssysteme, ... behandelt. Am Ende jedes
Kapitels befindet sich ein Abschnitt tber MAT-LAB in dem der Lernende mit den
Grundlagen der rechnergestitzen Synthese und Analyse von Regelungssystemen
vertraut gemacht werden soll.

Das Buch kann sowohl Studenten der Ingenieurwissenschaften als auch den in der
Praxis stehenden warmstens empfohlen werden.

P. Kopacek
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