Jg. 6, (1998)

INHALT

STECHA, J.; RAZEK, R.
Opti

HAN,

18

27

37
77
81
84
VERANSTALTUNGSKALENDER 88

|

OPTIMAL CONTROL OF ARX MODEL 1

Optimal control of ARX model

J. Stecha, R. Rézek

Department of Automatic Control, FEE, Czech technical university in Prague
Submitted on September 1, 1997

Summary: Stochastic optimal control strategies for a discrete linear stochastic dynamic
system described with an ARX model are derived in this paper. Dynamic programming
approach is used to develop optimal control of discrete stochastic system considering
quadratic criterion of optimality.

Cautious and certainty equivalent optimal control strategies are obtained. Certainty
equivalent optimal control strategies are obtained when only parameters mean is con-
sidered, while cautious strategies also consider uncertainty of parameters. To avoid state
estimation, nonminimal state space representation of the ARX model is considered, where
the states of the system are delayed inputs and outputs.

Simulations demonstrating the properties of stochastic optimal control are shown and
advantages and disadvantages of proposed approach are discussed.

1 Introduction

The discrete time ARX (AutoRegressive stochastic model with eXternal input) single
input-single output stochastic model is described by the difference equation

n n
y(t) = S ailty(t — i) + X bilt)ult - i) + et M)
i=1 i=0

where y(t), u(t) is the output and input of the system, a;, b; are the parameters of the
system and e(t) = N(0,0?) is the noise of output measurement. A Kalman filter can be
used for estimation of the unknown parameters a;, b; based on measured data. Kalman
filtering results in a conditional mean and a covariance matrix of the parameters.

The results of the estimation (conditional mean and a covariance matrix of the pa-
rameters) are used to develop an optimal control strategy. A quadratic criterion is chosen
as a measure of the optimality of the control.

To obtain a linear optimal control strategy, which utilizes the discrete Riccati equation,
it is necessary to have a state equation of the system. Nonminimal realization of the ARX
model is used where nonminimal state of the system is formed from the old values of input
and output.

The text is organized in the following way. First quadratic optimal cautious and
certainty equivalent control strategies for linear stochastic state space model in general
are developed. Afterwards Kalman filter for parameter estimation of ARX model is
presented. Finally, nonminimal state space representation of ARX model is shown and
its optimal control strategies, leading to linear state feedback control law, are presented.

2 OPTIMAL CONTROL OF ARX MODEL

In the second part simulations carried under MATLAB 4.0 are given to demonstrate
the nature of stochastic optimal control in case of ARX model. The difference between
cautious and certainty equivalent strategies is stressed.

2 Cautious and certainty equivalent control strate-
gies
Let us consider linear stochastic system in the form
z(t+1) = Az(t)+ Bu(t) + Ev(t) (2)
y(t) = Cz(t)+ Du(t) + e(t)
where state noise v(t) and measurement noise e(t) are mutual independent white se-
quences with zero mean and covariances P, and P, so v(t) ~ N(O,P,) , e(t) ~

N(O, P.).

We are looking for optimal control w*(t) which minimizes the quadratic criterion

J=¢ {yT(N)syy(m ; z y(0Q,Hu(0) + uT(t)R.,(t)u(t)}

where £{.} is the mean. The positive semidefinite symmetric weighting matrices S,,
Q,(t) a R,(t) are used as the tuning parameters for the optimal control design.

The optimal value of the criterion, denoted as J*, depends on initial time ¢ = 0, initial
state (0) and final time ¢t = N, so J* = Jy(x(0),0). We are looking for causal optimal
feedback control in the form u*(t) = f(z(t),t). Due to the additive form of the criterion
it is possible to express the criterion in a recursive way. Consider general initial time ¢
and initial state =(¢). Let us introduce optimal function V' (z(t), t)

Iy (z(t),t) = V(x(?),1)

Our original problem is embedded to the whole set of problems of optimal control with
initial time ¢ and initial state &(¢) (final time ¢ = N is fixed). Consider that optimal

function has the form
V(x(t),t) = =" (t)G(t)=(t) + g(t)

Optimal function V(x(t),t) can be computed in recursive way according to the formula
V((t),1) = min £{s"()Qu(t) + u () Ruu(t) + V(2(t +1),t + 1)|z(t)}

which is the well known Bellman equation. Conditional mean is used in the previous
formula to express the fact that by minimization with respect to u(t) the state x(t) is
known. After the substitution for y(t) from the equation (2) Bellman equation has the
form

Viz(t),t) = %1e{mT(t)Qz(t)+uT(t)Ru(t)+

T (t)Q, u(t) + u ()QIz(t) + T (1) () +
(e(t) + eT(1)Q e(t) + V(m(t +1),t + 1)|=(t)}

OPTIMAL CONTROL OF ARX MODEL 3

where Q = C7Q,C, R = R, + D"Q,D and Q, = CTQ,D. Terms linear in e are

not written in details, because their mean equals to zero. From the form of weighting

matrices Q, Q, and R it is obvious, that their elements depend on system parameters.
After the substitution for state z(¢ + 1) from (2) the optimal function equals

V(z(t),t) = min £ {="(t)Q=(t) + u” () Ru(t)+

2T (1)Q,u(t) + uT(1)QTx(t) + eT(t)Q,e(t) + (3)
g(t + 1) + (Az(t) + Bu(t) + Ev(t))T G(t +1) x
x (Az(t) + Bu(t) + Ev(t))}

Minimization of the previous formula is done by completing the squares
V(z(t)t) = min {(u(®) - w®)" [€{R} + £ {BTG(t + 1) B}] (u(t) - w*(1)) +
=7 (t) [£{Q} + £ {ATG(t + 1) A} =(t) +
tr(Q,P.+E{E"G(t+1)E} P,) +g(t+1) -
~u'(t) [E{R} + £{B"G(t + 1)B}] u’ (1)}

From the previous form of optimal function it is obvious, that u*(t) minimizes the relation
and so it is optimal control. Comparing two previous formulae for optimal function the
relation for optimal control is obtained

w'(t) = -[E{R}+E{BG(t+1)B}|” x
x [£{QT} +£{BTG(t +1)A.}] =(2) (4)

The formula (4) for optimal control u*(t) can be substituted to the formula for optimal
function (3) and the recursive relations for matrix sequence G(t) and sequence g(t) are
obtained

G(t) = £{Q}+E{ATG(t+1)A} -

~[e{Q.} +£{ATG(t +1)B}] x

x [€ (R} + € {B"G(t +1)B}]" x (5)

x [{QT} +£{B"G(t+1)A}]

g(t) = tr [Q,P. + £ {ETG(t+ 1)E} P,| + g(t +1) (6)

Optimal function for the final time { = N equals

V(z(N),N) = tr (S, P.),
and optimal control in time ¢ = N is

u*(N) = -£{8.} " £{D"S,C} =(N) (7)

4 OPTIMAL CONTROL OF ARX MODEL

where S, = DTS, D.

General formulae for cautious optimal control strategies are obtained. Uncertainty is
considered to be in the system parameters only. State x(t) is supposed to be measurable.
This form of results will be used later on for developing optimal control strategies of an
ARX model. Certainty equivalent control strategy is obtained when only parameter mean
in the previous relations is considered.

2.1 Parameter estimation of ARX model

The discrete time ARX model is described by the difference equation (1). Let us introduce
parameter vector 8(t) and vector of delayed inputs and outputs z(t)

0(t) = [bot) m(®) bi(t) .. bat) |’
2(t) = [u) ye-1) .. u(t-n)]
The ARX model (1) has then the form
y(t) = 27 (£)8(t) +e(t) (8)

This equation can be considered to be the output equation of the state space model where
parameter vector 8(t) is considered to be the state of the system and the vector 27 (t)
is an output matrix. Unknown parameters are supposed to be constant and so can be
formally described by state equation

0(t+1) = 0(t) 9)

States (in reality the parameters) of such system can be estimated by Kalman filter. Let
6(t|7) equals to conditional mean of the parameter vector in time ¢ conditioned by the
data till time 7. In similar way is denoted conditional parameter covariance Py(t|7).

Recursive Kalman filter consists from data and time update steps. Time update step
is given by state equation (9), so 8(t + 1|t) = 0(t|t) and in similar way for the covariance
matrix. It is possible to use only one time argument and so @(t) is mean of parameter
vector (in time t or ¢ + 1) conditioned by data till time ¢.

Kalman filter for parameter estimation of the ARX model has only data update step
which is usual formula for conditioning

8(t) = O(t—1)+ Pg, P, [y(t) — §(t)]
g(t) = 2T()0(t - 1)
Py(t) = Py— Po,P,'Py

y

where covariances on the right side are in time (¢ — 1). Mutual covariance Pg,(t — 1) =
Py(t—1)z(t) and output variance Py(t—1) = 2T (t) Py(t — 1)2(t) + o? follow from output
equation (8).

Previous relations are recursive formulae for estimation of unknown parameters, where
uncertainty is expressed by parameter mean and covariance. Recursive formulae start
from prior or initial estimate 6(0) = @ and Ry(0).

OPTIMAL CONTROL OF ARX MODEL 5

2.2 State space representation of ARX model

Let us consider the nonminimal realization of the ARX model in the form

z(t+1) = Az(t)+ Bu(t) + Ee(t)
y(t) = Cz(t) + Du(t) + e(t)

Here, the nonminimal state of the system is formed from the old values of input and
output

“[yt-1) wt-1 ... u-n)]" '

It is obvious that matrices A, B and F equal

-al b1 bn—l anbnT
0 0 0 0 0
1 0 0 0 0
A=1 4 3 0o 0 0|’
L0 o0 1 0 0]
Bz[bOIOO...O]T
E=[100..0],
C [a1 by ay by ... b,,]
D = b

The unknown parameters exist only in the first row of matrices A and B and also in
matrix C and scalar D.

2.3 Cautious strategies of ARX model

From previous form of state space equation of ARX model it is obvious that state of the
system is formed from delayed outputs and inputs. The state of such system is measurable
and so it is not necessary to estimate it. Such situation is only possible in just described
nonminimal realization of the ARX model

Parameter vector 0(t) equals 6(t [D C] . Parameter estimation procedure
described in the previous section results in parameter mean and covariance, so
~ bo(t 2
o(t) — A(')Ig) : P _ [Tbo P Cbo
C (t) Pyc Pc

Now the general results (4) and (7) for stochastic optimal control strategies are used.
Means of the weighting matrices equal

£{Qy = Qc{c"c}=q, (6T6 + PC) ,

6 OPTIMAL CONTROL OF ARX MODEL

£(Q.) = @E{C™D} =@, (Ch+ Puc),
£(r} = ru+QE{DD}=ru+Q, (W +3,),
£(s} = s{ctc)=5,(CC+ Po),
£{s.} = S,£{D"D} =5, (502 + 030) :
£{D"s5,c} = S,£{DC} = S,Pcs,

where r is used instead of weighting matrix R and r, is used instead of R, because of
single input. Remaining products of matrices are computed in a similar way. Realize that
unknown parameters are only in the first row of the matrices A and B. So

£{BTG(t + 1)B} = £{(50Gu+Gan)bo +boGr2 + G} =
B G(t+1)B +Guod = Gu (B8 +02)) + 250Gz + G,
where G11, G12 and Gy, are elements of the matrix G(¢ + 1). And
£{ATG(t+1)B} = A G(t+1)B+GuPuc,
E{ATG(t+1)A} = A G(t+1)A+ Gy Pc.
Final results of quadratic optimal cautious control strategy of an ARX model are:

e Optimal control according to (7) and (4) equals to
1

u*(N) = —i)%+0'go (660+P050)$(N),
wit) = -2 0ap) (10

for time t = 0,1,..., N — 1, where the vector 2(t) equals

27(t) = @, (Cbo + Pay,) + B G(t+1)A+ PoyyGu(t+1)

and the constant a = 7, + @y (1;02 + afo) +Gn (13% + a,?o) + 2byG12 + Gaa.

e Matrix G(t) can be computed by recursive formula (5) which after the substitution
has the form

Yoo - — T
G(t) = Qy (CTC + PC) +A G(t+1)A+GuPo+ z(t)z"(t)

with end condition G(N) = O.

OPTIMAL CONTROL OF ARX MODEL 7

e The sequence g(t) follows from the recursive relation (6), which after the substitution
has the form
9(t) = g(t+1) + 07 (1 +Gu(t+1))

with end condition g(N) = Sy02.

e Minimum of the criterion equals to
J* = Jy(2(0),0) = =" (0)G(0)z(0) + g(0) (11)
Certainty equivalent control strategy is obtained when only parameter mean values

are considered. Here are the final results of certainty equivalent control:

e Optimal certainty equivalent control according to (7) and (4) equals

—_

u*(N) = —%m(N),
T
w) = -2 a0,

for time t = 0,1,..., N — 1, where the vector w(t) equals
w'(t) = Q,Ch+B G(t+1)A
and the constant 8 =r, + Q,,I;o2 + Guaﬁ + 200Gz + Gaa.

e Matrix G(t) for certainty equivalent strategy can be computed by the recursive
formula (5) which after the substitution has the form

G(t) = QC C+A Gt+1)A+ 'ﬁ@#

with end condition G(N) = O.
e The sequence g(t) equals zero for certainty equivalent strategy.

e Minimum of the criterion is in (11) but the matrix G((t) has other form for certainty
equivalent control.

1Note that for by = 0 (system with time delay) u*(N) = 0 or any arbitrary input may be chosen
because u(N) does not influence the system in N-th step and subsequently the optimal control.

8 OPTIMAL CONTROL OF ARX MODEL

3 Simulation results

The concept of stochastic optimal control is quite abstract. That is why we felt useful
and lucid to carry out some computer simulations to demonstrate how do the stochastic
optimal control operate. Only the most interesting results are presented, for others see

[8].
From previous section we can see that stochastic optimal control is a very complex
task. To keep all simulations easy to understand and to explain we made in comparison

with previous theoretical results following simplifications.

e Parameters uncertainty was modelled only with diagonal elements of matrix Pe.

e Quadratic control criterion .

N-1
J=¢ {yT<N)Sy(N) £ Y T OQu) + ru2<t>} 12)

t=0

with tuning parameters r (control weight), Q (output weight) and S (final output
weight) was taken into account.

e ARX model of the form

y(t) = éaiy(t —1)+ Zn:b,-u(t —1) +e(t) (13)

1=0

was considered and measurement noise e(t) ~ N(0,02) was supposed to be known.
We feel necessary to notice that this is the main principal disadvantage of proposed
approach. Considering a known model of the system we simplified very much the
derivation of stochastic optimal control, but it is left to reader to find out a way
how to estimate the variance o2 in each application.

In the remaining text unstable system

1
~ (105 — 1)(10s + 1)?

P(s) (14)
will be studied.2 The choice of an unstable system was motivated by the fact, that we
wanted to see how the stochastic optimal control treats the unstability.

In this point it is worthy to stress two important facts. Firstly the control was applied
on finite control horizon, therefore the notion of stability and unstability is senseless.
Secondly, even if the control law (10) is deterministic, it is applied to a stochastic process.
Hence each realization is unique. This is why the interpretation of obtained results is very
complicated and their generalization almost impossible. However we hope that following
simulations will demonstrate the main features of stochastic optimal control.

2In [8] a stable system P(s) = m was studied as well to check whether the derived strategies
behave correctly. Some of there obtained results will be mentioned in this text. We started from a
continuous system to enable an easy comparison with previously obtained results.

OPTIMAL CONTROL OF ARX MODEL 9

3.1 Parameters setting

Considered unstable plant (14) was discretized with sampling frequency T, = 5, which
gives rise to the discrete model

—0.0146d® — 0.0672d> — 0.0187d

P(d) = =5 5065 + 2.3679% — 2.8618d + 1"

where d = 27! is the delay operator.

To make clear the simulations procedure, parameters setting will be listed. Let us
mention that a different choice of parameters set would lead to slightly different results.
Having this in mind, we choose a parameters set, among many others, which demonstrates
the studied properties of stochastic optimal control the best.

e Control horizon N equals to 20 time steps (sampling period T, = 5). This time
interval is long enough to observe the unstability of considered system.

e Unknown noise e(t) in ARX model description (13) was supposed to be white,
normally distributed A(0,02) with standard deviation o, = 0.01. Let us mention
that considering o, > 0.01 would lead to an unstable® behaviour of controlled
system.

e Initial state 1 = [-10 -10 -10] was chosen.

e Parameter uncertainty was modelled by diagonal matrix Pg

G2 0 0 - 0

0 02 0 --- 0
Py =)

0 0 o2 0

0 0 0 of

The choice of different diagonal covariance elements permits to study the influence
of uncertainty in parameters description on nominator (zeros) and denominator
(poles) of the system separately. Precise values of standard deviations o,, 0, will be
given for each figure.

Tuning parameters r (control weight), Q@ (output weight) and S (final output weight)
and auxiliary parameters will be specified in each paragraph.

3.2 Dependence on parameters uncertainty

The main contribution of this text consists in considering parameters uncertainty in sys-
tem description. In comparison with classical LQG control this enables to anticipate

3Because stochastic optimal control strategies were derived on finite horizon, there is no reason to
talk about stability and instability. The term of stability is used here only to mark a behaviour when for
t = N, y(t) = 0. In this manner will be the notion of stability used in remaining text.

10 OPTIMAL CONTROL OF ARX MODEL

parameters change and deal with it. That is why in this paragraph we want to demon-
strate how do the parameters uncertainty influence the behaviour of optimally controlled
system. The increase of parameters uncertainty is modelled with the increase of standard
deviations o, or/and oy in covariance matrix Pg.

In this section tuning parameters Q = 1 (output weight), S =1 (final output weight)
and 7 = 1 (control weight) are considered. Increasing parameters uncertainty was mod-
elled with standard deviations o, = 0, = [0 0.01 0.02 0.033] Other parameters are
the same as in section (3.1)

Figures 1-3 show the influence of parameters uncertainty on optimal control u(t) and
output course y(t). The difference between cautious and certainty equivalent control
strategy can be seen. The bigger parameters uncertainty is considered (dotted, dash-
dotted and dashed line), the smaller is the optimal control effect. This corresponds to
our expectation and experience, that in presence of uncertainty our decisions are more
restrained.

Figure 1 represents an exception. All optimal trajectories are the same. This is due
to a very small value of noise 0.. When bigger value of noise were considered, control
strategy behaved in the same manner as in figures 2-3, but we wanted to keep all figures
comparable.)

yt) st

-10 A :
0 5 10 15 20

t

Figure 1: Optimal control u(t) and output y(¢). Different line types represent amount of
parameters a; uncertainty (standard deviation o).

Figure 4 shows the dependence of optimal value of the criterion J on the amount of
parameters uncertainty. An interesting feature of cautious control can be observed. The
optimal value J* of the criterion decreases with parameters uncertainty. This is due to
the fact that a smaller control effect corresponds to more cautious control. Consequently
the contribution of the term u?(t) to J* is smaller.

OPTIMAL CONTROL OF ARX MODEL 11

''''''
P

Figure 2: Optimal control u(t) and output y(t). Different line types represent amount of
parameters b; uncertainty (standard deviation o;).

-

u(')-10 34 —ao,=0,=0
.. °-"*"%8;
<" o, =0, =0
208 - - g'=c\=0.033
-30 e
0 5 10 15 20

Figure 3: Optimal control u(t) and output y(t). Different line types represent amount of
parameters a;, b; uncertainty (standard deviations o, = 03).

10 . - - s -
I
1°|‘ 1
"~ —g,=0
13| v e
o .. - 82G=0] |
5 .

.l

10 N " N . N N
[} 0.01 0.02 0.03 0.04 0.05 0.08 0.07
G

Figure 4: Criterion dependence on parameters uncertainty. Solid line corresponds to
uncertainty only in a; parameters (o, = 0), dotted line represents uncertainty in only b;
parameters (o, = 0) and the dash-dotted line in both a;, b; parameters.

12 OPTIMAL CONTROL OF ARX MODEL

3.3 Dependence on tuning parameters

The advantage of classical quadratic optimal control is that except of stabilizing the
system it permits to influence the expended energy u(t) and permits to control the settling
course of y(t) according to a chosen criterion. In this section we demonstrate that our
approach maintains this property when parameters uncertainty is taken into account.

Chosen tuning parameters are given for each figure with increasing importance of
output settling in the criterion: r = 1, Q = [0.01 0.1 1 10 100J. Uncertainty
in both a; and b; is modelled in the covariance matrix Pg with standard deviations
Op = 0p = [0 0.01 0.02 0.033] and represented with different line types.

Figures 5-6 show the influence of tuning parameters on optimal control law u(t) and
output course y(t). It can be seen that expected behaviour was achieved. When Q
increases, the output y(t) even in presence of parameters uncertainty tends to 0 faster.

In all figures the typical difference between cautious and certainty equivalent control
strategy is maintained. The bigger parameters uncertainty is considered, the smaller
control effect is needed.*

Notice that in some cases the control strategy does not ensure the stability of the
system. This confirms our supposition, that there should be a limit in parameters uncer-
tainty, for which the system can be stabilized. Bigger parameters uncertainty will lead
to an unstable behaviour even if optimal control is applied. Notice, however, that such a
control still minimizes the criterion J.

10r

—o0,=0,=0
o, =0, = 0.01
- 6,=0,=0.02
-~ ¢6,=0,=0.033
15 20
or re——— -
yi) .5 R
_10 _" ' i A J
0 5 10 15 20

Figure 5: Optimal control u(t) and output y(¢) for @ =S = 0.01 and r = 1.

“Let us mention that this result was not achieved for stable system studied in [8].

OPTIMAL CONTROL OF ARX MODEL

13

10 10
of [rrr———e of r————Toes
u®) .10} fo-” —o,=0,=0 ult) .qof f=-"" — G.=0,=0
-+ 0, =0,=001 - g, =0, = 0.01
‘- o,=0,=002 20 “~0,=0,=0.
-20 -- g.=0,=0.033 - -- g.=0,=0033
.30 N s 2 ,
0 5 10 15 20 0 s 10 15 20
t t

y(t)

10 10
of [rrrr——T —r of from——TT
ut) .10 Sde —o.=0,=0 vl .10 St —o0,=0,=0
o,-o.-g.gé c.ao.-ggé
“TO,m0,= o= =
20 -- o,=q, = 0033 -20 - Gl= 020033
-30 4 30
[} 5 10 15 20 0 5 10 15 20
t t

20

c)@=85=10,r=1 d@=S=100, r=1

Figure 6: Optimal control u(t) and output y(t) for different tuning parameters.

14 OPTIMAL CONTROL OF ARX MODEL

Figure 7 shows the dependence of optimal value of the criterion J on tuning param-
eters @, S, r. We can see that increase of Q (in comparison with r) leads to an increase
of the optimal value of criterion J in a linear manner for all considered parameters un-
certainty. Because from figures 5-6 we can see that good settling of y(t) is achieved, we
can conclude that more constrained control expends more energy.

Nevertheless an interesting fact has to be mentioned. The optimum of the criterion
J* is smaller when parameters are less certain. Thus, uncertainty in parameters make
the control "easier”. This might be explained by the fact that for increasing parameters
uncertainty smaller control u(t) is applied. Because the term u?(t) is summed in the
criterion, less effective control leads to a smaller increase of the criterion.

18

10
—o0,=0,=0
10°t |-ol=0,=001
= 0,=0,=0.02 .
-- 0,=0,=0.033 e
1014_ - ”’_,—
N
1012
10°F -7
103 -2 ‘1 A‘O l' 2
10 10 10 10 10
p

Figure 7: Dependence of the optimal value of the criterion J on tuning parameters @, S, r
(p= '?': S =Q).

3.4 Different optimal trajectories

As it was mentioned previously an important property of stochastic optimal control is
that even if the control law is deterministic, it is applied to a stochastic process. So due
to stochastic nature of the system, each realization of optimal control has to be different.
But a reasonable control should in each case lead to a satisfactory result (y(t) tends to 0
fort — N).

To see the stochastic behaviour of the optimally controlled stochastic system, we
carried out 100 simulation, each time with a different realization of random sequence
e(1),--+,e(N). Optimal control u(t), trajectory and corresponding output course y(t)
were plotted for each simulation. Tuning parameters Q, S, r were assigned to Q@ = S =
r = 1. Parameters uncertainty (standard deviations o, = 0) is given for each figure
separately.

OPTIMAL CONTROL OF ARX MODEL 15

Figures 8-9 show that a satisfactory result was achieved for all considered parameters
uncertainty. Due to stochastic properties of studied system, all studied trajectories u(t)
and y(t) spread into a bounded band but remain stable in all cases. Notice that in figure
8 even for a CE control (deterministic) the resulting output course is stochastic.

10"
-
e-tot |
5;
ol
-2 .
o 2 4 8 8 10 12 14 18 18 2
1
I
ok "
nu\\\\\‘““" i
g5
‘o,...-"'
-5 , .
© 2 4 6 8 10 112 14 116 18

Figure 8: 100 courses of control strategy u(t) and corresponding output y(¢) for different
noise sequences e(1) - - - €(20) and parameters uncertainty o, = g;, = 0.

5r 5
ol W
st & °
§—10 2 ; : 'g‘
15}
2 i -10}
-3) -15,
] 2 4 6 8 1'0 12 14 16 18 20] 2 4 [} 8 10 12 14 16 18 20
]
s 5
° Wi of iy
Rt 44 “““““\“\\\\l\\\\\\\\\\\\\“ HULLUHL
W \
- ‘\\\\\\
= E - mm\ A
L
10 R
-15 - -15 -4 -
2 4 6 8 10 12 14 18 18 20 2 4] 8 10 12 14 16 18 20
t t
a) o0, = op = 0.015 b) 0, = g5 = 0.033
b

Figure 9: 100 courses of control strategy u(t) and corresponding output y(t) for different
noise sequences e(1) - - - (20) and parameters uncertainty.

Figure 10(a) shows that the same result as in figures 8-9 was achieved for different
tuning parameters @ = S = 100, r = 1. Notice that the change in Q (output weight)
led to a narrower band y(t) in comparison with fig. 9(a).

Figure 10(b) shows that reasonable behaviour of stochastic optimal control is main-
tained when it is applied to a processes with random initial condition (real stochastic
system) z(0) = £(0) + e, where e, is normally distributed white noise with zero mean

16 OPTIMAL CONTROL OF ARX MODEL

and variance o2. The only difference in comparison with figure 9(a) is that the band y(t)
widened, especially for ¢ =~ 0, but the behaviour remained stable.

° | e T ey
R

" i i . "

(a) Q =S =100,r =1, g, =g, =0.015 (b) z(0) ~ N(£(0),02),0, = 0.1, 0, =
op = 0.015

Figure 10: 100 courses of control strategy u(t) and corresponding output y(t) for differ-
ent noise sequences e(1) - - - €(20): influence of tuning parameters (a) and random initial
condition (b).

4 Conclusion

For ARX stochastic model it is possible to estimate its unknown parameters by Kalman
filter. Conditional mean and covariance of parameters is obtained in recursive way from
observed input and output data. Stochastic optimal control strategies of an ARX model
are developed in the text. Cautious optimal control strategy respects parameter uncer-
tainty represented with parameter covariance matrix. Certainty equivalent control strat-
egy is based only on estimated parameters mean and neglect its uncertainty. Program
in Matlab was realized to simulate the differences between both strategies and different
simulation results were presented and discussed.

References

[1] D. P. Bertsekas. Dynamic Programming. Academic Press, New York, 1994.

[2] Vladimir Havlena. Simultaneous parameter tracking and state estimation in a linear
system. Automatica, 29(4):1041-1052, 1993.

[3] F. L. Lewis. Optimal Estimation. J. Wiley, New York, 1986.

OPTIMAL CONTROL OF ARX MODEL 17

[4] Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw Hill,
New York, 1965.

[5] V. Peterka. Trends and Progress in System Identification, chapter Bayesian Approach
to System Identification. Pergamon Press, Oxford, 1981.

[6] Jan Stecha. Control, estimation, smoothing and system classification. Technical re-
port, CTU FEL Prague, 1992.

[7] Jan Stecha and Rudolf Rézek. Cautious and certainty equivalent control strategies
of an ARX model. 16th IASTED Int. Conference on Modelling, Identification and
Control, pages 384-387, 1997.

[8] Jan Stecha and Rudolf Rézek. Stochastic optimal control of ARX model. Technical
report, CTU FEL Prague, 1997.

18 IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT....

Implementation of a Real-Time Adaptive
Controller for a SCARA Robot Based—on
Digital Signal Processors

S. H. Hanl, Peter Kopacek2 and M. H. Leé®

1 Dept. of Mechanical Engineering, Kyungnam Univ., Masan, Korea
2 Institute for Handling Devices and Robotics, Technical Univ., Viena, Austria
3 Dept. of Mechanical Engineering, Pusan National Univ., Pusan, Korea

Abstract

Real-time implementation of an adaptive controller for the robotic manipulator is presented
in this paper. Digital signal processors are used in implementing real time adaptive control
algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme,
adaptation laws are derived from the improved Lyapunov second stability analysis based on
the model reference adaptive control theory. The adaptive controller consists of an adaptive
feedforward controller and feedback controller and time-varying auxiliary control elements to
the nominal operating point. The proposed control scheme is simple in structure, fast in
computation, and suitable for real-time control. Moreover, this scheme does not require any
accurate dynamic modeling, nor values of manipulator parameters and payload. Performance
of the adaptive controller is illustrated by simulation and experimental results for a SCARA
robot.

Keywords Adaptive Controller, Assembling Robotic Maripulator, Digital Signal Processor,
Real-Time, Robust Control.

1 Introduction

In general, industrial robotic manipulators consist of independent joint controllers which
control joint angles separately through simple position servo loops (Ortega and Spong, 1989).
This basic control system enables a manipulator to perform simple positioning tasks such as
in the pick-and-place operation. However, joint controllers are severely limited in precise
tracking of fast trajectories and in sustaining desirable dynamic performance for variations of
payload and parameter uncertainties. Design of a high performance controller for robotic
manipulators has been an active topic of research(Ortega and Spong, 1989; Tomei, 1989).

Today there are many advanced techniques that are suitable for servo control of a large
class of nonlinear systems including robotic manipulators(Sadegh and Horowitz, 1990; Bortoff,
1994; Slotine and Li, 1987). Since the pioneering work of Dubowsky and DesForges (Sadegh
and Horowitz, 1990), interest in adaptive control of robot manipulators has been growing
steadily (Ortega and Spong, 1989; Tomei, 1989; Sadegh and Horowitz, 1990; Bortoff, 1994).
This growth is largely due to the fact that adaptive control theory is particularly well-suited
to robotic manipulators whose dynamic model is highly complex and may contain unknown
parameters. However, implementation of these algorithms generally involves intensive
numerical computations.

IMPLEMENTATION OF A REAL ~ TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT.... 19

Digital signal processors(DSP’s) are special purpose microprocessors that are particularly
powerful for intensive numerical computations involving sums and products of variables
(Ahmed, 1991). Digital version of most advanced control algorithms can be defined as sums
and products of measured variables, thus can naturally be implemented by DSP’s. In addition,
DSP’s are as fast in computation as most 32-bit microprocessors and yet at a fraction of
their prices(Bortoff, 1994, Ahmed, 1991). These features make them a viable computational tool
for digital implementation of advanced controllers.

In order to develop a digital servo controller one must carefully consider the effect of the
sample and hold operation, the sampling frequency, the computational delay, and that of the
quantization error on the stability of a closed-loop system(Ahmed, 1991; Parks, 1986;
Dubowsky and DesForges, 1979; Choi, et al, 1986; Gavel and Hsia, 1987). Moreover, one must
also consider the effect of disturbances on the transient variation of the tracking error as well
as its steady-state value.

This paper presents a new approach to the design of an adaptive control system using
DSP’s, TMS320C30, for robotic manipulators to achieve trajectory tracking by the joint angles.
This paper is organized as follows: in Section 2, the dynamic modeling of robotic manipulator
and the adaptive control algorithm are derived. Adaptation laws are derived based on the
model reference adaptive control theory using the improved Lyapunov second method. Section
3 represents simulation and experimental results is obtained for a SCARA robot. Finally, Section
4 discusses findings and draws some conclusions.

2 Adaptive Control Scheme

2.1 Dynamic Modeling

Let us consider a nonredundant-joint robotic manipulator in which the nX1 joint torque
vector 7 (t) is related to the nX1 joint angle vector g(t) by the following nonlinear dynamic
equation of motion:

Xg) g+ N(q, a)+ Kag)= «(d) (1)

where IXq) is the nXn symmetric positive-definite inertia matrix, MN(g, @) is the nX1

Coriolis and centrifugal torque vector, and G{g) is the nX1 gravitational load vector.
Equation (1) describes the manipulator dynamics without any payload. In order to consider
payload on the manipulator dynamics, suppose that the manipulator end-effector is firmly

grasping a payload represented by point mass m. For the payload to move with
acceleration X (#) in the gravity field, the end-effector must apply the nXx1 force vector
T($ given by

NH = 4P X(H+gl 2)
where g is the nX1 gravitational acceleration vector and X(#) is the nXx1 end-effector

position and orientation coordinates in a fixed task related Cartesian frame of reference.
The end-effector requires additional joint torque

() = KT 3)

where f(g) = [0 A(g)/ 4] is the nXn Jacobian matrix of the manipulator. Hence, the total
joint torque vector can be obtained by combining equations (1) and (3) as

20 IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT....

(= Ko)"T(H+Dq) g+ Ma,)+ G(a). (4)
Substituting equations (2) and (3) into equation (4) yields
AP K@) Ka) a+ J(a, @) a+&l+D(a) ¢ + Mg,)+ G(a) = ¥, 5)

Equation (5) shows the explicit effect of payload m on the manipulator dynamics.
This equation (5) can be defined as the implicit nonlinear dynamic equation

D(m, q, ¢)a + N(m, a, d)a+ G'(m, q,¢) = 9. (6)

2.2 Adaptation Law

In order to cope with changes in operating point, gains are varied with the change in
external working condition. This yields the adaptive control law

() = [Pa(®) ¢,(O+ Ps(B)ald) + Pc(Ha, ()]
+ [Pp(HE(H) + Py(H) E(H)+ Pi(9)]

(7

where P4(9, Pg(#), P-(f) are feed forward time-varying adaptive gains, and Pp(#) and
Py(H are feedback adaptive gains. And Pg#) denotes the time-varying control signal

corresponding to the nominal operating point term, generated by a feedback controller driven
by position backing error EX(%).
Fig. 1 represents the block diagram of adaptive control system for robotic manipulator.

Fig. 1 : The block diagram of adaptive control scheme for robotic manipulator.

On applying adaptive control law (7) to the nonlinear robot dynamic equation (6), the error
differential equation can be obtained as

D'E(H+ (N + Py) E(H+(G + PpE(D)
= PO+ (D= P a)+ (N — PpgH+(G —Prafd).

)

Defining the 2nX1 position-velocity error vector e(# = [E(#, FE(#)]7, equation (8) can
be written in the statespace form

IMPLEMENTATION OF A REAL ~ TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT.... 21

(= (0 1;2)5(t>+(33)q,<t>+(3}4)6,0)

w,

0\ : 0
+(ws)q,(t)-i-(ws) ©)
where w, = [D']7! [G"+ Py w, = [D'17! [N+ Py)
wy; = [D17'[G"-PJ wy, = [D']7! [N'— Py
Ws = [D‘]~1 [D.—PA] Wg = _[D']_l [PI].

The adaptation laws are now derived by ensuring the stability of error dynamics. To this
end, let us define a scalar positive definite Lyapunov function as

L= ¢ TRE + trace[QlT KlQl] + tmce[QzTKz Qz]
+ trace [@7 K3 Q;] + trace [Q,7 K, Q] (10)
+ trace [Q7 K Q] + [Qs K; Q17

where @ = w;— S~ w', @=w—S— w', =w— w" Q= w— w,
Q= w5 — w5', and Q5 = wg — wﬁ*. R is the solution of the Lyapunov equation for
the reference model, K;,...,K; are arbitrary symmetric positive definite constant nXn

matrices, and matrices wj,...,ws are functions of time which will be specified later.

From the stability analysis, required adaptive controller gains are obtained as

t

Pe() = 1 | PaE+Po E) [E) "+, [| PAE+PRE) |E] Tdr (11-a)

Py(d=0, | PaE+ P, E) L E1 T+ 0, [[PyE+ P, E1 | E1 7t (11-b)
t

P =c, | PAE+P,E] 1q,17+ CZL [P,E+P,E] |q,1Tdt (11-¢)
'3

Pg()= b | PyE+ Py, E1 1 4,1 T+ bZL [PhE+ P, E1 [4,1 Tdt (11-d)

- t -
Pit)=a, | PyE+PoEl | ¢,17+ azj; [PAE+PLEN [g,) Tat (11-e)
d T
Pi(f) = Al PyE] +/11£ [P,E] Tdt (11-f)

where [A1, pp, Pu, Da, Du., Paland [A2, Dg, Dw, D2, Dw, Dol are positive and

nonnegative scalar adaptation gains.

22 IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT....

3 Experiment and Results

This section represents DSP’s-based control results of the position and velocity control for
a SCARA robot with four joint as shown in Fig. 2, and discusses the advantages of using
DSP’s for robotic motion control.

' L2

ds

d4

d1

Fig. 2 : Link coordinate systems of a SCARA robot.

A set of experiments for the proposed adaptive controller was performed for four joints of
the SCARA robot. To implement the proposed adaptive controller, we used our own
TMS320C30 assembler software developed.

Fig. 3 shows the experimental set-up equipment. Also, a TMS320C30 emulator was used in
experimental set-up as can be seen form Fig. 3. The TMS320C3x emulator is an application
development tool which is based on the TI's TMS320C30 floating point DSP chip with an
instruction cycle time 50ns. At each joint, a harmonic drive was used to transfer power from
the motor, which has a resolver attached to its shaft for sensing angular velocity with a
resolution of 8096 pulses/rev.

Fig. 4 represents the main hardware structure of control system of a SCARA robot.

Fig. 3 : Experimental set-up.

IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT.... 23

|__MAN BOARD BLOCK DIAGRAM
ROM

B80486X 2MB
—33CcPU i

» (LYNX BOOT)

®

g SRAM
2 | 812KB
2
E : (DATA BACKUP)

g

z DATA BACK UP
E i‘ CIRCUTT

- |

Fig. 4 : The block diagram of hardware structure of SCARA robot.

The performance evaluation of the proposed adaptive controller was performed in the joint
space and cartesian space.

In the joint space, the experiment was carried out to evaluate the position and velocity
control performance of the four joints for variation of payloads. Fig. 5 shows the results of
the position and velocity tracking control for the first joint with 3.5 kg payload. In the joint
space, as can be seen from results, the DSP-based adaptive controller shows extremely good
tracking performance even with the added external disturbance. Fig. 6 shows the
experimental results of the position and velocity tracking performance for the second joint
with 3.5 kg payload in the joint space.

From experiment results, proposed adaptive controller shows very good control performance
in the test for trajectory tracking of the velocity and position in the joint space.

80
> &
4 o
= =
g E
x Z
L . z .

0 1000 2000 0 1000 2000
ADAPTIVE time(msec)

04 ; .
—_ w
=2 =
s 0.2 b4
=t =)
g =
& 0 g
202 2
x : x
£ 04
5% 1000 2000 5

ADAPTIVE time(msec) ADAPTIVE time(msec)

Fig. 5 : Experimental results for the position and velocity tracking at the
first joint with 3.5 kg payload.

24 IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT....

50 00— T)
o e B e e
=l fo3
- he)
8 Ot - Ot-
=3 (3 H H H
< < -200 R it [t
£ = : t s
~ 50 ‘ ~ 400 ' : :
¢} 500 1000 1500 2000 0 500 1000 1500 2000
ADAPTIVE time{msec) ADAPTIVE time(msec)
__ 20
= Iy i
3 2 10} prag
— kel
1] = H
< S omY..-
g 50T SRR S
o~ L]
= i i = i i i
- 0 500 1000 1500 2000 = >200 500 1000 1500 2000
ADAPTIVE time{msec) ADAPTIVE time(msec)

Fig. 6 : Experimental results for the position and velocity tracking at the
second joint with 3.5 kg payload.

In the cartesian space, the adaptive controller was evaluated in a peg-in-hole task, and in a
tracking task of B shaped reference trajectory.

Fig. 7 represents the B shaped reference trajectory in the cartesian space. Fig. 8
represents the experimental results of adaptive controller for the B shaped reference trajectory
with 3.5 kg payload and maximum velocity (2.2 m/s) in the cartesian space. Fig. 9 shows the
experimental results of PID controller for the B shaped reference trajectory with 35 kg
payload. Fig. 10 represents the kinematic configuration of peg-in-hole task in the
cartesian space. In Fig. 10, each length of linkl and link2 is 350mn and 260mm respectively.

Table 1 represents the experimental results for the peg-in-hole tasks with 3.5 kg payload
and maximum velocity(2.2 m/s) during 8 hours running time in the cartesian space.

2
y B B3
B4
Bt
BS
B8
BO By -
0 x

Fig. 7 : The B shaped reference trajectory in the cartesian space.

1

{mm)

7] S AN SO S

3 emor

OO 500 1000 1500 2000
TIME(msec)

Fig. 8 : Experimental result of the adaptive controller for tracking of B
reference trajectory with 3.5 kg payload.

IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT..... 25

15 r

(mm)

B_ermor

L S o T e Ao [TET S NI ouny i S

1 H
1000 1500 2000

TIME(msec)

1
3] 500

Fig. 9 : Experimental result of PID controller for tracking of B shaped
reference trajectory with 35 kg payload

ZR Point

P a=70mm

120 120 \
Link2
PO / o
Ol 30\5° CLLC =
= he- b oy oo
\.._E/ a \—_’/ a LL

© (mm) y

Fig. 10 : Kinematic configuration for peg-in-hole task in the cartesian space.

Table 1 : Comparision of the failure rate between the adaptive controller and PID
controller in the peg-in-hole task.

Task speed 80.00 (%) 100 (%)

Failure (%) of

. 0.008 (%) 0.012 (%)
adaptive controller

Failure (%) of

9 Q.
PID controller 0.015 (%) 0.038 (%)

As can be seen from the experimental results (Table 1), the adaptive controller shows the
better control performance and reliability than the existing PID controller in the higher speed.

26 IMPLEMENTATION OF A REAL — TIME ADAPTIVE CONTROLLER FOR A SCARA ROBOT....

4 Concusions

A new adaptive digital control scheme is described in this paper using the TMS320C30
chips for robotic manipulators. The adaptation laws are derived from the model reference
adaptive theory using the improved direct Lyapunov method. The simulation and experimental
results show that the proposed DSPs-adaptive controller is robust to the payload variation,
inertia parameter uncertainty, and change of reference trajectory. This adaptive controller has
been found to be suitable to the real-time control of robot system. A novel feature of the
proposed scheme is the utilization of an adaptive feedforward controller, an adaptive feedback
controller, and a PI type time-varying control signal to the nominal operating point which
results in improved tracking performance.

Another attractive feature of this control scheme is that, to generate the control action, it
neither requires a complex mathematical model of the manipulator dynamics nor any
knowledge of the manipulator parameters and payload.

Control scheme uses only the information contained in the actual and reference trajectories
which are directly available. Futhermore, the adaptation laws generate the controller gains by
means of simple arithmetic operations. Hence, the calculation control action is extremely
simple and fast. These features are suitable for implementation of on-line real time control for
robotic manipulators with a high sampling rate, particularly when all physical parameters of
the manipulator cannot be measured accurately and the mass of the payload can vary
substantially.

References

Gavel, D., Hsia, T.C., 1987, Decentralized Adaptive Control of Robot Manipulator, In
Proceedings of the 1987 IEEE Conference on Robotics and Automation, Raleigh, NC.

Ahmed, 1, 1991, Digital Control Applications with the TMS320 Family, Selected Application
Notes, Texas Instruments Inc.

Slotine, J. J. E.; Li, W., 1987, Adaptive Manipulator Control - A Case Study, Proc. IEEE Conf.
Robotics and Automation, pp. 1392-1400.

Sadegh, N.; Horowitz. R., 1990, An Exponentially Stable Adaptive Control Law for Robot
Manipulators, IEEE Trans. Robotics and Automation.

Parks, P.C.V., 1986, Lyapunov Redesign of Model Reference Adaptive Control System, IEEE
Trans. Auto. Contr. 11/3, pp. 362-267.

Tomei, P., 1991, Adaptive PD Controller for Robot Manipulators, IEEE Trans. Robotics and
Automation.

Ortega, R.; Spong, M. W, 1989, Adaptive Motion Control of Rigid Robots: A Tutorial,
Automatica. 25, pp. 877-888. :

Bortoff, S. A., 1994, Advanced Nonlinear Robotic Control Using Digital Signal Processing,
[EEE Trans. Indust. Elect.. 41, No. 1.

Dubowsky, S.; DesForges, D.T., 1979, The Application of Model Reference Adaptative Control
to the Robot Manipulators, ASME J. Dyn. Syst., Meas., Contr. 101, pp. 193-200.

Choi, Y.K.; Chang, M.J.; Bien. Z,, 1986, An Adaptive Control Scheme for Robot Manipulators,
[EEE Trans. Auto. Contr. 44/4, pp. 1185-119L

THE THREE MASS MODEL OF HARMONIC TRANSMISSION 27

The Three Mass Model of Harmonic Transmission

Milan Balara, DuSan Balara, Alexander Balara, Ivan Gots
Technical University, KoSice, Faculty of Mechanical Engineering, Institute of Automation and
Robotics, Department of Automation Technics, PreSov, Slovakia

Abstract

The paper describes the dynamic properties of the harmonic transmission as a linear and
non-linear three mass system. The paper contains the principle of operation, the equations
and the block schema of harmonic transmission and describes simulated time responses of the
torque and speed on the output shaft of harmonic transmission. Described harmonic
transmission has damped oscillations of output torque and output speed.

1 Introduction

Harmonic transmission is used very often in the servosystems of robots, manipulators, special
devices etc. Solution and function of harmonic transmission is described often (for example
refer to Hudoba, M., 1989). Harmonic transmission employs three concentric components to
produce high mechanical advantage and speed reduction. Basic components of harmonic
transmission are pictured in Fig. 1.

Wave Generator (WG) Circular Spline (CS)

Flexspline(FS)

Fig. 1 Basic components of harmonic transmission

The Circular Spline (CS) is a rigid ring with internal teeth, engaging the teeth of the
Flexspline accross the major axis of the Wave Generator. The Flexspline (FS) is a nonrigid,
thin cylindrical cup with external teeth on a slightly smaller pitch diameter than the Circular

28 THE THREE MASS MODEL OF HARMONIC TRANSMISSION

Spline, resulting in it having two fewer teeth on its outer circumference. It fits over and is held
in an elliptical shape by the Wave Generator (WG). The Wave Generator is a thin raced ball
bearing fitted onto an elliptical plug serving as a high efficiency torque converter.

Fig. 2 The principle of operation of harmonic transmission

As soon as the Wave Generator starts to rotate clockwise, the zone of tooth engagement
travels with the major elliptical axis.

When the Wave Generator has turned through 180 degrees clockwise the Flexspline has
regressed by one tooth relative to the Circular Spline (see Fig. 2).

Each full turn of the Wave Generator thus causes relative motion between the Flexspline and
Circular Spline equal to two teeth (Harmonic Drive Applications Handbook, 1992).

The dynamic properties of this type of reducer are not very simple. The elastic element of
reducer with the masses of its some parts is the resource of unusual properties of harmonic
transmission. The linear two mass mathematical model of harmonic transmission is noted
from 1982 (Balara, D., 1982) together with computer simulations (Balara, M., 1987). The
paper describes the dynamic properties of the harmonic transmission as a linear and non-linear
three mass system (Balara, A.,1994). The paper contains the equations, block schema and
describes the time characteristics of torque and speed on the output shaft of harmonic
transmission as the results of the computer simulations. Described harmonic transmission has
damped oscillations of output torque and output speed.

2 The Linear Three Mass Mathematical Model of Harmonic Transmission

The harmonic transmission is a non-linear three mass system with elastic coupling. The
description of n-mass system with elastic coupling is possible by using dynamic equations.
The linear mathematical model of harmonic transmission is derived upon next suppositions:

— we consider that the first mass J; is summation of inertia of servomotor’s anchor, shaft and
inertia of some input parts of the harmonic transmission. Those parts are connected by
short shaft and we may consider them as a one mass, i. e.:

THE THREE MASs MODEL OF HARMONIC TRANSMISSION

29

Jy =J,+Iwp

(1.1)

— we consider that the second mass J, is wave generator which is connected by elastic
coupling and backlash with first mass (wave generator is connected with input part of
harmonic transmission by connection which features backlash),

— we consider that the third mass J3 is inertia of load (working mechanism) behind the

harmonic transmission. It is elasticly connected to the J, mass by the flexspline, with
backlash feature (see Fig. 3).

where

JI[

J; ki,b, My),

T kobpyM; I3

e

AL

Fig. 3. Kinematic schema of harmonic transmission

=AW
dw
Jl_d_tlel_Mtl_MZ
dw M
J 2=M,-M,-3
2" s 2 2T
dw

J3 dt3=M3"Mz3

M, = k(¢, —¢,)+b(w, —,)

1L

(1.2)

(1.3)

(1.4)

(1.5)

30 THE THREE MASS MODEL OF HARMONIC TRANSMISSION

M;=ky(¢',—0;) +b,(0',~03) (1.6)
M, =p .o (1.7)
M,=p,0, (1.8)
M, = p;.0; (1.9)
W', = ﬁzz“ (1.10)
¢, =gi (1.11)

where

M, - torque of servomotor, (input torque)

M, - torque of elastic connection between mass 1 and 2 (J; and J)

Mj; - torque of elastic connection between mass 2 and 3 (J; and J3)

My, - friction torque of servomotor’s anchor and input shaft of harmonic transmission

My, - friction torque of mechanisms inside the transmission

M3 - friction torque of mechanisms in output part of the harmonic transmission

1 - gearratio

Jn - inertia on the servomotor’s shaft

Jinp - inertia of the input part of harmonic transmission

Ji; - inertia which is summation of inertia of servomotor’s anchor and inertia of input part of
the harmonic transmission

J, - inertia of the wave generator

J3 - inertia on the output part of harmonic transmission

¢; - angle of rotation of input shaft

¢, - angle of rotation of wave generator

¢‘2 - angle of rotation of wave generator reduced by gear ratio i

o3 - angle of rotation of output shaft

; - angle speed servomotor’s anchor and input shaft

o, - angle speed of wave generator

w'; - angle speed of wave generator reduced by gear ratio i

w3 - angle speed of output shaft of harmonic transmission

k; - torsion stiffness coefficient of input shaft of harmonic transmission

k, - torsion stiffness coefficient of elastic cog-wheel

b; - dissipative damping coefficient on the input

b, - dissipative damping coefficient on the output

THE THREE MASS MODEL OF HARMONIC TRANSMISSION 31

a; - friction coefficient on the input, (Coulomb friction)

ay - friction coefficient inside harmonic transmission’s mechanism, (Coulomb friction)
a3 - friction coefficient on the output, (Coulomb friction)

p1 - viscous sliding friction coefficient on the input of harmonic transmission

p2 - viscous sliding friction coefficient inside harmonic transmission

p3 - viscous sliding friction coefficient on the output of harmonic transmission

oy - backlash on the input of harmonic transmission

0y - backlash on the output of harmonic transmission

3 The Non-linear Three Mass Mathematical Model of Harmonic
Transmission

Non-linear model of harmonic transmission is created by using of two types of nonlinearities,
which are represented by backlash and friction. The backlash in the kinematic connections is
created by non-linear dependence of torque in elastic connections (see Fig. 4). Area of
backlash is marked as an 0. If |y - ¢0,]< 01/2, and |9, - ¢3 < 0/2, then the shaft torques
of elastic couples are equal to zero. Connections between mechanisms disappear. Damping
coefficient and stiffness coefficient are equal to zero. Movement equations are:

For |- l<o/2 and |¢5-5l<0p/2 is My=M3=0

do
=M, - M, @1
do
) dt2 =-M, 2.2)
do,
=M
Y 3 (2.3)

For |¢1-0x|>00/2 and [¢5-d3l<0p2 is Ms;=0

dw

Jl-‘}f:Ml“Mu_Mz (2.4)
dw

J, : =M,-M, (2.5)

dt

32 THE THREE MASS MODEL OF HARMONIC TRANSMISSION

do,
> odt

=-M, 2.6)

For |¢-® /<042 and [¢'2-0sl>002 is My=0

dw
J, dtl =M -M, Q@7
dw M
5,5 -, -2
2 dt 12 l (2-8)
do
J; dt3 =M M, 2.9)

For |¢1) | > 0;/2 and |¢‘2 -3 |> 0p/2 are valid equations for linear model (1.2) - (1.6),
(1.10) and (1.11).

The terms for friction torques are as follows:

M, =p .o +a, signw, (2.10)
M, =p,0,+a,.sighw, (2.11)
M, =p,o,+a,.signo, 2.12)

4 Block Schema and Responses of The Harmonic Transmission

Block schema of non-linear model of the harmonic transmission is in Fig. 4. This schema is
created as a system, which contains three masses, two ¢lastic couples, two backlashes and a
friction.

These assumptions are the base for solving the automatic control systems, featuring harmonic
transmission. Simulated time responses of output angle speed and output torque of harmonic
transmission (HP 60, ZTS Zvolen, Slovakia) are in Fig. 5. Responses are results of torque

impulse M; on the input shaft of the harmonic transmission.

THE THREE MASS MODEL OF HARMONIC TRANSMISSION 33

The parameters of the simulated harmonic transmission are as follows:

Jip = 4,4.10° kgm®
J,=4,78.10” kgm?
J,=1,3894.10"* kgm®
J3=20 Jp.i° = 1,1684 kgm?
i=124

k; =250 000 Nm/rad

k, = 33 000 Nm/rad

oy =23,58.10" rad

0 =2,62.10" rad

p1 = 0,01 Nms/rad

p2=p3 = 0,01 Nms/rad

a; = ap = az = 0.00001 Nm/rad
b; = 16 Nms/rad

b, =25 Nms/rad

5 Conclusion

Described harmonic transmission has damped oscillations of output torque and output speed.
It is the result of flexibility, backlash and friction within the harmonic transmission. This
structure has not been excited by inputs with torrential time changes.

The running of the input torque has to be fluent. The designer of the servosystems should take
into consideration special properties of this transmission and should to create the convenient
control systems (for example refer to Balara, M., 1992; Hori, Y., Iseki, H., Sugiura, K., 1994).

Application of harmonic transmissions in servosystems requires the knowledge of dynamic
properties of harmonic transmission and its behaviour, which are introduced in this paper.

34

THE THREE MASS MODEL OF HARMONIC TRANSMISSION

33, P3

8
'—"—‘ v—4| -
N
_ 8
1
o
N [

3, P
|
A
1
BN

Fig. 4. Block schema of the harmonic transmission

35

THE THREE MASS MODEL OF HARMONIC TRANSMISSION

t[s] —>

output torque of harmonic transmission

s

Fig. 5. Transient responses of output speed w3 [rad/s]

Mj; [Nm] to impulse torque excitation M; [Nm]

36 THE THREE MASS MODEL OF HARMONIC TRANSMISSION

References

Balara, D., 1982, Matematicky model harmonického prevodu, (Mathematical Model of Harmonic
Transmission), Strojirenstvi, Praha, No. 2, pp. 85 - 86

Hudoba, M., 1989, Harmonické prevodovky pre servopohony, (Harmonic Transmissions for
Servodrives), Automatizace, Praha, No. 2, pp. 44 - 47

Balara, M., 1987, Simulacia dynamickych vlastnosti harmonického prevodu na &islicovom pogitadi,
(Simulation of Dynamic Properties of Harmonic Transmission on PC), Automatizace, Praha, No. 1,
pp- 24 - 25

Balara, M., 1992, A robust servosystem of an industrial robot, Transactions of the Technical
University of KoSice, Vol. 2, No 2, ISSN 0960 6076, Riecansky Science Publishing Co, Cambridge,
CB1 6AZ, UK, pp. 251 - 257

Balara, A., 1994, June, MS Thesis

Hori, Y., Iseki, H., Sugiura, K., 1994, Basic Consideration of Vibration Suppression and Disturbance
Rejection Control of Multi-inertia System using SFLAC (State Feedback and Load Acceleration
Control), IEEE Tranactions on Industry Applications, VOL. 30, NO. 4, July/August 1994, pp. 889 to
896

Harmonic Drive Applications Handbook, 1992, Harmonic Drive Limited, West Sussex, England

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 37

Neural Network Architecture and Learning
Algorithms

Alexander Weinmann, C)VE, Senior Member IEEE*

September 17, 1998

Keywords: Neural network training, self-organizing learning, control engineering view-
point

Abstract: Emphasis is put on an overview of the architecture of several neural net-
works, especially from the viewpoint of control engineering. The concept of artificial neural
networks and their algorithms are presented. Supervised and unsupervised learning algo-
rithms are implemented in single-layer and multi-layer networks. The main properties of
artificial neural networks are carried out by basic programms in MATLAB and by its more
sophisticated tools to demonstrate the power of neural network applications. The algorithms
and many ezamples of source programs are traced back to the original training operations.

1 Introduction. Principles in Cybernetics

Artifical Neural Networks are composed of artificial neurons which are intercommunicating
in parallel. Usually, artificial neural networks consist of a high number of neurons. They
can learn to simulate biological systems by the behavior of their neurons, having learned
either by being trained by a teacher or — which sounds very exciting — having learned in
a self-organizing way.

Although the operation on a single neutron is very simple, due to the high number
of neurons and due to the operation in parallel, the neural network has the ability to be
trained for performing very complex functions, easily and quickly.

Artificial neural networks are designed to be trained by input and output signals. Before
learning the network corresponds to a black or grey box. Several real-world actions and
behavioral patterns primarily are only known as black or grey boxes. Having trained they
can be considered as a white box. The knowledge obtained is stored by means of many
coefficients in a memory. These coefficients are denoted as weighting factors.

A basic problem, e.g., is to determine the transfer characteristic in order to describe
the functional behavior of the box and to change one’s knowledge from black to white,
provided input and output signals of the box (in time domain or frequency domain) are
available and measurable.

The operating facilities of a neural network can be considered as a complex transfor-
mation from the input to the output of the network. The transformation is performed
by computation in parallel by general purpose computers. Usually, all the neural network
operations are simulated computationally.

*Head of the Institute of Control Engineering, Vienna University of Technology, GuBhausstrae 27, A-
1040 Vienna, Tel. +43 1 58801*37500, Fax +43 1 58801*37599, email WEINMANNQIERT. TUWIEN.AC.AT

38

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

A typical operation of a neural net is its ability first to be trained in a training or learning
phase and second to produce an adequate output information if an input is offered which
is in the scope of the trained data.

Learning, training and natural evolution primarily are basic biological activities. They
are used for computer-aided modelling of activities in various field of engineering and
economics. Artificial neural networks are best suited for general modelling procedures since
they can model any process irrespective if it is linear or nonlinear.

Unlike classical systems, analysis and design, which is based on the analytic relations
of mass, energy or information flow and which is oriented to implement the relations in
formulas and characteristics, artificial neural networks are only based on a specific neural
structure and multitude of weighting factors (Hafner, S., Geiger, H., Krefel, U., 1992;
Ritter, H., Schulten, K., und Marinez, T., 1989).

Mathematical representations are used in neural network design because they provide
a consistent overview and lead to simple numeric evaluation and computation. Aiming at
implementing artificial neural networks on digital computers, mathematical representations
are an excellent preparation.

Learning processes can be performed either by

e supervised learning, using a teacher,

e or by unsupervised learning, carried out without a teacher but by means of a self-
organizing activity, i.e., the network itself separates, recognizes and analyzes similar
input signals.

As outlined in Fig. 1, during the learning phase, consistent data of input and desired
output are forwarded to the system in a proper sequence (presentation phase). Data of
sufficient quantity have to be supplied. The more data the better the result will be, usually.
But putting more data into work requires a longer training phase.

In the application (or recall) phase, new inputs u,, which have not yet been supplied,
are fed to the network. The network will separate and identify to which class the new
information belongs presupposing that the new data are within the scope of the trained
data. Yet unknown inputs, i.e., data beyond the trained orbit, are associated with that
class which is optimally close. Probably they remain unidentified at all.

2 Neural Network Architecture

Referring to Fig. 2, there are neurons (or nodes, cells or processing elements) responsible
for the transformation or processing of information from the input to the output. The node
in an artificial neural network is the simplified model of a biological neuron. Biological
nets are characterized by thousands and millions of nodes, artificial ones by dozens and
hundreds, only.

Additionally, links provide the transportation of information inside the artificial neural
network to and from the output and input. The direction is characterized by arrows. The
vector-valued input u corresponds to the dendrites in biological neurons. The neuron pro-
duces an output (axon) y with entries y;. Each output element y; is modelled by a function
of the sum of the weighted inputs; a function which is known as the activating function f4.
Learning is performed by adapting weighting factors w;;, the so-called synapses, attaching
the significance of the inputs to the nodes.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 39

real-world
process
@ inputs —* ’ output
! a———
u — of real-world process

black box used as yyes
measuring ———> measuring

inputs = —— 4} output

artifical process

(model)
@ inputs —* output
u — T Y
!
training activities
such that output y approaches
the real-world output y,.s
target: no difference between
real-world process and
artifical neural net
ar}) 1tra£ry » trained model output
tnpu ——»(neural network) of model
Uy

close to that output
the real-world process
could present if excited
by the arbitrary input u,

white box

Figure 1: Training and operation phase. Learning the behaviour of a real-world process
by an artificial neural network
desired output actual output

Yrer I] cor Yn oo Y
""" <> neurons

\ links (weights)

----- U input u

Figure 2: Linear associator neural network (without bias and f,)

40

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Uy
w1
Ua W,

: Wy
Um

input u

Y
fa
u] o s fa y
multiple + 74 single
input bias | b output
u € R™

Figure 3: Layer of a single neuron (including weights and bias and f4). Display with
scalar data (a), with vector-valued data (b) and in a block diagram (c)

An input vector (an input time series) u with elements u; is fed to the network. The
actual output y is to approach the reference (or desired output) y,.s during the training
phase.

2.1 Single Neuron with Multiple Input

A single neuron with m inputs u € R™ obeys

y = fa(s +8) = fa(d_ weur +5) £ fa(wTu+b), (1)

k=1
see Fig. 3. In addition, a constant shift or bias b has been introduced. Besides, the Figs. 3, 4
provide the same information as Fig. 2 but they emphasize the mathematical interrelations.
2.2 Single Layer of n Neurons with Multiple Input

A layer of n neurons is characterized by the relations

51 = W(LDu +W(,2u+...W(l,m)un, (2)
s = W(2,D)u; +.. (3)

(4)
Spn = W(n, l)ul + (5)

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 41

b
N,
+
S1 U
> " fa
u) | Z S :
Sn
Z ‘
N,
b
u s + Yy

= W | f A @
I +
Figure 4: Layer network (layer of multiple neurons)

or in vector notation
s = Wu y, b, se R*; W e R™™ (6)

y = fa(s+b) = f4(Wu+b). (7
The relations are illustrated by Fig. 4.
The matrix entry W (i, k) is the weight from the k-th input to the i-th neuron. For bias
zero and f4 = 1, matrix multiplication Wu provides the i-th output y(z) as the weighted
sum of all the inputs u(k)

y=Wu or y(i)=)Y W(k)u(k). (8)
k=1

The m-vector u is transferred to the n-vector y by the weighting matrix W € R™*™,
The input vector element is denoted by k from 1 to m. For several input vectors, [runs
from 1 to ¢. The neurons are listed by z from 1 to n.

2.3 Recurrent Network

A sample and hold (with sampling period T') is assumed. The discrete-time variable is
termed as v. The output y(vT') at vT is used as the next input u(v7" + T)

y(vT) = u(vT +T) (9)
y(vT) = fa(Wu(vT) + b) ; (10)

or in combination
y(wT +T)= fa(Wy(wT)+Db). (11)

Recurrent networks can operate in a sequential behavior, i.e., according to a set of difference
equations.

42

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

2.4 Input Waffle

Batching multiple input vectors u; leads to
: : : é mXgq
(ul.uz.ul....uq)—Ue’R . (12)

The presentation of a waffle of ¢ input vectors u can be solved by extending a single

input vector u; to an input matrix U. Simultaneous presentation is solved by sequential

computation concerning each column of U, by calculating one column after the other.
The I-th input vector (out of ¢ vectors) obeys

ss=Wuw+b beR" (13)
S=WU+B WEeR™™,; S B ¢R™ (14)
B=17@b 2 (1 1...1)®b 1€ R’ (15)

Y = f4(WU +B). (16)

The Kronecker symbol ® is an abbreviation for A@B 2 matrix; ;[A;;B].

2.5 Multiple Layers of Neurons

In multiple layer networks, the output of a layer operates as the input of the subsequent
layer

Y1 = fa1(Wiu+b;) (output of the input layer) (17
Y2 = fa2(Way1+b2) (output of the final layer) . (18)

The input layer receives the incoming signal u. The final layer, presenting the resulting
output ys, is named the output layer. In between, the hidden layer (with index 1) is located.

For practical applications, two layers suffice; in order to be trained by almost any
practical function.

3 Perceptron and Basics of its Training Operation

The perceptron, suggested by Rosenblatt, F., 1961, is characterized by a hard limit function
fa,ie., fa(z)=1if z > 0 and fa(z) =0 if z < 0. According to the hard limit activating
function f4, the perceptron operates as a classifier. More specifically, the set of ¢ input
m-vectors 1s separated into different regions.

In the training phase, the input vectors are presented and excite the neural network one
after another. If the network output should correspond with the desired output (reference
output), no changes in the weights and biases are needed. (This phase is denoted as check
phase.) The learning algorithm has only to be started if the product of the initial weight
and input plus bias does not match the reference. If the output does not correspond, the
difference between reference y,.; and output y, i.e., the network error e, is used for changing
weights W and biases b, see Fig. 5.

In the operation phase, an unknown and arbitrary input vector, i.e., a previously unseen
vector, which was not included in the training set, will cause the neural network to respond
with an output that corresponds optimally to the training result, see Fig. 6.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 43

Yresf
c e . +
training input u
= W fa
+ K+ -
e
b
AW Learning
rate

Figure 5: Neural network training phase

arbitrary input u
——

fa

W and b b

as the results
from learning

Figure 6: Neural network operation phase

4 Perceptron Training Calculation

The reference (target) outputs are presented in a matrix Y,.; € R"*9. The error matrix
definition is E £ Y,y — Y € R™.

The number of biases equals the number of neurons. The weighting matrix and the bias
are changed according to the error corresponding to y,e; and the last input vector uy, i.e.

E(:,1)

Wnew = Wold + EUT (19)

b, = by + EGi, 1) (20)
bnew = bold + E(:; l) (21)
Bnew =]-T ® bncw . (22)

The outer (or dyadic) product plays an important role in perceptron learning, see

Eq.(19). Hebb also suggested a linear learning law using outer product, see Eqgs. (48), (49)
and (68).

44 NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Example. Perceptron with one neuron, two inputs and three input signals:

u; through u, = -1 , ~1 , 1 m=2q=3 23
T \~1 1 1

Yres 1 through yre3=1 0 0 n=1 (24)
Uz(j _11 i) (25)
Yrer=(100) (26)
Initials: W=W,=(2 4), B=B,=(11 1) (27)
Epoch 1:
WU =W,U = (2 4)(:} _11 }):(——626) (28)
W,U+B,= (-5 3 1) (29)
Y, = fa(W,U+B,) =hardlim (-5 3 7)=(0 1 1) (30)
Ei=Y.;-Y;=(1 -1 -1) (31)
W, =W,+E,UT=(11) (32)
bh=b+E(111)T=0 B,=(0 0 0) (33)
Epoch 2:
W,U+B;=(-2 0 2) (34)
Y= fa(W,U+B;)=(011) (35)
E;=Y,s-Y=(1 -1 -1) (36)
W,=W;+EUT=(0 -2 (37)
b=b+E(1 1 D)T=-1 By=(-1 -1 —1) (38)
Epoch 3:
W,U4+B;=(1 -3 -3) (39)
Ys=(1 0 0) (40)
Es=Y,.;—Ys=(0 0 0). (41)

After two entire epochs the final state! is reached because E; = 0. Thus, the results are
W2=W3=Wf=(0 —2) and b3=bg=bf=—1.

A graphic interpretation of the classification in the one-neuron-perceptron can be found
in Fig. 7. The borderline between the classes as executed by hardlimiter f4 is given by
qu + bf =0

(wlf ‘U)2f) (ul) + b = 0 (42)
Uz
Wy fUy <+ WUz + b = 0. (43)

The control flow diagram of the perceptron is depicted in Fig. 8. The appropriate
MATLAB source program is

lwith index f

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 45

(::) uz 4

borderline
—bs /Wiy " Wu+b=0

7 3 _ 'U,l
qu + bf > 0\ 4 bf/W2f

Y

® 1
(-1,1)o o(1,1)
A 4 —
_% Uy
k . borderline
("la_l)-’. W.f

Figure 7: Input vector graph in the general case (a) and in the example (b) where
n= 1, Wf = W}‘ =€ RIxXm

% Perceptron % grz.m

TP=[1 4]; Y number of epochs between displaying the current epoch
% and maximum number of epochs to train

U=[-1-11; -1 11];

Yref=[1 0 0]; J row matrix required
w=[2 4];
b=1; % scalar required
for ii=1:5

B=[b b b];

WxU+B;

Y=hardlim(W*U+B);
W=W+(Yref-Y)*U’;
b=b+(Yref-Y)*[1 1 1]’;
pause

end

46

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Yref

\~\ 3

Figure 8: Control signal flow diagram respresenting the training algorithm for the
perceptron

or equivalently

b=1;
[W,B,epochs]=trainp(W,b,U,Yref,TP) .

The decision quality in this simple example versus training epochs can be viewed and
assessed in Fig. 9.

Perceptrons are limited by being able only to classify linearly separable sets of input
vectors. Linearly nonseparable data will cause the perceptron not to arrive at a final training
result.

An outlier is an input vector with extraordinary magnitude. Such an outlier results in
worse convergence properties.

5 Linear Learning Laws and Hebb’s Outer-Product Algorithm

Denoting the input (entry) and output as u = vec {v;} € R™ and y = vec {y;} € R",
respectively, a weighting matrix is set

W £ (w; wa...w,)T € R, (44)

W, é (w,'l . .wgm)T Vi=1l.n. (45)

The output y = Wu is assumed to be a linear combination of the inputs u; (see Fig. 2).
The output y has to approach y,.s, i.e., ¥y — ¥,y Where y,.s is the training setpoint.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 47

Sum-Squared Network Emror for 2 Epochs
10 T — v T T v T

Sum-Squared Error

s L : . L N s L s
] 0.2 0.4 06 08 1 1.2 14 1.6 18 2
Epoch

Figure 9: Decision quality for the Example grz.m

The question is if W exists and which W should be selected. If such a matrix W exists
then the learning procedure turns out as an operation of simple matrix multiplication.

During the training phase, the linear associator neural network is to learn g pairs of
input output vectors u; y; through u, y,. If the vectors u; are orthonormal, we claim that
the outer-product sum is the solution, i.e.,

q
A
W = > yepuf . (46)
=1

Then, in fact, the result is y,.;; = Wu, , since by orthonormality u;u; = é;; (Kronecker
symbol)

q
Wu, = (Z Yrefd U Uk = Yrest - 1+ 0 = Yyesx (47)
=1

in the recall phase. The increment of the weighting matrix AW is
AW =y, ;i ul (Hebb’s outer-product learning law), (48)

as long as ¢ < m (Hecht-Nielsen, R., 1989).

Example. Hebb’s linear learning law:

0 1 0
u; = 1 , Uz = 0 , Ug= 0 y
0 0 1
8 4 -7
Yref1 = 2 y Yref2 = 4 s Yref3 = 3
1 4 9

48

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

e
= BN OO0
w

8
~ W={|21010+ .. =
1
and Wu; = y; = Y.y, is satisfied.0

6 Widrow-Hoff Networks

Widrow-Hoff networks are characterized by performance orientation and by a linear acti-
vating function f4. The learning algorithm is

Wnew = Wold + ﬂ(Yref - Y)UT (49)

bnew = bold + ﬂ[Yrcf(:7 l) - Y(:a l)] . (50)

The dimensions correspond to Egs.(19) through (21). The parameter 3 is a learning rate.

This learning rule guarantees an adjustment of the weights and biases of least mean
square, finally. Presupposing a sufficently small learning rate, convergence is guaranteed
because the error surface is a multi-dimensional parabola, see Eq.(52). Learning rate of
undue height causes an unstable search process.

A nonlinear function between input and output vectors is approximated linearly. Only
single layer networks are sensible because any multi-layer linear network can be traced
back to an equivalent single layer network.

Usually, the initials are selected as random numbers.

An important application is the pattern associator. Having trained the Widrow-Hoft
network, the network will answer with the associated output precisely when an input out
of the training set is presented to the network.

A single neuron (n = 1) excited by one input (m = 1) can only learn two different
vectors since there are only two variables weight and bias. In such a case the training runs
perfectly. If more input vectors are presented to be trained, this is an overdetermined case
and the network can only minimize the error.

Whether or not input data cause overdetermination can be found out from the size of
the final (minimum) error.

In the case of m inputs and n neurons the degree of freedom is (m + 1)n, given by m
weights and one bias.

Example. Widrow-Hoff Learning: Assume m = 1, ¢ = 2, n = 1. The MATLAB
code for Widrow-Hoff search requires

% Widrow-Hoff Learning Example h gse.m
W=-0.9; B=-0.9; % initial conditioms
WW(1)=W; BB(1)=B;

U=[1 -1.4];

Yref=[0.6 1];
EE(1)=Yref(1)-(WxU(1)+B); % first component used as error for
% current recall phase
beta=0.4*max1inlr(U); % learning rate
for 1i=1:35
W=W+beta*(Yref-W+U-B)*U’;

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 49

251

0.5

20 0.9 0.8 0.7 06 05 04 0.3 0.2 0.1

weight

Figure 10: Error versus epochs for first component of U (a) and progress of W and B
during training (b)

B=B+beta*(Yref-WxU-B)x[1 1]’;
BB(ii+1)=B; WW(ii+1)=W;
EE(ii+1)=Yref (1)-(WxU(1)+B);
axis([0.1 35 0 3])
plot(EE) ¥ visualization of current error
hold on
pause2(0.2)

end

pause

hold off

plot (WW,BB) % learning procedure in W and B

Numerical results after 35 epochs are W = —0.1667 and B = 0.7666. The results are
shown in Fig. 10.
MATLAB Neural Network Toolbox comprises a specific Widrow-Hoff tool trainwh

TP=[disp_freq max_epoch err_goal betal;
[W,B,epochs]=trainwh(Wo,Bo,U,Yref,TP)

The learning rate is selected from beta = 0.4 maxlinlr (U) = 0.1639 where

maxlinlr(U) = ! (51)

"~ max A[UUT]

and A[-] is the eigenvalue.

50

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

A three-dimensional diagram (error versus W and B) is a three-dimensional parabola.
On this plane (represented in a mesh diagram) curves could be drawn guiding from any
initial condition W,, B, into the final values Wy, By.

6.1 Performance Orientation of Widrow-Hoff Learning

Consider the linear combination given by the scalar or inner product y = wTu, the signals
Yres and u are given, w is unknown. If a vector-valued output y should be achieved, the
following derivations are rewritten to matrix-valued W and vector-valued y and y,. 5
Assume n = m. Considering a sequence u; of ¢ vectors and the actual and the desired
output y; and y,.s,, respectively, the mean squared error is characterized by a performance

g(w)

a1
g(w) = Ez(yref,l -u)’. (52)
I=1
Taking a high number of vectors into account, the expectation operator E{-} can be applied
A
9(W) = E{(¥resa — 1)’} = E{(yress — W W)’} = (53)
= E{yzef,l} - 2WTE{yref,1ul} + WTE{UIUIT}W . (54)

Searching the optimum, the gradient of the weighting function with respect to w is used
and equated with zero, i.e.,

o) g B
dg(w
%;W = —2E{y,,f,1u1} + 2E{u;u;[}w =0 (55)
which leads to w = wgpt
Wopt = (E{wui })™ - E{yresuui} . (56)
Moreover, referring to Eq.(52) and replacing ¢ by N, the difference quotient is
Agw) . 1+
A—W = I\}l—l;l:o j—v' Z; 2(yrcf,1 - yl)(—ul) . (57)

Considering the case that the input signals u; are supplied stepwise, the increment
Aw can be set proportional to the gradient in Eq.(57). Widrow, B., and Hoff, M.E.,
1960, postulated a so-called least-mean-square learning law with an increment directly
proportional to (yresi — y1)u;. Then, the resulting Widrow-Hoff learning law is

AW = B (Yresy — Y)W (Widrow-Hoff learning law) (58)

which is always converging to Wopt from any w,. The learning rate 3 is a positive constant
in order to obtain minimum g. Widrow-Hoff learning is also known as adaptive linear
element learning. It is numerically simple.

The change of weights is proportional to the difference between the current output and
reference multiplied by the input u; and a learning rate 3.

The result of Eq.(58) also provides a clear insight into the general linear neural learning
rule. Consider the cell j being excited by cell . The general Hebb’s rule of learning (Hebb,
D., 1949) is then given by Awj; = Bs; s; where the link from i to j is used, s; is the output
of the sourcing cell : and s; is the activation of the consecutive cell j. If both the s; and
the s; are high then Awj; is to be increased.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 51

Vi y = vec[y;]

output layer
(Index 1)

hidden layer
(Index j)

input
(Index k)

u :'vec[uk]

Figure 11: Neural net with two layers

7 Backpropagation Learning in a Two-Layer Network

Hitherto, neurons have been considered in a structure of being equally entitled in one single
layer. In Fig. 11, a multilayer network is depicted. The layer organization stands for the
property that within the layer there is no connection. All the connections are referred to
another layer or to the input or output. A feedforward network is characterized by only
one direction of data transfer, corresponding to the resulting direction from the input to
the output.

The sensors are connected to the input u . The output layer with output y is connected
to the actors. In between, there is one (or there are more) hidden layers (Ritter, H., et al.
1990). Referring to Kolmogorow, for the approximation of a continuous function only one
hidden layer is required. Most of the neurons are not connected to input or output and,
hence, are named hidden.

Unlike former index assignments, the activity of a neuron in each layer is denoted by
s with an appropriate index, i.e., 7, j, k for output layer and hidden layer and input,
respectively. The input is u where u = vec[uy] = vec[sy]. Analogously, the output is
y = vec[y;] = vec[s;]. Using the activation function f,, the relations are

S = fA(Z w;,-sj) and $; = ‘fA(Z wjksk) . (59)
J k

In addition, a bias or offset input could be taken into account in order to valuate
an overall displacement. The activating function f4 is a nonlinear function. The input is
transferred to a (first) hidden layer with neurons characterized by a general LOG-SIGMOID
or TAN-SIGMOID activation function. The SIGMOID function transfers an input between
—00 and +oo to the output between 0 and +1; the TAN-SIGMOID function to —1 and
+1. Alternative activating functions are identy, scaling (linear) or threshold (linear or hard
limit). In order to emphasize the nonlinear activating function, the symbols of the nodes
are squares in Fig. 11. The output layer is equipped with a linear f,.

The aim of the neural network is to learn the weighting factors w of each path. Assuming
a supervising performance g, a gradient method facilitates the adaptation of the weighting
factors.

52

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

A wide-spead method is the backpropagation method by which the weighting factors
are learned progressively, starting from the supervised output and its associated weighting
factors, and proceeding to the input weighting factors. The approach operates in backward
direction. Thus, the name “backpropagation learning” results from the fact that the deriva-
tive of an error of the hidden layer is calculated from the output layer derivative, reverse
to the direction from input to output. Based on the available training data, a resulting
performance is defined by a quadratic function g, see Eq.(60). The increments are derived
from its gradient.

First of all, the relations are written in such a form as if the the output, input and
weighting factors were given. But these relations are only utilized in order to find out the
weighting factors, evaluating the given training input and output. The learning algorithm
uses a multitude ¢ of inputs characterized by superscript I. The purpose of the learning
algorithm is to learn the weighting factors w;; und w; supervised by a performance g to be
minimized?. Learning is performed by comparison and incremental change in the direction
of the gradient, and that in the following steps:

e input data are fed to the input,
e then initialize w;; and wj; and find y and y,es — y,

e run the following gradient descent (backpropagation algorithm)

9= Z Z[yief,i - 3:‘(“[)]2 (60)
=1 i

where the output activity is s; = fa(s;), (61)
the hidden activityis s; = fa(sk) (62)
and the input (and its activity) u = vec[sy] . (63)
The weighting factors w,, are changed referring to
dg dg LR
Aw,, ~ B, ~ Ag ; Bw,, Aw,, x — ;(awn) <0. (64)

Differentiating the performance with respect to the weighting factors associated with the
output, one has

= =2 Z[yrcft - 1)] Os: (11 =- Z Yrefi — Si(ul)]fji(z Wiy $y)S; (65)

aw, ;

where ' is the derivation with respect to the argument. The activating function f4 is

considered differentiable. Calculating the derivative with respect to the weighting factors
associated with the input, the intermediate differentiation with respect to s; has to be
taken into account. OQut of this and referring to the chain rule, the result is

6?‘11: = -2 Z Zi:[y’l'd'i - Si(ul)] [ffd(; w;ys,,)] w.’jaaTs;k = (66)
= =2)) [Wreps — si(u')] [ffa(z wiysu)] wij [f,’;(z w,-ysy)] Sk
R - ”

’In the derivation, the bias is considered replaced by an additional constant input

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 53

From the foregoing analysis the gradients 5819; or f;% result, yielding the basis for changing
and learning the increments Aw in Eq.(64). The operations in Eqs.(65) and (66) demon-
strate the numerical effort. Parallelling the computations is an urgent need as far as time
for learning is concerned.

The elements of the vectors y,.s and u are given. It seems adequate to use a larger set of
input and output vectors for better results. The topology of the network is predetermined
according to the designer’s experience. If the training procedure does not yield adequate
results valuated by ¢, the topology of the pattern has to be changed.

% Neural network and backpropagation learning % gsj.m

for t1=1:26
t=t1-1;
U(t1)=t; % input variable corresponds to real-world time
Yref(t1)=0.5% (1 - exp(-0.1%t) * cos(0.3*t));

Time(t1l)=t;
end
plot(Time,U,Time,20%Yref)
pause
[m,q]l=size(U); % 26 scalar input signals
ni=4; % assumption of four neurons in the hidden layer

[n2,q]l=size(Yref);
Wio=[-0.5621 -0.9059 0.3577 0.3586]’; Y% initial conditions
Blo=[0.8694 -0.2320 0.0388 0.6619]’; Y% initial conditionms
W20=[-0.9309 -0.8931 0.0594 0.3423]; % initial conditions
B20=-0.9846; % initial conditioms
disp_freq=200;
max_epoch=60000; err_goal=0.01;
beta=0.01; % learning rate
TP=[disp_freq max_epoch err_goal beta];
[Wi,B1,W2,B2,epochs,TR]=...
trainbp(Wio,Blo,’tansig’,W20,B20, ’purelin’,U,Yref,TP)

During the operation phase, the output is

y = purelin[W;tansig(Wu, + b;) + b,]
where u, is an arbitrary input.

The result of the aformentioned programm is depicted in Fig. 12.

The two-layer network with backpropagation can learn any sensible nonlinear function.
Problems arise from the problem of local minima and adequate learning rate. Inproper
choice of the learning rate results in slow learning performance or instability. Slow conver-
gence also results from the high number of neurons.

If there are not enough neurons available because the assumption was to low, the quality
of learning is poor. This is called underfitting.

Techniques to overcome these difficulties are: Select multiple initial conditions or vari-
able learning rate, reduce or increase the number of hidden neurons or choose the momen-
tum method.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

0 T3 20 25) 5 10 15 20 25
Input Input

Figure 12: Backpropagations result after 20, 400, 4000 and 54382 epochs (after having
satisfied the error goal)

The momentum method does not only follow the local gradient. The backpropagation
algorithm is augmented by the gradient trend. Small minima are thus ignored and the
algorithm cannot be stopped by a shallow minimum.

Moreover, the learning rate 8 can be chosen adaptively. As long as stability is guar-
anteed, the learning rate is increased. Reversely, the rate is reduced. The momentum al-
groithm requires a constant momentum (typically 0.95) and an error ratio (typically 1.04).
The error ratio determines a fraction between new error and old error. If this fraction
exceeds the error ratio, the new weights are rejected.

The algorithm including momentum contains the following essential part at the end of
the aforementioned source programm

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 55

% Backpropagation learning with MOMENTUM ¥ gsk.m

max_epoch=60000; err_goal=0.01;
err_ratio=1.04;
momentum=0,95;
beta=0.01; % learning rate
TP=[disp_freq max_epoch err_goal beta momentum err_ratio];
(wi,B1,W2,B2,epochs,TR]=...
trainbpm(Wio,Blo,’tansig’,W20,B20, ’purelin’,U,Yref,TP)

The algorithm using adaptive learning rate changes (increases or decreases) the learning
rate by predetermined factors if the new error exceeds the old by more than a pretermined
error ratio. Adaptive learning rate usually works very well.

The essential part using adaptive learning rate comprises the following MATLAB tool-
box demands

% Backpropagation learning with ADAPTIVE LEARNING RATE ¥% gsl.m

disp_freq=200;

max_epoch=60000;

err_goal=0.01;

beta=0.01; Y% learning rate

beta_inc=1.05;

beta_dec=0.75;

err_ratio=1.045;

TP=[disp_freq max_epoch err_goal beta beta_inc beta_dec...
err_ratio];

(Wwi,B1,W2,B2,epochs,TR]=...
trainbpa(Wio,Blo,’tansig’,w20,B2o,’purelin’,U,Yref,TP)

The result is portrayed in Fig. 13. It is remarkably better than the result in Fig. 12.

Example. Positioning of robot arms: Consider robot arms fetching a screw in
a plane. The positions are measured in two coordinates by a video camera. The neural
network has to learn the ange of the robot arms which is required to position the screw
definitively. Using classical methods, one has to implement calculation between positions
and angles of the robot arm according to complicated trigonometry.

Example. Encoder Decoder Problem: Consider a neural net with 8 inputs, 8 out-
puts and 3 hidden neurons. The input and output are binary signals. (For better processing,
the signal level 0.1 and 0.9 is selected.) The network has to learn to react with only one

56

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Function Approximation
0.7 T P Y T

0.6

0.5

o
a

Output: -, Target: +

1 1 1

"0 5 10 15 20 25
Input

)

Figure 13: Backpropagation result with adaptive learning rate after 4001 epochs

output ¢ if the input excitation is at position ¢, only. The problem is that the hidden layer
has only 3 neurons, thus being a bottle neck.

Backpropagation algorithm and learning of the 48 weights can be performed without
an external teacher if the system is trained to learn the identity map. The input and the
output pattern are the same (autoencoder facility).

Example. Pattern Recognition: Backpropagation can be used for pattern recogni-
tion. Letters are quantized to 5 x 7 patterns. These 35 squares are fitted black or white
for accurate presentation of the 26 letters of the alphabet. They are transferred to a vector
of dimension 35. There are 26 reference values according to the alphabet and 26 output
neurons.

In the recall phase, letters usually disturbed by noise are presented. Black and white is
reduced to grey of different intensity depending on the amount of noise. Then, the vector u
of a noisy input letter does not consist of 26 signals 0 or 1 but 26 elements between 0 and 1.
More than one output neuron will respond due to input noise. Hence, in a post-processing
procedure using f4 =compet, the result is selected and presented as the output.

In Fig. 14 the letters A without noise and N and B with 10 % noise are recognized
correctly, the letter R with roughly 25 % noise is not classified correctly. Even under high
noise, letters might happen to be recognized correctly, as Y in the figure.

Example. Identifiying a dynamical system: Consider a discrete-time system obey-
ing
z(v —2) + oz(v — 1) + a,z(v) —v(v) =0 . (67)
Identification has to provide the parameters o; of the difference equation, given input and
output signals at consecutive instants v.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 57

Figure 14: Letter recognition with noise of various standard deviation

ly(V),v(V) p

o(v) = u /

y(v—2)=u| wy = fa=1

delay 10
line yvr—=1)=uz| wi = >0 sequencer

y(¥) =us | wo= 00/

r neuron
-——

Figure 15: Identifying the difference equation of a discrete-time system

In Fig. 15, the input and outputs at v are presented and stored in a delay line. Both
the input and output signals are used as inputs u; of the neuronal network. Activation
function f4 = 1 is used. The sequencer at the neuronal network output demands changes
in the weights w; in order to approach input of the sequencer — 0.

8 Hebb’s Learning with Supervisor

Consider ¢ input vectors u € R™,i.e.,u;...u;...u,, concatenated in a matrix U € R™*9.
A target (reference) is presented by y,.s. The output is y € R™.
Find a weighting matrix W such that y; = Wu; + b, VI = 1...q approaches the

58

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

reference. Hebb’s learning rule for the weighting matrix increment is
AW = By,.;uf —yW where W € R™*™ and 7> 0. (68)

This computation is repeated for all ! form 1 through ¢ each epoch.

What follows is the consideration that both a strong input signal u and a strong ref-
erence should strengthen the corresponding weight. In order to avoid undue increase of
AW, a negative term YW is augmented to guarantee exponential decay, see Eq.(75). The
parameter « is the decay rate.

Usually, the bias b = —0,51,«; is chosen.

The MATLAB code for Hebb’s supervised learning is as follows

% Supervised Hebb learning /% gsm.m

Yref=[1111101];
U= [1111100;
0000010;

000000 1];
[n,q)l=size(Yref); [m,ql=size(U);
beta=0.1; gamma=0.03;
Wo=zeros(n,m); % initial conditions
W=Wo;

for 1i=1:20
for 1=1:7 :
deltaW=beta*Yref(1)*(U(:,1))’-gamma*W;
=W+deltaW;
end
end
B=-0.5%ones(n,q);
Y=hardlim(W*xU+B)

Starting with W = W, as zeros, after 20 epochs the result W suffices. The result

equals the target
y = hardlim (Wu; +b) =y, VI. (69)

The resulting weighting matrix is

W = (22749 0 0.5135) . (70)

8.1 Learning Dynamics. PT; Learning Algorithm

The exponential decay is derived as follows. From Eq.(68) and by Uy £ yuT, one has an
increment AW per step, i.e.,

AW | .
—Z-t—-—W—UI--‘)’W. (71)

Applying Laplace Transform to Eq.(71) and its time dependent variables W (t) and Uy(t),
L{W () + YW (8)} = Us(1)} (72)

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 59

SW(s) = W, + 7W(s) = Up(s) (13)
W(s) = 5 (Ur(s) + W) (74)
W(t) = LT{W(s)} = W,e "+ ft Us(r)e "¢ dr . (75)

The initial condition decays exponentially. There is a PT; delay ﬁ from the input Uj(s)

to the output W(s).
Omitting v, i.e. v = 0, yields an integral behaviour without stabilizing decay

W) =W, + /t Uj(r)dr . (76)

8.2 Specific Case of Orthonormal u

In the case of orthonormal input vectors u, the desired final matrix Yy should match Y, s
when B, W approach B, W;. Due to orthonormality UTU =1,

Yf =Y"f =W;U+Bf (77)

and postulating
Wy = (Yres — By)UT, (78)

one finds by checking W;U + By by combining Eqs.(77) and (78)
Y;=W;U+B;=(Y,;—B)UTU+B; =Y, . (79)

9 Hebb’s Unsupervised (Associative) Learning

Unsupervised learning results from learning without a reference (teacher) Y,s. Instead
of presenting the reference, the output previously derived is used. The presentation phase
simply is characterized by y = hardlim(W*U(:,1)+b). Thus, the learning algorithm is

input k

Figure 16: Visualization of the weighting matrix W as the result of unsupervised Hebb’s
learning

60

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

% Unsupervised Hebb Learning A gsn.m
U=[{111110000;
00000101 0;
00000010 0;
00000101 1];
[m,ql=size(U); n=4; beta=0.1; gamma=0.03;
Wo=eye(n,m) ; % identity matrix with dimension n times m
W=Wo; % initial conditiomns
=-0.5%ones(n,1); % n-vector of entries -0.5
for 1i=1:20
for 1=1:q
y=hardlim(W*U(:,1)+b);
deltaW=betaxy*(U(:,1))’-gamma*W;
W=W+deltaW;
end
hintonw(W)
pause2(0.8)
end
utest=[0;0;0;1];
y=hardlim(W*utest+b)

The algorithm is capable of evaluating associative properties in the input signals.

The network has learned that input 4, which is a 1 in utest, is associated with neuron
2, which is a 1 because of the two-times-pairing inputs 2 and 4; although utest itself is an
input (the last in U) but only presented once.

The resulting W shows that its entries (4,2) and (2,4) have increased reasonably. The
command hintonw(W) provides a visualization of the 4 x 4 weighting matrix W, separated
by a pause of 0.8 seconds. The graphical representation of W by hintonw (W) enables the
reader to watch and observe the learning procedure, see Fig. 16.

10 Instar Learning Algorithm

For comparison purpose only, the supervised and unsupervised Hebbian learning algorithms
are repeated

AW(z’ k) = ﬂyref(z)u(k) - 7W(za k) (80)
AW (i, k) = By(i)u(k) — YW (i, k) , (81)

respectively. Slightly different, Instar Learning procedure is defined.
Instar learning (Grossberg, S., 1982) obeys the product of output y on the one hand
and the difference between input v and weight W on the other hand. The input vectors

are normalized before operating, then the bias is set to b = —0.05 ones (n,1). With the
initials W, = zeros (n,m) the algorithm runs as follows

AW (i, k) = By(i)[u(k) - W(, k)] . (82)

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 61

The MATLAB source program is

% Instar learning % gsy.m

U=(randnr(6,4))’ % 4 x 6 matrix of four-element
% normalized random vectors

Yref=[0 0 0 0 1 0];

[m,ql=size(U); [n,ql=size(Yref); beta=0.25;
Wo=zeros(n,m) ; b=-0.95%ones(n,1); W=Wo;
for ii=1:20
for 1=1:q
deltaW=beta*Yref(1)*((U(:,1))’-W); % 1 xn
W=W+deltaW;
end
hintonw(W)
pause2(0.4)
end

The systems precisely learns those column in U for which it is trained with the element
1lin Yref-

11 Outstar Learning Algorithm

For comparison purpose only, the outstar algorithm is briefly outlined. This algorithm
learns a vector output of a neuron layer being informed about the reference and an input.
The learning rule is

AW (i, k) = Blyres(k) — W (s, k)]u(k) (83)
y = fa(Wu) fa = purelin. (84)

When the input is set to 1 then the reference will occur. Training only occurs if there is a
reasonable input u.

12 Self-Organizing (Kohonen) Learning

Consider Eq.(82) of Instar Learning and a specific f4 = hardlim, only an output y =1

contributes to changes AW, y = 0 causes no change. Kohonen algorithm searches for
output y = 1 and only those are included into the Instar Learning calculus
AW(i, k) = Plu(k) — W (i, k)] Vi wherey(i)=1. (85)

Kohonen corresponds closely to instar, but by preselecting y(:) = 1 computation effort is
reduced.

Competitive networks of neurons are capable of detecting associative relations within
the input vectors without being instructed by a teacher.

Competive learning is derived from instar learning, see Fig. 17. Based on input vectors
normalized in length, i.e., Frobenius (Euler) norm ||u||[r = 1, and based on random and
normalized rows of the weighting matrix W

y = compet(Wu) fa = f. = compet (86)

62

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

normalized

m inputs

n neurons

winning output y(z,) =1

y(2)lizi, =0

u¢:|==w | sz__
mx1 | nxl1 nxl1

normalized rows

Figure 17: Architecture of a competive network

AW (5w, k) = Blu(k) — W (iu, k)] (87)

Due to the dot product of normalized vectors, the product equals to the cosine between
the vectors. The maximum cosine determines the winner neuron

for winning output z,, only .

ek
w=| (88)
w?
wiu cos ay \
W = wiu _ | cos (89)
w,&; u cos Qn)
0 0
(o (o)
£.(Wu) = f4 (cos ai)gvinning _ (1) (90)
\ 0 J \o)

There is only a single 1 at the 7,, position (winning position).
With the help of the toolbox function trainc

TP=[disp_freq max_cycle beta]

W=trainc(Wo,U,TP)

and a three-dimensional training parameter vector TP the training operation is performed.
The matrix Wo contains the initials, U is the matrix of input vectors u. The training pa-
rameters in TP are the frequency for displaying the current epoch number, the maximum
number of training cycles and the learning rate 3.

During the learning phase the input vector u is fed to all the neurons. There will be a
neuron the sensitivity of which is closest to the input, i.e., there is an output node which is
activated most. The difference between the input u and the weighting vector w 1s minimum
and is detected by their difference. The vector-valued difference is treated by any norm,
e.g. the Frobenius norm.

This optimum reaction can also be transferred to neurons in some local neighbour-
hood, denoted feature map, thus effecting their adaptation to the property of the optimum
neuron.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 63

Y Y2 y
elements of
Kohonen layer
w | w12
u Ug u

Figure 18: Kohonen layer

If another input is supplied to the Kohonen network for teaching purpose, another group
will react optimally and store its specific property. In such a way, by persistent teaching each
significant property of the input signal is put into a specified group of neurons. Without
supervision the neurons adapt to the input (Kohonen, T., 1989).

The processing elements compete at any input u entering. Which of them has its weight
vector w; closest to u (vicinity measured by a certain scalar distance)? The closest element
iy is selected, in order to perform learning. An algorithm can be stated as follows: The
winner takes all, i.e., the winning neuron ¢,, emits a signal y;, = 1, the others y;(,) =0,
see Fig. 18.

Unlike other learning algorithms, the weight w; is to approach u.

A distance metric performance produced by each element of the Kohonen layer is

gi=|lwi —ullr. (91)
The Kohonen learning law results from
Wi new — Wi old = Aw; = B(u — Wi o1a)¥i, (0<B<1). (92)

For the winning element one has y;, = 1 and W; 5e, = (1—8)W; o1a+Bu . For all the loosing
elements y;(4i,) = 0 is achieved and the weights are not altered, i.e., W; new = W; o4 . Only
the nearest weight vector is attracted.

In the beginning of the training phase, the learning factor # is chosen near 1 in order
to guarantee quick training start-up, in advancing the training procedure, g is reduced to
a small number (choice of receding learning rate).

Example: Consider four neurons with initial sensitivities w; through wy. Only the
closest neuron 2 is changed from w3 o4 t0 W3 peyw, according to Egs.(91) and (92), see Fig.
19. No additional relation to the neighbouring neurons is taken into consideration. O

Example. Balancing a Rod Using Kohonen Network: Consider the simple prob-
lem of balancing a rod, Fig. 20. On the upper end of the rod of length I, a mass of m is
attached, the lower end of the rod is linked to a crab (of the mass M) and influenced by the

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Uz, Wiz 4 Ows

W2 old
W2 new
Ug u

o M2t

ow

Uy Uy, Wir

Figure 19: Weight plane and adaptation of the weights of neuron 1 through 4 when a
single u is supplied and used for learning with 8 = 0.5

force f. The deviation of the rod with respect to the vertical direction is denoted as 9. The
rod is only capable of tilting in a plane of vertical orientation. Assume l=m =M = 1.

Out of a classical control design, a controller could stabilize the rod, when determining
that the force

fr=>5sind+9 =50+9 (93)
is the actuating variable since the inverted pendulum obeys
O » B
Guls) = fr(s) = g2 — elmiM) ™ (54)

S =

= M (95)
(s + o/ dztMy(s _ , [olmtM),

In the equations above, g is the gravitation constant and fr is the output of the controller
(see, e.g., Weinmann, A., 1995, Eq.(1.9))

K(s) = {;’((:)) =5+s. (96)

Root locus theory requires the zero at —5 in order to stabilize the plant with poles at

£,/ 1"% 4. For the purpose of distinction, this force of a classical controller is denoted as

fr. This force is intended as a force operating as a teaching variable.

Applying the philosophy of neural controllers in the Kohonen model, a system of e.g.
400 neurons is selected. Thus, the input to the neural net is reduced and quantized to
20 discrete values of ¥ and 9. Each neuron is characterized by a certain ¥ and 4 and by
an output information f in the third dimension (Fig. 20). Only one of the 400 neurons
is excited according to that discrete value which is closest to the input ¢ and 9, i.e., the
“winner takes all”. The output of each neuron is characterized by the force fy where N
stands for neural net.

The algorithm for the learning phase is then expressed by

N =R+ BUr - 1) (97)

operating at consecutive instants, usually equidistant sampling instants. The variable f3¢
is the previous force presented by the neural network. The input of fr depends on the mea-
sured instantaneous value of ¥ and ¥ according to Eq.(93), fn is the output of that neuron

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 65

@ mass m tin @

rod of
length [

plane
with 20 x 20

neurons

crab _¢ force f

mass M

(2 ()

Figure 20: Sketch of the rod (a) and plane of 20 x 20 neurons with force f on the vertical
axis (b)

located best, the superscripts °¢ and ™% correspond to the trained value before and after
the training step, B is the learning rate determining the training speed. During learning,
B is reduced presupposing that the result of learning was improved. The complement of
with 1 can be considered as a confidence variable.

Initially, the values fn are arbitrary. After sufficient training operations, f§¢ will coin-
cide with fr for any ¢ and ¥, hence fr — f§¢ will not contribute to f** any more.

With respect to the 1n31ght into the physmal relations, f has to be positively high if
both ¥ and ¥ are positive, i.e., the inverted pendulum is tilted with ¥ and the angle ¥ is
also increasing. For 9 posmve and ¥ negative the inverted pendulum is already moving
towards the steady-state upright position, hence f may be small. The analogous condition
occurs for the opposite directions of ¥ and 9.

Figuring out the feature map fy(¥,9), the result is a surface similar to a plane as
already can be expected from the linear dependence fr versus ¥ and ¥ in Eq.(93).

Instead of Eq.(93), a person could operate as a teacher, as well.

Applying unsupervised learning, this could operate as follows: An increment of the
difference f3*¥ — f§/¢ is only learned if it is evident that an unmistakable improvement of
a performance index ¥?At was infered from it during the interval At.

Example. Travelling salesman problem, solved by Kohonen Network:

A salesman intends to travel a closed-loop tour passing through n towns. The tour
should be of minimum distance in sum. Kohonen network philosophy is applied by choosing
n neurons at the map of the district of the n towns. The network is initialized with a
“circle” of n neurons, or a polygon with n corners.The change in the n corners infered
from an iterations step is based on considering one of the n towns. Irrespective of the
initial location of the n neurons, the Kohonen iteration will cause an approximation of the
neuron locations to that of the towns.

A shortest tour can not be guaranteed but it is very probable. Anyway, it is a closed
tour.

Fig. 21 presents a simple example and one iterations step. The initial choice is charac-
terized by a close vicinity of corner 2,0 and town T2 but a long distance 3,0 and T3. The

66

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

B =05
0 neuron
x towns T1,T2...

)’ _~Point 1, Step 0

\Point 1,Step1 Start

x T2 T1 X
Figure 21: One Kohonen step in a 5 corner tour

distance 3,0 to T3 dominates the sum of the entire tour. Thus, the system should try to
replace the connection 3,0 to T3 by the connenction 3,0 to T2 and to force neuron 2,0 to
approach T3 which yields a shorter tour without intersection.
Another choice can be triggered by the fact that the neighbouring neurons 2 and 3 are
involved in the intersection and should change their enumeration to cancel the intersection.
Classical solution of systematically checking all travel tour opportunities will fail. The
number of variation equals 0.5(n — 1)!, which might be a very large number.

13 One-Dimensional and Two-Dimensional Feature Maps

Augment the neurons of a competitive layer network by a group of neighbours. The winning
neuron and its neighbours are updated during learning.

Example. Two-dimensional feature map: Consider a high number of random input
vectors in second dimension and the coordinates selected with uniform distribution density.
Choosing a scheme of 25 neurons at random points and operating Kohonen algorithm leads
to feature maps shown in Figs. 22. Referring to the uniform distribution, the neural net
learns the topology of a geometric pattern of orderly rectangular shape.

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 67

0.6

0.4

0.2r

o
N
T

0.6

0.8
-0.8

Figure 22: Geometrical pattern for Kohonen learning of uniformly distributed vectors
after 800 epochs

14 Hopfield Layer and its Learning

Hopfield network can be considered as a content-addressable and hence associative memory.
The basic ideas are:

¢ Feeding back the output information to the input can contribute to the input infor-
mation.

o If the input to the memory is incomplete or noisy, the output is incomplete but can
augment, nevertheless, the input and improve the input even if it is incomplete.

The network is characterized by a state vector y = (y1 2 y3)T € R™ where y; is +1
or —1, only. The number of vectors m; to be memorized is p. Then, without derivation,
the so-called synaptic weight matrix of the Hopfield network is

P
A T P
W = E m;m; — ;I . (98)

=1

The formula in Eq.(98) is only valid for uncorrelated binary clusters. With the use of a bias
vector b the memorized vectors m; satisfy the so-called alignment condition of stability,
1e.,

m; = sign{Wm; — b} (99)

where “sign” is the signum function. For v > 0 or < 0, one has sign v = +lor —1; v
can also symbolize a vector 4y = Wm; — b; for 43 = 0, as a component of the vector «,
the corresponding component m;x of m; is not altered.

Any other vector h; does not satisfy Eq.(99) if m; was substituted by h;. Thus, h; is

denoted unstable.
The stable memorized vectors m; illustrate the stable corners of a cube of dimension

n, the vectors h; are arbitrary (and unstable) corners.

68 NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

-1
O I
(1) stable

Figure 23: Hopfield network, architectural graph

Applying Eq.(99) to any input information u, during the recall phase, the recall al-
gorithm runs as follows (u, is considered as an information contaminated with noise or

errors):
y*® = u, (input)
y™ = sign {Wy°? b} (100)
repeat Eq.(100), ie., y°¢ = y"™¥ (101)
stop if y™* = y°d (102)
y = y" (output). (103)

old

Eq.(100) should be calculated randomly as far as components of y*¢ are concerned.

Example. Hopfield Network: Assumen =3, p=2,b = 0 and
m=(+1 -1 +1)T my=(-1 +1 —1)7 (104)

Learning phase:

Lf 0 -2 2
Eq(%) ~ W=z -2 0 -2]. (105)
2 -2 0

The cube is three-dimensional, see Fig.23.
Recall phase: Choosing an arbitrary input u = (-1 —1 1)T, then y,q = u and

1 [4 +1
Wu=-1| 0 sign Wu=1| “0” | . (106)
3 0 “0”

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 69

sample |_
and hold |
J w — N\ Y
+ s -
b satlin

Figure 24: Hopfield network

This requires that u; is changed from —1 to +1, but u, and u3 keep unchanged
y=01 -1 1DT. (107)

This is already the stable output m;. For n = 3, there are 2% various (—1, 41)-combinations
in y, corresponding to the corners of the cube in Fig. 23.

The edge vertical above m;,Va: -1 < a <1, leads to

0 -2 2 1 1 —2a+2 +1
2 -2 0 1 2 —2a +1

Hence, for any a, the point m; is reached. In the recall phase, the information has to be
sufficient only in such a way that the edge is allocated. O

The architecture of a Hopfield network can also be portrayed in a different way, see Fig.
24. The output of the sample and hold in the feedback is weighted by a square weighting
matrix W € R™™ where m = n and augmented by the bias vector b € R™. The result
is fed to a nonlinear element with satlin characteristic. The resulting output y equals its
input in the linear part of the characteristic, outside the output y is restricted to +1 and
—1, respectively,

ylv + 1)T] = satlin[|Wy(vT) + b] . (109)

The sampling period is T'.
The operation is subdivided into the following steps

o System is presented several input vectors as initial conditions.
e Then, the network output is fed back to operate as an input.

o The former process is repeated until an equilibrium point is reached. In most cases,
the system is stable at the equilibrium point.

The equilibrium operates as a reference vector.

e The system is presented arbitrary input vectors (as columns of a matrix U). After
sufficient training cycles, the network equals to those equilibrium points which are
located close to the input.

70

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

15 Training Algorithms Compared

An overview of various networks and the associated learning algorithms for the bias and
weighting matrix during the training phase is presented in the table below.

Network fa Bias Weighting matrix
increment AW(z, k)
Perceptron hardlim Ab(2) = yres(2) — y(2) [yres(2) — y(2)]u(k)
Widrow-Hoff purelin Ab(i) = Blyres(r) — y(1)] | Blyres(x) — y(2)]u(k)
Backpropagation log-sigmoid | Ab(:) = BAy(7) BAy(2)u(k)
tan-sigmoid
purelin
Hebb with supervisor | hardlim b = —0.51,,4; Byres(t)u(k) — YW (i, k)
Hebb unsupervised hardlim b = 0.5I,x: By(2)u(k) — yW (i, k)
Instar hardlim b = —-0.951, 1 By()[u(y) — W(s,J)]
Outstar purelin 0 Blyres(3) — W (2, k)]u(k)
Kohonen compet 0 Blu(ie) — W(iw;)] Vi =1,
where y(i,) =1
Hopfield satlin see Eq.(100)

16 Alternative Algorithms

16.1 Radial Basis Functions

Radial basis functions are feedforward networks with only one hidden layer. Each neuron of
this layer is characterized by a radial symmetric activating function. The number of neurons
n corresponds to the number of training samples. The activating cluster is characterized
by

n
y= Z h'. e_‘Y"u_ui”F ue€ Rn (110)
=1
where the u,’s are the given and supporting input samples. The setting v determines the
shape of the plane of the radial basis function, the A;’s are unknown. The network produces
a transformation from R" to R by portraying u; to y. During the training phase for given
y; and u;

y=y ~ y=h+ Yy helWlr vi=12.5. (111)
i (i)

The coeflicients h; are achieved in a direct (non-iterative) way, since Eq.(111) is a system
with n unknowns in n linear equations. For a given data more than n, the pseudo in-
verse formula of Eq.(112) is adapted with respect to h;. The exponential activity function
provides remarkable contribution only if u is close to u; which can be considered as an
advantage in order to guarantee good approximation properties.

Wopt = YUY (112)

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 71

Y R N ~s
254 . Tt :
2d Y TN v

= S
et L ANSARINGC-
e RSSO
- XD ol
AR
A

\ OISR
RSTTTITY
<<

PPLae

Figure 25: Radial basis function network

Example. Radial basis functions: Select n = 2:

—1 1
u; u1=<0) U2=(2) y=1. (113)
Presentation phase:

-1 1
uy l=1,u1=(0> y1=2.8; l=2,U2=(2) y2=2 (114)

Calculation for the training phase:
I=1: y1=28=h+he@)-Glr = p, 44,0059 . (115)

Similarly, y2 = 2 = hy + h; - 0.059 . The result is 2; = 2.69 and h, = 1.84 . The resulting
plane y(u) is depicted in Fig. 25. The training samples correspond to the peaks of the
plane of the radial basis functions. O

16.2 Genetic Algorithms

Genetic algorithms are based on transposing parameters of technical systems into clusters
of genes. Starting an optimization problem, a group of parameter constellations is selected
and defined by genes. This corresponds to a group of individua. The individua are subject
to an evolution by computer simulation. Natural evolution is simulated by the transfer
of properties from generation to generation, by natural heredity from parents to children.
Both the natural selection and the natural mutation are simulated. Each individuum is
characterized by a fitness function. Selection is based on this fitness function, in order
to find the probability of survival and to decide which individuum should survive. The
principle is “survival of the fittest” (see, e.g., Grinberger, T., 1995).

17 Applications

17.1 Optimization

For optimization purposes an arrangement of Fig. 27 can be applied. First, an optimum
actuating variable u,, has to be found by using an artificial neural network of the process

72

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

delay

il ANN_/
4

/

Figure 26: Predictive System

G, see Fig. 27a. This is performed by time-lapse in most cases. In parallel, the deviation
e(k) is evaluated which actually results from G being excited by Uopt, See Fig. 27b. This
value e(k) is utilized as the error e(k — 1) for the next optimization step.

Referring to Fig. 27a, based on the model of G in ANNg and on the deviation e(k — 1)
of the past, u,p is calculated in order to optimally obey y,.s at presented. Fig. 27b points
out, when ANNg is used to identify G. During this identification, ANNg approaches a
memory state that best approximates G in the subsequent interval.

17.2 Predictive Control

Consider Fig. 26 and set the delay equal to aT" where T is the sampling interval character-
izing two consecutive computations and a is a positive integer. According to the fact that
the input of the artificial neural network is delayed artificially but the output is compared
to the real system output, the artificial neural network dynamics will try to compensate
for the delay as long as the system is not confronted with unpredictable situations. Modern
applications are Wang, Y., et. al., 1998; Kihrer, M., and Reinisch, W., 1998; Luo, F.L.,
et al., 1998; Reinisch, W., et al., 1998. '

When transferring the artificial neural network parameters to an additional network
ANNp, which is not depicted in Fig. 26, excited by the undelayed input of the system S,
then the output of ANNp is a a-step-ahead predictor of S.

17.3 Further Applications Areas
In the following fields, neural network applications have become important:
o Fault detection (Schineburg, E., 1992; Boehme, T.J., and Fletcher, I., 1998),

¢ Guidance and transportation systems (Maier, K.D., et al., 1998; Forio, L., and Mus-
sone, L., 1998)

Noise suppression in signal processing (Sincak, P., et al., 1998)

Market forecasting (Finzi, G., et al., 1998)
Stabilization (Dudnikov, E.E., and Rybashov, M.V., 1998)

Self-Organizing Maps (Haese, K., 1998)

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 73

reference
e(k-1) —

@ ANN, @ S

18

opt

ANN; |

Figure 27: Optimization carried out by an artificial neural network ANN

Pattern Recognition (Kréner, S., and Burkhardt, H., 1998; Seager, J., and Marsh,
B., 1998)

Neuro-Fuzzy Systems (Bothe, H.H., 1998; Frattale Mascioli, F.M., et al., 1998)

Identification and Verification (Haese, K., and Meier, C., 1998; Nagano, T., and
Hirai, Y., 1998)

Speech recognition and image compression (Rabi, G., and Si Wei Lu, 1998; Cho
Y-H., 1998)

Robust Control (Nakanishi, H., and Inoue, K., 1998).

Special Features of Artificial Neural Networks

Above all, artificial neural networks are characterized by the following properties:

Application is favourable if the process is not known sufficiently or if the mathematical
model is incomplete as far as the nonlinear transformation function, the coefficients
or order of the differential equation are concerned.

Many input and output data of the process are available in order to train the artificial
neural network.

Evaluation by an artificial neural network is performed by highly parallel computa-
tion, hence the results, e.g. for image detection or pattern recognition, are found out
promptly even if each computational operation is relatively slow.

Knowledge about the process need not be put into formulas when initiating the
system, e.g., pattern recognition and selection becomes feasible. On the other hand,
it is difficult to insert preknowledge by appropriate formulas.

Combination with fuzzy control is advantageous, e.g., learning or improving the mem-
bership functions via an artificial neural network, or demonstrating and illustrating
the artificial neural network results by fuzzy methods (via membership functions or
inference) (Preu, H.-P., und Tresp, V., 1994).

74

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

o Increase of knowledge can only be performed by learning. The analysis of the knowl-
edge obtained is hardly possible. Deductions are difficult to be drawn.

e Learning may turn out as slow. By means of particular strategies, e.g., momentum
terms, convergence and learning can be accelerated.

o Danger of passing over the limits gained by the training process (risk of undue ex-
trapolation).

o Danger of overtraining: An overtraining effect arises by too extensive training. Then,
the network happens to learn details of the input data which are not essential, e.g.,
measurement or process noise. Overtraining can be detected by applying test data to
the artificial neural network during or after the training phase. Training is no more
useful and should be interrupted before the sum of squares errors referring to the
test data might increase as a consequence of more training. More neurons support
the overtraining effect.

19 Conclusion

Algorithms characterizing the basic types of artificial neural networks have been presented,
pointing out the advantages and computational facilites for simulation purposes.

The algorithms are the basis of several software tools and strategies combining the
real-world process and the artificial neural network.

The particular advantages and the individual characteristics concerning the application
of artificial neural networks are overviewed in order to estimate or predict the opportunities
of exceptionally applying artificial neural networks in various fields.

References

Boehme, T.J., and Fletcher, I., 1998, Sensor failure detection and signal reconstruction using
autoassociative neural networks, Proc. Int. ICSC/IFAC Symposium on Neural Computa-
tion, Vienna, pp. 220-225

Bothe, H.H., 1998, A tutorial on neuro-fuzzy methods, Proc. Int. ICSC/IFAC Symposium on
Neural Computation, Vienna, pp. 43-60

Cho Y.H., 1998, An efficient compression of image data using neural networks of hybrid learning
algorithm, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp.798-801

Demuth, H., and Beale, M., 1992, Neural Network Toolbox for Use with MATLAB, User’s Guide
(The MATHWORKS, Natick)

Dudnikov, E. E., and Rybashov, M. V., 1998, Stabilization of single-layer neural network with
feedbacks, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 954-
959

Finzi, G., et al., 1998, Real-time ozone episode forecast: a comparison between neural network
and grey box models, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna,
pp. 854-860

Florio, L., and Mussone, L., 1998, Applications of feedforward neural networks to transporta-
tion research, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp.
820-826

Frattale Mascioli, F.M., et al., 1998, Approximation with noisy training data using FBF neural
networks, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 900-907

Griunberger, T., 1995, Optimierung neuronaler Regler mit Hilfe genetischer Algorithmen, eéi
(Elektrotechnik und Informationstechnik) 112, H. 7/8, S. 338-344

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS 75

Haese, K., 1998, Fast self-growing and self-organizing feature map using automatic learning pa-
rameters, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 123-129

Haese, K., and Meier, C., 1998, Object identification on airports using radial basis function net-
works, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 298-303

Hafner, S., Geiger, H., Kreflel, U., 1992, Anwendungsstand Kiinstlicher Neuronaler Netze in
der Automatisierungstechnik, Teil 1, Einfiihrung, Automatisierungstechnische Prazis 34,
S. 592-599

Hebb, D., 1949, The Organization of Behavior (Wiley, New York)

Hecht-Nielsen, R., 1989, Neurocomputing (Addison-Wesley, Reading)

Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J., 1992, Neural Networks for Con-
trol Systems — A Survey, Automatica 28, pp. 1083 - 1112

Kohonen, T., 1989, Self-Organization and Associative Memory (Springer-Verlag, Berlin)

Kréner, S., and Burkhardt, H., 1998, A structured neural network for shift and rotation invari-
ant pattern recognition, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vi-
enna, pp. 476-482

Kiihrer, M., and Reinisch, W., 1998, Forecasting financial markets utilizing artificial neural net-
works and genetic algorithms, Proc. Int. ICSC/IFAC Symposium on Neural Computation,
Vienna, pp. 347-350

Lippmann, R.P., 1987, An introduction to computing with neural nets, IEEE ASSP Mayg., pp.
4-22

Luo, F. L., et al., 1998, Analog neural networks for linear predictive coding, Proc. Int.
ICSC/IFAC Symposium on Neural Computation, Vienna, pp.451-455

Meier, K.D., 1998, Controlling one-legged dynamic movement with MLPs, Proc. Int.
ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 784-790

Miller, W.T., Sutton, R.S., and Werbos, P.J., 1990, Neural Networks for Control (MIT Press,
Cambridge Mass.)

Mistry, S.1., and Nair, S.S., 1994, Identification and control experiments using neural designs,
IEEE Control Systems 14, pp. 48-57

Nagano, T., and Hirai, Y., 1998, Personal verification with palm print and hand shape by utiliz-
ing neural network techniques, Proc. Int. ICSC/IFAC Symposium on Neural Computation,
Vienna, pp. 398-404

Nakashi, H., and Inoue, K., 1998, Design methods of robust feedback controller by use of neural
networks, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 731-743

Narendra, K.S., and Parthasharathy, K., 1990, Identification and control of dynamical systems
using neural networks, IEEE Trans. on Neural Networks 1, pp- 4-27

Preufs, H.-P., und Tresp, V., 1994, Neuro-Fuzzy, Automatisierungstechnische Prazis 36, S.
10-24

Rabi, G., and Lu, S.W., 1998, Automatic lipreading using neural networks, Proc. Int.
ICSC/IFAC Symposium on Neural Computation, Vienna, pp- 391-397

Reinisch, W., and Roche, G., 1998, Prediction of the daily tax declaration submissions by neural
networks, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 811-815

Ritter, H., Schulten, K., und Marinez, T., 1989, Eine FEinfihrung in die Neuroinformatik
(Springer, Berlin)

Schoneburg, E., 1992, Anwendungsstand Kiinstlicher Neuronaler Netze in der Automati-
sierungstechnik, Teil 3: Diagnose mit Neuronalen Netzen, Automatisierungstechnische
Prazis 35, S. 161-166

Seager, J., and Marsh, B., 1998, Electronic fruit grading using neural networks for real time
pattern recognition, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna,
pp. 280-286

Sincak, P., et al., 1998, Experience with voting neural networks for multi-spectral image classi-
fication, Proc. Int. ICSC/IFAC Symposium on Neural Computation, Vienna, pp. 226-232

76

NEURAL NETWORK ARCHITECTURE AND LEARNING ALGORITHMS

Wang, Y., et al., 1998, A distributed predictive expert system, Proc. Int. ICSC/IFAC Sympo-
sium on Neural Computation, Vienna, pp. 848-853

Weinmann, A., 1991, Uncertain Models and Robust Control (Springer, New York and Vienna)

Widrow, B., and Hoff, M.E., 1960, Adaptive switching circuits, IRE Wescon Convention
Record, pp. 96-104

Zell, A., 1994, Simulation Neuronaler Netze (Addison-Wesley Deutschland)

SCHLAGLICHTER 77

1998 American Control Conference
ACC98
Philadelphia, USA
24.-26.6.1998
H. Peter Jorgl

Die vom American Automatic Control Council (AACC), der United States National Member
Organization der IFAC, organisierte American Control Conference 1998 (ACC’98) fand vom
24. bis 26.6.1998 im Adam’s Mark Hotel in Philadelphia statt. Die IFAC fungierte dabei als
cooperating organization der ACC. Das technische Programm wurde in 3 Tagen in jweils 16
parallenen Sektionen fiir contibited papers und 1 Sektion fiir 5 Tutorial Sessions abgewickelt.
Insgesamt wurden 887 Beitrdge prisentiert, wovon ca. ein Drittel von Nichtamerikanern
stammte. Dies bedeutet eine doch erstaunlich starke Internationalitit dieser urspriinglich rein
US-amerikanischen Konferenz. An jedem der 3 Tage begann das Programm mit einer Plenar-
sitzung. 8 tutorial workshops vervollstindigten das Programm, wobei 6 vor der eigentlichen
Konferenz und 2 nach deren Beendingung stattfanden.

Das technische Programm reflektierte das schnelle Wachstum und die immense Breite der
Regelungstechnik im weitesten Sinn. Es gelang den Organisatoren jedoch eine gute Ausge-
wogenheit zwischen Theorie und Anwendung im Programm sicherzustellen. Den industriellen
bzw. industrienahen Anwendungsbeitriagen wurde durch die Einfiihrung von 5 iiber alle 3 Tage
laufende special tracks ein geniigend groBer Rahmen eingeriumt. Die Tutorial Workshops
begannen jeweils mit einem einstiindigen Einfiihrungsreferat und wurden durch 4 state of the
art Présentationen industrieller Anwendungen vervollstindigt. Dadurch sollten Konferenz-
teilnehmer aus der Industrie ganz speziell angesprochen werden.

Die Plenarvortrige befaBten sich ebenfalls mit sehr anwendungsnahen Themen. Fir den
Berichterstatter von besonderem Interesse war dabei der von Prof.J.S. Shamma gehaltene
Vortrag zum Thema ,,Gain scheduling®, einer bereits seit vielen Jahren angewandten Entwurfs-
methode filir nichtlineare Regelungen. Der Vortragende gab einen Uberblick iiber die
systemtheoretischen Grundlagen dieser oft nur intuitiv angewandten, sehr populiren Methode.
Hervorzuheben ist auch der Plenarvortrag von Dr.B.Ogunnaike zum Thema »Controlling
Industrial Chemical Processes®, in dem es ihm in hervorragender Weise gelang, die Verbin-
dungen zwischen akademischer Forschung und deren Umsetzung in der Praxis darzustellen.

Die Sitzungen fir Contibuted Papers waren, wie nicht anders zu erwarten, auch bei dieser
Konferenz in der Mehrheit klassischen regelungstechnischen Themenkreisen wie robuste,
adaptive und prédiktive Regelung, Fuzzy und neuronale Regelung, nichtlineare Regelung,
Identifikation, stochastische Systeme etc. gewidmet. Auf der Anwendungsseite standen
Roboter, Verkehrssysteme sowie die ProzeBindustrie im Vordergrund. Hervorzuheben sind
zwei Sitzung, die sich mit Discrete Event Systems und Hybrid Systems befaBten, zwei Themen,
denen in der Zukunft sehr viel Aufmerksamkeit geschenkt werden diirfte. Auf dem Gebiet der
regelungstechnischen Ausbildung erscheint dem Berichterstatter eine Sitzung von besonderer
Bedeutung, nimlich jene zum Thema Control Education on the Web.

Im Rahmen der ACC’98 fand auch das jahrlich abzuhaltene Meeting des IFAC Technical
Committee on Control Education (EDCOM) statt. Der Berichterstatter hatte die Ehre, in
Vertretung des verhinderten EDCOM-Chairman Prof K.H Fasol als Chairman dieses Meeting
zu leiten.

78 SCHLAGLICHTER

1* IFAC Workshop on
»Intelligent Assembly and Disassembly — IAD 98

May 21 - 23, 1998
Bled, Slovenia

This first Workshop in this rapidly growing field was organized by the ,Laboratory for
Handling and Assembly”, Faculty of Mechanical Engineering, University Ljubljana, in
cooperation with the Institute of ,Handling Devices and Robotics“, Vienna University of
Technology. The 50 participants had the possibility to attend 3 Plenary sessions, 9 Technical
sessions with 28 papers and a round table discussion.

In the first plenary session Feldmann et al. described innovative disassembly strategies based
on flexible partial destructive tools. After an analysis of the characteristics of disassembly an
approach for computer aided disassembly planning as well as some innovative tools were
presented. D. Noe tried to give an overview on sensors necessary for intelligent assembly and
disassembly. A special field of disassembly — disassembly of electronic equipment — was
discussed by Kopacek et al. in their survey paper.

The technical papers arranged in 9 sessions covered the whole field of assembly and
disassembly. Starting with planning systems and methods via Petri Nets, Fuzzy and Neural
Networks, Logistics, Robot Vision until Components and Systems.

The main results also from the round table were: Assembly is an established field and nearly
all problems can be solved — implementation is only a question of economics. Disassembly is
a rapidely growing field of automation with several not yet solved problems.

The Workshop was extremely well organized and the atmosphere of Bled stimulated the
~1AD-family“ to exchange ideas and discuss problems. Because of the importance of this
subject it was decided to have the next event on this topic in the year 2000.

D. Noe P. Kopacek
NOC Chairperson IPC chairman

SCHLAGLICHTER 79

IFAC Conference on
Supplemental Ways for Improving International Stability
SWIIS 98

May 14 - 16, 1998
Sinaia, Romania

SWIIS 98 was held in Sinaia. It was the 7" in the triennial cycle and mainly sponsored by the
TC on SWIIS.

38 participants from 14 countries attended 2 survey papers and 21 technical papers. The
1" survey paper presented by F. Kile (USA) discussed the political and social factors which
have driven leadership in the past. The paper suggested that leadership in the future must
include sustainability as one of the driving factors.

The Democratic People Republic of (north) Korea concentrated on national self-sufficiency
for five decades. Its quest for nuclear energy in the 1980s led to a conflict with the United
Nations — now slowly resolving itself. Pointed out by J. Richardson in the 2™ survey paper.

The 21 technical papers were arranged under topics like:
- Methodologies

- Stability

- Modelling and

- International Policy Cooperation.

Methodology papers dealt with decision making in a reconfigered multipolar world. Issues
included like labour decision making and analysis of social interactions. Stability was
scheduled under the rubrics of economics, cooperation and social restructions following the
solution of the centraly planned economics.

Modelling sessions were chaired by J. Holubiec (PL) and focussed on cumulative games,
prediction techniques and as a new topic “Virtual society”. The policy cooperation was
described in terms of makroeconomic modells as well as linear programming.

The conference was very well organized by the Romanian NMO and stimulated intensive and
sucessful discussions. The next event will be in 2001.

I. Dumitrache K. Kile
NOC chairman IPC chairman

80 SCHLAGLICHTER

9" Symposium
Information and Control in Manufacturing

24, -26.6. 1998
Nancy, Frankreich

Das Hauptereignis des TC ,,Advanced Manufacturing Technologies — AMT* fand diesmal in
Nancy (1. und 3. Tag) und Metz (2. Tag) statt. Zum Unterschied von anderen IFAC
Veranstaltungen legten die Organisatoren grofiten Wert auf verstirkte Industriepriasenz. Dies
wurde dadurch erreicht, daBl eine neue Struktur gewihlt wurde. Statt der bisher iiblichen
Ubersichtsvortrige und Round Table Diskussionen waren die 6 Plenary Sessions so
organisiert, daB zu einem Themenbereich zunichst 5 — 6 Vortrige gehalten wurden, und
anschlieBend Fragen an die Vortragenden sowie zusitzliche Fachleute gestellt werden
konnten.

Die Themen dieser Plenary Sessions:

- Advanced Automation Engineering

- Engineering Technologies for Advanced Manufacturing

- Information Technologies for Integration in Manufacturing
- Intelligent Manufacturing & Process Systems Engineering
- Management of Advanced Industrial Systems

- Industrial Safety, Dependability and Quality

spiegeln die Entwicklungsrichtungen dieses Fachgebietes wieder. Die ungefihr 150
gehaltenen technischen Vortrige waren ebenfalls diesen Themenkreisen zuzuordnen.

Als Entwicklungsrichtungen zeichnen sich eine verstirkte Integration; autonome intelligente
»Agenten“; die Erstellung von Modellen fir das dynamische Verhalten von
Produktionsausrichtungen ab. Diese Tendenzen konnen als logische Weiterfihrung der ,,ims*
Test-cases aus dem Jahre 1993 gesehen werden.

Zusammenfassend kann festgestellt werden, daB sich die neue Struktur bewidhrt hat —
allerdings war die Dauer der Plenary Session (2,5 Stunden ohne Pause) etwas zu lang. Durch
Einwerbung von Sponsorgeldern war es den Veranstaltern moglich den 250 Teilnehmern ein
exzellentes Begleitprogramm zu bieten.

GemiB dem iblichen drei Jahreszyklus findet INCOM 2001 im September 2001 in Wien
statt.

Peter Kopacek

BUCHBESPRECHUNG 81

Taschenbuch Versuchsplanung
Produkte und Prozesse optimieren

Wilhelm Kleppmann
Praxisreihe Qualitdtswissen, herausgegeben von Franz J. Brunner

283 Seiten, broschiert; ISBN 3-446-19271-9
Carl Hanser Verlag 1998

Produkte werden entwickelt, verbessert, produziert, gepriift, getestet und spiter auch repariert.
Diese Tatigkeiten sind oft sehr komplex, weil sehr viele Anforderungen und EinfluBfaktoren
eine Rolle spielen und aufeinander abgestimmt werden miissen. Fiir die Ingenieure in
Entwicklung, Konstruktion, Fertigung und Qualititssicherung ist dies im Rahmen der
gegebenen Termine und Kosten nicht immer einfach, manchmal unméglich. Ein probates
Mittel diesem Problem beizukommen, ist der Versuch. Der Autor bietet erstmals einen
anwendungsorientierten Uberblick zu diesem Thema, der auch Ingenieure liberzeugen wird,
die bisher bei dem Begriff Versuch eher an statistische Zahlenakrobatik dachten.

Welche Probleme kénnen durch gezielte Versuche am besten gelost werden? Wie legt man
einen Versuch an, damit die Ergebnisse wirklich aussagekriftig sind? Auf diese Fragen geht
das Buch mit Hilfe von vielen Beispielen ein, die das Thema greifbar und umsetzbar werden
lassen. Oft miissen mehrere ZielgroBen unter einen Hut gebracht werden, aber wenn man die
eine verbessert, verschlechtert sich die andere. Eine Losung ist, zunichst die Zusammenhinge
einzeln genau zu bestimmen und mit der Wunschfunktion einen optimalen Kompromif3 zu
suchen. Weitere Beispiele sind: Mit dem ,Multi-Vari-Bild“ lassen sich die Ursachen fiir die
Streuung von Produkteigenschaften ermitteln; ein ,,paarweiser Vergleich“ hilft hartnickige
Fehler aufzuspiiren; die Ausbeute bestimmter Fertigungsablaufe kann durch
»Variablenvergleich“ erhéht werden und vieles mehr.

Das Buch kann sowohl in der Praxis stehenden Ingenieuren sowie Studierenden wirmstens
empfohlen werden.

P. Kopacek

82 BUCHBESPRECHUNG

Das virtuelle Produkt

Management
der CAD-Technik

G. Spur, F-L. Krause

738 Seiten, ISBN 3-446-19176-3
Carl Hanser Verlag Miinchen Wien, 1997

Mit diesem Lehr- und Arbeitsbuch ist eine fundierte und umfassende Darstellung der modernen
rechnerintegrierten Produktentwicklung erschienen. Es faBt die dazu erforderlichen Techniken
und Methoden zur Entwicklung des ,,virtuellen Produktes“ zusammen.

Die Anwendung von Rechnern in der Konstruktion unterlag in den letzten Jahren einem
groBem Wandel. Firmenstrukturen haben sich verandert, neue Paradigmen der Vorgehens-
weisen wurden erprobt. Das Buch macht deutlich, wie sich die Anforderungen an die
Produktentwicklung und Produktentstehung gewandelt haben. Es kann wohl zu Recht
prognostiziert werden, daB zukinftige in der praktischen Anwendung komplexe Produkte auf
virtuelle Weise antizipiert werden. Das virtuelle Produktverhalten zu erkennen, d.h. die
Simulation aller Phasen des Produktlebenszyklus von der Produktplanung, Design,
Konstruktion und Arbeitsvorbereitung iiber die Fertigung bis zu Service und Recycling, wird
zunehmend ein strategisches Ziel produzierender Unternehmen.

Systeme zur Entwicklung eines virtuellen Prototypen dienen der besseren Gestaltung von
Produkten und Prozessen sowie der Kommunikation und schnelleren Entscheidungsfindung.
Dabei ist die komplexe rechnerunterstiitzte Produktmodellierung, die neben Funktion,
Geometrie und Technologie auch Gebrauchsverhalten und Umwelteigenschaften umfaBt, durch
produktspezifische Entwicklungslogiken zu erginzen.

Dieses Handbuch stellt den aktuellen Stand von Forschung, Technik und Praxis dar. Es dient
gleichermaBen als Lehrbuch fiir Studierende sowie als Nachschlagwerk fiir alle Anwender in
den verschiedenen Bereichen der Industrie und spricht mit den dargestellten Strategien zudem
das Management an.

Harald Zebedin

BUCHBESPRECHUNG 83

Fertigungsregelung — Logistische Beherrschung von
Fertigungsabliufen auf Basis des Trichtermodells

H.-P. Wiendahl

382 Seiten, ISBN 3-446-19084-8
Hanser Verlag, 1997

Die logistische Beherrschung von Fertigungs-, Lagerhaltungs- und Beschaffungsprozessen in
der variantenreichen Einzel- und Serienfertigung ist ein Kernproblem der Fertigungsindustrie.
Das Buch Fertigungsregelung von Hans-Peter Wiendahl baut auf dem mittlerweile etablierten
Hannoverschen Trichtermodell auf. Dabei werden zunichst die logistischen Kennlinien zur
formelméBigen Beschreibung der Wechselwirkungen zwischen Bestand, Reichweite,
Durchlaufzeit und Auslastung von Arbeitssystemen behandelt. Ebenso wird die logistische
Durchlauf- und EngpaBanalyse ganzer Fertigungsbereiche anhand praktischer Beispiele
erlautert.

Die vielfach bewihrte belastungsorientierte Fertigungssteuerung (BOA), die uber die drei
Komponenten Auftragsfreigabe, Monitorsystem und Kapazititsmodul verfigt, wird in diesem
Buch durch einen neuen Ansatz der durchlauforientierten LosgroBenbestimmung und der
Durchlaufterminierung erweitert und in allen Einzelheiten vorgestelit. Ein Konfigurationsmodul
zur widerspruchsfreien Einstellung der Verfahrensparameter baut es zu einem geschlossenen
Konzept der Fertigungsregelung aus. Die Anwendung des Trichtermodells beschriankt sich
dabei nicht mehr auf die Fertigung alleine, sondern schlieBt wegen der wachsenden Bedeutung
von Zukaufteilen jetzt auch die Beschaffung und Lagerung mit ein, und umfaB3t die logistische
Analyse, Uberwachung, Diagnose und Regelung der Fertigung sowie die Analyse und
Uberwachung der Beschaffung.

Um trotz des inhaltlichen Umfanges die Lesbarkeit und die rasche Umsetzung in die
betriebliche Praxis zu erleichtern, wurde der Stoff in theoretische Grundlagen und in
Anwendungen gegliedert.

Das Buch wendet sich hauptsachlich an Praktiker in Produktion und Logistik sowie an
Wissenschaftler und Studierende der Betriebswirtschafts- und Produktionstechnik. Zahlreiche
Bilder und detaillierte Rechenbeispiele bereiten den Inhalt auf. Die Erkenntnisse koénnen
insbesondere mit Tabellenkalkulationsprogrammen unmittelbar nachvollzogen und praktisch
genutzt werden.

Gemot Kronreif

84 DISSERTATIONSKURZFASSUNGEN

Dynamische Niederschlags-Abfluisimulation von Donauzubringern
Dr. Christoph Fessel, 1997

Begutachter: O.Univ.Prof. Dr.Dr.h.c.mult. P. Kopacek
O.Univ.Prof. Dr. H.-B. Matthias

Das gegenstindliche Projekt befaBt sich mit der Entwicklung eines Softwarepaketes zur
koordinierten Steuerung von mehreren Laufkraftwerken an der sterreichischen Donau. Die
Modellformulierung erfolgt dabei mit dem Ziel der Ermittlung und Beurteilung von
Handlungsalternativen im Hochwasserfall. Im Sinne einer Pilotstudie werden dabei die
Donaukraftwerke Melk, Ybbs, Wallsee und Abwinden betrachtet. EingangsgroBen der durch
getrennte Staustufen modellierten Kraftwerkskette stellen neben dem, im allgemeinen bekannten
Staustufenzuflul des Kraftwerkes Abwinden vor allem der nicht bekannte ZubringerabfluB dar.
Auf dessen Kenntnis kann aber bei einer koordinierten Steuerung der Kraftwerkskette dennoch
nicht verzichtet werden.

Diese Arbeit beschiftigt sich daher mit der Analyse, Beurteilung und Simulation des
Donauzubringerabflusses in die genannten Staustufen. Basierend auf einer Untersuchung der in
der Hydrologie bestehenden Modellvorstellungen zur Modellierung des AbfluBvorganges, wird
eine fur die Beschreibung der Einzugsgebiete der Donauzubringer geeignete Modellkonzeption
erarbeitet und erldutert.

Eine angeschlossene detaillierte Analyse der AbfluBsituation der Einzugsgebiete zeigt die
Notwendigkeit der Beriicksichtigung des aktuellen Feuchtezustandes der Einzugsgebiete. Aus
diesem Grund ergibt sich als zentrales Element des sich in den AbfluBbildungs- und
Konzentrationsproze gliedernden Modellkonzeptes ein Speicherelement. Die erforderliche
Funktion dieses Speicherelements hinsichtlich aller im Gebiet ablaufenden hydrologischen
Prozesse wird detailliert behandelt, womit letztendlich eine Formulierung fiir die
Systemgleichung des Speichers dargestellt werden kann.

Diese Modellformulierung stellt die theoretische Basis des im Rahmen dieser Arbeit erstellten
Simulations-Softwarepakets DoNAb dar, womit ein ,,Werkzeug" zur dynamischen Modellierung
der Zubringereinzugsgebiete verfligbar ist.

DoNAb ist dabei auf die Ziele einer moglichst guten Anpassungsfihigkeit an die erarbeiteten
Einzugsgebietscharakteristika und einer gleichzeitigen Forderung nach einer moglichst guten
Ubertragbarkeit auf alle Einzugsgebiete der Staustufen ausgerichtet. Zur Anpassung des
Programms an die unterschiedlichen Einzugsgebiete der Staustufen, deren Zubringer nach Lage,
GroBe Bedeutung der AbfluBspende und Verfiigbarkeit von MeBdaten untersucht werden, ist
dem Simulationsprogramm ein Modul zur Parameterberechnung angeschlossen.

DISSERTATIONSKURZFASSUNGEN 85

Optimierung neuronaler Regler mittels Genetischer Algorithmen
Dr. techn. Thomas Griinberger, 1997

Begutachter: O.Univ.Prof Dr.techn. A Weinmann
O.Univ.Prof . Dr.techn H.P Jorgl

Die Motivation dieser Arbeit besteht im Einsatz von Kiinstlichen Neuronalen Netzen fiir
regelungstechnische Aufgabenstellungen als Regler fir sowie zur Modellbildung von
nichtlinearen Prozessen.

Fiir den Reglerentwurf bietet sich aufgrund der unbekannten StellgroBe, die ein {iberwachtes
Lernverfahren ausschlieft, ein bestrafendes Lernen an, d.h. eine zufillige Anderung im
neuronalen Regler wird qualitativ oder quantitativ als gut oder schlecht bewertet. Die Funktion
des Lehrers tibernimmt ein Giitekriterium fiir den geschlossenen Regelkreis. Dieses Verfahren
wird dahingehend erweitert, daB mit einer Population von neuronalen Reglern fixer Struktur
gearbeitet wird, die einem EvolutionsprozeB unterzogen wird, wobei jedes dieser Netze ein
Individuum darstellt, dessen Gene durch die Gewichte des Neuronalen Netzes bestimmt werden.
Die einzelnen Neuronalen Netze konnen durch genetische Operatoren wie Mutation ihr Verhalten
verbessern und durch Kreuzung der Gene voneinander Lernen, zusitzlich wird die
Gesamtpopulation einem Selektionsdruck unterzogen. Als Verfahren wird hierfiir ein Genetischer
Algorithmus eingesetzt.

Fir den neuronalen Regler wird ein Feedforwardnetz verwendet, welches eine rein stationire
nichtlineare Abbildung der EingangsgréBen auf die Ausgangsgrofle darstellt. Um dem Regler ein
dynamisches Verhalten zu geben, mussen dynamische Elemente vor- oder nachgeschaltet
werden. Als Vorwirtsreglerstruktur wird ein neuronaler PI-Regler untersucht, es wird gezeigt,
daB mit diesem Regler bessere Ergebnisse als mit einem linearen PI-Regler fiir lineare
Regelstrecken erzielt werden konnen. Weiters wird ein two degree of freedom Regleransatz
vorgestellt, der einen kombinierten Fihrungs- und Storungsentwurf ermoglicht. Ein Vergleich
dieser Reglerstruktur mit dem neuronalen PI-Regler anhand verschiedener Giitekriterien zeigt,
daB sich damit besseres dynamisches Verhalten erzielen 1463t

Fir die Modellbildung mittels Neuronaler Netze wird einleitend ein nichtlinearer
Differenzengleichungsansatz unter Verwendung eines Feedforwardnetzes hinsichtlich der
Verwendung als Parallelmodell untersucht. Da sich dieses Verfahren als nicht tauglich erweist,
werden teilweise riickgekoppelte Netze (Elman- bzw. Jordan-Netze) untersucht. Die Anwendung
auf lineare Regelstrecken zeigt, daf3 eine Zustandsraumdarstellung des Systems gelernt wird.

AbschlieBend wird eine spezielle Netzwerkstruktur, eine Serienschaltung eines nichtlinearen
Feedforwardnetzes mit einem linearen Elman-Netz, fiir die Identifikation von
Hammersteinmodellen vorgestellt. Fir diese Netzwerkstruktur kann als Lernverfahren der
Backpropagationalgorithmus eingesetzt werden, Simulationsbeispiele ergeben, daB die statische
Nichtlinearitdt durch das Feedforwardnetz abgebildet wird, das Elman-Netz erlernt wiederum
eine Zustandsraumdarstellung des linearen Systemteils.

86 DISSERTATIONSKURZFASSUNGEN

KombinationsfehlermaB und kompakte Anregungssignale fiir
optimale parametrische ProzeBidentifikation

Dr. techn. Herbert Swaton, 1997

Begutachter: O.Univ.Prof Dr.techn. A. Weinmann
titl. A.o.Prof.Dr.techn.R Noisser

Bei der Identifikation von Prozessen stehen iiblicherweise nur gestorte MeBdaten zur Verfligung.
Damit eine gewisse Modellgite garantiert werden kann, ist dieser MeBdatensatz ausreichend
informativ zu gestalten. Daher kommt der Gestaltung der experimentellen Rahmenbedingungen
bei der Datenaufnahme im Rahmen des Identifikationsvorganges eine besondere Bedeutung zu.

In der zugehorigen Fachliteratur finden sich zu dieser Fragestellung zwei Losungsansitze.
Einerseits lassen sich die Rahmenbedingungen durch Betrachtung geeigneter
Optimalititskriterien analytisch festlegen. Dieser Ansatz ist aber wegen des hohen
mathematischen Aufwandes nur fiir einfache Ausnahmefille tatsichlich durchzufiihren; als
weitere Erschwernis kommt hinzu, daB zur exakten Losung des Optimierungsproblems die
Kenntnis des zu identifizierenden Prozesses notwendig wire. Andererseits existieren zahlreiche
Faustformeln und Abschitzungen, deren Anwendung eine geeignete Gestaltung des
Identifikationsexperimentes ohne groBen Aufwand ermoglichen soll. Letztere Vorgangsweise
beriicksichtigt allerdings keine Abhingigkeiten zwischen diversen EinfluBgroBen. Aus diesem
Grund konnen damit auch keine Optimalititsanforderungen erfullt werden.

In der vorliegenden Arbeit wird eine neue Methode zur (sub)optimalen Festlegung der
Rahmenbedingungen fir das Identifikationsexperiment von linearen EingréBenystemen
vorgestellt. Der Vorteil dieser Methode, die auf Simulationsbetrachtungen basiert, liegt darin, daB3
ihre Anwendung bedeutend einfacher ist als die analytische Vorgangsweise (und auch nicht auf
die Identifikation einfacher Systeme beschrinkt bleiben mufl), andererseits aber dennoch eine
Beriicksichtigung der gegenseitigen Abhingigkeiten zwischen den EinfluBgréfen erlaubt. Der
Grundgedanke, der die Anwendung dieses Ansatzes nicht nur zur Untersuchung bekannter
Systeme, sondern auch zur Betrachtung unbekannter Prozesse nahelegt, ist jener, daf3 Systeme,
deren Klemmenverhalten hinreichend dhnlich sind, unter vergleichbaren Voraussetzungen auch
dhnliche optimale Experimentrahmenbedingungen fiir die Identifikation aufweisen. Daher sollten
diese (sub)optimalen Bedingungen fiir unbekannte Systeme unter giinstigen Umstinden durch
Simulationsbetrachtungen an voridentifizierten Modellen (‘'Vergleichssystemen') zu ermitteln
sein. Dies wird an einigen Beispielen demonstriert.

Um die Auswirkungen diverser Manahmen bei der Experimentgestaltung beurteilen zu kdnnen,
erweist sich in einem ersten Schritt die Beurteilung der resultierenden Modelle mit skalaren
FehlermaBen als giinstig. Allerdings erlaubt keines der bekannten FehlermaBe fiir sich alleine
eine hinreichende Beurteilung des Modellverhaltens; dies kann allenfalls durch eine gemeinsame
Betrachtung mehrerer dieser KenngroBen erfolgen. Daher wird als neue KenngroBe das
Formfehlermaf definiert, welches die Aussagen einiger StandardfehlermaBe geeignet kombiniert
und dessen Anwendung somit eine einfachere Bewertung von Modellen erméglicht.

Die Wahl der ProzeBanregung ist fiir das Ergebnis eines Identifikationsvorganges von besonderer

DISSERTATIONSKURZFASSUNGEN 87

Bedeutung. Signale, die durch Uberlagerung von harmonischen Schwingungen entstehen
(Multifrequenzsignale), bieten die Moglichkeit zu einer nahezu beliebigen Vorgabe des
Anregungsspektrums. Allerdings reicht die Betrachtung des spektralen Verhaltens fiir sich alleine
nicht aus. Mindestens ebenso wichtig ist es, den Zeitverlauf derartiger Signale geeignet
vorzugeben. Dies hat durch eine Kompression der Amplitude mit dem Ziel zu erfolgen,
moglichst kompakte Zeitverldufe zu erzeugen, wobei der Crestfaktor eine KenngroBe fiir den
Erfolg dieser MaBnahme darstellt.

Fiir dieses Problem existiert derzeit noch keine geschlossene analytische Losung. In der
vorliegenden Arbeit wird das Verfahren der Maximalwertkompensation eingefiihrt. Dieses
ermoglicht unter gewissen Voraussetzungen, welche die Gestalt des Signalspektrums betreffen,
eine bessere Kompression derartiger Multifrequenzsignale als die aus der Literatur bekannten
Verfahren.

Stabilititsanalyse von Fuzzy-Regelungen mit Hilfe der
Hyperstabilitiitstheorie

Dr. techn. Ernst Bodenstorfer, 1997

Begutachter: O.Univ.Prof.Dr.techn. A Weinmann
titl. A.o.Prof. Dr.techn R Noisser

Die vorliegende Arbeit beschiftigt sich mit der Stabilitatsanalyse von Fuzzy-Regelungen, wobei
davon ausgegangen wird, dal ein mathematisches Modell der Regelstrecke vorliegt. Es wird ein
bekanntes Verfahren zur Stabilititsanalyse von nichtlinearen Regelkreisen, das auf der
Hyperstabilititstheorie von V. M. Popov basiert, erweitert. Voraussetzung fiir die Anwendung
der Hyperstabilitatsmethode ist, daBB der betrachtete Regelkreis auf die Form des sogenannten
nichtlinearen Standardregelkreises, bestehend aus einem linearen dynamischen und einem
nichtlinearen dynamikfreien Teilsystem, gebracht werden kann. Der Standardregelkreis muf
fiktiv so umgeformt werden, daB3 bestimmte - im Sinne der Hyperstabilititstheorie fiir Stabilitét
hinreichende - Bedingungen womoglich erfiillt sind.

Die Hyperstabilititsmethode liefert (wie praktisch alle Verfahren zur Stabilitatsbeurteilung
nichtlinearer Regelkreise) hinreichende, aber nicht notwendige Bedingungen fiir die Stabilitét.
Jede von ihr ausgehende Stabilititsanalyse ergibt daher mehr oder weniger konservative
Resultate. Daher wird in der vorliegenden Arbeit eine neue Art der Umformung des
Standardregelkreises eingefihrt und mit den aus der Literatur bekannten Umformungen
kombiniert. Es wird gezeigt, wie die aus den Umformungen resultierenden freien Parameter und
Freiheitsgrade teils analytisch, teils numerisch (mit Hilfe eines Optimierungsalgorithmus)
optimiert werden konnen. Durch die Erweiterung der Anzahl an optimierbaren Parametern, die
sich aus der neu eingefithrten Regelkreisumformung ergibt, soll die Konservativitit des
Verfahrens gegeniiber dem bekannten Grundverfahren verringert werden. Abschlie3end wird die
Brauchbarkeit des Verfahrens zur Stabilititsbeurteilung an Hand zweier konkreter Fuzzy-
Regelkreise demonstriert.

88 VERANSTALTUNGSKALENDER
Datum Veranstaltung Ort Weitere Informationen erhiltlich bei:
9.-11.11.1998 5™ IFAC Workshop on Gramado Prof. Carlos E. Pereira
Intelligent Manufacturing Brazi! Rua Siqueira Campos 341/304
Systems CEP92010-230, Canoas RS, Brazil
FAX: +55/51/316 3129
e-mail: cpereira@jiee.ufrgs.br
http://www.iee.ufrgs.br/iee.cepport.htm
13.-18.6.1999 15" IMEKO WORLD Osaka Society of Instrument and Control Eng.
CONGRESS Japan 35.28-303, 1-Chome Hongo, Bunkyu-ku
Tokyo 113, Japan
FAX: +81/3/3814 4699
5-9.7.1999 14" IFAC WORLD Beijing IFAC’99 IPC Secretariat
CONGRESS PRC Institute of Systems Science
Chinese Academy of Sciences
Beijing 100080, PR China
FAX: +86/10/6258 7343
e-mail: ifac99@iss03.iss.ac.cn
http://www.ia.ac.cn/ifac99/ifac99.html
16.-20.8.1999 15" IFORS WORLD Beijjing IFORS XV Conference Secretariat

CONGRESS PRC Institute of Applied Mathematics
Chinese Academy of Sciences
Beijing 100080, PR China
FAX: ++86/10/6254 1689
e-mail: orchina@publ.east.cn.net
http://www. ifors.org/leaflet/triennial html
29.9.-2.10.1999 7" International Vienna prof. Dr. Peter Kopacek
Workshop on Computer %@ Institute for Handling Devices and Robotics
Aided Systems Theory Vienna University of Technology
and Technology — Floragasse 7a
EUROCAST 99 A-1040 Vienna, Austria

FAX: +43/1/504 18 359
e-mail ecast99@ihrt1.ihrt.tuwien.ac.at
http://www ihrt.tuwien.ac.at/ECAST99

2.-4.12.1999

1" Intern. Workshop on Vienna
Multi-Agent Systems in Austria
Production - MAS'99

Prof. Dr. Peter Kopacek

Institute for Handling Devices and Robotics
Vienna University of Technology
Floragasse 7a

A-1040 Vienna, Austria

FAX: +43/1/504 18 359

e-mail mas99@ihrt1.ihrt.tuwien.ac.at
http://www ihrt.tuwien.ac.at/MAS99/

