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 

Abstract—This paper provides a wide perspective of the 

potential applicability of Graphical Processing Units (GPUs) 

computing power in robotics, specifically in the well known 

problem of 2D robotic mapping. There are three possible ways of 

exploiting these massively parallel devices: I) parallelizing 

existing algorithms, II) integrating already existing parallelized 

general purpose software, and III) making use of its high 

computational capabilities in the inception of new algorithms. 

This paper presents examples for all of them: parallelizing a 

popular implementation of the grid mapping algorithm, using a 

GPU open source linear sparse system solver to address the 

problem of linear least squares graph minimization and 

developing a novel method that can be efficiently parallelized and 

executed in a GPU for handling overlapping grid maps in a 

mapping with local maps algorithm. Large speedups are shown in 

experiments, highlighting the importance that this technology 

could have in robotic software development in the near future, as 

it is already doing in many other areas. 

 Index Terms— Mobile Robots, Robot Programming, 

Graphical Processing Units, Robotic Mapping. 

 

I. INTRODUCTION 

lthough microprocessor manufacturing technology is 

continuously improving, it is reaching the point in which 

physical limits are becoming a major concern. Memory speed 

and power have imposed walls for increasing processing 

performance by scaling the clock frequency. Over the last 

years, Moore’s law and performance improvements have been 

maintained mainly due to one reason: multi-core processors 

(multiprocessors). In multiprocessors, several CPU cores are 

packaged into a single chip, taking advantage of their 

proximity, for example when accessing the cache memory. 

Some well known examples are Intel Dual-Core and Quad 

systems, Sony Cell (8-core) processor inside PlayStation3 and 

the PowerPC Xenon (3-core) processor in Microsoft’s Xbox 

360. 

Together with multiprocessors, new programming models 

have emerged in order to manage and exploit the available 
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parallelism of those systems. Single processors can implicitly 

implement in hardware some degree of parallelization 

pipelining instructions, but when dealing with multiprocessor 

architectures parallelization must be explicitly implemented by 

the programmer. Message Passing Interface (MPI) is the de 

facto standard for high performance distributed computing, 

while OpenMP is probably the most extended solution for 

multiprocessing in shared memory systems, as multi-core 

CPUs. 

Manufacturers of graphical processing units have been also 

continuously improving their systems, leading to multi-core 

Graphical Processing Units (GPUs) where each core contains 

also a large number of Arithmetic and Logical Units (ALUs) 

specialized in parallel processing of graphics as textures, 

visibility, image processing, etc. Also the large market for 

graphics cards with ubiquitous 3D graphics (games, CAD, 

multimedia, etc), has lowered the cost of very powerful 

devices that can fit into the class of what is known as 

commodity hardware. Major GPU manufacturers have recently 

released tools and programming models that allow 

programmers to access such computing power: ATI (now part 

of AMD) development platform is called ATI Stream, and the 

NVIDIA development system is called Computed Unified 

Device Architecture (CUDA). 

The CUDA approach has gained large attention and many 

researchers have found it a powerful platform for boosting 

their computations. Furthermore, several libraries as CUBlas 

(a port of the Basic Linear Algebra Set – Blas) or GpuCV 

(largely compatible with OpenCV) for computer vision have 

been developed that let researchers take advantage of the 

computing power of GPUs without requiring explicit 

parallelization of algorithms. Applications such as Matlab or 

GIMP have also been provided with CUDA extensions that let 

the applications transparently benefit from GPUs processing. 

It is our belief that the robotics community should also 

benefit from adopting and using such technology. To this 

avail, three main lines could be followed:  

 Parallelize and port existing algorithms to execute in 

GPUs 

 Take advantage of already developed general purpose 

math or computer vision libraries and tools 

 Develop new algorithms explicitly taking  into account 

the computational capabilities of such devices 

Many algorithms in mobile robotics are computationally 
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intensive. Amongst them, the map building or Simultaneous 

Localization and Mapping - SLAM problem [1], [2] has 

gained great attention in the last decades, with a prototypical 

case study of indoor wheeled mobile robots equipped with 

laser rangefinders.  

Section II presents current related work on GPU robotic 

applications; note that most contributions are related to the 

computer vision domain. This paper presents a demonstration 

of GPU computing applied to the SLAM problem in the three 

lines stated above, showing also its high potential applicability 

in domains other than vision. Section III shows how a publicly 

available implementation of the grid mapping algorithm can be 

parallelized over a GPU to obtain high computational savings. 

Section IV uses a general GPU optimized sparse linear system 

solver to address the graph SLAM problem defined as a least 

squares minimization over a graph of poses. Section V 

implements a novel algorithm for handling overlapping 

between different grid maps, which can be efficiently applied 

thanks to the computing power of GPU. Section VI reports on 

simulated and real experiments combining some of the 

previous techniques. A discussion on related issues is 

presented in section VII and finally, conclusions are 

summarized in section VIII. 

II. GPU COMPUTING IN ROBOTICS 

A. Related work 

In recent years there has been an upsurge of interest in GPU 

computing applied to robotics. Some applications address 

topics such as grasping with manipulators, solving the 

algebraic and geometric problem with GPUs [3]. However, 

most of the related literature is actually found in the computer 

vision domain, as in the early work of Michel et al. [4] which 

tracked 3D objects with cameras using the GPU to achieve real 

time performance when controlling a humanoid. Other works, 

such as [5] try to speed up the typical processing and matching 

of SIFT features among different frames for localization 

purposes, while more complete multimodal perception 

approaches as [6] includes Bayesian solutions with particle 

filters. There exist research groups and projects fully devoted 

to this area, as the gpu4vision project [7]. 

In the mapping with laser rangefinders domain, the work of 

Yguel et al. in 2007 [8], addressed the problem of updating a 

2D probability grid with a novel formulation of the required 

polar to cartesian grid conversion which takes into account the 

actual beam model. A more recent work is found inside the 

well known Slam6D open source project [9], where NVIDIA 

CUDA is used for speeding up the 3D point clouds registration 

and ICP matching [10]. 

It is important to highlight the merits of [4] [8], since current 

general purpose CUDA tools were not available at the time, so 

programmers had to deal with specific graphics APIs. 

Nowadays, these tools allow much more simple development, 

and even robotic specific software frameworks include support 

for such tools as, for example, ROS [11] does with CUDA. 

B. Overview of nVidia CUDA architecture 

CUDA exposes the NVIDIA multi-core GPUs computing 

capabilities through the following elements (Fig. 1): 

 Thread hierarchy. The execution unit in CUDA is a 

kernel, which is structured in a so called grid (a 1D or 2D 

array) of blocks, each block in turn arranged in another (up 

to 3D) array of threads. Unlike CPU multithreading, every 

thread of the same kernel has to run exactly the same code, 

so typically a kernel is used to perform the same task 

concurrently over a large set of data. Built-in variables are 

used in the thread code to access its indices in the block as 

well as the block indices in the grid. These indices are 

typically used in the thread code to address the particular 

chunk of data that the thread must handle.  

 Memory hierarchy. Each thread has its own private 

memory space and registers, each block has a shared 

memory that can be accessed by all threads in the block, 

and there exists a global memory accessible by all threads. 

The system is completed with two read-only memory 

spaces: the constant memory and the texture memory. The 

shared memory is built inside the GPU, so it is faster than 

the global memory that is outside the GPU (but located in 

the device, i.e. the graphics card). 

 Thread synchronization. All threads in a block can be 

forced to wait at a given point until it is reached by the 

remaining threads. 

 

 

 

 

 

 

 

 

 

 

Fig.  1. CUDA architecture 

 The CUDA architecture is available to the programmer via 

some extensions of the C language as well as a runtime library. 

With these extensions the programmer can define kernels, 

declare the type of device memory required for each data, and 

synchronize threads. 

 A typical working cycle consists of the following steps: 

allocating memory on the device (graphics card), copying data 

from host (PC) memory to the device, launching one or several 

kernels, and finally copying the results from device to host 

memory. 

To achieve a good overall performance several things have 

to be considered. The threads are managed by hardware, so 

they have practically no execution, changing, switching or 

finishing overheads. The GPU bottleneck is typically memory 

access, relatively slow compared to processing. Fortunately, 

the memory latency can be typically hidden if there are enough 

threads to be scheduled for execution. In practice this implies 

that a kernel must launch thousands of threads and that an 

adequate selection and usage of the different memory types of 
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the GPU is critical to achieve adequate speedups. 

III. GRID MAPPING 

Probabilistic grid maps [12] divide the environment into 

small square cells and compute the probability of occupancy 

for each cell, given the sensor measurements and assuming that 

the correct robot poses are known. The probability of the map 

m given all the data (both poses and observations) 
ts  up to 

time step t , can be factorized into the probability of each 

cell
cm as follows: 

    | |t t

c

c

p m s p m s  (1) 

As derived in [13], the probability of each cell can be 

computed recursively as:  
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where priorp  denotes the prior probability of occupation 

which is assumed to be equal for all cells, (an initial parameter 

of the algorithm), and ( | )c tp m s  is the probability  of  a cell 

occupancy conditioned only on the observation ts at a certain 

time step t , as defined by the probabilistic sensor model.  

 Irrespectively of the sensor model, (1) and (2) show that 

updating the probability in each cell can be performed 

independently; this is a cornerstone for a straightforward 

massive parallelization. The work presented in this paper takes 

a very well known publicly available implementation in 

CARMEN [14], and implements it for efficient GPU 

computation by finding and adequate parallelization.  

 
Fig.  2. Bresenham ray trace of one beam from a laser scan reading 

The CARMEN grid mapping algorithm traces a line 

segment for every beam of each laser scan (typically  180 laser 

beams spaced at 1º intervals), and iterates using the 

Bresenham algorithm [15] as shown in Fig. 2. At each step the 

update procedure requires a nested for loop, summarized in 

Fig. 3: the outer loop iterates over the different beams, and the 

inner one over the cells crossed by the ray, which are updated 

according to (2). 

The proposed parallelization unfolds the nested for loop in a 

CUDA kernel, with one block per laser beam (outer loop), and 

each block made up of a vector of threads, one for each cell 

that has to be updated (inner loop). Since the number of cells 

differs for each ray in the general case, each block would 

require a variable number of threads depending on the actual 

measurement. CUDA, however, only allows a fixed number of 

threads per block. Although this number depends on the 

hardware platform, its minimum size is 256 threads, which can 

accommodate a sensor range of 6.4 meters for a cell size of 2,5 

cm and 12,8 m for a cell size of 5 cm, which are reasonable 

values for real applications. The proposed kernel will be 

typically composed of 360 blocks, each one with 256 threads, 

i.e. a total of 92160 threads for handling each laser scan.  

The first step is to allocate and copy the input data from 

host memory to the GPU device memory. In this case it is 

necessary to copy the whole laser data
ts  (including all 

measurements from all time steps, as well as the robot poses), 

the initial probability grid 1( | )tp m s  , and the input 

parameters. Next, a kernel is launched for every time step to 

process the corresponding scan 
ts . Finally, the resulting 

updated probability grid ( | )tp m s is transferred back to the 

host memory.  
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Fig.  3. Grid mapping CPU sequential algorithm structure (left) vs. GPU 

parallelized version (right). Note that this is just the update of a single scan, 

and must be done for each measurement. 

Two real different datasets named Fr079 and Fr101 with the 

robot poses already corrected (see Acknowledgment, more 

details in [16]) have been used for the experiments and 

processed with different CPU and GPU configurations. The 

results are summarized in Table I. In the CPU, a slightly 

modified version (as using the same floating point data types 

in order to achieve a fair comparison) of the CARMEN 

algorithm is used, while the GPUs run our parallelized (but 

algorithmically identical) version. In both cases, all input data 

is loaded into memory before starting the computation to 

eliminate delays resulting from reading data from a hard drive. 

While laptop GPUs can double the speed of a CPU, powerful 

graphics cards as the GTX280 show improvements in speed up 

to 58X.  
TABLE I PROCESSING TIMES IN SECONDS AND EFFICIENCY 

 DATASET 

PROCESSOR Fr079 Fr101 

2Ghz Core 2 Duo T7250   11,5      (1)      25,3       (1) 

3,2Ghz Pentium D   15,2    (0,76)      30,9    (0,82) 

GF 8400M GS (laptop)   6,26    (0,92)     12,17   (1,04) 

GTX 280 (desktop)   0,26    (1,47)      0,52    (1,62) 
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The evaluation of  results in terms of efficiency could be a 

controversial issue, since the comparison is done between two 

radically different architectures. Table I presents the relative 

efficiency of the GPU parallelization taking into account the 

number of multiprocessors (control units, 2 in the GF8400 and 

30 in the GTX280) and comparing with the Core2Duo. Super 

linear efficiency is possible due to the specialized GPU 

architecture which has a much higher number of arithmetic 

units (CUDA cores, 16 in the GF8400 and 240 in the 

GTX280). Obviously, using this latter number for computing 

efficiency will produce very poor results. In any case, we 

consider that absolute timings should be the critical factor to 

be taken into account because they represent the ultimate 

performance of the robot, irrespective of how well are the 

algorithms parallelized or the GPU resources exploited. 

For the GPUs, memory transfer times to and from the 

graphics card have also been included in the results of Table I. 

These delays are unavoidable, and must be included in the 

absolute timings, just as transfer times from main memory are 

included in the CPU timings.  Memory transfers could play a 

crucial role in the parallelization performance, though. Table 

II summarizes data transfers involved in the computations with 

the GTX280 card. First, the grid map, the parameters and the 

whole data set are transferred from host to device. After all the 

kernels have been launched (one per scan), the resulting grid 

map is transferred back to the host memory. As can be derived 

from the reported results, these times are low compared with 

the total computing time. This is one of the reasons which 

explain the good performance obtained by the GPU: just four 

large memory transfers are carried out, and their delays are 

amortized along a high amount of computation.  

TABLE II. MEMORY TRANSFERS (3,2GHZ PENTD - GTX280)  

 Fr079 Fr101 

Size of grid map (Mbytes) 5,63 16,64 

Size of grid params (bytes) 52 52 

Size of data (# scans - Mbytes) 3118 - 4,55 5299 - 7,74 

Transfer grid host to device (s) 0,0046  0,012 

Transfer params to device (s) 0,0018 0,0018 

Transfer data host to device (s) 0,0035 0,0053 

Transfer grid device to host (s) 0,0046 0,012 

Especially relevant is the fact that every data transfer has a 

time lower bound, for example, transferring just 52 bytes of 

the parameters requires 1,8 milliseconds. Thus, performing 

exactly the same computation but transferring at each time step 

the resulting grid map from and to the GTX280, will require 

28 seconds for the Fr079 dataset and 124 seconds for Fr101. 

Similarly, transferring at each time step just the laser scan 

acquired at that time step instead of the whole dataset at once 

and without transferring the grid map, could require about 6 

seconds for Fr079 and 10 seconds for the Fr101 datasets. It is 

concluded that minimizing and grouping memory transfers is 

extremely important to achieve good performance. 

Fig. 4 shows the result from FR079 data set with a GTX280 

GPU, visually identical to the one obtained with CPUs. 

 
Fig.  4. Fr079 building map, computed in 0,26secs with a GTX 280 GPU 

 It is also important to analyze the effect of the appropriate 

use of device memory. Table III shows the relative 

performance of the GPU (GF8400M) with respect to the CPU 

for three different memory usages. If all the data is stored in 

the global memory of the device, the performance of the GPU 

implementation is even worse than that of the CPU version. 

However, moving a fraction of the data to shared memory (just 

the Bresenham parameters of each ray), the computational 

savings become clearly visible; note that only the first thread 

of the block computes  them while the remaining threads have 

to wait. The use of constant memory that provide faster access 

to common read-only parameters allows further savings. 
 

    TABLE III EFFECT OF GPU MEMORY USE 

Device memory use 
Processing time of GPU 

compared with CPU 

All data in global memory, each thread 

computing beam data 
150% 

Common block (beam) data in shared 

memory, computed only by one thread 
65% 

Input parameters in read-only constant 

memory 
50% 

 

It should be highlighted that the CARMEN reference 

algorithm is not necessarily the best nor the fastest one. The 

contribution of this paper is the achieved relative improvement 

in speed by an adequate GPU parallelization of a given 

algorithm implementation. More details about the proposed 

grid mapping CUDA parallelization can be found in [17] as 

well as in the source code available at [18]. 

IV. GRAPH OPTIMIZATION 

A common approach to the SLAM problem dates back to 

Lu and Milios [19], where a network of relations between 

robot poses is constructed and the Maximum Likelihood (ML) 

map is computed by brute force least squares minimization 

over the graph. Since then, a lot of research in SLAM has used 

some kind of error minimization over a graph of relative 

spatial constraints between poses (see section III of [20] for 

related work). 

The map of the environment can be represented by a 

weighted graph ( , )G V E where the set of vertices V are 

the robot poses (that can also be represented for convenience 

as the state vector x ), and the edges E  are defined by the 

constraint equations ( )f x  between those poses with expected 
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values u and variances  , typically extracted from odometry 

and feature correspondences. Finding the most likely map can 

be achieved by solving a linear problem of the form Ax b . 

The probability of the state can be written as: 

     1( ) exp ( ) ( )
T

P x f x u f x u     (3) 

If ()f  is linearized around value F with Jacobian J  as 

F J x   and the residual r is defined as u F , the 

negative log likelihood to be minimized is of the form: 

    1log ( )
T

P x J x r J x r        (4) 

To minimize this cost function, we can differentiate with 

respect to x  and set to zero, resulting in: 

  1 1T TJ J x J r      (5) 

This equation is equivalent to an Extended Information Filter, 

where 
1TA J J   is the information matrix. When this 

system is solved iteratively recomputing the Jacobian at each 

step, the method of nonlinear least squares is obtained. 

Solving (5) as a dense system on the CPU has been done in 

the past only for reference purposes because of its practical 

intractability, but the nature of the SLAM problem actually 

makes this system sparse, due precisely to the sparse structure 

of the underlying graph. Although a lot of improvements have 

been done in graph based SLAM, the efficient solution to this 

sparse system remains of high interest, as shown in a very 

recent work by Grisetti et al. [21], where the system is solved 

using a sparse solver package named CSparse.  

We consider here the possibility of solving (5) with the CPU 

sparse solver SuperLU [22], and compare the result with a 

GPU similar counterpart: Concurrent Number Cruncher, CNC 

[23]. CNC is a CUDA optimized sparse solver that provides a 

high level software interface which allows the programmer to 

integrate it in another application without needing to know 

about parallelization or internal CUDA usage. Thus, the 

implementation in both cases is straightforward: the 

information matrix and vector of (5) are computed, and passed 

as parameters to either SuperLU or CNC solvers.  

This experiment uses the synthetic data of a typical city 

orthogonal environment, found in OpenSLAM [24] TORO 

[20] package, defined by a graph of 10000 nodes (poses) and 

64311 edges (constraints), which can be simplified or 

replicated to create environments with 4,1k, 20k, 30k and 40k 

nodes. The initial estimation for poses is obtained with a 

spanning tree instead of the initial values for both CPU and 

GPU solutions, in order to avoid excessive linearization errors 

as pointed out in the Sparse Pose Adjustment algorithm [25].  

Fig. 5 shows the initial graph, prior to the tree initialization 

and the graph optimization, as well as the final graph, which 

minimization has been computed with CNC in a GTX280 

GPU.  

 

 
Fig.  5. Minimization of a graph of constraints between poses, before (left), 

and after (right) the minimization, computed with a GTX280 in 0,65 secs.  

 Table III shows the comparative performance of both 

algorithms for a single iteration of the sparse solvers. In both 

cases the same computer is used. It should be noted in advance 

that an absolutely fair comparison is simply not possible for a 

number of reasons: SuperLU uses double precision, while 

CNC can only use float, an issue that is known to hinder 

numerical convergence. Moreover, SuperLU is exact, while 

CNC is iterative. 

TABLE III PROCESSING TIME (SECONDS) OF GRAPH MINIMIZATION 

ENVIRONMENT    

(POSES, CONSTRAINTS) 

PENTD 3,2GZ 

SUPERLU 

PENTD 3,2GZ + GTX280 

CNC 

4125, 5541 0,37 0,65 

10k, 64k 3,39 3,71 

20k, 138k 9,78 8,03 

30k, 212k 20,4 11,8 

40k, 286k 40,2 17,2 

The computational gains are not as impressive as in the 

previous section, and only get visible as the environment size 

increases, with CNC reaching more than a 2X speed up 

compared with SuperLU. CNC, set to run a maximum of 1000 

iterations with a final error threshold of 2.5e-4, also achieves a 

slightly better error reduction. 

In this case reported results are not as impressive as in the 

previous section, possibly due to the iterative structure of CNC 

where each iteration driven by the CPU invokes many kernels 

to compute basic sparse matrix operations in the GPU. It 

becomes very difficult to compete against an optimized exact 

solver even for a powerful GPU. 

In any case, the interesting point here is that an available 

software package has been used without any concern about 

parallelization, and our algorithm has doubled its speed just by 

plugging such software while releasing CPU time that could be 

used for other purposes. Note however that this advantage 

could become useless with high end CPUs as Core i7 running 

tuned exact solvers, and this could be an important field of 

further study (as reported in section VIII). 

V. GRID MATCHING 

In SLAM, the data association procedure tries to find 

correspondences between different data sets. In many SLAM 

algorithms, the space is subdivided by different means in order 

to deal with the computational complexity as well as to 

minimize inconsistency issues. Both in this kind of approaches 

and in graph based SLAM, it is common to attach to the nodes 

some local representation of the environment (named local 
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maps or submaps). In order to detect loop closures and 

introduce new constraints or information, it is necessary to 

compare two submaps. This section presents a novel approach 

that takes advantage of the GPU in order to minimize the error 

of two overlapping submaps, not only searching for 

correspondences but also dealing with physically unfeasible 

configurations. The presented approach is a simple local 

solution, but as will be shown, it opens new possibilities in the 

correspondence search problem thanks to the GPU computing 

power. 

Let us now consider two overlapping grid maps ,A bM M  

with a relative initial pose ( , , )T

AB x y r . Fig 6 shows an 

example in which the maps correspond to a corridor. White 

areas are free space, black areas correspond to obstacles or 

walls and blue areas are unknown or unexplored. Under the 

static world assumption, it is clear that such spatial 

configuration is not physically possible, as some clearly 

occupied cells in map B fall on previously labeled as free 

space in map A. 

 
Fig.  6. Overlapping grid maps in an initial physically unfeasible 

configuration. Map B is drawn translucent for clarity. 

We can try to define a cost function that measures the 

discrepancy of two overlapping grid maps by summing up all 

the differences of individual overlapping cells. For such 

purpose, a mapping between the cell indices Bc  of a given cell 

in map B and the corresponding indices Ac in map A has to be 

defined. If M is a function that converts from cell indices to 

real coordinates, taking into account the cell resolution and the 

map reference frame offset with respect to the origin of 

indices, the following relation can be established: 

   1 T( )A A AB B B  c r c  (6) 

where T( )AB r is a compact representation of the change of 

base between both reference systems. Now, an error function 

can be defined as: 

 
    

( , , ) ( ) ( )
A B

B B

A B AB A B

M

e M M p m p m


  c c

c

r  (7) 

The problem is that the cost function (7) is typically not 

smooth, thus it is not suitable for common gradient based 

minimization techniques. If we represent the cost value for 

different initial ABr positions for the example depicted in Fig. 

6 we get the cost function represented in Fig. 7.  It is easy to 

see that an initial position close to a sharp edge would take the 

solution quite far from the initial position following the 

gradient direction. While there might exist a very close 

solution just a step aside, it would be difficult to reach due to 

the zero gradient. 
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Fig.  7. Cost function for equation (7) and the parallel corridors submaps 

example. The central valley corresponds to the matching case, and the flat 

areas in the sides represent non overlapping configurations. Note the 

symmetry along the X axis due to the symmetry of the environment. 

This problem cannot be avoided by directly smoothing the 

cost function, as that would obviously be very computationally 

expensive. Instead, a natural smoothing can be induced in the 

cost function by avoiding sharpness in the submaps by simply 

blurring them, propagating dark areas onto white ones, which 

is a simple operation that needs to be done just once. 

           

Fig.  8. Blurring a submap to smooth the resulting cost function 

The large flat areas with zero error that correspond to non 

overlapping configurations are another problem, as any 

minimization procedure performing a large step (separating the 

submaps enough) would arrive at such a non informative 

minimum. To take into account the fact that the desired 

solution is the closest to the initial position 
0

ABr , a weighted 

term can be added to (7), resulting in: 

 

0

0

( , , , )

                    ( , , )

A B AB AB

A B AB AB AB

h M M

e M M K



  

r r

r r r
 (8) 

where 
2 2 2 2

AB x y L r is the weighted Euclidean 

norm that uses L to normalize angular into distance units. With 

these modifications, the cost function depicted in Fig. 7 

becomes more adequate for minimization purposes, as shown 

in Fig. 9. 

ABr  

BM  

AM  
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Fig.  9. Final cost function with (8) and submaps blurring 

Once the cost function is defined and can be evaluated using 

(8) for every possible relative pose, the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm, which is well known to 

perform well in many situations, is applied. At each iteration, 

the value of the cost function and its gradient are computed 

according to the four point formula and, afterwards, they are 

fed to the open source implementation of [26].  

To analyze the performance of the algorithm in terms of 

accuracy, the following experiment was conducted with two 

grid maps corresponding to the same corridor. As shown in 

Fig. 10 there are different physical feasible configurations or 

solutions depending on the initial pose: if the initial pose is 

close to the center, then the most likely solution is that both 

corridors are the same, but if the initial position is not so close 

to the center, then it could be more likely that the corridors are 

actually parallel.   

            
 

      
 

 

Fig.  10. The minimization leads to different configurations depending on the 

initial pose: case A) the two submaps correspond to the same corridor (top), 

and case B) (bottom), the submaps correspond to parallel corridors. The cyan 

ellipse represents the information (proportional to the Hessian) 

 The results in terms of accuracy are summarized in Table 

IV, where different initial pose intervals are used. The first two 

lines correspond to the matching case A, and the last one to the 

parallel corridors case B. The experiment is repeated with one 

hundred random initial poses for each setting. It can be seen 

that for case A, a very high percentage of accurate or very 

accurate solutions is reached, while in the second case B the 

accuracy seems lower. Only the Y and   final values are 

checked, as the nature of the environment does not provide any 

information in X. 

 
TABLE IV ACCURACY (M, RAD) 

  ACCURACY (M, RAD) 

CASE,    NOISE (M,RAD) 
|y|<0.025

|θ|<0.045 

|y|<0.05 

|θ|<0.09 

|y|<0.2 

| θ |<0.16 

A x,y,θ ±0.5 99% 100% - 

A x,y±1.5, θ±0.38 98% 98% 98% 

B x±1.5 y5±1.5 θ±0.38 62% 73% 93% 

 

 It is important to highlight that inaccurate solutions are not 

necessarily incorrect, although they present a poorer final 

alignment between the corridors. In any case, the algorithm 

still outputs a physically feasible configuration that is more 

likely than the initial one, as can be seen in Fig. 11. 

                  
Fig.  11. An example of poor final alignment, but providing a physically 

feasible position.  

 The main contribution of this section is not only the novel 

minimization method proposed, but also its potential 

applicability to online mapping problems thanks to GPU 

computing, which was taken into account while designing this 

algorithm. Most of the processing time consumed by the CPU 

is taken by Eq. (7), which is a large summation over all the 

cells of a grid map and has to be repeated every time the cost 

needs to be evaluated. This summation can be parallelized in a 

CUDA kernel as shown in Fig. 12. The grid is composed by m 

x n blocks, each one with 256 threads. The parallelization uses 

a hierarchical summation scheme to avoid excessive waits due 

to synchronization locks that appear in the last line of the 

function SumThread, which must be necessarily performed as 

atomic. If just one single variable were used as in the 

sequential version, all the threads of every block would always 

collide, as they are executed simultaneously. Consequently, 

using the size of the blocks for the auxiliary array is a 

reasonable option, although other sizes could even perform 

better depending on the GPU capabilities. Moreover, the 

CUDA atomicAdd() function only works with integers, so a 

scaling factor S is needed (see the source code [18] for details 

about this parallelization).  

A) Matching (same corridor) case 

B) Non matching (parallel corridors) case 



 

 

8 

= ( , , )

0 // as float

foreach 

   ( , )   (Eq. 6)

   ( ) ( )

endfor

return 

A B

A B AB

B B

A AB B

A c B c

error Error M M

s

M

f

s p m p m

s







  

r

c

c r c

 256

0

= ( , , )

     [256] 0 // integer values

     Kernel( , 256, )

1
     [ ]

(Block( , ), Thread( ))

     = ( , , )

     ( , )   (Eq. 6)

     [

A B AB

i

B

A AB B

error Error M M

s

m n SumThread

return s i
S

SumThread i j k

ComputeCell i j k

f

s k











r

c

c r c

] ( ( ) ( ))
A BA BS p m p m   

c c

 

Fig.  12. CPU sequential implementation of Eq. (7) (left) vs. GPU parallelized 

version (right).  

 The average number of L-BFGS iterations is 35, with an 

average computation time for the whole minimization 

procedure of 6.0 seconds (with a Core 2 Duo @ 2 Ghz), while 

this time is reduced down to 0.15 if the same computation is 

carried out with a GTX 280 GPU, i.e. a speed up of 40X is 

achieved. The memory transfer overhead is negligible in this 

case, as the local grid maps (which are small) need to be 

transferred just once to the device, something that can be done 

as soon as the submaps are available, typically long before the 

matching procedure. 

VI. EXPERIMENTS 

To illustrate the applicability of the above described 

techniques, both simulated and real data experiments have 

been carried out. Input log files of laser scans and robot poses 

were preprocessed: local grid maps of a limited fixed size are 

built defining new nodes which are sequentially connected by 

odometric edges in the underlying graph. In the local maps, 

known robot poses are used because it is assumed that they 

could be locally corrected using incremental methods like scan 

matching. Then, the minimization procedure described in 

Section V is applied to overlapping submaps, introducing new 

edges in the graph, which are used in the optimization process  

described in Section IV. As described in that section, the edges 

must also have an information (or covariance) matrix, which 

we choose to be proportional to the Hessian of the cost 

function at the computed minimum, as intuitively it 

corresponds to the amount of information at that point (check 

[27] for more details). When the graph is aligned, all submaps 

can be projected onto a single global grid map for 

visualization purposes. As the submaps in this approach are 

very limited in size, GPUs grid map computation (Section III) 

is not necessary, and thus it is omitted in these experiments. 

A. Simulation 

In this experiment, a robot follows a spiral corridor starting 

from the inner loop and moving outwards. The corridors are 

4.5 m wide, with an increasing length up to approximately 60 

m. The trajectory was preprocessed and 88 submaps were 

built, each of them being a grid map of 10 x 10 m and 0.025 m 

of resolution. Noise was injected in the odometry edges in 

order to simulate realistic robot drift, with the result depicted 

in Fig. 13. 

 
Fig.  13. Submaps configuration in the spiral corridor simulated experiment 

Note that this is a challenging environment for practically 

all existing data association techniques, as they would 

probably match parallel corridors in a wrong correspondence, 

leading to failure in the environment’s topology estimation. 

Our grid matching strategy (Section V) is applied for every 

pair of overlapping grid maps, starting from the inner loop. 

Once an overlap is successfully processed, the final 

configuration of the minimization is used as a new edge in the 

graph, and the graph error is minimized as described in 

Section IV. This process is iterated until no new overlaps are 

detected. 

 
Fig.  14. Initial graph and resulting grid map (top), and final graph and 

resulting grid map (bottom) of the spiral corridor experiment, after being 

processed in just 2.48 seconds with a GTX280 GPU. 

 Fig. 14 presents the initial graph, in which only odometry 

edges exist, and the global grid map that would result from a 

projection of all the submaps, which is clearly topologically 

inconsistent. The final result, on the other hand, presents a 

very good alignment of parallel corridors, despite the fact that 

there are no positive correspondences or place revisits that 

could be used for this purpose. As far as we know, only the 

proposed minimization strategy that computes a physically 

feasible configuration for overlapping submaps can handle this 

information. Despite the known limitations of the grid 

matching approach, as its high dependency on the initial 

relative pose and the need for some overlap, to our knowledge, 

no other existing technique can produce this result with a 

similar data set, which is yet another contribution of this paper. 

Some further experiments and discussion can be found in [18]. 
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Obviously, this strategy can be efficiently applied thanks to 

GPUs’ computational power. Table V shows the required time 

for processing the whole experiment. In this example the 

SuperLU solver (instead of CNC) has been used for the graph 

minimization, as pointed out by the results shown in Table III. 

Nevertheless, the grid matching algorithm GPU speed up 

becomes clearly visible (>55X). 

TABLE V PROCESSING TIME, SPIRAL TRAJECTORY EXPERIMENT 

PROCESSOR TIME (SECONDS) 

2Ghz Core 2 Duo T7250 145.82 

3,2Ghz Pentium D 139.45 

GF 8400M GS (laptop) 12.32 

GTX 280 (desktop) 2.48 

B. Real 

 The second experiment was performed with the Fr079 

dataset preprocessed in 28 consecutive submaps with the same 

characteristics and following the same procedure as in the 

simulated scenario. However, in this case, the new edges 

introduced in the graph as a result of handling overlapping grid 

maps (as described in Section V) correspond to actual 

matchings. Fig 15 shows the initial submaps, the resulting 

global map that would result from these submaps, and the final 

result after applying our correction. This experiment shows 

that the presented strategy could also be useful for typical data 

association problems (given a sufficiently good initial 

estimate). 

 

 

 
Fig.  15. Experiment with the Fr079 data set. (top) initial graph of local grid 

maps, (middle) projected global map, (bottom) corrected global map after 

minimizing grid overlaps with the presented strategy. 

 Table VI summarizes the computation times required for 

processing this experiment, showing a similar performance to 

the simulated case. 

 
TABLE VI. PROCESSING TIMES, FR079 WITH SUBMAPS EXPERIMENT 

PROCESSOR TIME (SECONDS) 

2Ghz Core 2 Duo T7250 71.03 

GF 8400M GS (laptop) 8.42 

GTX 280 (desktop) 1.23 

VII. DISCUSSION 

Any attempt to maximize the usage of multiple CPU cores 

has been done along this work. Precisely, the main aim of this 

work is not only to significantly reduce computation times, but 

also to identify which problems can be efficiently solved by 

the GPU in order to release the CPU as much as possible for 

its concurrent and continuous operation in a mobile robot 

multitasking system.  

There are several critics that naturally arise in the 

community while addressing the use of GPUs in robotics, 

especially regarding their use in mobile robotics. The first one 

is about the power requirements, as graphics cards are known 

to be power hungry devices. Nevertheless, the total energy 

required for a given computation should be considered. As 

shown in [28], GPUs can require more instant power, but as 

their computations are faster, the total consumed energy can be 

lower. Hence, GPUs could even become energetically 

interesting devices. 

 As for the availability of GPUs in embedded computing, not 

only are normal laptops provided with such useful devices, but 

also some manufacturers as Fujitsu and AMD are already 

selling external GPU units, as the Amilo Graphics Booster and 

the ATI-XGP system, respectively. Furthermore, in the era of 

cloud computing, requiring such embedded capabilities could 

be the subject of endless discussion. 

VIII. CONCLUSION 

This paper has presented the applicability of GPU 

computing in the domain of robotic mapping with laser 

rangefinders, in three different ways: parallelizing existing 

algorithms, using parallelized existing tools and developing 

new algorithms using such computational capabilities. The 

contribution of the paper is to show such a broad range of 

applications, but also to describe a novel mapping strategy that 

can handle more information besides considering matching 

correspondences, with new potential uses as shown in the 

experiments section. In any case, we do not claim that the 

proposed GPU implementations are the best ones, in fact, there 

is surely more room for further performance improvements. 

It should be said that the grid matching minimization 

method is  local and not multi-hypothesis: it highly depends on 

the initial relative pose between submaps. Some overlap is 

necessary between submaps, and there is no guarantee that the 

approach will lead to the actual solution, it just computes a 

configuration that minimizes the unfeasible configurations. 

Further work has to be done in order to cope with a wider 

range of situations, as well as to investigate the effect of many 
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parameters as the submaps blurring, the weights in the 

minimization cost functions, etc. to which the presented 

algorithms seems quite sensitive. Nevertheless, the already 

achieved speedups show that this goal is computationally 

realistic and affordable, and this will be the subject of our next 

coming research.  

It is difficult to define some general criteria for deciding 

whether to use a GPU for a certain problem. To summarize 

some conditions have to be met: I) the problem should be large 

enough, and involve basically the same operations, which can 

be executed independently for many thousands of data items 

(all the threads run the same code), II) there should be 

extremely low synchronization requirements, and III) memory 

transfers from and to the graphics device should be limited 

compared with the amount of computation, prioritizing a few 

large transfers instead of many small ones. Once these 

requisites are satisfied, especial attention has to be paid to an 

adequate use of device memory, as explained in section III. It 

is consequently concluded that grid map operations have high 

potential for being massively parallelized and future work will 

also include optimization of common tasks such as blurring the 

submaps and projecting local maps onto a single grid map. On 

the other hand, off-the-shelf general purpose GPU solutions 

(as CNC) could also have high potential applicability, yet it 

requires some benchmarking suited to the specific problem 

conditions and size, as remarked in section IV. At the light of 

recent results [21], [25], further study of updated CPU 

hardware (as Core i7) together with other probably more 

efficient CPU exact solvers is also required. 

Many existing open source tools and data sets have been 

used in this work. Consequently, the entire C++ source code 

for the algorithms presented in this paper can be found in [18], 

in the spirit that it will also be useful for the community. 
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