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RGB-D Object Modelling for Object Recognition and Tracking

Johann Prankl, Aitor Aldoma, Alexander Svejda and Markus Vincze

Abstract— This work presents a flexible system to reconstruct
3D models of objects captured with an RGB-D sensor. A major
advantage of the method is that unlike other modelling tools,
our reconstruction pipeline allows the user to acquire a full
3D model of the object. This is achieved by acquiring several
partial 3D models in different sessions — each individual session
presenting the object of interest in different configurations that
reveal occluded parts of the object — that are automatically
merged together to reconstruct a full 3D model. In addition,
the 3D models acquired by our system can be directly used by
state-of-the-art object instance recognition and object tracking
modules, providing object-perception capabilities to complex
applications requiring these functionalities (e.g. human-object
interaction analysis, robot grasping, etc.). The system does
not impose constraints in the appearance of objects (textured,
untextured) nor in the modelling setup (moving camera with
static object or turn-table setups with static camera). The
proposed reconstruction system has been used to model a large
number of objects resulting in metrically accurate and visually
appealing 3D models.

I. INTRODUCTION

The availability of commodity RGB-D sensors, combined
with several advances in 3D printing technology, has sparked
a renewed interest in software tools that enable users to
digitize objects easily, and most importantly, at low econom-
ical costs. However, being able to accurately reconstruct 3D
object models has not only applications among modelling or
3D printing aficionados, but also in the field of robotics. For
instance, the information in form of 3D models can be used
for object instance recognition, enabling applications such
as autonomous grasping, or object search under clutter and
occlusions.

While numerous reconstruction tools exist to capture 3D
models of environments, only a few of them focus on the
reconstruction of individual objects. This can be partially
ascribed to the difference in scale between objects (e.g.
household objects) and larger environments (e.g. rooms or
buildings, usually the focus of SLAM systems), the need to
subtract the object of interest from the rest of the environ-
ment, as well as other nuisances that make object reconstruc-
tion a challenging problem. For example, the requirement of
full 3D models is ignored by most reconstruction systems.

Addressing the aforementioned challenges, we propose
an integrated reconstruction pipeline in order to enable
recognition and tracking of object. Our contributions are:
(i) a novel approach which is able to reconstruct full 3D
models by merging partial models acquired in different
sessions and (ii) results in metrically accurate and visually

Johann Prankl, Aitor Aldoma, Alexander Svejda and Markus Vincze are
with the Vision4Robotics group (ACIN - Vienna University of Technology),
Austria {prankl, aldoma, vincze}@acin.tuwien.ac.at

Fig. 1. Virtual scene recreated with some of the 3D models reconstructed
by the proposed modelling tool.

appealing models, (iii) a system which is easy to use, (iv)
does not make assumptions of the kind of objects being
modelled1 and (v) is able to export object models that can
be seamlessly integrated into object recognition and tracking
modules without any additional hassle. The latter being
able to facilitate research in robotic areas that require 3D
models or tracking and recognition capabilities. Therefore,
we will release our modelling and object perception systems
to enable this.

In the remainder of this paper, we present the differ-
ent modules of the system, focusing on those with novel
characteristics or that are crucial to the robustness of the
overall system. Because the evaluation of complex pipelines
like the one proposed in this paper is always a major
challenge, we compare the fidelity of the end result (i.e. 3D
models) obtained with our system with their counterparts
reconstructed using a precise laser scanner. This quantitative
comparison shows that the reconstructed models are metri-

1As long as they can be sensed by RGB-D sensors
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cally accurate: the average error ranging between one and
two millimetres. We also show how the reconstructed 3D
models are effectively used for object instance recognition
and 6-DoF pose estimation, as well as for object tracking
with monocular cameras.

II. RELATED WORK

The proposed framework covers a broad variety of meth-
ods including registration, object segmentation, surface re-
construction, texturing, and supported applications such as
object tracking and object recognition. In this section we
focus on related work of the core methods necessary for
object modelling: camera tracking, point cloud registration
and surface modelling.

Since Lowe developed the Scale Invariant Feature Trans-
form (SIFT) in 2004 [1], using interest points is the most
popular way of finding correspondences in image pairs
enabling the registration of RGB-D frames. For example
Endres et al. [2] developed a Visual SLAM approach which
is able to track the camera pose and register point clouds
in large environments. Loop closing and a graph based
optimization method are used to compensate for the error
accumulated during camera tracking. Interest points can also
be used to directly reconstruct models for object recognition.
In [3] Collet et al. register a set of images and compute
a spare recognition model using a Structure from Motion
approach. Especially for re-localization we also rely on
interest points. In contrast to Endres et al. [2] we develop
a LK-style tracking approach which is able to minimize
the drift, enabling the creation of models for tracking and
recognition without the necessity of an explicit loop closing.

Another type of methods is based on the well established
Iterative Closest Point (ICP) algorithm [4], [5], [6], [7].
Huber et al. [4] as well as Fantoni et al. [5] focus on
the registration of unordered sets of range images, while
Weise et al. [6] track range images and propose an online
loop closing approach. In [7] the authors propose a robotic
in-hand object modelling approach where the object and
the robotic manipulator are tracked with an articulated ICP
variant.

While the above systems generate sparse representa-
tions, namely point clouds, the celebrated approach of
Izadi et al. [8] uses a truly dense representation based on
signed distance functions [9]. Since then, several extensions
of the original algorithm have appeared [10], [11]. While the
original Kinect Fusion [8] relies on depth data Kehl et al. [10]
introduce a colour term and is like our proposal able to
register multiple modelling sessions. However, [10] relies
on sampling the rotational part of the pose space in or-
der to provide initial approximations to their registration
method. Instead, we use features and stable planes to attain
initial alignments effectively reducing computational com-
plexity. A direct approach for registration is proposed in
Bylow et al. [11]. They omit ICP and directly optimize
the camera poses using the SDF-volume. Furthermore, the
first commercial scanning solutions such as ReconstructMe,
itSeez3D [12] and CopyMe3D [13] became available.
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Fig. 2. Pictorial overview of the proposed object modelling pipeline.

In summary, we propose a robust and user-friendly ap-
proach which is flexible enough to adapt to different user
requirements and is able to generate object models for
tracking and recognition. Hence, the application of our
framework does not primarily focus on augmented reality or
commercial 3D printing applications, but especially on the
object perception requirements of the robotics community to
enable robots in household environments.

III. SYSTEM OVERVIEW

Approaches for object modelling typically involve accu-
rate camera tracking, object segmentation and, depending
on the application, a post-processing step which includes
pose refinement and eventually surface reconstructing and
texturing. Concerning camera tracking, we use a visual
odometry based on tracked interest points. If the object itself
is texture-less, we rely on background texture (e.g. by adding
a textured sheet of paper on the supporting surface) in order
to successfully model these kind of objects. The camera
positions are refined by means of bundle adjustment as well
as an accurate multi-view ICP approach.

Segmentation of the object of interest from the background
is attained by a multi-plane detection and a smooth clustering
approach offering object hypotheses to be selected by the
user. Alternatively, a simple bounding box around the object
can be used to define a region of interest from which the
object is easily singled out from the background.

If a complete model (i.e. including the bottom and self-
occluded parts) is desired, a registration approach is pro-
posed to automatically align multiple sequences. Finally, our
system includes a post-processing stage to reduce artefacts
coming from noisy observations as well as a surface recon-
struction and texturing module to generate dense and textured
meshes. A schematic representation of the modelling pipeline
is depicted in Figure 2. The individual steps including novel
aspects of the system are explained in more detail in the
following sections.

IV. REGISTRATION AND SEGMENTATION

A key component for the reconstruction of 3D models
is the ability to accurately track the camera pose with
respect to the object of interest. This section discusses the
selected procedure for this task as well as the different
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Fig. 3. Camera tracking including a frame by frame visual odometry and
a projective patch refinement from keyframe to frame.

strategies available to single out the object of interest from
the background.

A. Camera tracking and keyframe selection

The proposed approach combines frame by frame tracking
based on a KLT-tracker [14] and a keyframe based refine-
ment step by projecting patches to the current frame and
optimizing their locations. To estimate the camera pose, the
rigid transformation is computed from the corresponding
depth information of the organized RGB-D frames. Fig. 3
depicts the tracking approach, where T indicates the pose
transformations computed from tracked points.

In more detail, a keyframe is initialized by detecting FAST-
keypoints [15] and assigning them to the corresponding 3D
locations. The keypoints are then tracked frame by frame
using a pyramidal implementation of the KLT-tracker, which
allows to track fast camera motions with a reasonable amount
of motion blur. Then the corresponding 3D points are used to
robustly estimate the rigid transformation using RANSAC.
To account for the accumulated drift as well as to compute
a confidence value for individual point correspondences we
developed a projective patch refinement. Therefore, once a
keyframe is created, normals are estimated and in combina-
tion with the pose hypothesis a locally correct patch warping
(homography) from the keyframe to the current frame is
performed. An additional KLT-style refinement step includ-
ing the normalized cross correlation of the patches gives
a sub-pixel accurate location and a meaningful confidence
value. This method is able to reduce the drift while tracking
and provides sub-pixel accurate image locations for bundle
adjustment.

Keyframes are generated depending on the tracked camera
pose, hence our framework is not only able to model table
top objects, but also larger environments. During tracking
previously visited camera locations are tested and if there is a
known view point – i.e., the difference of the current camera
location to that of a stored keyframe is within a threshold
– the system tracks that keyframe instead of generating a
new one. This avoids storing redundant information and
these loops are further used to improve the camera locations
in a post-processing step using bundle adjustment. Note,
for a spatially constrained environment and by using our
high accurate camera tracking algorithm it is not necessary

Fig. 4. Labels of planes and smooth clusters (left) used for automatic
adjustment of region of interests (right) and for interactive object segmen-
tation.

to integrate more sophisticated loop closing algorithms. In
addition once the camera tracker fails and poses get uncertain
we use the keypoint descriptor proposed in [16] for re-
localization.

This stage results in a set of keyframes K = {K1, ...,Kn}
and a set of transformations T = {T 1, ..., Tn} aligning
the corresponding keyframes to the reference frame of the
reconstructed model. The reference frame is either defined
by the first camera frame or by a user defined region of
interest (cf. next section).

B. Object-background segmentation

The camera tracking framework described in the previous
section is already capable of modelling complete scenes in
real-time. If one wants to reconstruct individual objects an
additional manual interaction is necessary. We provide two
options to segment objects, namely

• an interactive segmentation approach, and
• segmentation based on a tracked region of interest.

In the optimal case both variants are able to segment
objects with a single mouse click. The interactive segmenta-
tion relies on multi-plane detection and smooth segmentation
(Fig. 4, left). Flat parts, larger than a certain threshold are
modelled as planes and the remaining areas are recursively
clustered depending on the deviation of the surface normals
of neighbouring image points. Hence, smooth clusters “pop
out” from the surrounding planar surfaces and need to be
selected to form up a complete object.

The second option we implemented is to select a planar
surface before the camera tracking starts. This automatically
computes a region of interest (ROI) around the surface,
which is used to constrain the feature locations used for
camera tracking and to segment the object above the plane
in a post-processing step (Fig. 4, right). Hence, a single click
suffices and the whole modelling process is performed auto-
matically. This method can also be used to model an object
on a turn-table because the surrounding static environment
is not considered for tracking.

The result of this stage is a set of indices I = {I1, ..., Ini},
Ik indicating the pixels of Kk containing the object of
interest. An initial point cloud of the object can be recon-
structed as P =

⋃
k=1:n T

k
(
Kk[Ik]

)
where K[·] indicates

the extraction of a set of indices from a keyframe.
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C. Multi-view refinement

While the visual odometry presented in Section IV-A has
proven to be sufficiently accurate for the envisioned sce-
nario, the concatenation of several transformations inevitably
results in some amount of drift in the overall registration.
Aiming at mitigating this undesirable effect as well as in
order to take advantage of the multiple observations with
significant overlap, our framework is equipped with two
alternative mechanisms to reduce the global registration
error.

On one hand, the framework allows to perform bundle-
adjustment in order to reduce the re-projection error of corre-
spondences used during camera tracking. On the other hand,
the system is equipped with the multi-view Iterative Closest
Point introduced in [17] that globally reduces the registration
error between overlapping views by iteratively adapting the
transformation between camera poses. While multi-view ICP
is considerable slower than bundle-adjustment, its application
is not constrained to objects with visual features and due to
its dense nature, results in more accurate registrations.

Both processes update the transformation set T introduced
in previous sections.

V. POST-PROCESSING

The methods presented so far have been designed to be
robust to noise and sensor nuisances. However, such artefacts
are present in the data and a post-processing stage is required
to remove them in order to obtain a visually appealing and
accurate model. The techniques within this section provide
a improved reconstruction by removing these artefacts from
the underlying data. Figure 5 visualizes the improvement on
the final reconstruction after the post-processing stage. Please
note that the methods herein, do not change the alignment
results obtained during the registration process.

Fig. 5. Effects of the post-processing stage on the reconstruction results.

A. Noise model

In [18], the authors study the effect of surface-sensor
distance and angle on the data. They obtain axial and
lateral noise distributions by varying the aforementioned
two variables and show how to include the derived noise
model into Kinect Fusion [8] to better accommodate noisy
observations in order to reconstruct thin and challenging
areas.

In particular, for object modelling, surface-sensor angle
is more important than distance, since the later can be
controlled and kept at an optimal range (i.e., one meter or
closer). Following [18], we observe that:

• Data quickly deteriorates when the angle between the
sensor and the surface gets above 60 degrees.

• Lateral noise increases linearly with distance to the
sensor. It results in jagged edges close to depth dis-
continuities causing the measured point to jump be-
tween foreground and background. Combining depth
with colour information makes this effect clearly visible
as colour information from the background appears on
the foreground object and vice-versa. Observe the white
points on the left instances of reconstructed models in
Figure 5 coming from the plane on the background
where the objects are standing.

From the previous two observations, we propose a sim-
ple noise model suited for object modelling that results
in a significant improvement on the visual quality of the
reconstruction. Let C = {pi} represent a point cloud in the
sensor reference frame, N = {ni} the associated normal
information and E = {ei}, ei being a boolean variable
indicating whether pi is located at a depth discontinuity or
not. wi is readily computed as follows:

wi =

(
1− θ − θmax

90− θmax

)
·

(
1− 1

2
exp

− d2i
σ2
L

)
(1)

where θ represents the angle between ni and the sensor,
θmax = 60◦, di = ||pi − pj ||2 (pj being the closest point
with ej = true) and σL = 0.002 represents the lateral noise
sigma.

B. Exploiting noise model and data redundancy

Because the selected keyframes present a certain overlap,
we improve the final point cloud by averaging good (based
on the noise model weights) observations that lie on the
same actual surface as well as by removing inconsistent
observations. To do so, we iterate over all keyframes and for
each keyframe, K, project the points p ∈ P into (u, v) ∈ K2.
If the point and its projection are inconsistent (i.e. they do not
lie on the same surface), we mark the point p as invalid if its
associated noise weight is smaller than the weight associated
with the projection (u, v) ∈ K.

The previous step effectively removes inconsistent obser-
vations from the object reconstruction. Finally, the remaining
observations are averaged together by putting all points
into an octree structure with a certain leaf resolution3. A
representative for each leaf is computed from all points
falling within the leaf boundaries by means of a weighted
average (weights coming again from the noise model).

VI. MULTI-SESSION ALIGNMENT

In this section, we discuss the proposed techniques to
automatically align multiple sessions into a consistent 3D
model. Please note that since the configuration of the object
has been changed with respect to its surroundings (e.g.

2This is attained by means of the inverse transformation aligning the
different keyframes into the reference frame of the model combined with
the projection matrix of the sensor.

3We use a resolution of 1mm for our experiments.
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supporting plane), this process needs to rely solely on the
information provided by the object. Figure 6 shows an object
in three different sessions as well as the reconstructed point
cloud.

Fig. 6. Top row: Pipe object in different configurations (three sessions).
Bottom row: textured poisson reconstruction and reconstructed point cloud.

Let P1:t be a set of t partial 3D models obtained by
reconstructing the same object in different configurations.
The goal now is to find a set of transformations that align the
different scans, P1:k, into the coordinate system of (without
loss of generality) P1. For simplicity, let us discuss first the
case where t = 2.

In this case, we seek a single transformation aligning P2

to P1. To obtain it, we make use of the initial alignments
provided by the methods discussed later on in Section VI-
A. Each initial alignment is then refined by means of ICP.
Because several initial alignments can be provided, we need
to define a metric to evaluate the registration quality. The
transformation associated with the best registration according
to this criteria will be then the sought transformation. This
quality criterion is based on two aspects: (i) number of
points causing free space violation (FSV) and (ii) amount
of overlap. Recall from [19] that the FSV ratio between
two point clouds is efficiently computed as the ratio of
the number of points of the first cloud in front of the
surface of the second cloud over the number of points in
the same surface. Intuitively, we would like on one hand to
favour transformations causing a small number of free space
violations (indicating consistent alignments) and on the other
hand, to favour alignments that present enough overlap to
compute an accurate transformation.

If t ≥ 3, we repeat the process above for all pairs
(Pi,Pj)i>j . Then, we create a weighted graph with k vertices
and edges between vertices including the best transforma-
tion aligning (Pi,Pj) together with the computed quality
measure. Then, a unique registration of all partial models
is obtained by computing the MST of the graph and ap-
propriately concatenating the transformations found at the
edges of the tree when traversing from Pi to P1. After all
partial models have been brought into alignment, the multi-
view refinement process as well as the post-processing stage
previously described may be executed for further accuracy.

A. Initial alignment of multiple sessions
This section discusses two complementary alternatives to

provide the initial alignments between pairs of sessions. The

first one is based on appearance and/or geometrical features
on the object that can be matched across different sessions.
The second technique is based on the fact that objects are
modelled on a supporting surface, thus constraining the pos-
sible configurations of the object on the supporting surface to
configurations on which the object remains stationary. This
intuition is exploited to reduce the degrees of freedom when
estimating transformations between two sessions of the same
object.

1) Feature-based registration: If a pair of sessions present
enough common features (at least 3), it is possible to
estimate the rigid transformation aligning two partial models.
Correspondences between bodies are obtained by matching
SIFT [1] and SHOT [20] features (capturing thus both
appearance and geometrical information). Resiliency to out-
liers is attained, as commonly done in object recognition
pipelines, by deploying a correspondence grouping stage
followed by RANSAC and absolute orientation estimation.
Because of the correspondence grouping stage, several trans-
formations are estimated, representing the initial alignments
fed into the previous algorithm. More details of similar
techniques used in local recognition pipelines can be found
in [21].

2) Stable planes registration: Alternatively, a comple-
mentary set of initial alignments can be obtained by using
the modelling constraint that objects lie on a planar surface.
Therefore, the stable planes of Pi are used to bootstrap
initial alignments between Pi and Pj . Intuitively, one of
the stable planes of Pi might be the supporting surface on
which Pj is modelled. As described in [22], stable planes
can be efficiently computed by merging the faces of the
convex hull with similar normals. Please note, that aligning
planes locks 3 of the 6 degrees of freedom involved in rigid
body registration. The remaining 3 degrees of freedom (i.e.
translation on the plane and rotation about the plane normal)
are respectively approximated by centring the point cloud
and by sampling rotations about the plane normal (every
30◦ in our settings). To speed up the computation of initial
alignments, only the 4 most probable 4 stable planes of Pi are
used. This combination results in 48 initial alignments that
are refined by means of ICP. Figure 7 shows two examples
where the objects do not have enough features to be matched
across sessions (due to repetitive structure) that are however
correctly aligned using stable planes.

VII. SURFACE RECONSTRUCTION AND TEXTURING

In order to extract a dense surface from the reconstructed
point cloud, we rely on Poisson Surface Reconstruction [23].
The method finds a globally consistent surface that fits
the sparse data accurately avoiding over-smoothing or over-
fitting. A polygonal mesh is then extracted by an adapted
version of the Marching Cubes algorithm [24]. One problem
of Poisson Reconstruction, which is also mentioned in the
original paper, occurs when the algorithm is applied to point
clouds containing holes (i.e. parts of the objects where not

4Based on the total area of the supporting faces of the convex hull.
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Fig. 7. Examples of successful alignments between sessions by means of
stable planes. The objects do not present enough unique features matchable
across sessions to enable registration using features.

seen). This is usually the case when dealing with objects
reconstructed from a single sequence, where the bottom of
the model is not defined. In these cases, poisson reconstruc-
tion tends to add an extension to the reconstructed surface as
shown on the left hand side of Figure 8. To overcome this,
we first estimate the convex hull of the point cloud. Next,
all vertices of the mesh that lie outside the convex hull are
projected onto the surface of the hull, thus ensuring that no
mesh vertices lie outside. The right hand side of Figure 8
shows the resulting mesh.

Fig. 8. Reconstructed polygon mesh before and after cropping using the
convex hull of the reconstructed point cloud.

To texture the model, we use the multi-band blending ap-
proach proposed in [25]. In a nutshell, the texturing algorithm
consists of two steps. First, each face of the reconstructed
mesh is mapped to one of the input views. To avoid highly
fragmented textures, only a subset of the views is taken into
account. This subset is obtained by defining candidate views
for each face based on the angle between the face normal
and the view ray of the camera. Then, the minimal set of
views is selected such that all mesh faces are covered.

The second step aims at improving visual quality of the
resulting texture map. Due to inaccurate camera calibration
and small registration errors, the texture at boundaries be-
tween two views might show artefacts such as incorrect
positioning and colour inconsistency. In order to achieve
smooth transitions between texture patches, a multi-band
blending technique is applied. First, each view is decom-
posed into different frequency components using Laplacian
pyramids, which are approximated through difference of
Gaussian pyramids. Finally, each pixel of the texture map
is blended from multiple views based on the viewing angle:
Higher frequency parts are blended only from views with
small viewing angle, whereas lower frequency parts of the
image are blended from a broader viewing range. This

method allows smooth blending and preservation of texture
details without introducing ghosting artefacts.

VIII. EXPERIMENTAL RESULTS

In addition to the qualitative results shown throughout
this work, this section evaluates (i) the accuracy of the
reconstructed models with respect to models of the same
objects acquired with a precise Laser Scanner [26] and (ii)
if the reconstructed models are accurate enough for the tasks
of object instance recognition and pose estimation as well as
object tracking from monocular cameras, the latter being one
of the main goals of this work in order to facilitate the usage
of object perception systems previously developed.

A. Comparison with Laser Scanner models

We assess quantitatively the quality of our reconstructions
by comparing the reconstructed 3D models with their coun-
terparts from the KIT Object Models Web Database [26].
To do so, we use the CloudCompare software 5 in order
to interactively register both instances of the objects and to
compute quality metrics. In particular, the error is assessed
by computing statistics regarding the closest distance from
the reconstructed point cloud to the mesh provided by [26].
Figures 9 to 11 show the computed statistics on three objects.
The average error as well as the standard deviation indicate
that the quality of the models lies within the noise range
of the sensor at the modelling distance. Moreover, the error
distributions are comparable to those reported by [10] that
uses a similar evaluation metric.

Fig. 9. Distance from reconstructed point clouds (middle) against laser
scanner model (left). Distance (µ± σ): 2.16 ± 1.53mm

Fig. 10. Distance from reconstructed point clouds (middle) against laser
scanner model (left). Distance (µ± σ): 1.82 ± 1.44mm

5http://www.danielgm.net/cc/
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Fig. 11. Distance from reconstructed point clouds (middle) against laser
scanner model (left). Distance (µ± σ): 1.71 ± 1.96mm

B. Object recognition

The 3D models reconstructed with the proposed pipeline
as well as the information gathered during the modelling
process are of great value for object instance recognition. For
this reason, the modelling tool enables users to export object
models in the format required by the recognition pipeline
proposed in [27]. In particular, the selected keyframes, object
indices as well as camera poses are exported together with
the reconstructed 3D point cloud of the object. While the
3D point cloud of the objects is used in the hypothesis
verification process of [27], the individual keyframes are
used to learn features that allow to find correspondences
between the scene and the object models. Figure 12 shows
the recognition results obtained by an improved version
of [27] on a complex scene. The quality of the recognition
results indicates that the reconstructed models are accurate
enough for the recognition task, implicitly validating the
reconstruction pipeline proposed in this work.

C. Object tracking

The camera tracking approach described in Section IV-A
is based on interest points for initialization and LK tracking.
This results in a model which can directly be used for object
tracking. Hence, we integrated an export function to segment
the interest points and store them including the images of
the keyframes. To test the object tracking we use a method
similar to the camera tracking approach, but instead of
computing the rigid transformation base on RGB-D images
we estimate the pose with a pnp-algorithm. Thus the object
tracker is able to track the 6-DoF pose from a monocular
image sequence. Figure 13 shows examples of the sparse
interest point model, the tracked trajectories and selected
frames where the object is near the camera and frames at
the maximum tracked distance. The upper row depicts a
successful tracking result with a maximum distance of 2m
to the camera. A more challenging example is shown in the
second row where a rather small object gets lost at a distance
of about 1.15m.

IX. CONCLUSIONS

In this paper we have presented a flexible object recon-
struction pipeline. Unlike most of the reconstruction and
modelling tools out there, our proposal is able to reconstruct
full 3D models of objects by changing the object configura-
tion across different sessions. We have shown how the regis-
tration of different sessions can be carried out on featureless
objects by exploiting the modelling setup where objects lie

model trajectory #382 #534

#479 #696model trajectory

Fig. 13. Examples of tracked objects with the interest points model (left),
the tracked trajectory 2nd column, the nearest frame and the frame with the
largest distance to the camera.

on a stable surface. Another key functionality of our proposal
is the ability to export object models in such a way that they
can directly be used for object recognition and tracking. With
this respect the proposed framework supersedes the publicly
available toolbox BLORT [28], where object modelling is a
somewhat tedious process. We believe that these tools will
facilitate research in areas requiring object perception (e.g.
human-object or robot-object interaction, grasping, object
search as well as planning systems).
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