
Chapter 1

Perception and Computer

Vision

The wish to build artificial and intelligent systems results in the expectation

that they are placed in our typical environments. Hence, the expectations

on their perceptual capabilities are high. Perception refers to the process of

becoming aware of the elements of the environment through physical sensa-

tion, which can include sensory input from the eyes, ears, nose, tongue, or

skin.

In this Chapter we focus on visual perception, which is the dominant

sense in humans and has been used from the first days of building artificial

machines. Two early examples are Shakey, a mobile robot with range finder

and camera to reason about its actions in a room with a few objects [58],

and FREDDY, a fixed robot with a binocular vision system controlling a

two-finger hand [2] (also refer to Section 13 on Robotics).

The goal of computer vision is to understand the scene or features in

images of the real world [6, 29]. Important means to achieve this goal are
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the techniques of image processing and pattern recognition [28, 30]. The

analysis of images is complicated by the fact that one and the same object

may present many different appearances to the camera depending on the

illumination cast onto the object, depending on the angle from which it is

viewed, the shadows it casts, the specific camera used, if object parts are

occluded, and so forth.

Nevertheless, today computer vision is sufficiently well advanced to detect

specific objects and object categories in a variety of conditions, to enable an

autonomous vehicle to drive at moderate speeds on open roads, a mobile

robot to steer through a suite of offices, and to observe and understand

human activities.

The objective of this Chapter is to highlight the state of the art in com-

puter vision methods that have been found to operate well and that led up

to the above mentioned capabilities. After a short discussion of more general

issues, we summarise work structured into five key topics: object recogni-

tion and categorisation, tracking and visual servoing, understanding human

behaviour, and contextual scene understanding. We conclude with a critical

assessment of what computer vision has achieved and what challenges remain

open.

1.1 Computer vision paradigms & principles

Computer vision is a heterogeneous field that embraces a large spectrum

of methods as well as scientific perspectives. This starts with the physical

understanding of the plenoptic function that describes how the light gets

refracted, reflected, scattered, or absorbed with regard to a scene (Fig. 1.1).

The plenoptic function is a theoretical construct that specifies the illumi-
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Figure 1.1: An image is given by a 2D pixel array where each pixel measures

the amount of light traveling along a ray. The plenoptic function would

specify this for each possible viewing point and viewing angle.

nation for each possible ray of light in the scene. However, this function

is typically not known nor is the scene behind it. Computer vision aims at

reconstructing relevant aspects of both in order to solve tasks from the visual

measurements of a camera. In this regard, computer vision solves the inverse

problem of computer graphics. A second perspective on computer vision is

to mimic biological vision in order to get a deeper understanding of involved

processes, representations, and architectures. Here, it is becoming more and

more obvious that the fundamental questions and open problems in computer

vision are at the cutting edge of cognition research. They cannot be solved

in isolation but concern the fundamental basis of cognition itself. A third

perspective understands computer vision as an engineering discipline that

aims at the solution of practical vision tasks. But instead of a systematic

methodological approach, the current state-of-the-art is mainly dominated

by heuristics and knowledge from experience. All three perspectives can-

not be separated and deeply influence each other, which – together with an
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Figure 1.2: Computer vision as a knowledge engineering task

immense technical progress – has made computer vision a highly dynamic

field over the last 50 years. In order to solve specific computer vision tasks,

different design decisions need to be made. Some of these are pointed out in

the following.

What kind of knowledge is needed? In order to understand the content

of an image, relevant parts of it need to be linked to semantically meaningful

concepts. For the scene of a meeting room (Fig. 1.2) the knowledge base

might include that it consists of a large table and a couple of chairs positioned

around it, that a table has a table top, etc. The knowledge base can be used

in two different ways. In a bottom-up process it guides the construction of

higher-level concepts from primitive parts, or it is exploited in a top-down

process in order to predict structures expected in the image. This has led to

a bunch of interesting work in the 70s and 80s [6, 16, 70].

How to represent scene geometry? Scene geometry is an important

intermediate representation in the interpretation process of an image. It

can be dealt with either in 2D or 3D. In Fig. 1.3 a depth image is gener-

ated, first. This can be computed from pairs of stereo images or directly be

measured by e.g. Time-of-Flight sensors. Because the representation is still
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Figure 1.3: 3D scene geometry: the image in the middle is showing the

reconstructed depth coded in colors; the right image shows 3D points that

have been grouped to planar patches in the same color coding.

view-dependent, it is also called 21
2
D. In a next step, 3D geometric primi-

tives are fitted into the scene providing a view independent, object-centered

representation. Such kind of approach was already suggested by David Marr

(1982) who also looked at the concepts of human vision known at his time

[52]. However in many cases, the extraction of 3D geometry is too fragile, so

that more stable geometric representations are directly extracted from the

2D image. Therefore, images are typically analyzed with regard to spatial

discontinuities in the gray-level or color-surface. Representations either focus

on homogeneous image patches (regions) or on edges (border lines) (Fig. 1.4).

Both provide a basis for further interpretation processes. The extraction of

such geometric primitives is a problem of digital image processing [30].

What are appropriate features? In order to match a geometric or im-

age representation to a semantic concept, like “table”, “chair”, or “meeting

room”, one needs to specify a decision function that decides for or against a

membership of a class ω. This is a classification problem that is intensively

dealt with in the area of pattern recognition. A pattern is represented by
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Figure 1.4: 2D scene geometry: the left image shows a region segmentation

based on a color clustering; in the middle a Difference of Gaussian (DoG)

filter has been applied to the original image; the right image shows a contour

segmentation based on the DoG image.

a high-dimensional feature vector x and the decision function d(x) is typi-

cally trained on a large set of training examples {(xi, ωi)}i=1...N where the

corresponding class has been annotated (typically by hand). In Fig. 1.5 a

simplistic example is given. The image is divided into 6 parts and for each

sub-image a color histogram is computed. The concatenated histograms

provide a feature vector that can be used, e.g., for classification of specific

meeting rooms. The invention and design of appropriate visual features is

a long standing discussion and had always a deep impact on the whole field

of computer vision, like the use of color histograms [72], Eigenfaces [74],

Hair-like features [79], or the scale invariant feature transform (SIFT) [50].

How to control the acquisition process? Biological vision is not a pas-

sive interpretation process, nor should it be for autonomous artificial systems.

The movement of an agent in the real world basically determines the per-

ception problem it has to solve. Vision is understood as an active process

that includes the control of the sensor and is tightly coupled to the successful

accomplishment of a decision or action [5]. This has certain consequences on
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Figure 1.5: Pattern classification: a decision function for a specific class (e.g.

meeting room) could be based on a maximum likelihood principle. Here the

feature vector is defined using color histograms.

the design of computer vision systems that have already been noted in the

early 90’s [23]: (i) Instead of modeling an isolated image interpretation pro-

cess, the system is always running and controls its own behaviour using an

image stream. (ii) The overall goal of visual processing is not image under-

standing. Instead, the vision system work as a filter that extracts information

relevant for its task. (iii) The system responses within a fixed time delay in

order to be useful for its current task that needs to performed in (soft) real

time. (iv) Instead of processing the complete image, the system focuses on a

region of interest in order to meet the performance goals. The different per-

spectives are shown in Fig. 1.6. The first aims at a complete interpretation

of the image, the second extracts relevant information for action selection

and state prediction. More details can be also found in [44].

1.2 Object recognition and categorisation

Object Recognition can be seen as the challenge to determine the “where”

and “what” of objects in a scene. A whole bunch of different techniques have
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Figure 1.6: Two different perspectives on computer vision.

been proposed, that all have their own pros and cons. Given an application

scenario, one has to carefully select an appropriate object recognition tech-

nique that fulfils the anticipated set of constraints. Techniques also differ in

the precise problem that they solve.

Many of them are object detectors that post a yes/no question regard-

ing the presence of an object class. The image is typically scanned by some

kind of filter method that matches a kind of template model to a sub-image.

Each different object parametrization needs a separate scan. More sophisti-

cated approaches efficiently perform multiple passes on different scales and

apply filters that are learnt from large sets of labelled images. A good ex-

ample is the Viola-Jones detector [79], that has been widely used for face

detection.

Segmentation-based techniques first extract a geometric description of
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an object by a bottom up grouping process that defines the object’s extension

in an image. In a second step, they compute an invariant feature set for

recognizing its object class or a set of generic primitives from which the

objects are constructed. A classical example is given by Brooks [16] for the

interpretation of aerial images. Modern techniques interleave or combine

both steps in order to deal with over- and under-segmentation problems.

Alignment methods use parametric object models that are fitted to the

image data [34] This can be performed top-down by some energy minimiza-

tion technique or bottom-up by discrete voting techniques like the generalized

Hough transform [7] and its variants [50].

All three approaches provide different information about objects in images

and assume different kinds of pre-knowledge available.

1.2.1 2-D modelling

Most objects in the real world are inherently 3D. Nevertheless, many object

recognition techniques stick to 2D representations with a significant success.

The reasons for this are multifaceted: (1) Easy accessibility: We get 2D im-

age information nearly for free using a standard camera equipment. (2) Fast

computation: Features can directly be calculated from image pixel data and

do not involve a search for complex geometric primitives. (3) Simple model

acquisition: Models are typically learned from example images. (4) Robust-

ness to noise: Features have a low degree of abstraction from pixel data.

The detection of more abstract primitives typically involves segmentation is-

sues that are error prone with regard to clutter and noise. (5) Furthermore,

many interesting objects have quite characteristic 2D views, e.g. cover pages,

traffic signs, side views of motor bikes or cars, front views of faces.

The price to pay for ignoring the 3D characteristics of objects are typically
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over- or under-constrained models because there are a number of perspective

variations that cannot be systematically dealt with. A typical case of under-

constrained approaches are bag-of-feature models or histogram techniques

which ignore the spatial distribution of features. Instead they discretize the

feature space into bins and compute feature statistics [72]. Over-constraint

models need multiple representations in order to deal with different part

configurations or rotations of objects. Good examples are the template-

based methods mentioned before. Additionally, we need to cope with a

more challenging segmentation problem. Typically, 3D information provides

a much stronger segmentation cue which has a much weaker correspondence

in luminance values of 2D images.

The dominant class of 2D object recognition techniques are appearance-

based approaches. Instead of using a view invariant object-centered rep-

resentation, they represent different aspects of an object. Compact repre-

sentation are provided by aspect-graphs [42, 46] that relate different two-

dimensional appearances to each other in an efficient data structure. Sec-

ondly, appearance-based approaches drop an intermediate geometric repre-

sentation level by computing features directly from pixel values. This has

certain consequences on the kind of object classes that can be distinguished

and the with-in class variations that can be covered. A well established

method to encounter statistical variations in object appearance are paramet-

ric Eigenspaces that are applied for recognition of individual objects [56]. In

the last years, the robustness of the method has been significantly improved

[48].

So far, the discussed methods deal with variations of rotation, lighting,

noise, and small distortions of an object’s shape. They mostly assume that

objects are solid, approximately rigid, have similar textures or colors, and are
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Figure 1.7: Matching result based on local descriptors (here SIFT [50]): First,

salient points are computed on different scales. Then, the corresponding local

descriptors are matched to a model database (given by the small image). Left

is an ideal example of planar object that is highly textured. Middle and right

examples show that the approach breaks down for less textures 3D objects if

the perspective only slightly changes. In the right image only a single feature

correspondence is found.

occluded to a minor degree. Further variations are covered by local descriptor

approaches. Here, the main idea is to detect salient points in an image that

provide a partial feature description instead of a complete appearance model.

These approaches gained attention in the last 10 years and have reached

a performance unachieved before. By relying on local descriptors (typical

examples are SIFT or SURF features) these methods are able to cope with

occlusion and local variations as they occur in real world settings [50, 38].

In Fig. 1.7 an example of such an approach is given. Pioneering work has

already been conducted by Cordelia Schmid et al.[64] in 1996, who introduced

scale and rotation invariant gray level features for image comparison.
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1.2.2 3-D modelling

2D Colour or intensity images do not directly encode depth or shape in-

formation. Consequently object recognition and localization is a difficult

problem and in general ill-posed [1]. To overcome these problems the 3D

shape of objects can be directly recovered from range images. Range images

can be obtained through various methods ranging from laser scanning over

structured light approaches to stereo, which is the solution following the hu-

man example but the accuracy of active depth measurements is considerably

higher.

The main question in computer vision is how to model or represent the

object for detection in depth data. One way is parses shapes into component

parts [66] and define their spatial relationships. In computer vision parts

are useful for two reasons. First many objects are articulated and the part-

based description allows to decouple the shapes of the parts from the spatial

relationships. And second, not all parts of objects are seen but parts are often

sufficient to recognise the object, e.g. a cup from either body or handle.

A key aspect of part-based representations is their number of parameters.

In the past decade much work has been made describing range data with rota-

tional symmetric primitives (sphere, cylinder, cone, torus) [53]. Generalized

cylinders can be created by sweeping a two-dimensional contour along an

arbitrary space curve [11]. The contour may vary along the curve (axis).

Therefore, definitions of the axis and the sweeping set are required to de-

fine a generalized cylinder. An often cited early vision system that applied

generalized cylinders is the ACRONYM system to detect aeroplanes [16].

However, parameterization and fitting are complicated.

Superquadrics became popular because a small set of parameters can

describe a large variety of different basic shapes. Solina et al. pioneered work
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in recovering single Superquadrics with global deformations in a single-view

point cloud [67] and demonstrated that the recovery of Superquadrics from

range data is sensitive to noise and outliers, in particular from single views

as given in applications such as robotics. [36] summarises the recover and

select paradigm for segmenting a scene with simple geometric objects without

occlusions. This method aims at a full search with an open processing time

incompatible to most applications such as robotics. Recently [45] shows

the recovery of a known complex objects from their parts in a scene with

occlusions and [10] shows that this can be done in real time. Finally, there

exist several models with an open number of parameters such as implicit

polynomials [40] and spherical harmonic surfaces [69]. They can adapt to

arbitrary shapes and find usage in medical imaging or describing free-form

surfaces. The advantage is that locally very different shapes can be described.

Such local shape characteristics can be also used to recognize objects in range

images [18].

Lately, stereo data is used more often to obtain 3D data. Since data is

in general not as good as from laser scans, statistical methods rather than

direct shape methods are employed. An example is the detection of chairs

using spherical harmonics descriptor [83] shown in Fig. 1.8.

In summary, the recovery of Superquadrics has been investigated most.

Open problems are to handle sparse data due to one-view scans of the scene

and to cope with the typical laser and camera shadows and occlusions in

cluttered scenes and the uncertainty of stereo images.
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Figure 1.8: Detection results for a dining chair in a home scene [83]): Left

the left image, right the stereo point cloud and colour coded for segmented

region and the detected chair annotated red (best viewed in color).

1.3 Tracking and visual servoing

Another typical task humans perform is to detect and follow the motion of

objects. When grasping an object the relative motion is observed. When

walking the motion of the environment is monitored. The technique of vi-

sually tracking an object and determining its location is used particularly in

surveillance and robotics tasks. In the former the paths of cars or persons

are estimated to recover the ongoing activities and react accordingly (also

see Section 1.4.1 below). In robotics the goal is to track the relative position

between the mobile robot and its environment or to steer the robotic hand

towards an object. The continuous feedback control of the position of the

robot is referred to as visual servoing [19].

First successes in autonomous car driving and air vehicle guidance indi-

cate the use of visual servoing [27, 3]. However, there are still two major

roadblocks for further use in real-world scenarios [78, 19].
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1. Efficient Tracking Cycle: vision and control must be coupled to assure

good dynamic performance. Fast motions are needed to justify the use

of visual servoing in real robotic applications.

2. Robust target detection: vision must be robust and reliable. Perception

must be able to evaluate the state of the objects and the robot to enable

a reaction to changes and to assure the security of the robot and its

environment.

The tracking control problem has received a lot of attention in the literature

(e.g., [33]) but robust visual tracking is just as critical and only recently

receives more and more attention. The following sections summarise the

state of the art with respect to these two criteria.

1.3.1 The Tracking Cycle

The goal of visual servoing is to consider the entire system and its interfaces.

The basic control loop is depicted in Fig. 1.9. It contains three major blocks:

the Vision System, the Controller and the Mechanism or robot or vehicle.

The vision system determines the error between the command location and

the present location of the target. First the result is expressed as an error

in the image plane. The controller converts the signal to a pose or directly

into command values for the axes of the mechanism and transfers the values

to the robot. The robot or vehicle commonly uses a separate controller to

control the motors at axes level.

The structure of the loop in Fig. 1.9 derives from the fact that the target

motion is not directly measurable. Therefore the target motion is treated as

a non-measurable disturbance input [21].
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Figure 1.9: Basic block diagram of visual servoing.

The objective is to build the tracking system such that the target is not

lost. A limit is given by the field of view of the camera. Hence it is useful to

investigate tracking of the highest possible target velocity (or acceleration).

The relevant property is the delay (or latency) of the feedback generated by

the vision system [65, 77]. The two main factors to take care of are then (1)

the latency or delays in one cycle from obtaining the image and (2) the part

or window of the image that is actually processed.

Latencies accumulate from the cameras, today fire-wire cameras produce

images at typically 25 or 30 Hz. Additionally all times to transfer data to

the controller and as biggest factor the time to process the image needs to

be considered. While it seems intuitive that latencies delay tracking, the

second factor, image processing, is often not respected. If the full image is

calculated, this might take much longer than the frame time of the camera.

Hence images are lost. If a small window is used, for example around the

location where the target has been seen in the last image, it is possible

to exploit every image. The optimum is reached when the window size is

selected such that processing is as fast as acquiring images [77]. This means

it is optimal to operate a tracking system with a latency of two cycles of the
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frame rate for cameras. Classically Kalman or other filters then take care of

this delay [19].

It is interesting to note that the human eye exhibits space-variant tessel-

lation with a high resolution fovea in the centre and a wide field of view at

logarithmically decreasing resolution. The effect is that all the image should

always be processed [77] and humans can react to motion in the periphery

while actual recognition only works in the fovea which is rotated to the target

and tracks it.

1.3.2 Robust Target Detection

Robustness of tracking is of major concern to the continuous operation in ap-

plications. Robustness indicates the quality of a method to degrade smoothly

when input data is noisy or erroneous. A common denominator of techniques

to improve robustness is the exploitation of redundancy by using multiple

cameras, multi-resolutions, temporal constraints intrinsic to tracking, mod-

els, and the integration of several cues or features.

A minimal form of redundancy is inherent in a stereo vision system

and exploited as the epipolar constraint [31]. Nevertheless the correspon-

dence problem (finding the same scene point in both images) remains and

successful stereo applications are rare. Today systems to calculate a depth

image from two stereo images are commercially available, e.g., Videre Design.

The correspondence problem of stereo vision is reduced by using three or

more cameras. Using this technique a depth image can be generated, e.g.,

TRICLOPS (Point-Grey Research). A system to steer cars at high speeds

exploits three cameras with different fields of view [27].

The idea of merging information from different levels of resolution has

been exploited in scale space approaches, e.g., [49]. Consistency is approved
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over the levels to obtain a measure of the reliability of edge detection. Re-

cently, the SIFT features [50] exploit this to select the most robust local scale

of a gradient point. However, the use of space variant image resolutions has

not been sufficiently exploited, yet.

The redundancy of a series of images can be exploited by considering the

temporal consistency of the detected features, also referred to as temporal

data association [8, 27]. From the perspective of control theory filtering and

prediction are the common methods to improve robustness [33]. Today the

most common approach to cope with this uncertainty is Kalman or particle

filtering [73], where several hypotheses aid in adapting to uncertainties of

motion or measurements. Already the dynamic vision approach [27] exploited

the temporal evolution of geometric features to build a model of the perceived

world. Object behaviour is used to predict image positions. Tracking is then

used to confirm or update motion behaviours.

The work in [27] is also a reference work of model-based vision. The

model is commonly a CAD representation of the target, which is used for

model prediction and local feature processing. Mobile robots hold (or build

up) a representation of the building and use landmarks, such as walls or pil-

lars, for navigation (e.g., [73]). A recent summary is given in [26]. Fig. 1.10

gives an example where model projection and probabilistic tracking is com-

bined and the code is freely available [55].

In humans the integration of cues has been found as a likely source

of the excellent ability to cope with changing conditions [82]. While the

recognition process is understood only partially, it has been found that cor-

tex areas V1-V5 report back results to each other and integration has been

proposed as a first model. Active vision research was the first to utilise cue

integration for tracking. E.g., [43] demonstrates that weighted consensus
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Figure 1.10: An example scene where objects have been recognised based on

their main structure (displayed) and are then tracked using the superimposed

texture taken from the actual objects [55].

voting of five cues highly improves the performance of view-based tracking

with a fuzzy fusion method.

To obtain the object pose for robotic applications, contour tracking

is required. Edge contours can be followed with the active contour model

(snake) [39]. A probabilistic extensions are able to follow faster motions,

e.g., [35, 85], since the probabilistic sampling simulates a space-variant tes-

sellation.

In summary, a plethora of approaches to tracking exist. Most ap-

proaches are either robust or fast. While tracking based on regions or in-

terest points is more robust in textured environments, edge based tracking

schemes provide best input for visual servoing in robotics or augmented real-

ity systems [75, 20]. With the steady increase in computing power the idea to

integrate cues will go further. The integration of more cues, knowledge and

context (stereo, levels of resolution, temporal consistency, cue integration,
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colour constancy, model-knowledge, task-knowledge) has been achieved only

partially.

1.4 Understanding human behavior

1.4.1 Visual surveillance

Smart rooms, human-machine interfaces, and safety and security applica-

tions require work to recognise activities of humans, also summarised under

the notion of visual surveillance. For recent reviews see [17, 76]. The an-

nual PETS (Performance Evaluation of Tracking and Surveillance) workshop

series is an excellent resource of ongoing work.

Typically surveillance systems operate from fixed cameras. This enables

to use the technique of background subtraction to detect changes in the

image. For a review see [61]. The main task is to cope with the varying

illumination, which changes the appearance of the image and might hide

the changes due to moving foreground objects. The result of this change

detection are image regions as indications of objects. As next step these blobs

are tracked over the image sequence, where data association methods are used

to find consistently moving object and to detect erroneous regions generated.

Hidden Markov Models and Bayesian networks are preferred approaches [17,

76].

Surveillance systems often work in two phases: a learning phase and a

run-time phase. In the learning phase the system is initialised to a scene

and models are either adapted or learned from observations. These models

contain data about normal activities, e.g., lanes of cars, entrance points, or

typical human gestures. In the run-time phase the data streams are compared
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to the model data to come up with interpretations and reactions. At present

systems can detect and recognise the behaviour of a few persons up to larger

groups of people, e.g., [25]. In traffic scenes processing is mostly bottom up,

while newer systems exploit domain knowledge in a top down way, e.g., [84].

An example is to use object models and expected activity models to monitor

at airport aprons [14].

In the domain of robotics the object to human relation has been stud-

ied in approaches such as Programming by Demonstration (PbD), where the

task is to interpret user commands to teach a robot [4]. In recent work activ-

ities of hand and objects are interpreted and stored using natural language

expressions in an Activity Plan. An Activity Plan is a concise account of the

scenario specifying the relevant objects and how they are acted upon, e.g.,

[62].

With the decrease of camera costs present direction of work is towards

camera networks surveying large areas. Detailed models of a human and

typical activities yield finer gesture interpretation in less constraint settings

[76].

1.4.2 Human machine interaction

Proceeding from visual observation techniques to a vision-based interactive

human computer interface seems to be a small step. It opens up a full range of

new applications where computers, monitors, and input devices like keyboard

and mouse disappear into the everyday environment. However, as attractive

this step might be, its realization includes several technical and conceptual

pitfalls that need to be addressed: (1) Reactivity: A system needs to react in

soft real time to user activity. Otherwise a user is distracted, frustrated, and

lost with regard to the communicative state. Appropriate techniques have
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been developed for face recognition, gaze detection, or gesture recognition

and define a field of active research [41, 59]. (2) Robustness: High false pos-

itive detection rates would imply a system behaviour that is unwanted by a

user and leads to inconsistencies to his/her expectations. This is especially

problematic as not all user behaviour is directed to the system. Here, joint

attention is an important concept [15]. This includes that both communica-

tion partners are attending to the same thing and that they are aware of each

other’s attention. In human-robot interaction, for instance, the robot needs

to detect when a user is facing it. At the same time, the robot’s head and eyes

will track the user’s face in order to re-assure the established communication.

(3) Reliability: User activities partly missed by the system could corrupt the

whole user input to the system. Thus, there needs to be a notion if the input

is well-formed or not. This is a difficult learning and recognition problem

because humans typically perform tasks with a large variability and they are

not aware of the system’s limits. One interesting research direction is pro-

ceeding towards shaping the human-machine interaction by mixed-initiative

dialogue strategies [51]. (4) Situativity: The interpretation of most human

behaviour is context specific. Therefore, many systems are designed for a

very specific scenario or application domain. In order to overcome these

limitations, context awareness is an important concept. This term was in-

troduced in the mobile computing community [63]. For computer vision, it

has been operationalised, e.g., by Crowley et al. who present an ontology for

context and situation [22].

As a consequence of the discussion above, research towards vision-based

human machine interaction is always system-oriented research and a highly

interdisciplinary task. Most systems in this area tightly constrain the com-

municative setting. Early work has been done by Bolt et al. [13] in his
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“Put That There” system. Today’s systems range over a wide spectrum of

techniques and applications. The SafetyEYE developed in industry research

estimates the action radius of an industrial manufacturing robot and stops

it in case of human machine interference. The MIT Kidsroom provides an

interactive narrative play space for children [12]. It is based on visual ac-

tion recognition techniques that are coupled with the control of images, video,

light, music, sound, and narration. Crowley et al. [24] describe an interactive

Magic Board based on the tracking of fingers and a perceptual window that

scrolls by detecting head movements. In the last years, body tracking has

become a hot commercial topic for game consoles, like Sony’s play station or

Microsoft’s X-box. A different focus was set in the VAMPIRE system [81]. It

provided assistance to people in everyday tasks by leading them step-by-step

through a recipe. This was demonstrated in a drink mixing scenario and used

object recognition, tracking, localization, and action recognition techniques

in order to achieve a user assistance based on augmented reality techniques.

Much work has been conducted in order to bridge the communication gap

between humans and personal robots, examples are the PR2 from Willow

Garage, STAIR from Stanford, Care-O-Bot 3 from Fraunhofer IPA, GRACE

from CMU, Jijo-2 from AIST, or BIRON and BARTHOC from Bielefeld.

Compared to human-human communication, human-machine interaction

is still brittle and in its infancy. Today’s research concentrates on mimicking

certain aspects of it in order to address the four challenges named before.

1.5 Contextual scene understanding

Most approaches in computer vision do not interpret entire images, but selec-

tive parts of it. They aim at extracting foreground objects from background
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clutter. Then, each object is classified in isolation. Background is ignored

and viewed as irrelevant distracting data or simply as noise. Contextual

scene understanding is somehow the dual process. It recycles the data ig-

nored before, i.e. background clutter and relational information, in order to

infer possible interpretations for foreground objects. Thus, these techniques

aim to incorporate scene context into the classification process.

Pioneering work has been conducted by Strat and Fischler [70] who de-

fine context sets that govern the invocation of the system’s processing steps.

They identify four different kinds of criteria that comprise context sets: (1)

Global contexts are attributes of an entire scene like daytime or landscape. (2)

Location characterizes the spatial configuration of a scene like touching the

ground, coincidence with other object types. (3) Appearance of neighbouring

objects may be similar like neighbouring trees. (4) Functionality describes

the role of an object in a scene like supporting another object or bridging

a stream. From the control point of view, Strat and Fischler employ three

kinds of context-driven operations: (1) Hypothesis generation, (2) hypothesis

validation, and (3) hypothesis ordering, that guide the scene interpretation

process. During search consistent cliques are constructed that represent par-

tial interpretations of a scene. The main drawback of this kind of approach

was the huge knowledge engineering task in coding the contextual knowledge

of the system. However, the general types of contexts introduced and the

different kinds of control principles designed are still valid for the current

state-of-the-art.

Later work adapted probabilistic models for contextual interpretation

which capture causal relationships in directed dependencies (Bayesian net-

works), spatial relationships in undirected dependencies (Markov Random

Fields), and temporal relationships in dynamic models (Bayesian filter). All
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these variants are unified under the theoretical framework of graphical models

[60, 47, 37]. In order to name a few examples that reflect more recent trends

in contextual interpretation, we shortly discuss the the general context types

raised by Strat and Fischler:

Global contexts have been used by Murphy et al. [57]. They compute a

holistic image representation – the so called image gist – in order to classify

semantic places and relate them to object hypotheses by graphical models.

Local constraints are applied by Hoiem et al. [32]. They related object

detections to an overall 3-d scene context and judge the scale and location

with regard to the estimated scene geometry.

Functional aspects are used by Moore, Essa and Hayes [54] who relate

human actions and objects by Bayesian networks. They introduce the con-

cept of object spaces that link both kinds of information in space and time.

In a different approach to functionality is mapped to 3D shapes that are

extracted from range images [71].

Linguistic contexts refer to additional information given by parallel text

or speech. These kind of bi-modal data frequently occurs in catalogues,

newspapers, magazines, web pages, broadcasting news, movies, or human-

machine interaction dialogues. The verbal information principally includes

all three types of contextual information. Global information was used by

Barnard et al. [9] in order to learn models for automatic image annotation.

They employed a hierarchical mixture model by Hofmann for describing an

image on a course topic level as well as on a detailed object level. Local

constraints have been extracted from image captions by Srihari & Burhans
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[68] for labelling human faces in newspaper photographs. Wachsmuth &

Sagerer incorporate spatial information from spoken human-robot dialogues

in order to robustify the understanding of visual scenes [80]. Functional

contexts are provided by verbs which have been incorporated to a less degree

in scene understanding.

1.6 Summery and Conclusion

Agents, human or artificial, need to perceive their environment for operating

and surviving in it. Visual perception is the strongest human sense and work

in the field of computer vision sets out to provide the required capabilities. In

this chapter we summarised main achievements. We started with reviewing

trends and perspectives and then highlighted a few areas.

Today it is possible to learn and then recognise objects from 2D images

up to around 1000 and the number increases continuously. It is however

constraint to databases of images where size of objects or typical scenes are

similar. In open environments, such as a search task in homes, variations in

illumination, view point, or occlusion still pose challenges. When using 3D

images, e.g., using laser scanners, shape of the objects can be acquired and

exploited to control industrial processes such as robotic grasping or spray

painting.

Tracking of objects or interest points over longer video sequences can

be done in real time given sufficient texture. Rules on how to exploit the

image information and predict and search efficiently in subsequent images

are established and visual servoing methods to control robot arms available.

The real-time performance and robustness achieved by today’s computer

vision techniques for hand tracking, human body tracking, face recognition,
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etc., leads to a new quality of vision-based human-machine interaction. In

this chapter, we have discussed several challenges in this new field that merges

the areas of HCI and CV. Over the last years, several new workshop series

have been established like CV4HCI or human-centered CV. And we expect

that this marriage will provide further fruitful influences on the field – taking

two perspectives: How to design CV systems for users and how to effectively

include the user in the visual processing loop?

One of the challenges pointed out in the HMI section was situatedness:

When and with what information should the user be bothered? The same

question could be asked for the vision system. Not all information is impor-

tant, not all detection results are valid. The notion of context provides a

concept of a global consistency on the one hand and a frame of meaning on

the other hand. Even with quite sophisticated and high performance recog-

nition techniques, context will keep its role when we talk about computer

vision systems that need to act in real world environments.

Computer vision systems need to combine computer vision techniques for

application purposes. This is the core of CV as an engineering discipline.

However, it has been proven over the years that general integration architec-

tures are hard to define. Some approaches have shown their applicability in

successful multi-partner projects (e.g. ActIPret, VAMPIRE, or CogX). Real

progress is hard to achieve on the theoretical side and needs to be proven by

the practical realization of systems. For more details about vision for robotic

systems further reading of [44] is suggested.

While these results indicate the advance of the field, several challenges

lie ahead. Examples are: recognising classes of objects has been started but

is limited to very few salient classes such as wheels or aeroplanes. Detecting

grasp points on arbitrary object needs to be extended from planar to full 3D
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object locations. Or the function of an object as indicated by its design and

shape cannot yet be deduced from imaging it. Nevertheless, the hope is that

computer vision is used more often in combination with other AI methods

to see how to build more complete systems.

1.7 Further Reading

• Dana Ballard and Christopher Brown. it Computer Vision. Prentice

Hall, Inc., Englewood Cli?s, New Jersey, 1982. The basic book on meth-

ods in computer vision. Available on-line: http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm

• S. Dickinson, A. Leonardis, B. Schiele, and M. Tarr. Object Categoriza-

tion: Computer and Human Vision Perspectives, Cambridge University

Press, 2009. Excellent overview of approaches to object recognition in-

cluding a historical perspective. A must to get started in this direction.

• Richard Szeliski. Computer Vision: Algorithms and Applications, Springer,

2010. An excellent lecture book for the introduction and more depth

study of computer vision It has an emphasis on techniques that com-

bine computer vision and graphics, but covers also modern techniques

for object recognition, segmentation, and motion estimation. Available

on-line: http://szeliski.org/Book/

• David A. Forsyth and Jean Ponce. Computer Vision: A Modern Ap-

proach, Prentice Hall, 2003. A broad collection of computer vision

techniques that is a very good reference for the advanced study of com-

puter vision.

• Danica Kragic and Markus Vincze. Vision for robotics. Foundations
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and Trends in Robotics, 1(1):178, 2009. An overview of the specific

needs of robotics to computer vision methods plus an overview of ap-

plications.

• R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2003. An deep coverage of geo-

metrical aspects in computer vision for the advanced reader.
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