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Abstract— This paper proposes an effective algorithm for
recognizing objects and accurately estimating their 6DOF pose
in scenes acquired by a RGB-D sensor. The proposed method is
based on a combination of different recognition pipelines, each
exploiting the data in a diverse manner and generating object
hypotheses that are ultimately fused together in an Hypothesis
Verification stage that globally enforces geometrical consistency
between model hypotheses and the scene. Such a scheme boosts
the overall recognition performance as it enhances the strength
of the different recognition pipelines while diminishing the
impact of their specific weaknesses. The proposed method
outperforms the state-of-the-art on two challenging benchmark
datasets for object recognition comprising 35 object models
and, respectively, 176 and 353 scenes.

I. INTRODUCTION

Objects in a domestic environment come in all sorts of
shapes, sizes and colors. Some objects are denoted by a
particular shape that make them highly distinguishable, while
others can be singled out based on their texture. Humans
exploit such properties in order to recognize and localize
objects to carry out specific tasks, and can do this in an
extremely efficient way. The ability of recognizing specific
object instances is also key to autonomous robots that need
to operate in domestic environments such as our homes.

The recent advent of sensing devices providing dense 3D
reconstruction - even on untextured surfaces - enhanced with
color information (RGB-D data) allows robots to deploy cues
similar to those used by humans for the task of identify-
ing objects. Moreover, the availability of 3D data allows
both recognizing object instances in a scene together as
well as estimating their 6 Degree-Of-Freedom (6DOF) pose
(position and orientation), thus potentially enabling precise
manipulation of objects.

However, despite the benefits of newly developed sensing
technology, there are still several challenges that need to be
taken into account when designing a recognition system. The
possibility of processing multimodal (range and color) data
at high frame rates represents an important advantage, which
is though only partially exploited by current recognition
methods due to, on the one side, the relatively low efficiency
of most methods and, on the other, the typical approach of
most methods of separately working either on color or on
geometry. In particular, specializing the recognition skills
of one method on a specific modality or data characteristic
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(e.g. shape, color or texture) tends to reduce the generaliza-
tion capabilities of such systems to different environments.
For instance, algorithms based on local image descriptors
perform well on textured objects but tend to fail on low-
textured ones. 3D local descriptors perform well on objects
with locally rich geometrical structure but do not handle
effectively simple objects that present repetitive structures.
On the other hand, global and semi-global descriptors [1]–
[3] make use of the global properties of the surface shape
but require segmentation and their performance decreases
notably when objects undergo occlusions. These examples
show how difficult it becomes to design a system general
enough to deal with many diverse scenarios, especially under
the constraint of limited computational resources.

In this paper, we propose an object recognition and pose
estimation algorithm that synergically exploits the informa-
tion provided by different data cues. Specifically, several
recognition pipelines based on 2D local features and 3D
semi-global and local features are run in parallel and in-
dependently, so as to generate object hypotheses (identity
and 6DOF pose). These hypotheses then undergo a common
verification stage, which aims at retaining those that are
consistent with the observations while removing those that
do not explain the scene accurately enough (see Figure 1).
Furthermore, novel contributions with respect to previous
work related to specific stages of the proposed algorithm
are also proposed throughout the paper. In this respect,
the main contributions are two-fold. On the one side, we
improve the robustness and recognition capabilities of the
semi-global pipeline based on the OUR-CVFH descriptor
proposed in [3] by exploiting RGB information and multiple
clustering stages. On the other, we improve the effectiveness
of the Hypothesis Verification stage proposed in [4] by
exploiting additional cues that leverage on color informa-
tion and environment constraints. The proposed recognition
system outperforms the state of the art on two challenging
benchmark datasets proposed for the ICRA 2011 Solutions
in Perception challenge.

II. RELATED WORK

A variety of methods do exist in literature concerning the
problem of object recognition and pose estimation. They can
be organized in image based methods [6]–[9], 3D surface
based methods (global and semi-global methods like [1]–[3]
or local methods such as [4], [10], [11]) and multimodal
approaches using color and surface cues [12], [13].

Due to the recently published results on the public bench-
mark datasets related to the ICRA 2011 Solutions in Percep-



Fig. 1: Different stages of the recognition pipeline. From left to right: the point cloud obtained from the Kinect sensor,
the segmentation results obtained with the method proposed by Richtsfeld et al in [5], the object hypotheses generated by
the proposed recognition pipelines and the final objects selected by the hypothesis verification stage. The final result is a
consistent representation of the scene with correct identification objects and accurate 6DOF pose estimation.

tion challenge [14], the method by Tang et al [6] is particu-
larly relevant to this work as it offers a direct performance
comparison. The authors present a RGB-D recognition and
6DOF pose estimation pipeline for textured objects based
on global color histograms (to trim the possible identities
of the object) and SIFT image features, backprojected to
the 3D coordinate system of the model, to ultimately detect
the object and estimate its 6DOF pose. However, unlike
our method, solely SIFT correspondences are deployed to
estimate the pose of the recognized object instances. The
method proposed in this paper can estimate the 6DOF pose
based on any of the deployed features, therefore holding the
potential to recognize poorly textured objects as well as to
yield accurate pose estimations in a wider range of scenarios.

III. SYSTEM OVERVIEW

As previously mentioned, our recognition system is based
on three different pipelines that take advantage of the mul-
timodality of the data:
• A semi-global 3D descriptor representing an extension

of the OUR-CVFH approach [3] based on the color,
shape and object size cues. Regarding the segmentation
stage required by the semi-global pipeline, we propose
the use of two different strategies recently proposed
in [5], [15].

• A 2D local descriptor (SIFT [8]) which is able to
generate object hypotheses with associated 6DOF pose
by back-projection of the 2D keypoint locations into the
3D space.

• A 3D local descriptor (SHOT [10]) aimed at establish-
ing correspondences between model and scene surface
patches.

Figure 2 sketches the proposed algorithm by showing
the various stages therein and the way the three different
pipelines are merged together, ending up into a final Hypoth-
esis Verification stage which is in common with all pipelines.
As usual for recognition systems, our system consists of a
training stage, where models of the objects to be recognized
are learned (outlined in the next section) and of an online

stage dealing with the identification and pose estimation of
objects in the scene (described in Sections V and VI).

IV. OFFLINE STAGE: TRAINING

In order to deploy the aforementioned pipelines, we first
need to gather some information (object model) about the
objects we would like the system to recognize. The easiest
way to gather such information is to look at the objects from
different perspectives to obtain evidence of the appearance
and shape of the object of interest as seen from those
perspectives. In our case, with the use of recent sensing
devices like the Kinect, such process results in a set of RGB-
D images covering a 360◦ angle around the object.

For our recognition system to function properly, we need
to process the set of RGB-D images to obtain (i) a full 3D
point cloud with RGB information - Mi - fusing the partial
surface contained in each RGB-D frame and (ii) create a
compact representation of the appearance of the objects, in
terms of visual and shape features as well as their location
relative to the coordinate system on whichMi is embedded.
Repeating this process for all objects results in a model
library M.

To reconstruct a full 3D cloud, Mi, out of a set of
ordered views, a tracking approach is used, where features
are extracted and matched along the frames in order to report
the 3D points of each frame to a common reference system.
Motivated by KinectFusion [16], tracked frames are aligned
with a global model using Iterative Closest Point (ICP).
The global model where the surface points are accumulated
during reconstruction is represented as a voxel grid with a
3mm voxel size. As reconstruction proceeds and new views
are processed, the weight at each voxel increases if new
surface measurements vote for that voxel, while in case a
view ray passes a voxel the weight is decreased indicating
that previous surface measurements in that voxel might be
incorrect. Hence, correct measurements are accumulated and
filtered by their mean and wrong points are deleted.

An initial guess for the ICP alignment is provided by
tracking the last segmented view of the object to the current
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Fig. 2: The proposed 3D Object Recognition algorithm is based on 3 different recognition pipelines which are then merged
together at the Hypothesis Verification stage. In particular, local correspondences coming from the 2D and 3D local pipeline
are merged together at the Correspondence Grouping stage to try increasing the desired consensus between scene and model.

frame using SIFT keypoints and a rigid transformation esti-
mated from SIFT correspondences by means of RANSAC,
which results to be useful when training data is sparse.
However, the Challenge and Willow datasets include a small
number of RGB-D frames per object (one frame every 10◦).
Furthermore, some object views contain as few as 100 points
and very low texture (side view of flat and small objects).
This makes pose estimation between consecutive frames
via SIFT keypoints not feasible. Hence, in this case we
exploit the presence of a checkerboard pattern (visible in all
frames of the training dataset) to compute the initial guess
pose transformation for the ICP refinement with the partial
reconstruction ofMi. Repeating this process for all available
data, results in a full 3D cloud, each point associated with
RGB information (see Figure 3).

Once this cloud is computed, views from uniformly sam-
pled viewpoints are successively rendered in order to satisfy
the requirement of global pipelines to deal with viewpoint-
dependent, uniformly sampled model views [3] on which the
semi-global descriptors (Section V-B) can be directly com-
puted. Local pipelines (Section VI), can be trained directly
on the original views, due to their stronger invariance to
viewpoint changes. To do so, at each new frame we evaluate
whether a large percentage of the local descriptors (SIFT
and SHOT in our case) learned so far can be matched in the
current frame. If this is not the case, then the frame is marked
as a keyframe, meaning that it provides valuable unseen
information, and the position of the features (extracted on the
current view of the object) are transformed to the coordinate
system of Mi.

To terminate the training stage, after the selection of the
keyframes, the descriptors sparsely representing the object
are clustered using the reciprocal nearest neighbor (RNN)
algorithm proposed by Leibe [17] resulting in two separate
codebooks (one for SIFT and one for SHOT) that will
be used during the online recognition stage to establish
correspondences between the models and the scene. Each
codebook entry represents a set of occurrences associated
with a representative descriptor, each occurrence associated
to the 3D position of the descriptor on Mi’s surface.

V. RGB-D SEMI-GLOBAL PIPELINE

A. Segmentation

To segment the objects in the scene in order to deploy the
semi-global pipeline, our recognition framework is equipped
with two alternative segmentation methods:

The first, based on [15], is a simple but highly efficient
two step strategy: (i) multi-plane segmentation of the scene
and (ii) connected component clustering of points above any
detected plane1. To efficiently compute planar regions in a
scene, it uses a connected components strategy where neigh-
boring pixels are considered to be in the same component
(planar region in this case) if the dot product of their normals
and the euclidean distance between the points are within a
certain range. The found planar regions are further analyzed
to merge regions that share the same planar model and were
not detected during the first stage due to the constrained 4
neighborhood search. The second step performs similarly to
the first, and groups points (without taking into consideration
the points belonging to the detected planes) in the same
component if their euclidean distance is smaller than τ . The
resulting components form the object hypotheses provided

1Only planes with a certain amount of inliers (i.e, 10000) are considered
to provide enough support.

Fig. 3: 10 of the 35 object models reconstructed with
proposed method. The models are quite accurate but, due to
the sparsity of the training data, they have only a resolution
of 3mm and present some artifacts on thin areas.



to the recognition pipeline. Such a segmentation strategy
assumes that the objects to be recognized will lie on a planar
surface and that points belonging to different objects are at
least two pixel away in a Manhattan world or farther away
than τ . For future reference, we will refer to this method as
MPS.2

The second one, introduced recently by Richtsfeld et
al. in [5], is a generic segmentation method for unknown
objects. This method pre-segments RGB-D data using a
recursive normal clustering approach to extract continuous
surface patches before planes and B-spline surfaces are fitted,
generating parametric models of the patches. Model selection
with Minimum Description Length (MDL) chooses, in a
merging procedure, whether a plane or a B-spline model fits
better to the patches and delivers the best model represen-
tation for a given point cloud. Relations between parametric
models can be found by taking into account the principles
of perceptual organization. Support vector machines (SVM)
are learning this principles during a training period that
avoids the reduction of the segmentation framework to model
matching. Finally a graph is built, consisting of surface mod-
els as nodes and predictions from the SVM’s as edges, and a
globally optimal segmentation solution can be found even if
single predictions are wrong.3 The perceptual grouping rules
are generic for different datasets allowing to use the previous
learned rules from the Object Segmentation Database4.

B. OUR-CVFH

The Oriented, Unique Repeatable Clustered Viewpoint
Feature Histogram (OUR-CVFH) was recently introduced in
[3] as an alternative and improvement to CVFH [2] focusing
on two aspects: (i) the discriminative power of the CVFH
descriptor and (ii) a method to directly estimate the 6DOF
pose of the objects simultaneously to descriptor matching,
without the need for additional stages. The basic idea behind
OUR-CVFH is to define several repeatable Reference Frames
(RFs), one for each smooth patch of the object surface, in
order to spatially orient the description of the object surface
relatively to each reference frame. To estimate the 6DOF
pose of an object, the RFs associated to the descriptor of a
scene segment and that of a training view are aligned one
to another, this directly allowing the retrieval of the 6DOF
pose of the model in the scene. In [3] we show how these
modifications clearly improve the discriminative power of
the feature as well as the pose estimation performance. An
interesting property of these RFs regards their semi-global
approach: the principal directions are computed relatively
to just a small surface patch, while the signs and the
relative ordering of the three unit vectors are selected via a
disambiguation stage that takes into account the whole object

2In the experiments, all objects to be recognized are found on a single
table-top plane. In such situations to reduce the computational time of the
subsequent recognition stages, only the points above the highest plane in the
direction of the normal of the largest plane are considered for the second
step of MPS.

3During the experiments and for the sake of efficiency, the segmentation
was applied to the points above the table-plane selected by MPS.

4http://www.acin.tuwien.ac.at/?id=289

Fig. 4: Left: segmented cluster from a scene. Middle and
Right: smooth patches (green) and the associated Reference
Frames used to compute color and shape distributions; in this
specific example, two OUR-CVFH descriptors are computed
for the object on the left.

surface. It is worth noting that a smooth patch refers here to a
subset of the object surface, and smooth represents continuity
in both the point coordinate and the normal domains (see [2],
[3] for details on the smooth clustering strategy). Figure 4
depicts the smooth patches and the associated RFs obtained
on a surface.

Our first proposed contribution in this aspect is related to
the use of the RFs in order to describe the color properties
of the surface. Hence, likewise the shape distributions in
OUR-CVFH, 8 color distributions are computed. The points
used to compute each color distribution are obtained by the
natural division defined by the octants of the RF. Each color
distribution is obtained from the YUV values associated with
each point and binned into a 2×8×8 grid. A coarser binning
for the Y channel with respect to U and V is desired in order
to increase robustness with respect to illumination changes.
Similar to the L1-shape distributions in [3], we apply a tri-
linear interpolation on the color distributions to account for
small perturbations in the RF. The 8 color distributions are
appended at the end of the OUR-CVFH histogram resulting
in a feature dimensionality of 303 + 8× 128 = 1327.

A second proposed contribution to OUR-CVFH is related
to the estimation of the smooth patches on the surface of an
object which are the basis for the RF estimation. OUR-CVFH
provides an accurate description and pose estimation thanks
to the repeatable RFs computed on both model views and
scene segments. Unfortunately, the repeatability of the RF
might be compromised due to noisy or missing parts that are
often present in data acquired by RGB-D sensors. In order to
increase the repeatability of the RF, we propose to smooth the
recognition surface with an adaptive Moving Least Squares
(MLS) algorithm, similarly to [3] which smooths and up-
samples the resolution of the data to ensure that model
views and scenes share the same resolution. Unlike [3],
we use here a multi-parametric smooth clustering stage,
whereby different clustering instances are run on the same
data, each with a different parameter set5. Figure 5 shows the
effect of different parametrization for the smooth clustering

5Concretely, we run 3 instances of the smooth clustering varying the
maximum curvature (tc in the notation from [3]) accepted at a point to be
considered part of a smooth cluster; (tc ∈ (0.015, 0.02, 0.035). During
training, tc is fixed to 0.015.



Fig. 5: Left: model view of object ”19” and its associated RF.
Middle and Right: scene segment relative to the same object
with two associated RFs, yielded by two different clustering
parameterizations. Despite the amount of noise and missing
points, the RF on the right is repeatable enough to provide
a correct match.

stage. Please note, that each clustering instance might yield
a different set of smooth regions, this in turn resulting in
a different set of RFs and descriptors. This results in a
higher number of descriptors representing the same object
surface but encoding it differently; e.g., a surface made up
by 2 smooth patches might end up being associated with
16 descriptors due to different clustering parametrization as
well as ambiguities in the disambiguation stage [3].

C. Recognition and 6DoF pose estimation

Once we have computed several semi-global features for
a segmented object in the scene, the resulting descriptors are
independently matched against the descriptors representing
our training data using the metric proposed in [2]. In order
to avoid an explosion on the number of hypotheses being
generated and to remove some wrong hypotheses early in the
pipeline, we filter after matching the hypotheses associated
with descriptors whose distances to the segmented scene
object’s descriptor are smaller than 0.85 relative to the best
matching model descriptor, as well as duplicated hypotheses
for object surfaces that result in very similar RFs under
different clustering parameterizations6. The RFs of remaining
hypotheses after this preliminary filtering stage are used to
estimate a 6DoF pose by aligning the RF pair associated with
the model and segmented object descriptors.

VI. 2D AND 3D LOCAL PIPELINES

The use of local - i.e. whose support is limited to a small
neighborhood around the keypoint - descriptors is motivated
mainly by the need to deal with the presence of clutter
and occluded objects. The two descriptors included in the
proposed algorithm are: (i) SIFT [8], aimed at texture-rich
image patches, and (i) SHOT [10], for objects with distinctive
3D shapes. In both cases, standard recognition pipelines
are deployed based on keypoint detection, description and
matching. Once correspondences are determined in both the
2D and 3D domains, they are merged together (2D keypoint

6Equal clusters resulting from different parameterizations might as well
be filtered based on the similarity of the clusters itself in order to avoid
repetitive computations of the descriptor. Nevertheless, the computation of
the descriptor is fast enough so we did not consider this in the scope of the
paper

coordinates on the image plane are backprojected to the 3D
space by means of depth information); this super-set is then
fed to a unique Correspondence Grouping algorithm based on
geometric consistency between pairs of correspondences [4],
whose goal is to cluster correspondence subsets providing
consensus for a specific object hypothesis in the scene, while
discarding outliers (i.e. isolated correspondences).

Differently from [4], and as introduced in Section IV,
during the training stage model descriptors are clustered
together in order to form a descriptor codebook (one for SIFT
features, and one for SHOT features). This codebook is then
used during the recognition stage to associate to each scene
descriptor its nearest-neighbor entry in both codebooks and,
in turn, all model descriptors that were associated with the
codeword, this operation substituting the standard descriptor
matching stage between model and scene descriptors. The
main advantage of this approach is computational efficiency,
due to the need of searching in a size-limited codebook rather
than over the set of all model descriptors, as well as the
possibility of better determining correspondences in the case
of symmetrical structures and repetitive surface patches.

VII. HYPOTHESES VERIFICATION

The Hypothesis Verification (HV) stage aims at analyzing
object hypotheses previously generated along the recognition
pipeline so as to reject false detections by enforcing geo-
metrical constraints between models and scenes [4], [11],
[18]. Recently, a HV method has been proposed [4] -
referred to hereinafter as Global Optimization for HV (GO) -
which, unlike other approaches, is based on an optimization
framework that simultaneously takes into account all object
hypotheses in order to handle interactions between them,
yielding a solution globally consistent with the scene. GO has
shown a peculiar ability to detect ”weak” (i.e. supported by a
small number of points, such as the case of highly occluded
objects) correct hypotheses while filtering out a high number
of false positives, thus moving the operating point of the
recognition system toward a higher recall without sacrificing
precision [4].

According to the notation used in [4], the proposed recog-
nition pipelines generate a set of n recognition hypotheses
H = {h1, · · · , hn}, each hypothesis hi given by the pair
(Mhi , Thi), withMhi being the model associated to hi and
Thi being the transformation which relates Mhi to S, S
being the point cloud representation of the scene. Hence,
the goal of the HV stage is to choose an arbitrary (up to n)
number of elements belonging to H in order to maximize the
number of correct recognitions (TPs) while minimizing the
number of false positives (FPs). The GO algorithm relies on
minimizing a suitable cost function defined over the solution
space of the HV problem. In particular, we denote a solution
as a set of boolean variables X = {x0, · · · , xn} having
the same cardinality as H, with each xi ∈ B = {0, 1}
indicating whether the corresponding hypothesis hi ∈ H is
discarded/accepted (i.e. xi = 0/1). Hence, the cost function
can be expressed as F (X ) : Bn → R, Bn being the solution
space, of cardinality 2n. A polynomial-time resolution of the



optimization problem is provided by means of Simulated
Annealing. The cost function includes four different cues:
i) scene fitting (how well a hypothesis is supported by
scene points, term ΩX (p); ii) model outliers (how many
model points are left unexplained, term fM (X ); iii) mul-
tiple assignment (how many scene points are simultaneously
associated to different hypotheses, term ΛX (p); iv) clutter
(how well the hypothesis fits to neighboring scene regions,
term ΥX (p)). For more details, we refer the reader to [4].

As previously introduced, we proposed to merge and
optimize in the HV stage the hypotheses generated by
the three pipelines employed by the proposed approach.
Moreover, given the multimodal nature of the available
data, and in line with the contributions proposed for the
semiglobal descriptor, we also provide an extension of the
GO algorithm to color cues. The optimization framework
proposed in [4] is particularly flexible to handle additional
cues for the global cost function. For this reason, we propose
to add a fifth cue which measures how well each scene
point explains its corresponding model point - according to a
certain hypothesis - within the color domain. This novel term
is thus inherently related to the inlier weighting cue, but only
taking into account color similarity. Following the notation
in [4], for each hypothesis hi and each associated model
point p we thus compute a weight ωC

hi
(p,N (p)) defined as

follows

ωC
hi

(p,N (p)) = exp

(
−‖κ (p)− κ (N (p)) ‖2

2σ2
C

)
(1)

where N (p) is the nearest-neighbor of p on the scene,
and κ(p) is the 3D vector representing the color triplet
associated with point p in the YUV space. In order to
increase robustness to illumination changes, the weight of
the Y channel is reduced by 2. The final cost function is
then given by

F (X ) = fS (X ) + λ · fM (X ) + fC (X ) + fE (X ) (2)

where λ is a regularizer aimed at penalizing model outliers,
and fS , fM account, respectively, for geometrical cues
defined on scene points and model points:

fS (X ) =
∑
p∈S

(ΛX (p) + ΥX (p)− ΩX (p)) (3)

fM (X ) =

n∑
i=1

(|Φhi
| · xi) (4)

Φhi
representing the set of outliers (model points without

a counterpart in the scene — see [4] for further details) in the
i-th hypothesis. fC evaluates the color registration between
model and scene:

fC (X ) =

n∑
i=1

(|Ψhi | · xi) (5)

where Ψhi represents the color registration quality between
the i-th hypothesis and the scene and is defined as follows:

Ψhi
=

m∑
p=1

(
1− ωC

hi
(p,N (p))

)
(6)

where m is the number of points of the model associated
with hi currently being explained by the scene.

Finally, fE considers physical constraints:

fE (X ) =

n∑
i=1

u (hi) · xi + wo · fo (hi) · xi (7)

where u (hi) is the sum of model points associated with
hi being under the table plane, wo is a penalization term
and fo (hi) is a boolean function indicating whether the
i-th hypothesis is in contact with the table or not. The
optimization framework allows to add a pool of such physical
constraints that improve robustness based on application and
environment knowledge that might prove to be particularly
useful in robotic applications as well as industrial applica-
tions under controlled situations.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION

In order to validate the effectiveness of the system, we
present experimental results on two large benchmark RGB-D
object recognition datasets proposed for the ICRA 2011 So-
lutions in Perception challenge organized by Willow Garage.
Following the naming conventions introduced in [6], we refer
to the first test dataset as Challenge and to the second one
as Willow. Additionally, we present 6DOF pose estimation
results on the Challenge dataset for which the ground truth
concerning poses is available. To give the reader a better
intuition about the different modules of the system, we
present also results on the Challenge dataset provided by
each of the individual pipeline deployed by the proposed
system.

A. Datasets

The Challenge test dataset is composed of 434 object
instances organized in 39 scene sequences. Each scene
contains from 1 up to 5 object instances and does not contain
any object instance outside of 35 models used to train the
system. It was carefully created to avoid including objects
undergoing strong occlusions. Differently, the Willow dataset
is significantly more complex. It shares the same model
library as the Challenge dataset, but it includes distracting
objects with shapes and colors similar to those in the 35
objects to be recognized as well as several occluded objects.
In this case, some sequences were recorded under saturated
illumination causing some objects — especially those with
metallic parts — to present also several artifacts in the
point cloud acquired with the Kinect sensor. This dataset
contains a total of approximately 1500 object instances to
be recognized.

B. Results

Table I presents precision and recall results on the Willow
and Challenge datasets obtained by the method proposed
in this paper, as well as those reported by Tang et al. in
[6]. Our method performs better in both datasets, with a
remarkable accuracy on the Challenge dataset where just a
single object out of the 434 instances was confused with
a similar one (see Figure 7-(a)) and overall yielding 1 FP



Precision Recall
Willow (Proposed system) 94.30% 70.86%
Willow (Tang et al. [6]) 88.75% 64.79%
Challenge (Proposed system) 99.77% 99.77%
Challenge (Tang et al. [6]) 98.73% 90.23%
Challenge (Aldoma et al. [3] + Richtsfeld) 92.79 % 85.94%

TABLE I: Precision and recall results for the Willow and
Challenge datasets.

Precision Recall Time
Proposed system 99.77% 99.77% 6.44 [s]
RGB/3D global + Richtsfeld 99.77% 99.31% 5.23 [s]
RGB/3D global + MPS 99.77% 98.39% 3.88 [s]
2D/3D local (table plane) 98.47% 88.92% 3.45 [s]
2D local (table plane) 100.00% 71.43% 1.72 [s]

TABLE II: Precision and recall results for the Challenge
dataset with different combinations of the pipelines of the
proposed system. Reported results are obtained with 10 ICP
iterations, sigmas = 1cm (inlier threshold), σC = 35(color
sigma), λ = 1(model outliers weight) and κ = 1(clutter
weight). Average execution time per scene is also reported.

and 1 FN. The last row of Table I reports also a comparison
with the 3D-only semi-global pipeline proposed in [3] which
reports a worse performance, thus validating the usefulness
of the contributions proposed in this paper.

The lack of strong occlusions in the Challenge dataset
allows leveraging on the power of the RGB/3D semi-global
pipeline as outlined in Table II where such a pipeline
performs almost as good as the combination of the three
recognition pipelines. Because the objects in this dataset
are easy to segment, the MPS segmentation delivers similar
results to that of Richtsfeld et al. and is slightly faster (only
in the scene shown in Figure 1 the MPS segmentation can not
separate the book from the spray bottle). Table II reports also
the average execution time required by the different pipelines
per scene. In this aspect, the 2D local pipeline is the fastest
due to the GPU implementation used for SIFT keypoint
detection, descriptor computation and histogram matching as
well as the fact that this pipeline results in a much smaller
number of hypotheses, compared to the semi-global pipeline.
The 2D/3D local pipeline performs relatively well with an
improvement of almost 20% over the 2D pipeline alone.

The improvement with respect to [6] on the Willow dataset
is approximately 6% in terms of both Precision and Recall.
Due to the high number of occluded object instances, the
performance of the semi-global pipeline is not as good as on
the Challenge dataset and local pipelines do not turn out
as effective as expected (see Table III) due to the noisy
point clouds, different illumination conditions and some
object instances with no more than a few points being
visible. Due to the distracting objects, we used stricter HV
parameters7 that might remove correct hypotheses with an

7We increase penalization factors in the HV stage for model outliers
and clutter points (λ = 1.5 and κ = 2) and reduce the inlier threshold
(sigmas = 7.5mm). The rest of the parameters remain unchanged.

Precision Recall
Proposed system 94.30% 70.86%
RGB/3D global 93.70% 58.92%
2D/3D local 98.4% 56.20%

TABLE III: Precision and recall results for the Willow
dataset motivating the fusion of different pipelines to handle
challenging scenarios.
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proposed  
(10 icp iter.) 

global  
(10 icp iter.) 

Mean 0,0059 0,0058 0,0050 0,0049 
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TPs 431 422 433 431 

Fig. 6: Histogram of translation errors for the proposed sys-
tem as well as for the semiglobal pipeline. Results reported
with both 0 and 10 ICP iterations.

inaccurate registration. An interesting additional experiment
would consist in reporting recognition results with respect to
occlusion level. Such a measure is commonly used in the 3D
community [4], [18], but it requires an accurate ground truth
pose, that was not available for the Willow dataset, in order
to estimate the percentages of occlusion for each object.

Figure 6 summarizes the results regarding 6DoF pose
estimation as well as the behavior of the semi-global pipeline
and the proposed system with a different number of ICP
iterations. Observe how the proposed system without the
pose refinement stage, performs slightly better than the semi-
global pipeline alone with 431 and 422 TPs respectively.
Overall, the translation errors between the model centroids of
the recognized pose and the groundtruth centroids are notably
low, being mostly between 0 and 0.01m and always less
than 0.03m - e.g. they favorably compare to those reported
in [6], where translation errors are mostly between 0 and
0.05m and can get up to 0.2m. We also computed two
additional values regarding pose, the RMS error for shape
and color, with respectively a mean and standard deviation
of 0.003[m] ± 0.0017 and 36.12 ± 13, 74 (these last values
referred to the RGB space normalized between [0, 255]).

IX. CONCLUSIONS

We have presented a modular recognition and 6DoF
pose estimation system exploiting three different recognition
pipelines that take advantage of the multimodal nature of the
data provided by recent RGB-D sensors. We have shown how
a hypothesis verification stage offers a good opportunity to
fuse results from the several pipelines and proposed several



(a) (b) (c)
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Fig. 7: Recognition results obtained with the proposed method concerning the Challenge dataset (left column) and the Willow
dataset (right column). (a) The single False Positive yielded by our method: a very similar object with respect to the correct
one is recognized. Observe in (e), how our method is able to correctly recognize the two Odwalla bottles, while the four
distractors, having same shape but different texture, yield object hypotheses that are not consistent in terms of color and are
thus discarded.

formulations of the HV stage to exploit color information
as well as environment constraints. Additionally, we have
presented a semi-global pipeline based on OUR-CVFH to
exploit color and shape information simultaneously. The ex-
perimental evaluation on two challenging benchmark datasets
demonstrates the practical applicability of the proposed ap-
proach and brings in significant improvements over the state-
of-the-art.
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