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Real-time Nonlinear Model Predictive
Path-Following Control of a
Laboratory Tower Crane

Martin Bock, Andreas KugiMember, IEEE

Abstract—A path-following controller is developed and applied for, which is improved from one sampling instant to the next,
to a laboratory tower crane. The control task is to move a load cf. [3][8].
along a predefined geometric path. The time evolution along Suboptimal MPC schemes can be classified with respec|

the path is not fixed but left as a degree of freedom to be to th ical tati f th luti timat f
determined by the controller. In order to be able to account for 0 the numerical computation 0 € solution estimates o

system constraints, a model predictive control scheme is adagd  the underlying OCP. Numerical methods for solving OCPs
with special focus on real-time feasibility with small sampling are frequently subdivided into direct and indirect methods

times. The resulting controller is applied to a laboratory-scale [9]. Suboptimal MPC schemes belonging to the first kind,

tower crane and validated by means of simulation studies and i.e., which rely on a suitable parameterization of the statel
measurement results. . . : L . !

and/or input variables to obtain a finite-dimensional roesir

Index Terms—Model predictive control, optimal control, path-  programming problem, are investigated, e.g., #0H[12].

following, real-time control, state constraint, tower crane. Indirect methods aim at solving the necessary conditions of
Pontryagin’s maximum principle (cf1B]). Suboptimal MPC

I. INTRODUCTION methods adopting the latter principle are presented, mg.,

HE goal of tracking control is to ensure that the outpt[114]' [15]. ) o

of a dynamical system follows (at least asymptotically) a Several approaches to path-following control exist in the
literature. From a geometric point of view, the problem can
of time, this is usually referred to dsajectory tracking con- be tackled by transforming the system.int.o new coordinates
trol. On the contrary, if the time evolution along the refere of a transyerse normal form and de_,\S|gn|ng controllers for
signal is left as a degree of freedom for the controller, tH8€ dynamics transverse and tangential to the zero path errg
resulting control scheme is callggth-following control, see, Manifold, cf. [L6], [17] and references given therein. Other
e.qg., . approaches investigate Lyapunov and backstepping teasbsiq
&d8l: [19] and hybrid control strategie2().

given reference. If the reference signal is a predefinedtimmc

Model predictive control (MPC), sometimes also nam L .
receding horizon control, relies on solving an optimal coint Recent works21}-{25 study the combination of MPC with

problem (OCP) at each sampling instant and applying the fipgth-following. The benefit of this approach is the poskibil
part of the optimal control input to the system. Subsequentf® Systematically account for input and state constraBased
the optimization horizon is shifted forwards and the ocP" different MPC formulations, with an explicit terminal
is solved again with the actual (measured) system states' 340" _cpnstramt |n_2[2], wﬂhout_g terr_mngl region constraint
initial conditions, cf. P]. MPC has the advantages of bein(fUt utilizing _acertaln c_ontrollablllty CI’I'[.e.I’IOI’l in2{], or based
able to deal with multiple input multiple output systems, tg" contractive MPC in 1], the stability of the proposed
systematically account for constraints, and to achievepain o Predictive path-following controliers is proven. Howeveery
mal (in an appropriate sense) closed-loop behaviour. aurr@ften the P“’b'em of an eff|C|er_1t regl-tlme_ |mplement_a_t|on
research is amongst others devoted to the application of MBC cOPe With very small sampling times is not explicitly
to complex nonlinear dynamical systems and to systemjticafddressed. To overcome this issue, the authoraljpgropose
derive stability and convergence conditions. Howeveraligu & in€ar time-varying formulation based on the discreteeti
the computational demand of the solution of the underlyinyStem equations. This yields a convex quadratic progran
OCP is rather high. Therefore, real-time capable formoteti Wich can be solved efficiently at each sampling instant.
of MPC have been developed, which are able to deal with tﬂ_ge apphcatpn of the resulting controller to an X-Y table
control of complex dynamical systems subject to small sarf.- Presented inZe}.

pling times. Very often the idea is to refrain from <:omputin'¥:he contribution of this paper is to combine a suboptimal

the optimal solution of the underlying OCP at each sampli PC scheme based on indirect methods with path-following.

instant. Rather a suboptimal but feasible solution is $eatc 1€ Proposed framework is motivated by the application to

a laboratory experiment of a tower crane which is shown

Manuscript received November 6, 2012; revised July 19, 2@t8epted in Fig. 1. The goal is to achieve a fast model predictive
August 22, 2013. . . . _path-following control under consideration of input caasits

M. Bock and A. Kugi are with the Automation and Control Institute, f th hi f he deri . f th

Vienna University of Technology, 1040 Vienna, Austria (eilmgboeck, of the system. This paper focuses on the derivation of the

kugi} @acin.tuwien.ac.at). proposed control framework and its implementation on a real
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Fig. 1. Tower crane system. _ v ‘

hardware for obtaining measurement results whereas igfabil
and convergence are not rigorously investigated. The tower
crane is an underactuated mechanical system which exhibits
nonlinear dynamics. It can be represented by a mathematical
model with a state space dimension of 10 and three control
inputs. The controller operates with a sampling time2 ofis.
These facts demonstrate the performance of the proposed pat .. ... .
following MPC. Nevertheless, the presented control frame-
work is also applicable to predictive path-following fohet
dynamical systems. A
Compared to the approach described Ri]] [26] the
proposed method does not rely on a linearization of the syste
equations, constraints or terms related to the cost fumatio
Furthermore, in contrast to this paper the method,[[26]
utilizes discretization techniques to obtain a quadratigpam
at each sampling instant, i.e. it belongs to the class oi:t:iireFig_ 2
methods. The quadratic program is solved to optimality ehea
sampling instant by means of a static optimization solver.
This work is organized as follows. Sectidh introduces Il. TOWER CRANE SYSTEM
the considered tower crane system and the corresponding\ tower crane is a representative benchmark for path-
mathematical model. The objective of path-following COntr o)15ing control with real-world applicability. The cofts
together with a suitable parameterization of the path apdeq japoratory experiment has already been investigated i
t_he MPC approa_ch are pr_esented n _Secﬂbn The_ real- giferent contexts in 27 and [28]. For the sake of self-
time implementation is devised in _SecndM. In SectionV,  containedness and clearness of this presentation, theiglesc
the proposed control framework is evaluated by means @f, of the system together with the overall control concept
_S|mulat_|on and experimental results. Conclusions are rayy,, corresponding mathematical model, and the experithent
in SectionV1. setup including sensors and actuators are shortly redaeitl
Two mathematical models are derived. Firstly, a comprehen
sive mathematical model is assembled in Sectle® which
is used for simulation purposes. Secondly, a specific cbntro
structure is proposed in SectidihrC which allows to set
In the context of an OCP, the optimal quantities are inditatélP @ compact model serving as basis for the path-following
with the superscript. The total derivatives of a function(t) ~controller.
with respect to time are denoted by i, 2(®), and so forth.

Given a vectory € R™, [y] o represents the quadratic formA. Description of the Tower Crane Experimental Setup

yTQy with the positive (semi-)definite matri@ € R"*". The Figure 2 gives an overview of the considered laboratory
indexi refers to theth component of the respective quantity. Aexperiment. The tower crane has five degrees of freedon
diagonal matrixD with D; ; = y; is denoted as diag). The (DOF), namely the positios; of the trolley along the jib, the
orthogonal basis vectors of the Cartesian coordinate mystiength sy of the cable from the trolley to the load, the angular
are denoted as,, e,, ande.. displacementy; of the jib, and the angular displacemenis

Overview of the tower crane system.

Notation
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and ¢3 of the cable with respect to the trolley. The cable iand the actuator input matrix

guided on the trolley by means of a sleeve mounted on a

gimbal, which allows the cable to sway in any direction. The B: = diag([Riifl ks RSkBD (2d)
gimbal has a vertical distance af= 0.92m to the ground of . . o
the workspace. The laboratory tower crane is an underatualth L. 9. di, Ri, ki denoting the load mass, gravitational
mechanical system. Three DOF are actuated £,, and ¢,) acceleration, viscous friction coefficients, transmissiatios,

by means of DC motors with armature voltages: = 1, 2,3 and torque constants, = 1,2,3, respectively. The inertia
and currents;, i — 1,2, 3, while ¢, and ¢; are unactﬁa{e(,j matrix D (¢) and the vector of centripetal and Coriolis terms
1y - 3 <y .

All five DOF sy, 59, ¢1, b9, and s are directly measur- C(q,q) g are omitted for brevity. Thg trolley is.driven by
able by means of incremental encoders. The correspondm ans of a toothed belt_ with, denoting the raqllus of the
velocitiessy, 49, by, s, andds are obtained by approximatep ley. The constant radius of the cable drum is denoted as
differentiation. The angular displacements und ¢3 of the "2
cable are measured by the angular displacements of thesleev
However, to reduce friction, the guidance of the cable in th@. Control Concept and Mathematical Model

sleeve is not completely tight. This loose guidance inh#yen In principle, the comprehensive mathematical mod8l (

introduces measurement errors, which will become appar%r]at the laboratory tower crane with the idealized current

in SectionV. controllers could be used as the basis for a path-following
. . controller. However, to compensate for the friction in the
B. Comprehensive Mathematical Model actuated DOF and to be independent of the actual value o

The mathematical model of the laboratory-scale tower crafife load mass it is advantageous to additionally use vglocit
is calculated based on rigorous physical considerations &yntrollers for each of the actuated DOF in another level
means of the Euler-Lagrange equations of motion, see, edf..the cascaded control structure. It turns out in practice
[29]. To this end, it is assumed that the cable and the loggat the velocity controllers perform well and the closedd
can be modelled as a mathematical spherical pendulum. Th{framics can be tuned considerably fast, cf. Sed#i@ This
particularly entails that the friction torques in the girhbareasoning allows to set up an overall mathematical model of
(corresponding to the DOB, and ¢3) are neglected which all components where the dynamics of the velocity control
is justified as the pendulum motion of the load is nearly unoops is neglected. Thereby, the acceleratiénss, and ¢;

damped. The laboratory experiment suffers from consideralpf the three actuated DOF are utilized as new control inputs
friction effects in the actuated axes, which, for the sake ¢f_ [ur us UB]T_ Thus, in consideration ofl], the overall

simplicity, are modelled as viscous friction. mathematical model reads as

Each of the DC motors at the laboratory tower crane
is equipped with a current controller which sets the corres1 =u; (3a)
sponding armature voltage, cf. Fig. The dynamics of these 5, —q, (3b)

subordinate current control loops are much faster than the
typical mechanical time constants of the crane. Due to this s
fact it is justified, by arguing along the lines of the singuladv = — Dy (¢) (DA () u+ Cua (4, 4) da
perturbation theoryd0], to utilize the actual currents of the +Cv (¢,4) 4u + 9u (9) ) (3d)
DC motors as inputs to the system.

Based on these assumptions the resulting mathematiga{yhich g,; = [¢2 %]T are explicitly given by
model of the tower crane partitioned into the actuated and

(3¢0)

unactuated part reads as — b :m (COS (62) s — 5 cos () sin (¢s) us
D D . Calg,q) C LA . L .
{DEAU(EZq)) DAUU(E](I))} + {CUAA(EIq’(Iq.)) C?UU(E;{ 5)_ q + 2520203 sin (¢3) + 5267 cos () cos (@) sin (¢2)
Y Cond) - 2<§2§.Z.52 -COS (¢3) — gsin (¢2) — 2%2451 cos (¢2) sin (¢3)
) |:9A (q)] ) |:TF (q)} _ {BT} g_ " —2i2¢51¢3 cos (¢2) cos (¢3) — s1¢7 cos (¢2)) (3e)
9u (q) 0 0 Iy b3 =— . (sin (¢2) sin (¢3) uq + s1 cos (d3) ug
with the generalized coordinates = [s1 s> qbl]T, qu = — s8I0 (¢2) ug + 25161 cos (¢3) — 28261 sin (p2)
(65 ¢s]", andg = [¢} ¢F]". The equations of motiorty + 28963 — $262 cos (¢3) (cos (¢2)) sin (¢3)
consist of the gravitational and friction terms — 5162 sin (¢2) sin (¢3) — 25261 cos (¢2) (cos (¢3))2
ga(q) = [0 —mpgcos(da)cos(és) 0]  (2a) +52¢3 cos (¢3) sin (¢3) + g cos (¢2) sin (d)g)) )
gu (9) = zig ZZ(&Z))Z?; Ezj;iz (20) " The model B) solely contains explicit differential equations

}T and its complexity is much lower than that of)(which

r(q) = [dis1 dady dsdn (20) permits fast online calculations. It can be rewritten as st fir
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velocity current i i . .
=3 A controllers controllers the time evolution of the path parameter is not predeterdhine
= = 1,des, . ‘v .
33 e ot dipg——for L} aboratory but left as a degree of freedom for the controller. Intuljiiae
e 3 aee |78 OS2 IO Lo P e by path (7) can be defined in the output space of the dynamical
g° ) s.ls.zgfr",f9r,‘?’?,jl 1273’@51 ‘DC motors system. The purpose of the path-following controller is to
o | ‘ determine inputs such that the output= h (z) of the system
(4) follows the path 7) with ¢ = m. This is usually referred to

asoutput path-following, cf. R3]. To simplify the presentation,
we restrict our considerations to output paths defined in g
flat output space of4), see B1] for details on differential
flatness. In contrast to the general case, this allows tosghoo
order system of differential equations in state space forfi€ components (assuming > 2) of p (¢ (¢)) independently.
completed with an outpug € R™ Alternatively the geometric reference to be followed can be
defined in the state space € R"™. In general this entails
&= f(z,u) (42) that the components of the geometric reference cannot by
y=h(zx) (4b) chosen independently from each other. Furthermore, apar
) T o o from special cases (see, e.@®2]) it is not possible to state a
with = = [¢" ¢"] . The set of feasible inputs is given by curve in the state space defined by

Fig. 3. Overall control structure.

_ 3 —2 —2
U={ueR’|-2ms” <u; <2ms™, 0 — po (0) €R™, 0 € [00,61] C R ®)
—2ms 2 <u, < 2ms 2, (5)

—2rads? <us < 2rad S,Q} . which the system is supposed to follow. Instead, one needs ft

consider a manifold in the state space which is subsequentl
Figure 3 shows the proposed control structure with subordieferred to as theero path error manifold [32]. In certain

nate current and velocity controllers which is implemerited cases it is possible to deduce an explicit parameterization

this way at the laboratory experiment. This structure toget the zero path error manifold in the form

with the simplifications stated so far yields the compact .

mathematical modelj which is not only able to accurately P ('9-,9797 . ) C R™ 9)

describe the dynamic behaviour of the laboratory toweresran | hi . . h
together with the current and velocity controllers but isoal One natural approach is to derive) from a geometric pat

computationally very efficient. The mode)( which is inde- defined in the output space of the system. In particular,case

pendent of friction effects and the actual value of the lodd! @0 output path defined in a flat output space 4)fthe
mass, serves as a basis for the path-following controlfer. parameterization9) can be systematically calculated. This

the following, an MPC is adopted as path-following conoll fa:t |sf also hutlllzed for the con§|dere_d towelr crane system,
The reference iNPuts; des, $2.des, andey qes for the velocity Therefore, the subsequent considerations rely®n (

controllers are generated by simply integrating the contro FOr the tower crane, the goal of path-following control is
inputsu;, i = 1,2, 3. that the position of the load follows a predefined geometric

path. From this point of view it would be natural to formulate
the control task as an output path-following problem. Hosvev
we will reformulate the problem as a path-following problem
This section aims at precisely specifying the problem @} the state space. There are two main reasons for this; Firsi
path-following control. The required mathematical prefier- for the design of the controller, it is desirable to use as
ies are developed and the control approach using MPCpigich information about the system as possible. As will be
formulated. For the sake of conciseness, most of the reisultgjescribed in Sectionll-B, the load position of the tower
this section are given for the considered tower crane systefitane constitutes a flat output of the system. This has thg
advantage that all system variables (states and inputshean
A. Problem Satement algebraically parameterized by means of the flat output &nd i
time derivatives, cf. 31]. The second reason is that existing
stability results on suboptimal MPC usually require to pizea

I1l. PATH-FOLLOWING CONTROL

In the following, a map

0—p(0) eRY, 0elfb] CR (6) the whole state in the cost functional, see, e §., [
. . . i . Based on the preceding reasoning, the path-following prob:-
is considered, which defines a geometric path lem for the tower crane can be formulated as follows. Comside
P={peR?|p=p(0), 0 € [0, 01]} (7) the zero path error manifold9) in the state space with

) ) 0 € [0y, 61] and the path-following error
in a vector spac®?. 0 is the so-called path parameter which

is supposed to take values in the interi@J, 6;] C R. It is e(t)=z(t) — ps (9 ),0(t).6(),.. ) . (10)
assumed that the start and the end point of the path corréspon

to = 0y andd = 6,, respectively. Path-following control for Suppose that the path-following problem starts at theahiti
a dynamical system aims at tracking a geometric path as giwene ¢,. The goals of the path-following controller are to
in (7). The difference to trajectory tracking lies in the facttthaachieve
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toc=1[0 6 § o® g»]"
error manifold

(A) atime evolution of the path parametesuch that (t) € , the parameterized zero path
[60, 61] YVt € [15()7 OO) and limy— o 0 (t) =04,
(B) asymptotic path convergenéen, ., |le () || = 0, and
(C) satisfaction of the system constraints, iuét) € U Vt € ¢ = Q). G € [0, 0]
[to, 00). is obtained, see als®B4]. Furthermore, the same procedure

One remark concerning the first goal (A) is necessary. Sorard equationX2b) yield the system inputs
authors additionally require that the path parameter feegis

6(t) >0 YO(t) € [00.6:) [19, [22 or (1) > 0 Vit € ¢ = pu(C), G € 6o,61], (16)
[to,00) [24) which corresponds to strict monotonous angihich in the nominal, undisturbed case with consistentaihit
monotonous forward motion along the path, respectivelyongitions guarantee exact path-following, provided it
These requirements are not used here. Hence, the MPC fQ¥nstraints §) are not violated. The expression, (¢) will
mulation has to ensure an adequate forward motion towaiglst pe utilized for the proposed path-following MPC but it
the e_nd of the path, e.g., by appropriately choosing the c@stseful for comparison purposes. Therefofé!) is also
functional of the underlying OCP. contained in¢ to allow the calculation of, (¢) and p, (¢)

In principle it is possible to not only account for input buom a given trajectory (¢).
also state constraints of the system, igz) € X with X 5 principle the presented control scheme can also b
d(_ascribing the set of feasible states. AIFhough this c_andn_md applied to other dynamical systems. Note that a major steyl
with the same methods as presented in the following, it dogSthe calculations is to find the parameterization of theozer
not lie within the scope of this paper. path error manifold15). As shown this task can be carried out
in a straightforward way ifp. (¢) is derived from an output
B. Parameterization of the Zero Path Error Manifold path defined in a flat output space. In the non-flat case, this

Based on the preceding problem specification the firdtight be very difficult.
task is to find the parameterization of the zero path error
manifold ©). As outlined, this is in general a non-trivial taskC. Model Predictive Control Approach
However, based on the fact that the load position in Cartesia
coordinates, given by

[—52 (sin(¢1) sin(¢s) + cos(¢p1) sin(¢pz) cos(¢s))
yL =

(15)

To accomplish the goals for path-following formulated in
Sectionlll-A, an MPC approach is utilized. This requires the
formulation of an appropriate OCP based on the currentsyste
statexy, which is solved at every sampling instant= kT,
with the sampling timeT,;. As mentioned before, the MPC

52 (cos(¢1) sin(¢3) — sin(¢1) sin(¢2) cos(¢s))
h — s9 cos(¢a) cos(p3)

s1 cos(¢r1) also has to take care of a suitable time evolutic) along
+ [31 sin(qﬁl)] 7 (11) the path. To this end, a linear, time-invariant auxiliargtsyn
0 (timing law) is defined as (cf.24])
constitutes a flat output of the system (&8]), this problem 01000 0
is greatly simplified. The flatness-based parameterization 00100 0
the state and the input reads as (=10 0 0 1 0OfC+ |0]w, a7)
e 00001 0
T =y (yL.,yL,yL,yL ) (12a) 00000 1
u =1 (y g iyt <4)> (12b) A \;
2 u LyYL,YL,Yr, 5 Yr, )

which can be utilized to obtain the desired arameterinatiél)v ith & new unconstrained virtual control input With these
- i P ingredients, the OCP of the MPC at time instgptreads as
Da (0,0,9, .. ) from the output path defined by

min J (t, 7 (+)) (18a)
0 — py, (0) € R?, 0 € [0, 01]. (13) o()

To this end, the mapl@) is successively differentiated with Subject to

respect to time yielding (cf.33]) . e -
at (py, (0)) = # 0)0 (14a) E: AE + Bw, Z(tk) = @:,1 (tye—1 +T5) (18c)
d? &p o Op p u(t) e U. Vit € [tg,ty + T (18d)
— (py, (0)) = =55 (0) 0% + 2= (0) 0 14b . ’ ’
<(iit32 Py (0)) = 52 (¢) o6 ©) (14b) 1 (1) € [00,61], Vt € [ty tr + T (18e)
il - ) 0 o3
de3 (pyz (0)) = 1 (07 9,6,0 ) (140)  ith 5 — [a® w]T and the cost functional
d4 L
— 0)) = 5 (0,0,6,0) 6 . 14d AT
dt4 (pyL( )) 902( s Uy Uy ) ) ( ) J(tk@()):/ l(i,c,ﬂ,’lIJ)dt

By inserting the expressiond3) and (@4) into (129 and e _
combining the path parameter together with its derivatives +V (@t +T).Cte+T)).  (19)
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HereT is the prediction horizon and; the measured systemhas already been applied to the considered tower crarg/jn [
state at sampling instamt. The initial condition for the aux- for set-point stabilization and in2f] for trajectory tracking.
iliary system is set ta; , (tx—1 + Ts), which is the optimal However, path-following MPC has not been investigated so fa
solution found at the previous sampling instant; and eval- which is especially challenging due to the increased numbe|
uated atty, = ti_ +Ts. Fortg, ¢ (to) = [90 00 0 o]T of states and inputs and the state constrdiBg( The reasons

is used. The cost functions in9) are chosen in the form  for choosing GPMPC are the memory and time efficient
computations and the low implementation effort.

1(z,{,u,w) =% { [f — D (E)] + [C_* Ce) The gradient projection method aims at solving the neces;
Qe Qc sary optimality conditions of Pontryagin’s maximum priplei
+ [a] 4 [w] } (20a) (cf. [13)) for the OCP (83-(18d), i.e. without the state
Ry Ry constraint 18e),
and = f(z",a"), T (tg) = (21a)
T I - ¢ =AC +Bw", (b)) =Gy (1 + 1)) (21b)
V@O =5 | (s-n @)+ (C-¢) ]
(20b) . T
) ) . A= — (87{{) (z*, ¢, ‘*,/\;,)\*) (21c)
respectively. The bar refers to internal variables of thgoal oz
rithm. Having in mind the goals of the path-following MPC, . OHN\T . L
the cost functional weights the deviationofrom the desired Ad=-— (875) (Z5, ¢ 0%, A5 0F) (21d)
zero path error manifold and the deviz%tion offrom the
desired end point, = |6y 0 0 0 0] . The focus lies 7 =
o o, } @G AN < B (3,000, X0)

on the MPC formulation without explicit terminal constresn
which on the one hand improves the computational efficiencyt € [ty tx + T, Vo € {[ } \u eU,we IR} (21e)
when solving 18) and on the other hand gives the possibility

for the application of efficient suboptimal MPC schemes, cf. ov\T B

(8], [14, )= (55) @ @) C D) @
Several authors investigate stability of MPC without eipli o

terminal constraints, see, e.g8],[[35], [36]. However, an T (91 T (b +T). & (te =T 21

in-depth stability and convergence analysis for the pregos ( e+ T) = aC (I (e +T), ¢ (b + ))’ (219)

control approach does not lie within the scope of this paper lihere the Hamiltonian reads a#f (2,0, Ao \) =

Let v (¢,t;) denote the control input tolB) at sampling 1(z,C, 3 @) + AT (z,3) + )\CT (AC + Bw). The gradient
|risgant tkIW'éh f € [tx +|T} In ;[he 'dféil '\:I:C Icat?el projection method is especially well suited for OCPs withou
(18) is solved at every sampling instaft yielding the globa terminal constraints because in this case the adjoint sstate
optimal solutionz* (¢, t;) together with the optimal value of)\ _ [/\T /\T] are fully determined by 21f) and Q1g.

the Coit functionall” () = J (i, 0" (¢, 1)). The optimal Therefore, a simple backward integration @fl¢ and @1d)
!nput v* (t,t) 15 applied to the system .dur!ng the. t'me’ls possible. Letij (t,t) denote the input in iteratiog of
interval [ty t + Ts). At t + T, the optimization horizon y gradient projection method. Starting with an initiakgsi

is shifted forwards, the system state is measured, a6 ( (t,tr), the method can briefly be described as follows (for
is solved again. However, the requirement to calculate tﬂgeother details seelf]).

optimal solution of 18) within the sampling tim&’; = 2ms is Algorithm 1 (Gradient Projection Method)

computationally intractable. Therefore, a suboptimahtsiyy 1) Integrate the system differential equatio@dd, (21b)

is employed which does not require the calculation of the op- ; d direction b ldi
timal solution of (L8) but basically relies on the improvement i:ndo(rwar irection by usingy;) (¢, tx) yielding z;
(4)

of the value of the cost functional from one sampling instant 2) Integrate the adjoint differential equatio46), (21d) in
to the next, cf. 8. S S ) o
8 backward direction by utilizing the terminal conditions
i (21f) and @19 yielding A, ;) and A¢ (5
V. RE.AL. TIME IMPLEMENTATION 3) Calculate the search direction as the negative gradien

Fast MPC schemes usually relax the requirement of finding  d;) (t) = — (55)  (Z(5): (i) ) (1) s M) A )
the optimal solution at each sampling instant. Instead, and4) Solve the line search problem
particularly with regard to stability arguments, they rely an o = argmin J (tx, I () (t, ) + ad(j) ())).
improvement of the current value of the cost functional from >0
one sampling instant to the next.

For solving the path-following MPC in a suboptimal and setj « j+1and return to step 1)
therefore real-time capable fashion, an MPC scheme base . ' .
on indirect methods using the gradient projection method ?)T denojges the projection opgrator ontq the feasible se|
utilized, subsequently referred to as GPMPC, see, d4. It {|[u" w] l[uceUwe R}- The line search in steg) of the

5) Calculatev(jﬂ) (t,ty) =11 (’D(j) (t,tg) + a*d) (t))
6) Check if some termination condition is satisfied, if not
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algorithm is usually carried out approximately, for exaeplwith n = [771 N2 M3 N4 7]5]T can be easily deduced.

by using polynomial interpolation. When using Algorithm INotice that the inverse transformatign=~; * (¢) exists only

in the context of suboptimal GPMPC it is terminated aftesn the subspac¢¢ € R®((; < 6, }. From @46 the original

a fixed number of iterationsV. Subsequenthi y (t,4x) is  input

applied to the system during the time inter{al, t;, + T%). At w =2 (n,wy) (26)

the next sampling instanti y) (t,t,) is used to construct an

initial input ooy (¢,tx+1) (cf. [14]) and the gradient projection

method again perform’ iterations. )
Algorithm 1 reveals the advantages of the gradient projeg@nstraints

tion method which allows an efficient MPC implementation. iy 7, (¢, 3, (-)) (27a)

In each MPC step/N numerical integrations of the system  #:()

and adjoint differential equations have to be performedciwh

can be calculated. Insertin@g) and @6) into the OCP 18)
(apart from¢; > 6y) yields the new OCP without state

is computationally inexpensive and results in a predietab?ubjeCt t©

behaviour. Furthermore, a scalar optimization problemtbas = f(za)), z (ty) = = (27b)
be solved fora*, which, however, can be done efficiently . N B B .

in an approximate fashion. Provided that a sufficiently $mal 0= A+ By, 7 (te) = M (-1 +Ts) - (27€)
sampling timeT, is used, a small number of iterations (e.g. u(t)eU, Vt € [t te + T, (27d)

N = 2) suffices to achieve satisfactory control results. .

Considering the problem at hand, the main disadvantage'¥y
GPMPC in the presented formulation is that state consgaint t+T
like (188 cannot be handled in a straightforward way. Tt (te, 0t () :/ U@, y1 (1) 5 8, y2 (7, @) di

ty

B. Application to Path-Following MPC +V @ +T),m @t +1)).  (28)
To allow an application of the presented GPMPC to thEhe termij;_, (¢, + T;) denotes the optimal solution of
OCP (L8), the state constrainil8e has to be implicitly taken the previous sampling instant, evaluatedtat, + 7, where

into account and must not appear explicitly in the OCP. Hefer to, 7(to) = 7" (C(to)) is used. Utilizing 25) and
only the upper bound (26), one can easily calculate the optimal quantiti¢sand

¢ <6y (22) w* from the optimal solution of Z7) #* and w;. The so-
) . . lution of (27) automatically satisfies the constrair22] and
is con5|der§d Where_as the Ic_Jwer bouho!z 09 is supposed to ; (t 0% (£, 1)) = Jy (£, TF (£, 1))
be automatically fulfilled. This assumption is reasonabiees  apother rationale for omitting an explicit implementation
1 (to) = 6p and the cost functional weights the deviation ogf (i > 0, is that the solution of the transformed OCP
¢1 from 6,. Therefore, by an appropriate choice of the weights)" exhibits singular arcs (cf.38]) whenever the original
for ¢1, the MPC will aim at steering; to ¢, with ¢> > 0, i.e.  congtraint p2) is fulfilled with equality (cf. B8]). At the
(1 increases, which means that> 6, is not violated. initial point, where(; (t) = 6y, this would lead to numerical
_ The state constraini2g) is considered by combining the yiicities in the solution procedure of the gradient patien
ideas presented ir87] and [38]. The concept is to transform method.
the states of the auxiliary systeh7] into unconstrained coor- The OCP 27) can be solved with GPMPC in a receding

dinates via an invertible transformation. By introducingi@ck | .i-on fashion, which results in a real-time capable path-
variablen; (t), the inequality constraint2@) is formulated as following MPC

an equality constraint

th o, = [a® u’;t]T and the cost functional

G—01+ l,ﬁ -0 (23) V. SIMULATION AND EXPERIMENTAL RESULTS
2 )
which guarantees satisfaction &2j for all 7, (¢) € R. Suc-
cessive differentiation of2@) and substitution of the system
equations 17) until the inputw appears explicitly yields

This section contains performance evaluations of the pro-
posed MPC strategy and results from the laboratory tower
crane system introduced in Sectitin In addition, robustness
investigations and a comparison with a trajectory tracking

G+mn=0 (24a) MPC are carried out.
2 The output path defined b is represented by means of
Ga 1y + g =0 (240) a four tist (?ontinuously di%fﬁ)rentiagle B-splineycurvah/vi
Ca+3m2ms +mng =0 (24¢)  the path parameter values at the beginning and at the en
s+ 303 + Anama +mns =0 (24d) of the curve satisfyingdy = 0 and 6, = 1, respectively.
w + 10m3n4 + 512ns + niwy = 0 (24e) Henceforth two different geometric paths,, 1 and p,, »
) ) o ) will be considered. Both output paths startpat ; (6p) =
with the integrator chaimy; = 1.1, i =1,...,4 and the new [0.35m 0.5m 0.15m]", i = 1,2. The initial condition of

control inputw; = 75. From @3) and @43-(24d), a nonlinear

) X . . the system is either chosen in conformity with this startin
invertible coordinate transformation Y y 9

point (nominal initial condition) or with a slight deviatio
C=m(n) (25) according toy, = [0.4m 0.5m 0.2 m]T. Figure 4 shows
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Fig. 5. Values of the cost functional over time for deviatingial conditions.

linear run-time complexity in the number of iteratiod$.
Considering the sampling timé;, = 2ms, N = 2 is chosen,
which results in a satisfactory control performance angdsa
enough time for other tasks to be fulfilled by the CPU. Due
to the small sampling time, it suffices to apply the constant
value oy (tx, tx) during the sampling intervaly, . + T%)

Fig. 4. Desired output paths,, 1 (6) andp,, 2 (#) represented by four
times continuously differentiable B-spline curves (all ntiges in m).

TABLE | to the system.
COMPUTATION TIME OF THE GRADIENT PROJECTION METHOD FOR At the |ab0|’at0ry experiment the COﬂtrO' structure acmdi
DIFFERENT NUMBERS OF ITERATIONSN. . . . . . .
to Fig. 3 is utilized. All subsequent simulation studies are
Computation time in ms carried out with the comprehensive mod#) ¢f the laboratory
N | mean standard deviation tower crane. In particular the same velocity controllergoas
2 | 085 0.065 the laboratory experiment are used in the simulation.
3 | 1.28 0.073
5 | 213 0.097 A. Evaluation of the Proposed Path-Following Controller
10| 427 0.17 In the following, the indicesx, and sim refer to the exper-

imental and simulation results obtained from the applicati

) . f the proposed path-following MPC to the laboratory tower
the desired output paths in the workspace of the crane. T8 o Fyrthermore, quantities labelled with the indedenote

cylinder and the dashed arc represent the inner and OWGL i yjated results of the "ideal” MPC case, where the-opti

constraints_ fors; with values0.2m _and 0.8m, respectively. o) solution of L8) (up to numerical accuracy) is calculated in
The complicated shapes of the desired output paths arerchog ch sampling instant and applied to the system. If confisio

for demonstration purposes to illustrate the performariceen excluded, the indices are omitted. In all cases the desieed g
proposed ponyrol SCheT“e- ) metric path is given by, ;. The following Subsectiong-Al
The Welghtlng matrices of the path-following MPC are,, 4\, o2 present results of the proposed path-following con-
chosen according to trol concept for the scenarios of a deviating initial coiufit
Q. = diag([looo 1000 1000 200 200 a??han etxtetrnal disturba:onc? forg;;;)c/t/ing on the tIoa(.j. A videq
= of these test cases can be foun :Ilwww.acin.tuwien.ac.
5050 50 5 5]) (293) at/fileadmin/cds/videos/craneathFollowingNMPC.wmy

Qc=diag([5 2 1 1 1J) (29b) 1) Deviation from the Nominal Initial Condition: The time
R, =diag([1 1 1]) (29¢c) evolutions of the values of the cost functional in each sargpl
Ry, = 0.05 (29d) instant are shown in Figh. The requirement of monotonically

e = diag([l 111 1]) (29€) decreaging yalues of t_he cost funct_ional is fquiIIed, abramin
small time intervals in the experiment, which result from

and S, equal to zero. The control algorithm is executed on theeasurement inaccuracies and the approximate diffetiemtia

real-time operating system MLAB XPC Target on an Intel scheme to estimate the velocities.

Core-Duo CPU E6700 witl2.7 GHz. Forward and backward Figure 6 shows(; exp together with the virtual inputveyy

integration of the system and the adjoint differential e¢gues compared to¢; ¢ from the ideal MPC-case. The quantities

within the gradient projection method is carried out by neeam; e, andweyp are calculated by means d5) and @6). The

of Heun’s method witt21 equally spaced discretization pointsconstraint¢; < 6, is fulfilled and the assumptiog; > 6,

on an optimization horizon of’ = 2s. To illustrate the real- is also justified. At the laboratory experiment, the motidn o

time capability, the execution time of the gradient praftt the load along the path needs slightly more time comparec

method according to Algorithm 1 is determined for differentio the ideal MPC-case. This results from the suboptimal

numbers of iterationsV. The respective number of iterationdVlPC implementation and the measurement and modelling

is carried out for one fixed initial conditiorD00 times in order inaccuracies at the laboratory experiment.

to calculate the mean and standard deviation of the executio Figure7 shows the inputs from the laboratory experiment

times which are shown in Table The results confirm the in comparison witha which is calculated by inserting (¢)

Post-print version of the article: M. Bock and A. Kugi, “Real-time nonlinear model predictive path-following control of a laboratory tower
crane”, IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1461-1473, 2014. por: 10.1109/TCST.2013.2280464
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1109/TCST.2013.2280464

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, N@, JULY 2014 9

timetins

Fig. 6. Path parameter evolution and virtual inpubf the auxiliary system & b M . s
for deviating initial conditions. = . . .

0.2
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Fig. 9. Trajectories of the states, sa, ¢1, ¢2, and¢s in comparison with
the desired trajectories for deviating initial conditiqia#i quantities in m and
°, respectively).

5 10, 15
timetins
Fig. 7. Control inputu for deviating initial conditions (all quantities in
ms—2 and rad s 2, respectively). ate manner but also compensates for the deviation in thalinit
condition of the system. The end point of the desired geametr
path lies atp,, 1 (1) = [-0.2m —0.65m 0.3 m]T. Fig-
ure 6 shows a small deviation af ex, from 6, at¢ = 20s.
Despite this fact, the load is virtually at the end point of th
path with yr, (20) = [-0.199m —0.647m 0.3002 m}T.
Furthermore, the quality of the proposed controller can be
evaluated by comparing the measurements of the statgs
with the desired zero path error manifold according 16)(
This study is carried out for the states, ss, ¢1, ¢2, and

5 10 15
timetins

5 0.5 - zf ¢3 in Fig. 9. The desired trajectory in the state space is
Fo4 calculated by inserting (¢) into (15). The corresponding
20.3 quantities are marked with. Again, the compensation for the
=

initial deviation is clearly visible. The differences i, and
¢3 stem from the loose guidance of the cable in the sleeve

0.2

0 5 10 15 20

timetins attached to the gimbal (cf. SectidrA) and from sticktion
h gr, for d I cond I effects.
Fig. 8. C i ith 9 iating initi iti o . - -
qlugamities inomi arison oz, with g, for deviating inftial conditions (a 2) Deviation from the Nominal Initial Condition and Ex-

ternal Force on the Load: In this subsection, not only the

deviation in the initial condition of the system is consielér
into (16). The good agreement confirms the quality of thbut additionally a disturbance force acting on the load is in
underlying mathematical model. cluded. The following results solely refer to the measunetme

The performance of the path-following MPC at the laboPbtained from the laboratory experiment. As can be seen ir

ratory experiment can be assessed by means of Bigmd Figs. 11 and 12, impulse-like disturbance forces are applied
9. Figure 8 shows the actual position of the loag in com- to the load att ~ 6s andt ~ 24, respectively. These times
parison with the desired geometric path. Due to a lack of are marked with vertical dashed lines. One disturbancersccu
appropriate sensorg;, (t) is not directly measured but insteadvhile the path is traversed and the other one at the final
calculated by inserting the measuremerit) into (11). The position after the path traverse is completed. All quaesgiti
quantityy;, (¢) is obtained from 13) with # = ¢; (¢). Note that are calculated as explained in the previous Subsed&tidi .
the controller not only aims at tracking the path in an appgrop  Figure 10 shows the evolution of the path parameter and
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T
(§0'5 1 T R Fig. 12. Comparison ofj;, with §j;, for a disturbance force acting on the
- : : : load (all quantities in m).
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Fig. 11. Control inputu for a disturbance force acting on the load (all™® .3
quantities in ms2 and rads 2, respectively). 04

5 10 15
timetins

the values of the cost functional in each sampling instahe T':i%- 1|3- ICO_;‘?PE}”S‘?” :’.bf thf ?hGSilfet‘)j Vet'ocmﬁs,dcsz §2’d§s{ (bladCS' V;’_ith Fh‘?f |
. ~ . ctual velocCitiessy, s2, @1 a e laboratory experiment for deviating nitia

disturbance at ~ 65. causes the path parameter evolution @}mditions (all quantities in nTS' and rad s, respectively).

slow down resulting in a complete stoptat 9s. As a result,

the overall travel along the path lasts a few seconds longer

than in the undisturbed case, cf. Figsand10. As soon as the B. Robustness Investigations
vglue of the cost functional retqrns to .the valqe it had witho According to Sectionl-C the path-following MPC assumes
d_|sturbance, the path_ traverse IS continued W_'th the cc_mi—fu perfectly working velocity controllers. In this regard,gFil3
tional values converging o zero in a monptop_mally_deorq;as shows the comparison of the desired with the actual veéciti
manner. Th_e_ disturbance &t 24s_has a §|gn|f|c_ant |nfluenceof the actuated axes at the laboratory experiment for the tes
on the posmon. of the load (cf. F!gl2) with a displacement case of deviating initial conditions (cf. Subsecti¢iAl). The
in e;- a_md ey-direction of approximately).2m and_ 0.15m, desired VeloCities:, e, $2.des, and qgl,des are calculated by
respectlvgly. Thus, large valugs of the cost functlonalthee_ integration of the control inputs,;, i — 1,2,3, according
_result, which, however, are quickly forced to_zero. The_ eplkto Fig. 7. As can be inferred from Figl3, the velocity
in the \{alues OUEXP resfuI'F from measurement 'naccurac,'es',thc?ontrollers work quite well at the laboratory experimentiath
approxmatg Q|ﬁerent|at|on scheme to estimate the veé;i also applies to the simulations. However, the assumption of
and from friction effects. perfectly working velocity controllers is never fulfilleckactly.
The time evolutions of the control inputs together with Therefore, it is of interest to investigate if the MPC still
their flatness-based parameterization ¢« = 1,2,3, are de- achieves satisfactory results even if the velocity cotersl
picted in Fig.11 The effect of the disturbances can be clearlyre far from being ideal.
inferred from the difference between andi;. However, after | practice, a bad performance of the velocity controllers
compensating for the disturbances, the correspondingesalinay be caused, e.g., by large variations of the load mass o
match again quite well. unknown friction effects. To investigate possible consemes
Figure 12 shows that the deviation of the load positign of these effects simulation studies are carried out usifacve
from the nominal initial condition as well as the disturbasic ity controllers which are badly tuned on purpose. Again, the
resulting from the external forces are well compensated. scenario of deviating initial conditions is consideredydfe14
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Fig. 14. Comparison of the desired velocity 4. With the actual velocitys; ~ Fig. 15. Comparison ofj;, with 7;, and path parameter evolution for the
and comparison ofz, with ¢, for deviating initial conditions and on purpose trajectory tracking controller and the path), 1 of Fig. 4 (yr, andgr, in m).
badly tuned velocity controllers (all quantities in m'sand m, respectively).

[9t ) 6.(t) G.(t) 6@ oY (t)} . The weighting ma-
trices in the cost functionaB(Q) are the same as for the PFC.
In order to hit the input constraints, in the following the se
feasible inputs is changed to

shows the actual position of the loag in comparison with
the desired geometric pat}y. Additionally, $; is compared
to $;1 qes- Despite the large deviations in the velocity (Whlcfbf
occur similarly fors, and¢,), the path-following MPC is still
able to follow the reference very well which can be seenin U = {ueR?|-08ms? <u; <08ms?

Fig. 14 by comparingy,, with g,. Therefore, the much smaller —0.8ms 2 <u, < 0.8ms 2, (33)
deviations at the laboratory experiment according to Ef). 9 9

are not critical for the path-following MPC. Furthermorhet ~0.8rads™® <us < 0.8rads}.
assumption of perfectly working velocity controllers fdret The reason for this step is that the physically motivated con

mathematical model3j is not crucial. straints ) are quite generous. Thus, unreasonable measure!
e.g., huge disturbances, would have to be taken to come clos
C. Comparison with a Trajectory Tracking Controller to one of the original input constraint§)(

Two scenarios for comparing the PFC and the TTC are

oo ey e s e e Sered uih the desie geomerc s gy,
P p P J a¥1d Dy, 2, fespectively (cf. Fig.4). In both test cases the

tracking controller (TTC). The TTC also utiizes GPMPC asystem starts at the nominal initial condition. The firstreo®
described in SectiotV-A and is based on the OCP
comprises two impulse-like disturbance forces on the load

min Jrre (ty, @ (+)) (30a) similar to SubsectiorV-A2 whereas in the second scenario
a() no disturbances are considered. For reasons of reprotitycibi
subject to and to be able to apply the same disturbance to the syster,
for both controllers the investigations are carried outhe t
T=f(x,10), T(t)=mk (30b) simulation and not on the laboratory experiment (to this end
u(t) €U, Vt € [ty te + T) (30c) the model {) is appropriately extended). A further benefit of
this strategy is that the essential results are not distdnte
with the cost functional e.g., measurement inaccuracies.

Concerning the first scenario, Figd5 shows the actual
position y;, of the load in comparison with the desired tra-
1 [T jectory g, for the TTC together with(; (¢) given by 82). In
+ 5/ [[f(t) — x4 (t)] + (ﬂ(t)] } dt (31) Fig. 16 the inputs and; (¢) for the PFC are depicted. The
b @ fu corresponding results fay, andg;, are similar to Fig12 and
and the desired trajectory of the states(t) which is gener- are omitted for brevity. The first disturbance causes thé pat
ated based on the parameterized zero path error manifg)d ( parameter evolution of the PFC to stop with a short period of
To this end a monotonically increasing four times contirslpu time whered (t) < 0. Additionally the input constraints far
differentiable function and ug according to 83) get active. The deviations resulting
0,T] 5t — 6, (1) € [0, 61] (32) from the sgcond distl_er_ance are well compensated by botl
controllers in a very similar manner.
with 6, (0) = 6y and 0, (1;) = 6, is defined whereT; Figure17 showsy,, in comparison withj;, for the PFC and
denotes the end time of the trajectory. The desired trajgctahe TTC in the workspace of the crane. The corresponding
of the states follows asy (t) = p. (¢ (t)) with ¢ (t) = results are reduced to the region of the path parameter wher

Frre (o () = 3 (26 +7) —wa (e +7))

e
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Fig. 18.  Control inputu and path parameter evolution for the path-
following controller and the patp,, 2 of Fig. 4 (u; in ms~2 and rads?,
respectively).
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0.8

0.4

Fig. 16. Control inputu and path parameter evolution for the path-3 0
following controller and the path,, 1 of Fig. 4 (u; in ms~2 and rads?,
respectively). —-0.4

08 k... P i i ]

i
0 5 10 15 20 25 _ 1
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Fig. 19. Control inpute and path parameter evolution for the trajectory
tracking controller and the path,, » of Fig. 4 (u; in ms~2 and rads?,
respectively).

along the path. To this end, an auxiliary system was definec
which describes the time evolution of the path parameter anc
Fig. 17. Comparison ofi, with i, (dashed) for the path-following (lefty its derivatives. The control input of the auxiliary systerasv

and the trajectory tracking controller (right) and the path 1 of Fig. 4 (all determined by MPC in such a way that the deviation from
quantities in m). the zero path error manifold is kept as small as possible,
For the design of the control scheme, existing ideas on path
following MPC were adopted but formulated without terminal

constraints. This not only allows for the consideration of
system constraints but also permits the application of & fas
the geometric reference is clearly highlighted. PC scheme based on the gradient projection method. In eac

The second scenario is concerned with following the pa mpling instant, the gradient projection method is teateid

py,.2 (cf. Fig. 4), which comprises several sharp turns. Fi after a predefined finite number of iterations which guareste

ures18 and 19 show the inputs: from the PFC and the TTC, real-time feasibility even with very small sampling times.

respectively. Additionally, the time evolutions af (£) are Results from simulation and experimental studies on &
P y. Ad Y laboratory tower crane show promising results and empaasiz
depicted. The time needed for the overall travel along th .
ath as well as the performance in tracking the eomethce usefulness of the proposed approach. Robustnesssstudi
P o P 9 9 underline the validity of the proposed control concept. The
reference is virtually the same for both controllers. Hogrev . . ) )
. . ._comparison with a trajectory tracking controller revedis t
the inputu; from th? Te tquches the upper constralr_n durlngdvantages of the path-following controller. Current wisk
a short period of time which precludes exact tracking. Thi edicated to the investigation of stability and convergenc

emphasizes the fact that it is in general a non-trivial task L sues of the pronosed path-following MPC scheme
choose an appropriate end tifieandé; (¢) such that system prop P 9 )

constraints are respected. The PFC slows down the evolution REFERENCES
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