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Real-time Nonlinear Model Predictive
Path-Following Control of a

Laboratory Tower Crane
Martin Böck, Andreas Kugi,Member, IEEE

Abstract—A path-following controller is developed and applied
to a laboratory tower crane. The control task is to move a load
along a predefined geometric path. The time evolution along
the path is not fixed but left as a degree of freedom to be
determined by the controller. In order to be able to account for
system constraints, a model predictive control scheme is adopted
with special focus on real-time feasibility with small sampling
times. The resulting controller is applied to a laboratory-scale
tower crane and validated by means of simulation studies and
measurement results.

Index Terms—Model predictive control, optimal control, path-
following, real-time control, state constraint, tower crane.

I. I NTRODUCTION

T HE goal of tracking control is to ensure that the output
of a dynamical system follows (at least asymptotically) a

given reference. If the reference signal is a predefined function
of time, this is usually referred to astrajectory tracking con-
trol. On the contrary, if the time evolution along the reference
signal is left as a degree of freedom for the controller, the
resulting control scheme is calledpath-following control, see,
e.g., [1].

Model predictive control (MPC), sometimes also named
receding horizon control, relies on solving an optimal control
problem (OCP) at each sampling instant and applying the first
part of the optimal control input to the system. Subsequently,
the optimization horizon is shifted forwards and the OCP
is solved again with the actual (measured) system states as
initial conditions, cf. [2]. MPC has the advantages of being
able to deal with multiple input multiple output systems, to
systematically account for constraints, and to achieve an opti-
mal (in an appropriate sense) closed-loop behaviour. Current
research is amongst others devoted to the application of MPC
to complex nonlinear dynamical systems and to systematically
derive stability and convergence conditions. However, usually
the computational demand of the solution of the underlying
OCP is rather high. Therefore, real-time capable formulations
of MPC have been developed, which are able to deal with the
control of complex dynamical systems subject to small sam-
pling times. Very often the idea is to refrain from computing
the optimal solution of the underlying OCP at each sampling
instant. Rather a suboptimal but feasible solution is searched
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for, which is improved from one sampling instant to the next,
cf. [3]–[8].

Suboptimal MPC schemes can be classified with respect
to the numerical computation of the solution estimates of
the underlying OCP. Numerical methods for solving OCPs
are frequently subdivided into direct and indirect methods
[9]. Suboptimal MPC schemes belonging to the first kind,
i.e., which rely on a suitable parameterization of the state
and/or input variables to obtain a finite-dimensional nonlinear
programming problem, are investigated, e.g., in [10]–[12].
Indirect methods aim at solving the necessary conditions of
Pontryagin’s maximum principle (cf. [13]). Suboptimal MPC
methods adopting the latter principle are presented, e.g.,in
[14], [15].

Several approaches to path-following control exist in the
literature. From a geometric point of view, the problem can
be tackled by transforming the system into new coordinates
of a transverse normal form and designing controllers for
the dynamics transverse and tangential to the zero path error
manifold, cf. [16], [17] and references given therein. Other
approaches investigate Lyapunov and backstepping techniques
[18], [19] and hybrid control strategies [20].

Recent works [21]–[25] study the combination of MPC with
path-following. The benefit of this approach is the possibility
to systematically account for input and state constraints.Based
on different MPC formulations, with an explicit terminal
region constraint in [22], without a terminal region constraint
but utilizing a certain controllability criterion in [24], or based
on contractive MPC in [21], the stability of the proposed
predictive path-following controllers is proven. However, very
often the problem of an efficient real-time implementation
to cope with very small sampling times is not explicitly
addressed. To overcome this issue, the authors in [21] propose
a linear time-varying formulation based on the discrete-time
system equations. This yields a convex quadratic program
which can be solved efficiently at each sampling instant.
The application of the resulting controller to an X-Y table
is presented in [26].

The contribution of this paper is to combine a suboptimal
MPC scheme based on indirect methods with path-following.
The proposed framework is motivated by the application to
a laboratory experiment of a tower crane which is shown
in Fig. 1. The goal is to achieve a fast model predictive
path-following control under consideration of input constraints
of the system. This paper focuses on the derivation of the
proposed control framework and its implementation on a real
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Fig. 1. Tower crane system.

hardware for obtaining measurement results whereas stability
and convergence are not rigorously investigated. The tower
crane is an underactuated mechanical system which exhibitsa
nonlinear dynamics. It can be represented by a mathematical
model with a state space dimension of 10 and three control
inputs. The controller operates with a sampling time of2ms.
These facts demonstrate the performance of the proposed path-
following MPC. Nevertheless, the presented control frame-
work is also applicable to predictive path-following for other
dynamical systems.

Compared to the approach described in [21], [26] the
proposed method does not rely on a linearization of the system
equations, constraints or terms related to the cost functional.
Furthermore, in contrast to this paper the method in [21], [26]
utilizes discretization techniques to obtain a quadratic program
at each sampling instant, i.e. it belongs to the class of direct
methods. The quadratic program is solved to optimality at each
sampling instant by means of a static optimization solver.

This work is organized as follows. SectionII introduces
the considered tower crane system and the corresponding
mathematical model. The objective of path-following control
together with a suitable parameterization of the path and
the MPC approach are presented in SectionIII . The real-
time implementation is devised in SectionIV. In SectionV,
the proposed control framework is evaluated by means of
simulation and experimental results. Conclusions are drawn
in SectionVI .

Notation

In the context of an OCP, the optimal quantities are indicated
with the superscript∗. The total derivatives of a functionx (t)
with respect to time are denoted byẋ, ẍ, x(3), and so forth.
Given a vectory ∈ Rn,


y




Q
represents the quadratic form

yTQy with the positive (semi–)definite matrixQ ∈ Rn×n. The
indexi refers to theith component of the respective quantity. A
diagonal matrixD with Di,i = yi is denoted as diag(y). The
orthogonal basis vectors of the Cartesian coordinate system
are denoted asex, ey, andez.
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Fig. 2. Overview of the tower crane system.

II. TOWER CRANE SYSTEM

A tower crane is a representative benchmark for path-
following control with real-world applicability. The consid-
ered laboratory experiment has already been investigated in
different contexts in [27] and [28]. For the sake of self-
containedness and clearness of this presentation, the descrip-
tion of the system together with the overall control concept,
the corresponding mathematical model, and the experimental
setup including sensors and actuators are shortly recapitulated.

Two mathematical models are derived. Firstly, a comprehen-
sive mathematical model is assembled in SectionII-B which
is used for simulation purposes. Secondly, a specific control
structure is proposed in SectionII-C which allows to set
up a compact model serving as basis for the path-following
controller.

A. Description of the Tower Crane Experimental Setup

Figure 2 gives an overview of the considered laboratory
experiment. The tower crane has five degrees of freedom
(DOF), namely the positions1 of the trolley along the jib, the
lengths2 of the cable from the trolley to the load, the angular
displacementφ1 of the jib, and the angular displacementsφ2
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andφ3 of the cable with respect to the trolley. The cable is
guided on the trolley by means of a sleeve mounted on a
gimbal, which allows the cable to sway in any direction. The
gimbal has a vertical distance ofh = 0.92m to the ground of
the workspace. The laboratory tower crane is an underactuated
mechanical system. Three DOF are actuated (s1, s2, andφ1)
by means of DC motors with armature voltagesvi, i = 1, 2, 3,
and currentsIi, i = 1, 2, 3, while φ2 andφ3 are unactuated.

All five DOF s1, s2, φ1, φ2, andφ3 are directly measur-
able by means of incremental encoders. The corresponding
velocitiesṡ1, ṡ2, φ̇1, φ̇2, andφ̇3 are obtained by approximate
differentiation. The angular displacementsφ2 und φ3 of the
cable are measured by the angular displacements of the sleeve.
However, to reduce friction, the guidance of the cable in the
sleeve is not completely tight. This loose guidance inherently
introduces measurement errors, which will become apparent
in SectionV.

B. Comprehensive Mathematical Model

The mathematical model of the laboratory-scale tower crane
is calculated based on rigorous physical considerations by
means of the Euler-Lagrange equations of motion, see, e.g.,
[29]. To this end, it is assumed that the cable and the load
can be modelled as a mathematical spherical pendulum. This
particularly entails that the friction torques in the gimbal
(corresponding to the DOFφ2 and φ3) are neglected which
is justified as the pendulum motion of the load is nearly un-
damped. The laboratory experiment suffers from considerable
friction effects in the actuated axes, which, for the sake of
simplicity, are modelled as viscous friction.

Each of the DC motors at the laboratory tower crane
is equipped with a current controller which sets the corre-
sponding armature voltage, cf. Fig.3. The dynamics of these
subordinate current control loops are much faster than the
typical mechanical time constants of the crane. Due to this
fact it is justified, by arguing along the lines of the singular
perturbation theory [30], to utilize the actual currents of the
DC motors as inputs to the system.

Based on these assumptions the resulting mathematical
model of the tower crane partitioned into the actuated and
unactuated part reads as

[
DA (q) DAU (q)
DT

AU (q) DU (q)

]

︸ ︷︷ ︸
D(q)

q̈ +

[
CA (q, q̇) CAU (q, q̇)
CUA (q, q̇) CU (q, q̇)

]

︸ ︷︷ ︸
C(q,q̇)

q̇

+

[
gA (q)
gU (q)

]
+

[
τF (q̇)

0

]
=

[
Bτ

0

]

I1
I2
I3


 (1)

with the generalized coordinatesqA =
[
s1 s2 φ1

]T
, qU =[

φ2 φ3
]T

, andq =
[
qTA qTU

]T
. The equations of motion (1)

consist of the gravitational and friction terms

gA (q) =
[
0 −mLg cos (φ2) cos (φ3) 0

]T
(2a)

gU (q) =

[
mLg sin (φ2) cos (φ3) s2
mLg cos (φ2) sin (φ3) s2

]
(2b)

τF (q̇) =
[
d1ṡ1 d2ṡ2 d3φ̇1

]T
(2c)

and the actuator input matrix

Bτ = diag
([

R1k1

r1
R2k2

r2
R3k3

])
(2d)

with mL, g, di, Ri, ki denoting the load mass, gravitational
acceleration, viscous friction coefficients, transmission ratios,
and torque constants,i = 1, 2, 3, respectively. The inertia
matrix D (q) and the vector of centripetal and Coriolis terms
C (q, q̇) q̇ are omitted for brevity. The trolley is driven by
means of a toothed belt withr1 denoting the radius of the
pulley. The constant radius of the cable drum is denoted as
r2.

C. Control Concept and Mathematical Model

In principle, the comprehensive mathematical model (1)
of the laboratory tower crane with the idealized current
controllers could be used as the basis for a path-following
controller. However, to compensate for the friction in the
actuated DOF and to be independent of the actual value of
the load mass it is advantageous to additionally use velocity
controllers for each of the actuated DOF in another level
of the cascaded control structure. It turns out in practice
that the velocity controllers perform well and the closed-loop
dynamics can be tuned considerably fast, cf. SectionV-B. This
reasoning allows to set up an overall mathematical model of
all components where the dynamics of the velocity control
loops is neglected. Thereby, the accelerationss̈1, s̈2, and φ̈1
of the three actuated DOF are utilized as new control inputs
u =

[
u1 u2 u3

]T
. Thus, in consideration of (1), the overall

mathematical model reads as

s̈1 =u1 (3a)

s̈2 =u2 (3b)

φ̈1 =u3 (3c)

q̈U =−D−1
U (q)

(
DT

AU (q)u+ CUA (q, q̇) q̇A

+CU (q, q̇) q̇U + gU (q)
)

(3d)

in which q̈U =
[
φ̈2 φ̈3

]T
are explicitly given by

φ̈2 =
1

s2 cos (φ3)

(
cos (φ2)u1 − s2 cos (φ2) sin (φ3)u3

+ 2s2φ̇2φ̇3 sin (φ3) + s2φ̇
2
1 cos (φ2) cos (φ3) sin (φ2)

− 2ṡ2φ̇2 cos (φ3)− g sin (φ2)− 2ṡ2φ̇1 cos (φ2) sin (φ3)

−2s2φ̇1φ̇3 cos (φ2) cos (φ3)− s1φ̇21 cos (φ2)
)

(3e)

φ̈3 =− 1

s2

(
sin (φ2) sin (φ3)u1 + s1 cos (φ3)u3

− s2 sin (φ2)u3 + 2ṡ1φ̇1 cos (φ3)− 2ṡ2φ̇1 sin (φ2)

+ 2ṡ2φ̇3 − s2φ̇21 cos (φ3) (cos (φ2))2 sin (φ3)
− s1φ̇21 sin (φ2) sin (φ3)− 2s2φ̇1φ̇2 cos (φ2) (cos (φ3))

2

+s2φ̇
2
2 cos (φ3) sin (φ3) + g cos (φ2) sin (φ3)

)
. (3f)

The model (3) solely contains explicit differential equations
and its complexity is much lower than that of (1) which
permits fast online calculations. It can be rewritten as a first
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Fig. 3. Overall control structure.

order system of differential equations in state space form
completed with an outputy ∈ Rm

ẋ = f (x, u) (4a)

y = h (x) (4b)

with x =
[
qT q̇T

]T
. The set of feasible inputs is given by

U =
{
u ∈ R3 |−2m s−2 ≤u1 ≤ 2m s−2,

−2m s−2 ≤u2 ≤ 2m s−2, (5)

−2 rad s−2 ≤u3 ≤ 2 rad s−2
}
.

Figure3 shows the proposed control structure with subordi-
nate current and velocity controllers which is implementedin
this way at the laboratory experiment. This structure together
with the simplifications stated so far yields the compact
mathematical model (4) which is not only able to accurately
describe the dynamic behaviour of the laboratory tower crane
together with the current and velocity controllers but is also
computationally very efficient. The model (4), which is inde-
pendent of friction effects and the actual value of the load
mass, serves as a basis for the path-following controller. In
the following, an MPC is adopted as path-following controller.
The reference inputṡs1,des, ṡ2,des, andφ̇1,des for the velocity
controllers are generated by simply integrating the control
inputsui, i = 1, 2, 3.

III. PATH-FOLLOWING CONTROL

This section aims at precisely specifying the problem of
path-following control. The required mathematical preliminar-
ies are developed and the control approach using MPC is
formulated. For the sake of conciseness, most of the resultsin
this section are given for the considered tower crane system.

A. Problem Statement

In the following, a map

θ → p (θ) ∈ Rq, θ ∈ [θ0, θ1] ⊂ R (6)

is considered, which defines a geometric path

P = {p̄ ∈ Rq | p̄ = p (θ) , θ ∈ [θ0, θ1]} (7)

in a vector spaceRq. θ is the so-called path parameter which
is supposed to take values in the interval[θ0, θ1] ⊂ R. It is
assumed that the start and the end point of the path correspond
to θ = θ0 andθ = θ1, respectively. Path-following control for
a dynamical system aims at tracking a geometric path as given
in (7). The difference to trajectory tracking lies in the fact that

the time evolution of the path parameter is not predetermined
but left as a degree of freedom for the controller. Intuitively the
path (7) can be defined in the output space of the dynamical
system. The purpose of the path-following controller is to
determine inputs such that the outputy = h (x) of the system
(4) follows the path (7) with q = m. This is usually referred to
asoutput path-following, cf. [23]. To simplify the presentation,
we restrict our considerations to output paths defined in a
flat output space of (4), see [31] for details on differential
flatness. In contrast to the general case, this allows to choose
the components (assumingm ≥ 2) of p (θ (t)) independently.

Alternatively the geometric reference to be followed can be
defined in the state spacex ∈ Rn. In general this entails
that the components of the geometric reference cannot be
chosen independently from each other. Furthermore, apart
from special cases (see, e.g., [22]) it is not possible to state a
curve in the state space defined by

θ → p̃x (θ) ∈ Rn, θ ∈ [θ0, θ1] ⊂ R (8)

which the system is supposed to follow. Instead, one needs to
consider a manifold in the state space which is subsequently
referred to as thezero path error manifold [32]. In certain
cases it is possible to deduce an explicit parameterizationof
the zero path error manifold in the form

px

(
θ, θ̇, θ̈, . . .

)
⊂ Rn. (9)

One natural approach is to derive (9) from a geometric path
defined in the output space of the system. In particular, based
on an output path defined in a flat output space of (4) the
parameterization (9) can be systematically calculated. This
fact is also utilized for the considered tower crane system.
Therefore, the subsequent considerations rely on (9).

For the tower crane, the goal of path-following control is
that the position of the load follows a predefined geometric
path. From this point of view it would be natural to formulate
the control task as an output path-following problem. However,
we will reformulate the problem as a path-following problem
in the state space. There are two main reasons for this: First,
for the design of the controller, it is desirable to use as
much information about the system as possible. As will be
described in SectionIII-B , the load position of the tower
crane constitutes a flat output of the system. This has the
advantage that all system variables (states and inputs) canbe
algebraically parameterized by means of the flat output and its
time derivatives, cf. [31]. The second reason is that existing
stability results on suboptimal MPC usually require to penalize
the whole state in the cost functional, see, e.g., [8].

Based on the preceding reasoning, the path-following prob-
lem for the tower crane can be formulated as follows. Consider
the zero path error manifold (9) in the state space with
θ ∈ [θ0, θ1] and the path-following error

e (t) = x (t)− px
(
θ (t) , θ̇ (t) , θ̈ (t) , . . .

)
. (10)

Suppose that the path-following problem starts at the initial
time t0. The goals of the path-following controller are to
achieve
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(A) a time evolution of the path parameterθ such thatθ (t) ∈
[θ0, θ1] ∀t ∈ [t0,∞) and limt→∞ θ (t) = θ1,

(B) asymptotic path convergencelimt→∞ ‖e (t) ‖ = 0, and
(C) satisfaction of the system constraints, i.e.u (t) ∈ U ∀t ∈

[t0,∞).
One remark concerning the first goal (A) is necessary. Some
authors additionally require that the path parameter satisfies
θ̇ (t) > 0 ∀θ (t) ∈ [θ0, θ1) [19], [22] or θ̇ (t) ≥ 0 ∀t ∈
[t0,∞) [24] which corresponds to strict monotonous and
monotonous forward motion along the path, respectively.
These requirements are not used here. Hence, the MPC for-
mulation has to ensure an adequate forward motion towards
the end of the path, e.g., by appropriately choosing the cost
functional of the underlying OCP.

In principle it is possible to not only account for input but
also state constraints of the system, i.e.x (t) ∈ X with X
describing the set of feasible states. Although this can be done
with the same methods as presented in the following, it does
not lie within the scope of this paper.

B. Parameterization of the Zero Path Error Manifold

Based on the preceding problem specification the first
task is to find the parameterization of the zero path error
manifold (9). As outlined, this is in general a non-trivial task.
However, based on the fact that the load position in Cartesian
coordinates, given by

yL =



−s2 (sin(φ1) sin(φ3) + cos(φ1) sin(φ2) cos(φ3))
s2 (cos(φ1) sin(φ3)− sin(φ1) sin(φ2) cos(φ3))

h− s2 cos(φ2) cos(φ3)




+



s1 cos(φ1)
s1 sin(φ1)

0


 , (11)

constitutes a flat output of the system (cf. [28]), this problem
is greatly simplified. The flatness-based parameterizationof
the state and the input reads as

x = ψx

(
yL, ẏL, ÿL, y

(3)
L

)
(12a)

u = ψu

(
yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
, (12b)

which can be utilized to obtain the desired parameterization
px

(
θ, θ̇, θ̈, . . .

)
from the output path defined by

θ → pyL
(θ) ∈ R3, θ ∈ [θ0, θ1] . (13)

To this end, the map (13) is successively differentiated with
respect to time yielding (cf. [33])

d

dt
(pyL

(θ)) =
∂pyL

∂θ
(θ) θ̇ (14a)

d2

dt2
(pyL

(θ)) =
∂2pyL

∂θ2
(θ) θ̇2 +

∂pyL

∂θ
(θ) θ̈ (14b)

d3

dt3
(pyL

(θ)) = ϕ1

(
θ, θ̇, θ̈, θ(3)

)
(14c)

d4

dt4
(pyL

(θ)) = ϕ2

(
θ, θ̇, θ̈, θ(3), θ(4)

)
. (14d)

By inserting the expressions (13) and (14) into (12a) and
combining the path parameter together with its derivatives

to ζ =
[
θ θ̇ θ̈ θ(3) θ(4)

]T
, the parameterized zero path

error manifold

ζ → px (ζ) , ζ1 ∈ [θ0, θ1] (15)

is obtained, see also [34]. Furthermore, the same procedure
and equation (12b) yield the system inputs

ζ → pu (ζ) , ζ1 ∈ [θ0, θ1] , (16)

which in the nominal, undisturbed case with consistent initial
conditions guarantee exact path-following, provided thatthe
constraints (5) are not violated. The expressionpu (ζ) will
not be utilized for the proposed path-following MPC but it
is useful for comparison purposes. Therefore,θ(4) is also
contained inζ to allow the calculation ofpx (ζ) and pu (ζ)
from a given trajectoryζ (t).

In principle the presented control scheme can also be
applied to other dynamical systems. Note that a major step
in the calculations is to find the parameterization of the zero
path error manifold (15). As shown this task can be carried out
in a straightforward way ifpx (ζ) is derived from an output
path defined in a flat output space. In the non-flat case, this
might be very difficult.

C. Model Predictive Control Approach

To accomplish the goals for path-following formulated in
SectionIII-A , an MPC approach is utilized. This requires the
formulation of an appropriate OCP based on the current system
statexk, which is solved at every sampling instanttk = kTs,
with the sampling timeTs. As mentioned before, the MPC
also has to take care of a suitable time evolutionθ (t) along
the path. To this end, a linear, time-invariant auxiliary system
(timing law) is defined as (cf. [24])

ζ̇ =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




︸ ︷︷ ︸
A

ζ +




0
0
0
0
1




︸︷︷︸
B

w, (17)

with a new unconstrained virtual control inputw. With these
ingredients, the OCP of the MPC at time instanttk reads as

min
v̄(·)

J (tk, v̄ (·)) (18a)

subject to

˙̄x = f (x̄, ū) , x̄ (tk) = xk (18b)
˙̄ζ = Aζ̄ +Bw̄, ζ̄ (tk) = ζ̄∗k−1 (tk−1 + Ts) (18c)

ū (t) ∈ U, ∀t ∈ [tk, tk + T ] (18d)

ζ̄1 (t) ∈ [θ0, θ1] , ∀t ∈ [tk, tk + T ] (18e)

with v̄ =
[
ūT w̄

]T
and the cost functional

J (tk, v̄ (·)) =
∫ tk+T

tk

l
(
x̄, ζ̄, ū, w̄

)
dt

+ V
(
x̄ (tk + T ) , ζ̄ (tk + T )

)
. (19)
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HereT is the prediction horizon andxk the measured system
state at sampling instanttk. The initial condition for the aux-
iliary system is set tōζ∗k−1 (tk−1 + Ts), which is the optimal
solution found at the previous sampling instanttk−1 and eval-
uated attk = tk−1+Ts. For t0, ζ̄ (t0) =

[
θ0 0 0 0 0

]T
is used. The cost functions in (19) are chosen in the form

l
(
x̄, ζ̄, ū, w̄

)
=
1

2

[
x̄− px

(
ζ̄
)

Qe

+

ζ̄ − ζe




Qζ

+

ū




Ru

+

w̄




Rw

]
(20a)

and

V
(
x̄, ζ̄

)
=
1

2

[
x̄− px

(
ζ̄
)

Se

+

ζ̄ − ζe




Sζ

]
,

(20b)

respectively. The bar refers to internal variables of the algo-
rithm. Having in mind the goals of the path-following MPC,
the cost functional weights the deviation ofx̄ from the desired
zero path error manifold and the deviation ofζ̄ from the
desired end pointζe =

[
θ1 0 0 0 0

]T
. The focus lies

on the MPC formulation without explicit terminal constraints,
which on the one hand improves the computational efficiency
when solving (18) and on the other hand gives the possibility
for the application of efficient suboptimal MPC schemes, cf.
[8], [14].

Several authors investigate stability of MPC without explicit
terminal constraints, see, e.g., [8], [35], [36]. However, an
in-depth stability and convergence analysis for the proposed
control approach does not lie within the scope of this paper.

Let v̄ (t, tk) denote the control input to (18) at sampling
instant tk with t ∈ [tk, tk + T ]. In the ”ideal” MPC-case,
(18) is solved at every sampling instanttk yielding the global
optimal solutionv̄∗ (t, tk) together with the optimal value of
the cost functionalJ∗ (tk) := J (tk, v̄

∗ (t, tk)). The optimal
input v̄∗ (t, tk) is applied to the system during the time
interval [tk, tk + Ts). At tk + Ts the optimization horizon
is shifted forwards, the system state is measured, and (18)
is solved again. However, the requirement to calculate the
optimal solution of (18) within the sampling timeTs = 2ms is
computationally intractable. Therefore, a suboptimal strategy
is employed which does not require the calculation of the op-
timal solution of (18) but basically relies on the improvement
of the value of the cost functional from one sampling instant
to the next, cf. [8].

IV. REAL-TIME IMPLEMENTATION

A. Fast Model Predictive Control

Fast MPC schemes usually relax the requirement of finding
the optimal solution at each sampling instant. Instead, and
particularly with regard to stability arguments, they relyon an
improvement of the current value of the cost functional from
one sampling instant to the next.

For solving the path-following MPC in a suboptimal and
therefore real-time capable fashion, an MPC scheme based
on indirect methods using the gradient projection method is
utilized, subsequently referred to as GPMPC, see, e.g., [14]. It

has already been applied to the considered tower crane in [27]
for set-point stabilization and in [28] for trajectory tracking.
However, path-following MPC has not been investigated so far,
which is especially challenging due to the increased number
of states and inputs and the state constraint (18e). The reasons
for choosing GPMPC are the memory and time efficient
computations and the low implementation effort.

The gradient projection method aims at solving the neces-
sary optimality conditions of Pontryagin’s maximum principle
(cf. [13]) for the OCP (18a)-(18d), i.e. without the state
constraint (18e),

˙̄x∗ = f (x̄∗, ū∗) , x̄∗ (tk) = xk (21a)
˙̄ζ∗ = Aζ̄∗ +Bw̄∗, ζ̄∗ (tk) = ζ̄∗k−1 (tk−1 + Ts) (21b)

λ̇∗x = −
(
∂H

∂x̄

)T (
x̄∗, ζ̄∗, v̄∗, λ∗x, λ

∗
ζ

)
(21c)

λ̇∗ζ = −
(
∂H

∂ζ̄

)T (
x̄∗, ζ̄∗, v̄∗, λ∗x, λ

∗
ζ

)
(21d)

H
(
x̄∗, ζ̄∗, v̄∗, λ∗x, λ

∗
ζ

)
≤ H

(
x̄∗, ζ̄∗, v̄, λ∗x, λ

∗
ζ

)
,

∀t ∈ [tk, tk + T ] , ∀v̄ ∈
{[
ūT w̄

]T |ū ∈ U, w̄ ∈ R
}

(21e)

λ∗x (tk + T ) =

(
∂V

∂x̄

)T (
x̄∗ (tk + T ) , ζ̄∗ (tk + T )

)
(21f)

λ∗ζ (tk + T ) =

(
∂V

∂ζ̄

)T (
x̄∗ (tk + T ) , ζ̄∗ (tk + T )

)
, (21g)

where the Hamiltonian reads asH
(
x̄, ζ̄, v̄, λx, λζ

)
=

l
(
x̄, ζ̄, ū, w̄

)
+ λTx f (x̄, ū) + λTζ

(
Aζ̄ +Bw̄

)
. The gradient

projection method is especially well suited for OCPs without
terminal constraints because in this case the adjoint states
λT =

[
λTx λTζ

]
are fully determined by (21f) and (21g).

Therefore, a simple backward integration of (21c) and (21d)
is possible. Let̄v(j) (t, tk) denote the input in iterationj of
the gradient projection method. Starting with an initial guess
v̄(0) (t, tk), the method can briefly be described as follows (for
further details see [14]).
Algorithm 1 (Gradient Projection Method)

1) Integrate the system differential equations (21a), (21b)
in forward direction by usinḡv(j) (t, tk) yielding x̄(j)
and ζ̄(j).

2) Integrate the adjoint differential equations (21c), (21d) in
backward direction by utilizing the terminal conditions
(21f) and (21g) yielding λx,(j) andλζ,(j).

3) Calculate the search direction as the negative gradient
of the Hamiltonian
d(j) (t) = −

(
∂H
∂v̄

)T (
x̄(j), ζ̄(j), v̄(j) (t, tk) , λx,(j), λζ,(j)

)
.

4) Solve the line search problem
α∗ = argmin

α>0
J
(
tk,Π

(
v̄(j) (t, tk) + αd(j) (t)

))
.

5) Calculatev̄(j+1) (t, tk) = Π
(
v̄(j) (t, tk) + α∗d(j) (t)

)
.

6) Check if some termination condition is satisfied, if not
set j ← j + 1 and return to step 1).

Π(·) denotes the projection operator onto the feasible set{[
uT w

]T |u ∈ U,w ∈ R
}

. The line search in step4) of the
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algorithm is usually carried out approximately, for example
by using polynomial interpolation. When using Algorithm 1
in the context of suboptimal GPMPC it is terminated after
a fixed number of iterationsN . Subsequentlȳv(N) (t, tk) is
applied to the system during the time interval[tk, tk + Ts). At
the next sampling instant,̄v(N) (t, tk) is used to construct an
initial input v̄(0) (t, tk+1) (cf. [14]) and the gradient projection
method again performsN iterations.

Algorithm 1 reveals the advantages of the gradient projec-
tion method which allows an efficient MPC implementation.
In each MPC step,N numerical integrations of the system
and adjoint differential equations have to be performed, which
is computationally inexpensive and results in a predictable
behaviour. Furthermore, a scalar optimization problem hasto
be solved forα∗, which, however, can be done efficiently
in an approximate fashion. Provided that a sufficiently small
sampling timeTs is used, a small number of iterations (e.g.
N = 2) suffices to achieve satisfactory control results.

Considering the problem at hand, the main disadvantage of
GPMPC in the presented formulation is that state constraints
like (18e) cannot be handled in a straightforward way.

B. Application to Path-Following MPC

To allow an application of the presented GPMPC to the
OCP (18), the state constraint (18e) has to be implicitly taken
into account and must not appear explicitly in the OCP. Here
only the upper bound

ζ1 ≤ θ1 (22)

is considered whereas the lower boundζ1 ≥ θ0 is supposed to
be automatically fulfilled. This assumption is reasonable since
ζ1 (t0) = θ0 and the cost functional weights the deviation of
ζ1 from θ1. Therefore, by an appropriate choice of the weights
for ζ1, the MPC will aim at steeringζ1 to θ1 with ζ2 ≥ 0, i.e.
ζ1 increases, which means thatζ1 ≥ θ0 is not violated.

The state constraint (22) is considered by combining the
ideas presented in [37] and [38]. The concept is to transform
the states of the auxiliary system (17) into unconstrained coor-
dinates via an invertible transformation. By introducing aslack
variableη1 (t), the inequality constraint (22) is formulated as
an equality constraint

ζ1 − θ1 +
1

2
η21 = 0, (23)

which guarantees satisfaction of (22) for all η1 (t) ∈ R. Suc-
cessive differentiation of (23) and substitution of the system
equations (17) until the inputw appears explicitly yields

ζ2 + η1η2 = 0 (24a)

ζ3 + η22 + η1η3 = 0 (24b)

ζ4 + 3η2η3 + η1η4 = 0 (24c)

ζ5 + 3η23 + 4η2η4 + η1η5 = 0 (24d)

w + 10η3η4 + 5η2η5 + η1wt = 0 (24e)

with the integrator chaiṅηi = ηi+1, i = 1, . . . , 4 and the new
control inputwt = η̇5. From (23) and (24a)-(24d), a nonlinear
invertible coordinate transformation

ζ = γ1 (η) (25)

with η =
[
η1 η2 η3 η4 η5

]T
can be easily deduced.

Notice that the inverse transformationη = γ−1
1 (ζ) exists only

on the subspace
{
ζ ∈ R5|ζ1 ≤ θ1

}
. From (24e) the original

input
w = γ2 (η, wt) (26)

can be calculated. Inserting (25) and (26) into the OCP (18)
(apart from ζ1 ≥ θ0) yields the new OCP without state
constraints

min
v̄t(·)

Jt (tk, v̄t (·)) (27a)

subject to

˙̄x = f (x̄, ū) , x̄ (tk) = xk (27b)
˙̄η = Aη̄ +Bw̄t, η̄ (tk) = η̄∗k−1 (tk−1 + Ts) (27c)

ū (t) ∈ U, ∀t ∈ [tk, tk + T ] , (27d)

with v̄t =
[
ūT w̄t

]T
and the cost functional

Jt (tk, v̄t (·)) =
∫ tk+T

tk

l (x̄, γ1 (η̄) , ū, γ2 (η̄, w̄t)) dt

+ V (x̄ (tk + T ) , γ1 (η̄ (tk + T ))) . (28)

The term η̄∗k−1 (tk−1 + Ts) denotes the optimal solution of
the previous sampling instant, evaluated attk−1 + Ts, where
for t0, η̄ (t0) = γ−1

1

(
ζ̄ (t0)

)
is used. Utilizing (25) and

(26), one can easily calculate the optimal quantitiesζ̄∗ and
w̄∗ from the optimal solution of (27) η̄∗ and w̄∗

t . The so-
lution of (27) automatically satisfies the constraint (22) and
J (tk, v̄

∗ (t, tk)) = Jt (tk, v̄
∗
t (t, tk)).

Another rationale for omitting an explicit implementation
of ζ1 ≥ θ0 is that the solution of the transformed OCP
(27) exhibits singular arcs (cf. [39]) whenever the original
constraint (22) is fulfilled with equality (cf. [38]). At the
initial point, whereζ1 (t0) = θ0, this would lead to numerical
difficulties in the solution procedure of the gradient projection
method.

The OCP (27) can be solved with GPMPC in a receding
horizon fashion, which results in a real-time capable path-
following MPC.

V. SIMULATION AND EXPERIMENTAL RESULTS

This section contains performance evaluations of the pro-
posed MPC strategy and results from the laboratory tower
crane system introduced in SectionII . In addition, robustness
investigations and a comparison with a trajectory tracking
MPC are carried out.

The output path defined by (13) is represented by means of
a four times continuously differentiable B-spline curve with
the path parameter values at the beginning and at the end
of the curve satisfyingθ0 = 0 and θ1 = 1, respectively.
Henceforth two different geometric pathspyL,1 and pyL,2

will be considered. Both output paths start atpyL,i (θ0) =[
0.35m 0.5m 0.15m

]T
, i = 1, 2. The initial condition of

the system is either chosen in conformity with this starting
point (nominal initial condition) or with a slight deviation
according toyL =

[
0.4m 0.5m 0.2m

]T
. Figure 4 shows
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Fig. 4. Desired output pathspyL,1 (θ) and pyL,2 (θ) represented by four
times continuously differentiable B-spline curves (all quantities in m).

TABLE I
COMPUTATION TIME OF THE GRADIENT PROJECTION METHOD FOR

DIFFERENT NUMBERS OF ITERATIONSN .

Computation time in ms

N mean standard deviation

2 0.85 0.065

3 1.28 0.073

5 2.13 0.097

10 4.27 0.17

the desired output paths in the workspace of the crane. The
cylinder and the dashed arc represent the inner and outer
constraints fors1 with values0.2m and0.8m, respectively.
The complicated shapes of the desired output paths are chosen
for demonstration purposes to illustrate the performance of the
proposed control scheme.

The weighting matrices of the path-following MPC are
chosen according to

Qe = diag
([
1000 1000 1000 200 200

50 50 50 5 5
])

(29a)

Qζ = diag
([
5 2 1 1 1

])
(29b)

Ru = diag
([
1 1 1

])
(29c)

Rw = 0.05 (29d)

Sζ = diag
([
1 1 1 1 1

])
(29e)

andSe equal to zero. The control algorithm is executed on the
real-time operating system MATLAB xPC Target on an Intel
Core-Duo CPU E6700 with2.7GHz. Forward and backward
integration of the system and the adjoint differential equations
within the gradient projection method is carried out by means
of Heun’s method with21 equally spaced discretization points
on an optimization horizon ofT = 2 s. To illustrate the real-
time capability, the execution time of the gradient projection
method according to Algorithm 1 is determined for different
numbers of iterationsN . The respective number of iterations
is carried out for one fixed initial condition1000 times in order
to calculate the mean and standard deviation of the execution
times which are shown in TableI. The results confirm the

5 10 15 200
time t in s

2

4

6

8

10

0

J
ex

p,
J

si
m
,J

id

Jexp(·, ·)
Jsim (·, ·)
Jid (·, ·)

Fig. 5. Values of the cost functional over time for deviating initial conditions.

linear run-time complexity in the number of iterationsN .
Considering the sampling timeTs = 2ms,N = 2 is chosen,
which results in a satisfactory control performance and leaves
enough time for other tasks to be fulfilled by the CPU. Due
to the small sampling time, it suffices to apply the constant
value v̄(N) (tk, tk) during the sampling interval[tk, tk + Ts)
to the system.

At the laboratory experiment the control structure according
to Fig. 3 is utilized. All subsequent simulation studies are
carried out with the comprehensive model (1) of the laboratory
tower crane. In particular the same velocity controllers asfor
the laboratory experiment are used in the simulation.

A. Evaluation of the Proposed Path-Following Controller

In the following, the indicesexp and sim refer to the exper-
imental and simulation results obtained from the application
of the proposed path-following MPC to the laboratory tower
crane. Furthermore, quantities labelled with the indexid denote
the simulated results of the ”ideal” MPC case, where the opti-
mal solution of (18) (up to numerical accuracy) is calculated in
each sampling instant and applied to the system. If confusion is
excluded, the indices are omitted. In all cases the desired geo-
metric path is given bypyL,1. The following SubsectionsV-A1
andV-A2 present results of the proposed path-following con-
trol concept for the scenarios of a deviating initial condition
and an external disturbance force acting on the load. A video
of these test cases can be found onhttp://www.acin.tuwien.ac.
at/fileadmin/cds/videos/cranepathFollowingNMPC.wmv.

1) Deviation from the Nominal Initial Condition: The time
evolutions of the values of the cost functional in each sampling
instant are shown in Fig.5. The requirement of monotonically
decreasing values of the cost functional is fulfilled, apartfrom
small time intervals in the experiment, which result from
measurement inaccuracies and the approximate differentiation
scheme to estimate the velocities.

Figure 6 showsζ1,exp together with the virtual inputwexp

compared toζ1,id from the ideal MPC-case. The quantities
ζ1,exp andwexp are calculated by means of (25) and (26). The
constraintζ1 ≤ θ1 is fulfilled and the assumptionζ1 ≥ θ0
is also justified. At the laboratory experiment, the motion of
the load along the path needs slightly more time compared
to the ideal MPC-case. This results from the suboptimal
MPC implementation and the measurement and modelling
inaccuracies at the laboratory experiment.

Figure7 shows the inputsu from the laboratory experiment
in comparison withû which is calculated by insertingζ (t)
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Fig. 6. Path parameter evolution and virtual inputw of the auxiliary system
for deviating initial conditions.
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Fig. 7. Control inputu for deviating initial conditions (all quantities in
m s−2 and rad s−2, respectively).

5 10 15 200
time t in s

0.2

0.4

−0.2

0y
L
,1

,
ŷ
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Fig. 8. Comparison ofyL with ŷL for deviating initial conditions (all
quantities in m).

into (16). The good agreement confirms the quality of the
underlying mathematical model.

The performance of the path-following MPC at the labo-
ratory experiment can be assessed by means of Figs.8 and
9. Figure8 shows the actual position of the loadyL in com-
parison with the desired geometric pathŷL. Due to a lack of
appropriate sensors,yL (t) is not directly measured but instead
calculated by inserting the measurementx (t) into (11). The
quantityŷL (t) is obtained from (13) with θ = ζ1 (t). Note that
the controller not only aims at tracking the path in an appropri-
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Fig. 9. Trajectories of the statess1, s2, φ1, φ2, andφ3 in comparison with
the desired trajectories for deviating initial conditions(all quantities in m and
◦, respectively).

ate manner but also compensates for the deviation in the initial
condition of the system. The end point of the desired geometric
path lies atpyL,1 (θ1) =

[
−0.2m −0.65m 0.3m

]T
. Fig-

ure 6 shows a small deviation ofζ1,exp from θ1 at t = 20 s.
Despite this fact, the load is virtually at the end point of the
path with yL (20) =

[
−0.199m −0.647m 0.3002m

]T
.

Furthermore, the quality of the proposed controller can be
evaluated by comparing the measurements of the statesx (t)
with the desired zero path error manifold according to (15).
This study is carried out for the statess1, s2, φ1, φ2, and
φ3 in Fig. 9. The desired trajectory in the state space is
calculated by insertingζ (t) into (15). The corresponding
quantities are marked witĥ. Again, the compensation for the
initial deviation is clearly visible. The differences inφ2 and
φ3 stem from the loose guidance of the cable in the sleeve
attached to the gimbal (cf. SectionII-A ) and from sticktion
effects.

2) Deviation from the Nominal Initial Condition and Ex-
ternal Force on the Load: In this subsection, not only the
deviation in the initial condition of the system is considered
but additionally a disturbance force acting on the load is in-
cluded. The following results solely refer to the measurements
obtained from the laboratory experiment. As can be seen in
Figs. 11 and 12, impulse-like disturbance forces are applied
to the load att ≈ 6 s andt ≈ 24 s, respectively. These times
are marked with vertical dashed lines. One disturbance occurs
while the path is traversed and the other one at the final
position after the path traverse is completed. All quantities
are calculated as explained in the previous SubsectionV-A1.

Figure 10 shows the evolution of the path parameter and

Post-print version of the article: M. Böck and A. Kugi, “Real-time nonlinear model predictive path-following control of a laboratory tower
crane”, IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1461–1473, 2014. doi: 10.1109/TCST.2013.2280464
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1109/TCST.2013.2280464


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, NO.4, JULY 2014 10

Jexp(·, ·) ζ1,exp

5 10 15 20 250
time t in s

5.0

10.0

15.0

20.0

25.0

0

J
ex

p

0.2

0.4

0.6

0.8

1.0

0

ζ 1
,e

xp

Fig. 10. Path parameter evolution and values of the cost functional for a
disturbance force acting on the load.

5 10 15 20 250
time t in s

0.5

−0.5

−1.0

0

u
1
,
û
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the values of the cost functional in each sampling instant. The
disturbance att ≈ 6 s causes the path parameter evolution to
slow down resulting in a complete stop att ≈ 9 s. As a result,
the overall travel along the path lasts a few seconds longer
than in the undisturbed case, cf. Figs.6 and10. As soon as the
value of the cost functional returns to the value it had without
disturbance, the path traverse is continued with the cost func-
tional values converging to zero in a monotonically decreasing
manner. The disturbance att ≈ 24 s has a significant influence
on the position of the load (cf. Fig.12) with a displacement
in ex- and ey-direction of approximately0.2m and 0.15m,
respectively. Thus, large values of the cost functional arethe
result, which, however, are quickly forced to zero. The spikes
in the values ofJexp result from measurement inaccuracies, the
approximate differentiation scheme to estimate the velocities,
and from friction effects.

The time evolutions of the control inputsui together with
their flatness-based parameterizationûi, i = 1, 2, 3, are de-
picted in Fig.11. The effect of the disturbances can be clearly
inferred from the difference betweenui andûi. However, after
compensating for the disturbances, the corresponding values
match again quite well.

Figure12 shows that the deviation of the load positionyL
from the nominal initial condition as well as the disturbances
resulting from the external forces are well compensated.
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Fig. 12. Comparison ofyL with ŷL for a disturbance force acting on the
load (all quantities in m).
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ṡ 2
,
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B. Robustness Investigations

According to SectionII-C the path-following MPC assumes
perfectly working velocity controllers. In this regard, Fig. 13
shows the comparison of the desired with the actual velocities
of the actuated axes at the laboratory experiment for the test
case of deviating initial conditions (cf. SubsectionV-A1). The
desired velocitieṡs1,des, ṡ2,des, and φ̇1,des are calculated by
integration of the control inputsui, i = 1, 2, 3, according
to Fig. 7. As can be inferred from Fig.13, the velocity
controllers work quite well at the laboratory experiment which
also applies to the simulations. However, the assumption of
perfectly working velocity controllers is never fulfilled exactly.
Therefore, it is of interest to investigate if the MPC still
achieves satisfactory results even if the velocity controllers
are far from being ideal.

In practice, a bad performance of the velocity controllers
may be caused, e.g., by large variations of the load mass or
unknown friction effects. To investigate possible consequences
of these effects simulation studies are carried out using veloc-
ity controllers which are badly tuned on purpose. Again, the
scenario of deviating initial conditions is considered. Figure14
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shows the actual position of the loadyL in comparison with
the desired geometric patĥyL. Additionally, ṡ1 is compared
to ṡ1,des. Despite the large deviations in the velocity (which
occur similarly forṡ2 andφ̇1), the path-following MPC is still
able to follow the reference very well which can be seen in
Fig. 14 by comparingyL with ŷL. Therefore, the much smaller
deviations at the laboratory experiment according to Fig.13
are not critical for the path-following MPC. Furthermore, the
assumption of perfectly working velocity controllers for the
mathematical model (3) is not crucial.

C. Comparison with a Trajectory Tracking Controller

In this subsection, the proposed path-following control
concept (PFC) is compared to a model predictive trajectory
tracking controller (TTC). The TTC also utilizes GPMPC as
described in SectionIV-A and is based on the OCP

min
ū(·)

JTTC (tk, ū (·)) (30a)

subject to

˙̄x = f (x̄, ū) , x̄ (tk) = xk (30b)

ū (t) ∈ U, ∀t ∈ [tk, tk + T ] (30c)

with the cost functional

JTTC (tk, ū (·)) =
1

2


x̄ (tk + T )− xd (tk + T )




Se

+
1

2

∫ tk+T

tk

[
x̄ (t)− xd (t)




Qe

+

ū (t)




Ru

]
dt (31)

and the desired trajectory of the statesxd (t) which is gener-
ated based on the parameterized zero path error manifold (15).
To this end a monotonically increasing four times continuously
differentiable function

[0, Tt] ∋ t→ θt (t) ∈ [θ0, θ1] (32)

with θt (0) = θ0 and θt (Tt) = θ1 is defined whereTt
denotes the end time of the trajectory. The desired trajectory
of the states follows asxd (t) = px (ζt (t)) with ζTt (t) =
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Fig. 15. Comparison ofyL with ŷL and path parameter evolution for the
trajectory tracking controller and the pathpyL,1 of Fig. 4 (yL and ŷL in m).

[
θt (t) θ̇t (t) θ̈t (t) θ

(3)
t (t) θ

(4)
t (t)

]
. The weighting ma-

trices in the cost functional (31) are the same as for the PFC.
In order to hit the input constraints, in the following the set

of feasible inputs is changed to

U =
{
u ∈ R3 |−0.8m s−2 ≤u1 ≤ 0.8m s−2,

−0.8m s−2 ≤u2 ≤ 0.8m s−2, (33)

−0.8 rad s−2 ≤u3 ≤ 0.8 rad s−2
}
.

The reason for this step is that the physically motivated con-
straints (5) are quite generous. Thus, unreasonable measures,
e.g., huge disturbances, would have to be taken to come close
to one of the original input constraints (5).

Two scenarios for comparing the PFC and the TTC are
considered with the desired geometric paths given bypyL,1

and pyL,2, respectively (cf. Fig.4). In both test cases the
system starts at the nominal initial condition. The first scenario
comprises two impulse-like disturbance forces on the load
similar to SubsectionV-A2 whereas in the second scenario
no disturbances are considered. For reasons of reproducibility
and to be able to apply the same disturbance to the system
for both controllers the investigations are carried out in the
simulation and not on the laboratory experiment (to this end
the model (1) is appropriately extended). A further benefit of
this strategy is that the essential results are not distorted by,
e.g., measurement inaccuracies.

Concerning the first scenario, Fig.15 shows the actual
position yL of the load in comparison with the desired tra-
jectory ŷL for the TTC together withζ1 (t) given by (32). In
Fig. 16 the inputs andζ1 (t) for the PFC are depicted. The
corresponding results foryL and ŷL are similar to Fig.12 and
are omitted for brevity. The first disturbance causes the path
parameter evolution of the PFC to stop with a short period of
time whereθ̇ (t) < 0. Additionally the input constraints foru2
andu3 according to (33) get active. The deviations resulting
from the second disturbance are well compensated by both
controllers in a very similar manner.

Figure17 showsyL in comparison witĥyL for the PFC and
the TTC in the workspace of the crane. The corresponding
results are reduced to the region of the path parameter where
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the effects of the first disturbance force are visible (the small
squares mark the points where the impulse-like force is acting
on the load). The superiority of the PFC in terms of tracking
the geometric reference is clearly highlighted.

The second scenario is concerned with following the path
pyL,2 (cf. Fig. 4), which comprises several sharp turns. Fig-
ures18 and19 show the inputsu from the PFC and the TTC,
respectively. Additionally, the time evolutions ofζ1 (t) are
depicted. The time needed for the overall travel along the
path as well as the performance in tracking the geometric
reference is virtually the same for both controllers. However,
the inputu3 from the TTC touches the upper constraint during
a short period of time which precludes exact tracking. This
emphasizes the fact that it is in general a non-trivial task to
choose an appropriate end timeTt andθt (t) such that system
constraints are respected. The PFC slows down the evolution
of the path parameter during sharp turns to avoid touching the
constraints. Generally this behaviour results in smaller values
of the control inputs.

VI. CONCLUSION

A path-following MPC scheme for a laboratory tower
crane was presented. Starting from the geometric path of the
load, the corresponding zero path error manifold in the state
space was obtained using the theory of differential flatness.
The proposed controller aims at tracking the zero path error
manifold while additionally determining the time evolution
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Fig. 18. Control inputu and path parameter evolution for the path-
following controller and the pathpyL,2 of Fig. 4 (ui in m s−2 and rad s−2,
respectively).
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along the path. To this end, an auxiliary system was defined
which describes the time evolution of the path parameter and
its derivatives. The control input of the auxiliary system was
determined by MPC in such a way that the deviation from
the zero path error manifold is kept as small as possible.
For the design of the control scheme, existing ideas on path-
following MPC were adopted but formulated without terminal
constraints. This not only allows for the consideration of
system constraints but also permits the application of a fast
MPC scheme based on the gradient projection method. In each
sampling instant, the gradient projection method is terminated
after a predefined finite number of iterations which guarantees
real-time feasibility even with very small sampling times.

Results from simulation and experimental studies on a
laboratory tower crane show promising results and emphasize
the usefulness of the proposed approach. Robustness studies
underline the validity of the proposed control concept. The
comparison with a trajectory tracking controller reveals the
advantages of the path-following controller. Current workis
dedicated to the investigation of stability and convergence
issues of the proposed path-following MPC scheme.
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