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Model-based Control Concepts for Vibratory MEMS

Gyroscopes

Markus Egretzberger, Florian Mair, Andreas Kugi

Vienna University of Technology, Automation and Control Institute,
Gusshausstraße 27-29, 1040 Wien, Austria

Abstract

In this contribution, a systematic method for the design of open- and closed-
loop controllers for vibratory MEMS gyroscopes based on so-called envelope
models will be presented. The methodology will be exemplarily carried out
for a gyroscope with electrostatic actuation and read-out elements. The
specifically designed capacitive actuators of the gyroscope are capable of
compensating the system’s inherent mechanical unbalance (quadrature com-
pensation) as well as the system’s response to an external angular rate (force
feedback). The utilized envelope model solely captures the relevant system
dynamics of the gyroscope while at the same time describing the actuation
and read-out mechanisms simplified to a suitable level of detail thus providing
the basis for an efficient and systematic control design.

In order to demonstrate the proposed methodology, an optimized start-up
strategy for the control of the primary oscillation is designed. Furthermore,
the approach is utilized for the deviation of a basic quadrature controller
for the secondary oscillation. In order to account for the typically weakly
damped open-loop dynamics of the gyroscope and the transient coupling
between the quadrature and the angular rate signal a more sophisticated
combined concept of closed-loop quadrature and force feedback control is in-
troduced. Both simulation and measurement results obtained for a prototype
gyroscope validate the mathematical models and prove the feasibility of the
proposed concepts.

Keywords: MEMS gyroscopes, envelope model, capacitive sensors and
actuators, quadrature error, force feedback.
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1. Introduction

Vibratory micro electromechanical gyroscopes are typically driven by a
primary oscillator. This primary oscillation is usually excited close to the
resonance frequency in order to achieve maximum amplitudes. Similar to
many electronic circuits, in particular in information technology, the wanted
signals are modulated in a high-frequency carrier signal. Hence, the rate
of change of the wanted signals is several orders of magnitude slower than
the carrier frequency itself. In the case of vibratory micro electromechanical
gyroscopes an external angular rate causes a secondary oscillation with an
amplitude proportional to the angular rate component about the sensitive
axis by exploiting the Coriolis effect. The output signal of the sensor (i.e., the
angular rate) is obtained by an appropriate demodulation of the secondary
oscillation signal. In order to provide a linear sensor behavior and maximum
sensitivity, the frequency and amplitude of the primary oscillation have to be
controlled. Furthermore, micro electromechanical gyroscopes are subject to
large quadrature errors due to limitations in the fabrication process. These
quadrature errors are due to a mechanical unbalance, which causes a cou-
pling between the primary and secondary oscillation without the presence
of an external angular rate. This quadrature signal can be separated from
the angular rate signal after the demodulation of the secondary oscillation.
In order to avoid a drift of the output signal, e.g., over temperature, due to
demodulation errors the mechanical unbalance has to be actively compen-
sated. Therefore, an additional actuation of the secondary oscillator has to
be provided such that a controller can be implemented to suppress the un-
wanted quadrature signal. Furthermore, in order to increase the bandwidth
of the MEMS gyroscope so-called force feedback controllers are utilized to
additionally compensate the response to the external angular rate.

In this context, many articles dealing with the control of vibratory gy-
roscopes can be found in the literature, see, e.g., [1, 2, 3, 4, 5]. All of the
mentioned control loops have in common that the relevant closed-loop dy-
namics lie within the frequency range of the envelope of the signal rather
than in the frequency range of the carrier signal itself. In particular from a
system analysis and control design point of view, this motivates to derive a
more comprehensive mathematical model which solely captures the essential
”slow” dynamics (envelope) of the system as proposed in [6].

In this contribution, the simplified envelope model introduced for vibra-
tory gyroscopes in [6] will be used as the basis for the design of suitable
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control concepts. The presented methodology will be exemplarily carried
out for a capacitive MEMS gyroscope. Thereby, the paper is organized as
follows: In Sec. 2, the working principle of vibratory gyroscopes is discussed
in terms of the specific capacitive device under consideration. Furthermore,
a suitable mathematical model in terms of a simplified envelope model is
presented in order to describe the essential dynamics of the primary and
secondary oscillation. Based on this simplified envelope model, Sec. 3 is de-
voted to the derivation of suitable open- and closed-loop controllers for both
the primary and the secondary oscillation including an optimized start-up
strategy as well as the unbalance compensation and the force feedback of the
angular rate response. Measurement results are presented in Sec. 4 and the
paper concludes with a short summary.

2. A capacitive gyroscope

The micro electromechanical device being considered in this paper is a
gyroscope consisting of a plane symmetric silicon structure operating with an
in-plane primary mode, excited by capacitive comb actuators, and an out-of-
plane secondary mode with capacitive parallel plate sensors. Most capacitive
gyroscopes found in the literature are driven by electrostatic comb actuators
bringing about the advantage of a high actuation stroke and little required
space. They are found in linear oscillating as well as in rotating designs,
see, e.g., [7, 8, 9, 10]. For the same reason, the read-out of the secondary
oscillation is preferably also realized by means of comb sensors. Obviously,
comb sensors require the secondary mode to be an in-plane oscillation as it
is the case for the designs presented in [8, 9]. If the secondary mode is an
out-of-plane oscillation, parallel plate capacitors are more suitable since the
movable electrodes are designed to be part of the oscillating structure and
the corresponding fixed electrodes are directly mounted on the housing of
the device, see, e.g., [11].

Within the scope of this work, let us restrict ourselves to one specific
design of a capacitive gyroscope as presented in Fig. 1 which is an enhanced
version of the gyroscope presented in [11]. This design is capable of both
compensating the mechanical unbalance and realizing a force feedback. In
this section, the working principle of the capacitive gyroscope is explained
first and afterwards the appropriate mathematical model for the controller
design will be formulated.
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Figure 1: Schematics of the capacitive gyroscope.

2.1. Principle of operation

The capacitive gyroscope as depicted in Fig. 1 is an etched, plane silicon
structure possessing two axes of symmetry. It consists of a rectangular fixed
frame, which is rigidly mounted on the housing of the device, and two movable
frames, one on the left and one on the right half of the sensor, which are
flexibly connected to the fixed frame via elastic beams, the so-called drive
beams. Moreover, two paddles are flexibly connected to each movable frame
via torsion beams.

The comb actuators and comb sensors comprise electrodes on the fixed
frame and on the corresponding movable frames. The comb actuators al-
low for a harmonic excitation of the movable frames and the paddles in an
anti-symmetric in-plane oscillation (primary mode). If an external angular
rate Ω is applied to the system, the Coriolis force is coupling to the veloc-
ity of the movable frames and paddles causing an out-of-plane motion of
these elements (secondary mode). The comb sensors provide the feedback
signal for the amplitude control of the primary mode, while the secondary
mode is measured by means of four parallel plate capacitors with fixed elec-
trodes placed on the housing above each paddle. The mechanical unbalance,
which causes an additional (unwanted) coupling between the primary and
the secondary mode, originates from a distortion of the rectangular shaped
cross sections of the beam elements, in particular at the drive beams. In
the mathematical model provided below this effect will be accounted for by
means of beam elements with rhomboid cross sections characterized by the
so-called side wall angle ξ, see [12]. Furthermore, there are capacitive paral-
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lel plate actuators provided for the excitation of the secondary mode, each
consisting of several fixed electrodes placed above the movable frame and the
paddles. These additional actuators are intended for the active compensation
of the mechanical unbalance as well as for the force feedback of the angular
rate. All electrostatic actuators are assumed to be voltage controlled with a
desired input voltage, see, e.g., [13]. The electrostatic sensors are realized by
means of so-called charge amplifier circuits to convert the capacitance change
into a proportional output voltage. These circuits are complemented by ap-
propriate differential amplifiers in order to obtain suitable output signals for
the primary and secondary mode.

2.2. Dynamical model

As described in Sec. 2.1 the micro electromechanical device is composed
of several components, i.e., the movable mechanical structure consisting of
rigid elements (movable frame, paddles), elastic elements (beam structures)
and the electrostatic actuators (comb and parallel plate capacitors). In a
more general form, the capacitive gyroscope can be considered as a multi-
body system made up of rigid and elastic bodies with external forces applied
by the capacitive actuators. The equations of motion can be systematically
derived by means of Lagrange’s formalism, e.g., by utilizing the approach
presented in [14]. The thus resulting model is in general a complex system
of non-linear ordinary differential equations as presented in [6]. However, if
only the principal modes of operation are considered the resulting dynamical
system can be written in the simplified form, see [6],

[
m1 0
0 m2

] [
q̈1
q̈2

]
+

[
d1 −c12Ω
c12Ω d2

] [
q̇1
q̇2

]
+

[
k1 ξk12
ξk12 k2

] [
q1
q2

]
=

[
f1
f2

]

(1)
with the primary mode q1 and the secondary mode q2 as well as the inertia,
damping and stiffness coefficientsmj, dj and kj with j = 1, 2 and the coupling
coefficients due to the Coriolis force and the mechanical unbalance c12 and
k12, respectively. The left-hand side of (1) is the typical representation of a
simple autonomous mechanical model for vibratory MEMS gyroscopes, see,
e.g., [15], while the electromechanical coupling forces f1 and f2 on the right-
hand side strongly depend on the specific design of the electrostatic actuators
as will be outlined in more detail below.

For the capacitive gyroscope under consideration, the comb capacitors ac-
tuating the primary mode are specifically designed to generate an input force
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f1 independent of the mechanical deflection (i.e. the primary and secondary
modes q1 and q2) of the form f1 = b1u

2
P , see, e.g. [11], with the constant

parameter b1 and the primary input voltage uP such that the equation of
motion for the primary mode can be written as

m1q̈1 + d1q̇1 + k1q1 − Ωc12q̇2 + ξk12q2 = b1u
2
P . (2)

The amplitudes of the primary mode q1 excited by the input voltage uP

are typically several orders of magnitude larger than the amplitudes of the
secondary mode excited by the weak coupling to the primary mode due to
the Coriolis force and the mechanical unbalance. Hence, for the purpose
of system analysis and control design it is reasonable to assume that the
coupling terms from the secondary to the primary mode Ωc12q̇2 and ξk12q2
in (2) are considerably small and thus can be neglected.

In contrast to the actuation of the primary mode, the parallel plate ac-
tuators for the additional excitation of the secondary mode (intended for
unbalance compensation and force feedback, see Sec. 2.1) are deliberately
designed to generate an input force f2 which specifically depends on the
mechanical deflections q1 and q2 yielding a nonlinear relation of the form
f2 (q1, q2, uS,1, . . . , uS,m), with the secondary input voltages uS,i, i = 1, . . . ,m.
The mathematical structure of the nonlinear term f2 strongly relies on the
actual placement and orientation of the electrostatic actuators as will be seen
below.

Considering these actuators as parallel plate capacitors with rectangular
electrodes, as shown in Fig. 2 for the i-th actuator, it is assumed that the
movable electrode possesses two translational degrees-of-freedom, i.e. the
displacements xi and zi of the center point aligned with the principal direc-
tions of the primary and secondary motion, respectively. Thus, if no other
modes are excited the degrees-of-freedom can be written as xi = ±ri q1 and
zi = ∓si q2 with the positive constants ri and si. The capacitance Ci and the
potential energy Wi of the i-th actuator is then given by

Ci = ε0
Ai + xi ti
gi − zi

= ε0
Ai ± ri ti q1
gi ± si q2

, Wi =
1

2
Ci u

2
S,i (3)

with the dielectric coefficient ε0, the gap gi, the width ti, the overlap area
Ai = tili and the overlap length li in the undeformed configuration, see Fig. 2.
The nonlinear input term f2 in (1) is calculated as

f2,i =
∂Wi

∂q2
= ∓1

2

ε0si (Ai ± ri ti q1)

(gi ± si q2)
2 u2

S,i , f2 =
m∑

i=1

f2,i . (4)
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xi
zigi − zi

li + xi

housing

fixed electrode

movable electrode

Figure 2: Parallel plate capacitor.

From (3) and (4) it can be seen that, depending on the geometric design of
the actuators, the secondary mode can be excited by a nonlinear term f2
possessing four different algebraic sign permutations.

The specific gyroscope under consideration, see [11], however, is designed
such that m = 4 capacitive parallel plate actuators generate an input term
of the form

f2 =
ε0
2

(
s1 (A1 + r1 t1 q1)

(g1 − s1 q2)
2 u2

S,1 −
s2 (A2 + r2 t2 q1)

(g1 + s2 q2)
2 u2

S,2

+
s3 (A3 − r3 t3 q1)

(g1 − s3 q2)
2 u2

S,3 −
s4 (A4 − r4 t4 q1)

(g1 + s4 q2)
2 u2

S,4

)
. (5)

Substituting the input transformation

uS,1 =
√
ũT − ũC + ũS , uS,2 =

√
ũT + ũC − ũS ,

uS,3 =
√
ũT + ũC + ũS , uS,4 =

√
ũT − ũC − ũS

(6)

into (5) and linearizing with respect to q1 and q2 about the point q1 = q2 = 0
yields an approximation valid for small displacements. If all of the four
actuators possess the same gaps g = gi and the geometrical conditions sA =
si Ai, r s t = ri si ti and s2A = s2iAi for i = 1, . . . , 4 hold (symmetry), the
linear approximation is given by

f2 �
2ε0sA

g2︸ ︷︷ ︸
b2

ũS − 2ε0r s t

g2︸ ︷︷ ︸
k12,C

q1 ũC +
4ε0 s

2A

g3︸ ︷︷ ︸
k2,T

q2 ũT . (7)

By making use of the approximation (7) the equation of motion of the sec-
ondary mode according to (1) can be rewritten as

m2q̈2 + d2q̇2 + (k2 − k2,T ũT ) q2 + Ωc12q̇1 + (k12 + k12,C ũC) q1 = b2 ũS , (8)
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with the constant coefficients b2, k12,C and k2,T . It can be seen that the
new control inputs ũS, ũC and ũT are decoupled with ũS allowing for a
harmonic excitation of the secondary mode, ũC serves for the compensation
of the unbalance and ũT allows for the tuning of the stiffness and thus the
resonance frequency of the secondary mode.

2.3. Envelope model

In the following, it is assumed that the primary mode is harmonically
excited by applying an input voltage of the form uP = UP,0+UP,C cos (ω t) to
the capacitive comb actuators with UP,0 ≥ UP,C . The excitation frequency ω
is chosen to be close to the eigenfrequency of the primary mode ω1 in order to
achieve maximum amplitudes. As is shown in detail in [6] it is reasonable to
introduce a so-called envelope model for the harmonically excited and weakly
damped resonance structure under consideration. Especially for the purpose
of system analysis and control design this modeling technique has the advan-
tage of reducing the overall dynamical system to a system with a manageable
number of degrees-of-freedom solely describing the essential (slow) dynam-
ics of the corresponding envelopes. Henceforth, the primary and secondary
mode are approximated in the form qj = Qj,S sin (ω t)+Qj,C cos (ω t), j = 1, 2
with the Fourier coefficients Qj,S and Qj,C , while the dc-components and the
higher harmonics are assumed to be negligible.

The envelope models of the primary and secondary mode corresponding
to the dynamical systems (2) and (8) describing the dynamics of the Fourier
coefficients Qj,S and Qj,C can be derived according to [6] and are shortly
recapitulated in the following two subsections.

2.3.1. Primary mode

Neglecting the weak coupling terms due to the angular rate Ω and the
side wall angle ξ in (2) the envelope model of the primary mode describing
the dynamics of Q1,S and Q1,C is given by, see [6, 16],

d

dt

[
Q1,S

Q1,C

]
=

[
−α1 ω − ω1

−ω + ω1 −α1

] [
Q1,S

Q1,C

]
−
[
β1

0

]
ŨP,C (9)

and the output YP,β = c1 Q1,β, β ∈ {S,C} corresponds to the Fourier coeffi-
cients of the primary output voltage yP = c1 q1 with the constant parameter
c1. The component ŨP,C = 2UP,0 UP,C stems from the quadratic input non-
linearity of the capacitive actuators. Furthermore, the damping coefficient
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α1, the eigenfrequency ω1 and the input coefficient β1 of the primary mode
are given by the relations, see [6, 16],

α1 =
1

2

d1
m1

, ω1 =
1

2

1

m1

√
4 k1m1 − d21 , β1 =

1

2

b1
m1ω1

.

For the control design, it is beneficial to introduce an output transforma-
tion to polar coordinates in the form

YP,A =
√
Y 2
P,S + Y 2

P,C , YP,ϕ = arctan

(
YP,S

YP,C

)
(10)

with the amplitude YP,A and the phase YP,ϕ of the primary output voltage.
In steady state, the amplitude and phase of the primary output voltage read
as

YP,A =
β1 c1 ŨP,C√

α2
1 + (ω − ω1)

2
, YP,ϕ = arctan

(
α1

ω1 − ω

)
.

Clearly, the maximum amplitude YP,A in steady state is obtained for the
angular velocity ω = ω1 where at the same time the phase is YP,ϕ = −π/2.
Hence, the first two tasks concerning the control of the primary mode can
be formulated as follows. The output phase YP,ϕ must be controlled to −π/2
and the output amplitude YP,A to a predefined constant value YP,des.

2.3.2. Secondary mode

Now, let us assume that the primary mode is ideally controlled with
YP,A = YP,des and YP,ϕ = −π/2 yielding the steady state Q1,S = YP,des/c1
and Q1,C = 0. If the trimming and compensation inputs introduced in (6)
are slowly varying signals ũT = ŨT and ũC = ŨC and the excitation input is
a harmonic signal of the form ũS = ŨS,C cos (ω1t) the envelope model of the
secondary mode model (8) can be written as, see [6, 16],

d

dt

[
Q2,S

Q2,C

]
=

[
−α2 ω1 − ω2

−ω1 + ω2 −α2

] [
Q2,S

Q2,C

]
+ β12

[
Ω− ΓF ŨS,C

ΓM + ΓC ŨC

]
,

(11)
with the output YS,β = c2 Q2,β, β ∈ {S,C} denoting the Fourier coefficients
of the secondary output voltage yS = c2 q2, the damping coefficient α2 and
the eigenfrequency ω2 of the secondary mode

α2 =
1

2

d2
m2

, ω2 =
1

2

1

m2

√
4
(
k2 − k2,T ŨT

)
m2 − d22 ,
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respectively and the input coefficients

β12 =
1

2

ω1

ω2

c12YP,des

c1m2

, ΓF =
b2c1

ω1c12YP,des

,

ΓM =
k12 ξ

ω1c12
, ΓC =

k12,C
ω1c12

.

In order to separate the response due to the external angular rate from the
response due to the mechanical unbalance in the output Y = [YS,S, YS,C ]T,
a transformation Z = TY of the form

T =

[
sin (φ) cos (φ)
cos (φ) − sin (φ)

]
, φ = arctan

(
α2

ω2 − ω1

)
, (12)

with the new output Z = [ZS,R, ZS,Q ]T, is performed. Then, the steady state
of the system (11) with the output transformation (12) yields the Fourier
coefficients of the transformed output signals

ZS,R = S
(
Ω− ΓF ŨS,C

)
, ZS,Q = −S

(
ΓM + ΓC ŨC

)
(13)

with the sensitivity

S =
β12 c2√

α2
2 + (ω1 − ω2)

2
.

In the output Z, the system (11) is stationarily decoupled and the compo-
nents ZS,R and ZS,Q are denoted as the angular rate and the quadrature
signal, respectively. It can be seen from (13) that the mechanical unbalance
is compensated for ΓCŨC = −ΓM , achieved by controlling the quadrature
signal ZS,Q to zero. The angular rate signal ZS,R either serves as the mea-
surement output of the MEMS gyroscope or is compensated in the form
ΓF ŨS,C = Ω in the case of force feedback control.

3. Control design

Within the scope of this paper the systematic design of open- and closed-
loop controllers is exemplarily carried out for the control tasks formulated
in the previous section, i.e., the amplitude and phase control of the primary
mode and the quadrature and force feedback control of the secondary mode.
The theoretical concepts are verified by means of numerical simulations uti-
lizing a simulation model with a high level of detail, see [6], and by means of
measurement results on a prototype gyroscope.
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3.1. Control of the primary oscillation

A main objective of the primary control concept is the optimized start-
up of the primary oscillation in the presence of parameter uncertainties. In
particular the reference frequency provided by a quartz oscillator as well as
the eigenfrequencies of the gyroscopes are subject to fabrication tolerances
and to significant drifts due to the dependence of the material parameters
on the temperature. A suitable solution for the start-up of the primary
oscillation is a sinusoidal sweep from a start frequency ω0 chosen to cover the
worst case scenario for the smallest possible primary eigenfrequency and the
maximum specified tolerance of the quartz oscillator. Then, the excitation
is carried out in the form

UP,0 = UP,C =
1

2
UP,max , ω = ω0 + ζS t , t > 0 (14)

with the frequency slope ζS and the maximum possible primary excitation
voltage UP,max. The simulated transient response with ω0 = 0.98ω1 and
ζS = 2kHz/s in terms of the amplitude YP,A and the phase YP,ϕ is illustrated
in Fig. 3(a) and respectively Fig. 3(b). There, the amplitude is normalized
with respect to the desired amplitude YP,des in steady state in the form ỸP,A =
YP,A/YP,des. The circles in Fig. 3 indicate the amplitude and phase of the
primary output voltage at the time t = tS when the phase is crossing the value
of −π/2 for the first time (apart from a short settling phase 0 ≤ t ≤ t0 that is
neglected). The corresponding angular frequency at this time is ωS = ω (tS).
If the sinusoidal sweep is performed for gyroscopes possessing different quality
factors Q1 = ω1/(2α1), it turns out that the difference between ωS and the
primary eigenfrequency ω1 remains nearly constant, see Fig. 3(c). Since the
identified frequency difference ωS − ω1 is nearly independent of the quality
factor Q1 for each slope ζS, the primary eigenfrequency can be estimated at
t = tS in the form

ω1 � ω̄1 = ωS −ΔωS, (15)

with ΔωS being the nominal frequency difference for each slope ζS. The
choice of the maximum possible slope is limited by the minimum necessary
signal amplitude in order to achieve a proper signal-to-noise ratio.

The control design is now based on the system (9) starting from the initial
condition at t = tS with YP,A > 0 and YP,ϕ = −π/2. If the angular frequency
is chosen as ω = ω1 for t > tS the component Q1,C remains in the steady
state, i.e., the desired trajectory is Q∗

1,C = 0 with the output Y ∗
P,ϕ = −π/2.

11

Post-print version of the article: M. Egretzberger, F. Mair, A. Kugi, “Model-based control concepts for vibratory mems gyroscopes”,
Mechatronics, 22, 3, 241–250, 2012. doi: 10.1016/j.mechatronics.2011.06.003
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.mechatronics.2011.06.003


Ỹ
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Figure 3: Transient response of the primary output voltage due to a sinusoidal sweep
in terms of (a) the amplitude ỸP,A (b) the phase YP,ϕ, and (c) the frequency difference
ωS − ω1 for varying slopes ζS over the quality factor Q1.
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Then, the (time optimal) control for the residual first order system, see (9),

d

dt
Q∗

1,S = −α1 Q
∗
1,S − β1 Ũ

∗
P,C

is given by the maximum possible constant input Ũ∗
P,C until the trajectory

Y ∗
P,A = c1 Q

∗
1,S has reached the desired amplitude YP,des at the time t = tA.

For t ≥ tA, we aim at staying in the steady state Y ∗
P,A = YP,des. This is

achieved for the feedforward control input

ω∗ = ω1, tS ≤ t and Ũ∗
P,C =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
U2
P,max tS ≤ t < tA

− α1

β1 c1
YP,des t ≥ tA .

(16)

In reality, however, the real model parameters α̂1, ω̂1, β̂1 and ĉ1 differ from
the nominal values α1, ω1, β1 and c1. Thus, it is reasonable to substitute the
estimation ω̄1 for the primary eigenfrequency ω1, cf. (15), in the feedforward
control (16), i.e., ω∗ = ωS−ΔωS, while the input Ũ

∗
P,C can only be calculated

for the nominal parameter values α1, β1 and c1. Therefore, a drift of the phase
YP,ϕ and the amplitude YP,A is inevitable, which necessitates the design of a
suitable closed-loop control.

After the sinusoidal sweep for the time 0 ≤ t < tS, the second stage of
the primary control is the phase control, where the excitation frequency is
composed of the feedforward and feedback control inputs ω∗ and Δω in the
form

ω = ω∗ +Δω for t ≥ tS . (17)

During this control stage the maximum possible primary input voltage Ũ∗
P,C =

U2
P,max/2 is applied until the desired amplitude YP,des is reached at t = tA.

Then, in the third stage, i.e. for t ≥ tA, a combined phase and amplitude
control is performed. For the feedback control of the amplitude, a new in-
put ΔŨP,C is introduced yielding the coefficients of the primary excitation
voltage in the form

UP,C =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
UP,max

UP,ctrl

UP,0 =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
UP,max tS ≤ t < tA

1

2

Ũ∗
P,C +ΔŨP,C

UP,ctrl

t ≥ tA ,
(18)
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with a suitable constant parameter UP,ctrl.
For the design of the feedback controller, the system (9) with output (10)

is linearized around the desired operating point Q∗
1,S = YP,des/c1, Q

∗
1,C = 0,

ω∗ = ω1 and Ũ∗
P,C = −α1 YP,des/ (β1 c1) yielding a linear time-invariant system

of the form

d

dt

[
ΔQ1,S

ΔQ1,C

]
= −

[
α1 0
0 α1

][
ΔQ1,S

ΔQ1,C

]
−
[

0 β1

Q∗
1,S 0

][
Δω

ΔŨP,C

]
(19a)

with the output

[
ΔYP,A

ΔYP,ϕ

]
=

[
c1 0
0 −1/Q∗

1,S

] [
ΔQ1,S

ΔQ1,C

]
(19b)

and the deviations ΔQ1,S, ΔQ1,C , ΔYP,A and ΔYP,ϕ from the operating point.
It can be seen that the linearized system (19) is decoupled from the control
input Δω and ΔŨP,C to the output ΔYP,ϕ and ΔYP,A with the corresponding
transfer functions

GP,ϕ (s) =
1

s+ α1

, GP,A (s) = − β1 c1
s+ α1

, (20)

and the Laplace variable s. Based on (20) two PI-controllers are designed by
means of the loop-shaping method in such a way that the rise times of the
closed-loop step responses become considerably small without entailing an
overshooting. This linearized approach is reasonable as long as the deviations
are sufficiently small. It has proven robust against parameter variations and
different frequency slopes of the sinusoidal sweep, see also the measurement
results in Sec. 4.

Summarizing, the start-up control strategy for the primary oscillation
can be separated into three phases, namely the sinusoidal sweep (stage I,
0 ≤ t ≤ tS), the open-loop amplitude and closed-loop phase control (stage
II, tS < t ≤ tA) and the closed-loop amplitude and phase control (stage
III, t > tA). The corresponding simulation results in terms of the output
signals ỸP,A and YP,ϕ and the corresponding control inputs UP,0, UP,C and ω
are depicted in Fig. 4. The frequency slope of the sinusoidal sweep is chosen
as ζS = 8kHz/s. The performance of the amplitude and phase controller is
illustrated for a gyroscope with (A) an increased damping parameter α̂1 =
1.33α1, (B) the nominal damping parameter α̂1 = α1 and (C) a decreased
damping parameter α̂1 = 0.5α1.
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Figure 4: Start-up phase of the primary control in terms of (a) the normalized amplitude
ỸP,A, (b) the primary excitation voltages UP,γ , γ ∈ {0, C} and (c) the phase YP,ϕ of the
primary output voltage and the excitation frequency ω.

The time axis with t̃ = t/tN in Fig. 4 is normalized to the time tN , which
is a predefined value marking the end of the start-up phase. For t ≥ tN the
gyroscope is considered to operate in the normal mode providing a reliable
measurement output with a predefined accuracy for the externally applied
angular rate Ω.

3.2. Control of the secondary oscillation

Typically, two modes of operation can be distinguished for vibratory
MEMS gyroscopes, namely the split mode, if there is a predefined nomi-
nal difference between the primary and secondary eigenfrequency, and the
matched mode, if the secondary eigenfrequency is controlled to match the
primary eigenfrequency, see, e.g., [15]. Within this subsection, the focus is
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laid on the derivation of a quadrature controller and a combined quadrature
and force feedback controller for a sensor designed to operate in the split
mode with a constant input ŨT and thus a constant frequency difference
|ω1 − ω2| > 0, respectively.

3.2.1. Quadrature control

Starting point for the following considerations is the envelope model of
the secondary mode (11). The corresponding transfer function matrix from
the input U = [ ŨS,C , ŨC ]T to the output Y = [YS,S, YS,C ]T is given by

G (s)=
−β12c2

(s+α2)
2+(ω1−ω2)

2

[ −(s+ α2) ΓF (ω1−ω2) ΓC

(ω1−ω2) ΓF (s+α2) ΓC

]
(21)

Considering the stationary decoupling by means of the transformation (12),
the behavior of the MIMO system from the input U to the transformed
output Z = [ZS,R, ZS,Q ]T is described by the transfer function matrix

H (s) = TG (s) =

[
H11 (s) H12 (s)
H21 (s) H22 (s)

]
(22)

with lims→0 H12 (s) = lims→0 H21 (s) = 0.
In its simplest form, the control of the secondary mode merely covers

the closed-loop control for the unbalance compensation, while the angular
rate signal is obtained from the open-loop measurement output ZS,R of the
gyroscope according to (13). Thus, the quadrature controller can be eas-
ily derived for the linear and time-invariant SISO system described by the
transfer function H22 (s). The demands on the closed-loop behavior are a
predefined rise time and the exact suppression of a constant mechanical un-
balance in the stationary case. The quadrature controller is activated at the
time t = tA when it can be assumed that the phase controller is in steady
state and thus the demodulation yields proper output signals ZS,R and ZS,Q.

The dynamic behavior of the quadrature controller at the start-up phase
is illustrated in Fig. 5(a). Again, the time axis is normalized in the form
t̃ = t/tN . Moreover, the angular rate and quadrature signals are normalized
in the form Z̃S,γ = ZS,γ/Zr, γ ∈ {R,Q} with the corresponding response Zr

to an angular rate of Ω = 100◦/s. Likewise, the input ŨC is normalized to
the corresponding value ŨC,r required to compensate an unbalance of ΓM =
100◦/s. The simulated gyroscope possesses an unbalance of ΓM = 1000◦/s.
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Figure 5: Dynamic behavior of the quadrature controller (a) in the start-up phase and (b)
in the normal mode of operation in response to a step input of the external angular rate
Ω in the case of (i) stationary and (ii) dynamic decoupling.

The dynamic response of the closed-loop system to an input step of the
angular rate Ω in terms of the normalized quantities Z̃S,R and Z̃S,Q is il-
lustrated in Fig. 5(b). It can be clearly seen that, although the angular
rate signal Z̃S,R and the quadrature signal Z̃S,Q are stationarily decoupled,
they show a strong coupling in the transient phase. Furthermore, due to the
considered open-loop measurement of the angular rate the weakly damped
system dynamics cannot be influenced in the output signal Z̃S,R. In order to
eliminate these unwanted system characteristics, in the next step a closed-
loop force feedback controller comprising a dynamic decoupling of the output
signals will be derived.
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3.2.2. Combined quadrature and force feedback control

If the output transformation is performed by means of the transfer func-
tion matrix

T (s) = S
α2

β12c2

⎡
⎢⎣

−1
ω1 − ω2

s+ α2
ω1 − ω2

s+ α2

1

⎤
⎥⎦ (23)

the MIMO system (11) can be dynamically decoupled such that the transfer
behavior of the MIMO system (11) from the input U to the transformed
output Z is given by the transfer function matrix

K (s) = T (s) G (s) =

[
K1 (s) 0

0 K2 (s)

]
(24)

with the diagonal components

K1 (s) = −S
α2 ΓF

s+ α2

and K2 (s) = −S
α2 ΓC

s+ α2

.

The constant factor S α2/(β12c2) in (23) is introduced in order to achieve the
stationary solution lims→0 K1(2) (s) = −S ΓF (C).

Now, the design of the quadrature controller from Sec. 3.2.1 can be per-
formed on the basis of the linear time-invariant SISO system K2(s) instead
of H22(s) which is dynamically decoupled from the system K1(s). The corre-
sponding simulation results in the normal mode of operation can be found in
Fig. 5(b). Additionally, a force feedback controller can be designed indepen-
dently for the system K1(s) with the following demands on the closed-loop
behavior. The system should exhibit a predefined rise time and the output
signal ZS,R has to be stationarily controlled to zero for a constant external
angular rate Ω. The closed-loop control is again activated at the time t = tA
but in this concept, however, the actual measurement output (the angular
rate signal) is taken directly from the force feedback control input ŨS,C .

Figure 6(a) illustrates the dynamic behavior of the combined quadrature
and force feedback controller in the start-up phase. In the normal mode of
operation, the closed-loop system responds to an input step of the external
angular rate Ω as depicted in Fig. 6(b), where an almost perfect decoupling
between the angular rate signal Z̃S,R and the quadrature signal Z̃S,Q can be
observed during the dynamic response. The corresponding force feedback
input ŨS,C as illustrated in Fig. 6(b) directly serves as the measurement
output of the gyroscope.
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Figure 6: Dynamic behavior of the combined quadrature and force feedback controller (a)
in the start-up phase and (b) in the normal mode of operation in response to a step input
of the external angular rate Ω.

In contrast to the basic control concept the combined, dynamically decou-
pled concept of quadrature and force feedback control allows for actively tun-
ing the closed-loop dynamics of the gyroscope. This advantage can be directly
seen by comparing the response of the measurement output in Fig. 5(b), i.e.
the angular rate signal, whose dynamic behavior is inherently given by the
open-loop dynamics of the system (the natural damping and eigenfrequency
of the secondary mode), with the response of the measurement output in
Fig. 6(b), i.e. the force feedback input signal, which is tuned by the appro-
priate control design. The combined control concept including force feedback
therefore is essential in particular if the natural damping of the secondary
mode is small and the necessary bandwidth of the measurement output can-
not be achieved in open-loop. However, the drawback of this method, besides
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the slightly increasing electronic circuit complexity, is that since the neces-
sary force feedback input ŨS,C is small compared to the compensation input
ŨC (a factor of approximately 15 for the gyroscope under consideration) the
demands on the resolution of the corresponding DACs are increasing.

In reality, the model parameters α̂2, ω̂2, β̂12 and ĉ2 differ from the nom-
inal values α2, ω2, β12 and c2 thus necessitating an appropriate calibration
procedure. For the basic control concept discussed in Subsec. 3.2.1 this can
simply be realized by adjusting the demodulation of the secondary mode sig-
nal, i.e. the output transformation (12), which directly yields the parameter
φ̂. For the combined control concept the frequency difference ω̂1 − ω̂2 can be
obtained in a similar manner by adjusting the demodulation of the secondary
mode signal, i.e. the output transformation (23) in steady state, cf. K1(s)
and K2(s) in (24) for s → 0. Then, a stationary decoupling of the measure-
ment output is achieved. In order to improve the closed-loop performance
and to realize a dynamical decoupling as proposed in Subsec. 3.2.2 also the
damping parameter α̂2 has to be identified by means of standard procedures
for second order linear systems.

4. Experimental validation

To verify the control concepts introduced in Sec. 3 the corresponding
controllers were implemented on a development board consisting of a Field
Programmable Gate Array (FPGA) and additional analog circuitry for the
actuation and read-out of a prototype capacitive gyroscope with an unbalance
of ΓM = 830◦/s. Special emphasis was placed on solely utilizing such logic
resources of the FPGA which are available in standard ASIC processes. This
is of particular importance especially in view of the targeted mass production
of the considered MEMS gyroscopes.

The zero crossing of the primary mode signal is detected by a discrete
external comparator which together with a digital phase frequency detector
provides the signal ΔYP,ϕ. The primary and secondary mode signals are con-
verted from the analog to the digital domain and the signal ΔYP,A is derived
by calculating the magnitude of the primary mode signal, while ZS,R and
ZS,Q are obtained by an appropriate demodulation of the secondary mode
signal.

The measurement results of the start-up strategy for the primary oscilla-
tion illustrated in Fig. 7 are in good accordance with the numerical simulation
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Figure 7: Measurement results of the start-up strategy for the primary mode in terms of
(a) the normalized amplitude ỸP,A, (b) the voltages UP,γ , γ ∈ {0, C} and (c) the phase
YP,ϕ and the excitation frequency ω.

results presented in Sec. 3.1, cf. Fig. 4, and therefore validate the proposed
mathematical model as well as the developed control concepts.

Also the measurement results of the secondary control in terms of the
quadrature controller during the start-up phase, illustrated in Fig. 8(a), as
well as the results obtained from the combined quadrature and force feed-
back controller, illustrated in Fig. 9(a), show the same excellent behavior
as the numerical simulation results presented in Sec. 3.2, cf. Figs. 5(a) and
6(a). Since in reality the development board cannot be exposed to a step-like
angular rate, the stationary and dynamic output transformation was verified
by measuring the quadrature and angular rate signal in response to a step of
the compensation input voltage ŨC . The feasibility of this approach can di-
rectly be obtained from (11) by substituting Ω for ΓCŨC . The measurement
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/Ũ

C
,r

ŨC
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Figure 8: Measurement results of the dynamic behavior of the quadrature controller (a)
in the start-up phase and (b) in the normal mode of operation in response to a step of the
compensation input ŨC in the case of (i) stationary and (ii) dynamic decoupling.

results, depicted in Fig. 8(b), show the expected transient coupling between
the normalized rate and quadrature signals for the stationary output trans-
formation and a nearly perfect decoupling of the signals for the dynamic
output transformation. However, in comparison with the simulation results
obtained in Sec. 3.2 the quadrature signal in Fig. 8(b) is equivalent to the
angular rate signal in Fig. 5(b) and vice versa due to the different excitation
in terms of the compensation input ŨC instead of an external angular rate
Ω.

The actual closed-loop response of the combined concept with quadrature
and force feedback control due to an external angular rate Ω is illustrated
in Fig. 9(b). Here, the angular rate is applied by manually turning the
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Figure 9: Measurement results of the dynamic behavior of the combined quadrature and
force feedback controller (a) in the start-up phase and (b) in the normal mode of operation
in response to a manually applied external angular rate Ωr.

development board. The applied angular rate Ω is measured with a calibrated
reference sensor yielding the measurement output Ωr. As can be observed,
the normalized compensation input ŨS,C is perfectly tracking the reference
Ωr, whereas the angular rate and quadrature signals Z̃S,R and Z̃S,Q, remain
decoupled during the complete transition.

5. Summary

The paper presents a systematic design of open- and closed-loop con-
trollers for vibratory MEMS gyroscopes based on so-called envelope models.
As an illustrative example an optimized start-up strategy for the primary
mode of a capacitive gyroscope is derived highlighting the advantages of the
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presented methodology. Furthermore, the approach is also utilized for the
systematic design of a basic quadrature controller for the secondary mode
in order to compensate for the inherent unbalance effects caused by the non
ideal fabrication process. In order to eliminate the typically weakly damped
open-loop dynamics of the gyroscope and the transient coupling between the
quadrature and the angular rate signal a more sophisticated combined con-
cept of closed-loop quadrature and force feedback control was introduced.
Simulation and measurement results for a prototype gyroscope validate the
mathematical models and prove the feasibility of the proposed control con-
cepts.
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Nomenclature

Throughout the paper the indices j = 1, . . . , n and i = 1, . . . ,m are used
to identify the respective vibratory mode and the movable electrodes. In
this contribution the number of vibratory modes is chosen as n = 2. The
index α ∈ {P, S} refers to the primary and secondary mode while the index
β ∈ {S,C} denotes the sine and cosine Fourier coefficient of the respective
harmonic signal.

The entire list of symbols can be found in the following Tables 1 to 4.
Quantities denoted with a tilde symbol are normalized with respect to a
reference value and quantities denoted with a hat symbol are real parameter
values differing from the nominal values. The system linearized about a
desired operating point (equilibrium) referred to with a ∗ symbol is described
in terms of small deviations Δ.
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